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Abstract

Let 2 be the Fraissé limit of a class of relational structures. We seek to
answer the following semigroup theoretic question about €2.

What are the group #-classes, i.e. the maximal subgroups, of End(2)?

Fraissé limits for which we answer this question include the random graph
R, the random directed graph D, the random tournament 7', the random
bipartite graph B, Henson’s graphs G,, (n > 3) and the total order Q.

The maximal subgroups of End(2) are closely connected to the automor-
phism groups of the relational structures induced by the images of idempo-
tents from End(Q2). In [BD00] and [Doll12] it was shown that the relational
structure induced by the image of an idempotent from End((2) is algebraically
closed. Accordingly, we investigate which groups can be realised as the au-
tomorphism group of an algebraically closed relational structure in order to
determine the maximal subgroups of End(£2) in each case.

In particular, we show that if I' is a countable graph and €2 = R, D, B,
then there exist 2% maximal subgroups of End(Q) which are isomorphic
to Aut(I'). Additionally, we provide a complete description of the subsets
of @ which are the image of an idempotent from End(Q). We call these
subsets retracts of Q and show that if €2 is a total order and f : Q2 — Q is
an embedding such that im f is a retract of Q, then there exist 2% maximal
subgroups of End(Q) isomorphic to Aut(£2). We also show that any countable
maximal subgroup of End(Q) must be isomorphic to Z™ for some n € N.

As a consequence of the methods developed, we are also able to show that
when Q = R, D, B, Q there exist 2™ regular Z-classes of End(§2) and when
Q = R,D, B there exist 2% f#-classes of End(£2). Additionally we show
that if Q = R, D then all regular Z-classes contain 2% group #-classes. On
the other hand, we show that when 2 = B, Q there exist regular Z-classes
which contain countably many group .77-classes.

il
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Chapter 1

Motivation and Introduction

In 1953 Roland Fraissé defined under which circumstances a relational struc-
ture could be approximated by its finitely generated substructures, [Fra53].
He was able to provide a full set of axioms which determined precisely when
the class of finitely generated substructures defined the relational structure
up to isomorphism.

Since then, Fraissé limits have been the subject of much interest and
study. In particular, group theorists have asked many natural questions
about the automorphism groups of such structures. For example, the Fraissé
limit of the class of finite graphs was first introduced by Erdos and Rényi in
1963, and is now commonly known as the random graph R, [ER63]. Subse-
quently, in 1985, Truss proved that the automorphism group of the random
graph was simple and also gave a characterisation of the possible cycle decom-
position types of automorphisms of R, [Tru85]. In 2011, this was generalised
by Macpherson and Tent who showed that if {2 is any homogeneous Fraissé
limit of a class which has the free amalgamation property and Aut((2) is
transitive on €2 but not equal to Sym(€2), then Aut(2) is simple, [MT11].

Only more recently have semigroup theorists started to study the natural
semigroup of endomorphisms, End((2), for various Fraissé limits €2. In 2000,
Bonato and Deli¢ started this task by providing many semigroup theoretic
properties of End(R), [BD00]. For example, they showed that End(R) is non-
regular and provided a description of the subgraphs of R induced by the im-
ages of idempotent endomorphisms. Furthermore, in [Dol07] and [BDD10] it
was shown that all countable monoids embed into the endomorphism monoid
of the random graph and random poset.

In this thesis we seek to answer further semigroup theoretic questions



about the semigroup of endomorphisms of a selection of Fraissé limits. These
are: the random graph R, the random directed graph D, the random tour-
nament 7', the random bipartite graph B, Henson’s graphs G,, and the total
order Q. These are examined in Chapters 3 through 8. In particular, we
determine the group .#-classes (and therefore maximal subgroups) of the
semigroup of endomorphisms of each of the Fraissé limits mentioned.

It is known that if €2 is a relational structure, then the maximal subgroups
of End(Q2) are in one-one correspondence with the 7#-classes of idempotents
from End(€2). It can further be shown that the group .7-class of an idempo-
tent from End(€2) is isomorphic to the automorphism group of the relational
structure induced by the image of the idempotent (see Theorem 2.7). In
[BD00] and [Dol12] a characterisation is provided of the relational structures
induced by the image of an idempotent from End(€2) when 2 is a Fraissé
limit of a class of relational structures satisfying certain conditions. They
show that the structures induced by the image of such idempotents are al-
gebraically closed. Accordingly, we investigate which groups can be realised
as the automorphism group of an algebraically closed relational structure in
order to determine the maximal subgroups of End(€2) when € is any of the
Fraissé limits mentioned above.

We show that if I is a countable graph and €2 = R, D, B, then there exist
2% maximal subgroups of End(Q2) which are isomorphic to Aut(T"). By using
Frucht’s Theorem (see Theorem 3.12), this leads us to the conclusion that
every countable group is a maximal subgroup of End(€2) in these cases. On
the other hand we show that if = T, G, then End(Q2) has exactly one
maximal subgroup, namely Aut(£2). When considering the total order Q, we
take a slightly different approach and provide a complete description of the
subsets of @Q which are the image of an idempotent from End(Q). We call
these subsets retracts of Q and show that if 2 is a total order and f : 2 — Q
is an embedding such that im f is a retract of Q, then there exist 2% maximal
subgroups of End(Q) isomorphic to Aut(2). When investigating End(Q), we
found ourselves asking the question: which countable groups can be realised
as the automorphism groups of a countable total order? As it turned out, the
answer to this question was not straightforward and finding an answer proved
to be particularly complicated. The answer to this question is developed in
Chapter 9, where we show that if A is a countable total order and Aut(A)
is countable, then Aut(A) is isomorphic to Z" for some n € N. Thus an
analogue of Frucht’s Theorem does not hold in the setting of total orders
and consequently, if H is a countable maximal subgroup of End(Q), then
H = 7" for some n € N.



As a consequence of the methods developed throughout the thesis, we
are also able to gain information on the regular Z-classes and _#-classes
of End(Q2) for each of the Fraissé limits 2. In particular we can determine
the cardinality of the set of regular Z-classes and (for some of the Fraissé
limits) the cardinality of the set of ¢#-classes of End(£2). We show that
when Q = R, D, B, Q there exist 2% regular Z-classes of End(Q2) and when
Q2 = R,D, B there exist 2% fZ-classes of End(£2). Additionally we show
that if Q = R, D then all regular Z-classes contain 2% group .57 -classes. On
the other hand, we show that when 2 = B, Q there exist regular Z-classes
which contain countably many group .7#-classes.

In the final chapter, Chapter 10, we provide some open questions and
possible areas for further work which arise from this thesis.



Chapter 2

Preliminaries

In this preliminary chapter, we provide the necessary notation and prelimi-
nary results that will be referred to continually throughout this thesis.

2.1 Sets and Functions

Throughout this thesis, we will assume the axiom of choice. Unless otherwise
stated the natural numbers will be defined as the set N = {0,1,2,...}. A
set V' will be called countable if there exists an injective function from V' to
N. Under this definition finite sets are countable.

Throughout, maps will be written on the right of their argument so that
functions are composed from left to right. As is standard, the domain of a
function f will be denoted by dom f and its image by im f. Thusif f:V —
W is a function of sets, then dom f =V and im f = {vf :0v € V} CW. If
U is a subset of the domain of f then we will denote the image of the set
U under f by Uf. That is, we let Uf = {uf : w € U}. The kernel of f is,
as usual, ker f = {(u,v) € V xV :uf =vf}. Given u € V we call the set
{veV:(uv)€kerf} the kernel class of u. It is easy to see that ker f is
an equivalence relation and hence the kernel classes of f partition V.

If f:V — W isa function and U C V then f restricted to U, denoted
flu is the function f|y : U — W, where uf|y = uf for all w € U. On the
other hand, if f: U — W is a function, then an eztension of f is a function
f:V =W where U CV and fly = f.

Since a function f : U — V can be thought of as a subset of U x V' we
can take the union of a set of functions {f; : i € I'} for some index set /. In



general | J f; is not a function. However if f;,; is an extension of f; for all i,
or if dom f; N'dom f; = 0 for all ¢ # j, then | f; is itself a function.

2.2 Relational Structures

A binary relation E on a set V is just a subset of V' x V. The binary relation
E is said to be:

Reflexive if for all v € V' it is true that (v,v) € V.
Irreflezive if for all v € V' it is true that (v,v) € V.

Symmetric if for all u,v € V such that (u,v) € E, it is true that
(v,u) € E.

Antisymmetric if for all u,v € V', whenever (u,v) € F and (v,u) € E
it can be deduced that u = v.

Transitive if for all u,v,w € V such that (u,v) € E and (v,w) € E, it
is true that (u,w) € E.

For the purpose of this thesis a (binary) relational structure @ = (V, ) is a
non-empty! set V together with a sequence € = (E;);e; of one or more binary
relations. If £ consists of a finite sequence of binary relations Ei, ... E, say,
we may simply write Q = (V| £y, ..., E,). A relational structure Q = (V, &)
is said to be countable if V' is a countable set. Likewise, if V is finite we
say that ( is finite. Notation may be abused slightly and v € €2 may often
be written to mean v € V. A relational substructure of €1 is a relational
structure (U, D), where U is a subset of V' and where D is the sequence
(D;)ier with D; = E; N (U x U) for all i € I. Clearly, each binary relation
D; will inherit the above properties (i.e. reflexivity, symmetry and so forth)
that the parent relation FE; possesses. Often (U, D) is called the relational
substructure induced by U and denoted by (U). If U is finite then (U) is said
to be a finitely generated substructure (of 2).

Let Q = (Va, (Ei)ier) and A = (Vy, (F)ier) be relational structures. A
homomorphism f : Q — A is a function f : Vo — Vi such that (uf,vf) € F;

'We could, of course, permit V to be empty and allow the structure consisting of an
empty set together with an empty set of binary relations to be a relational structure. How-
ever, since this makes our lives more complicated whilst not adding anything interesting
to the discussion, this structure will be omitted from the definition.



whenever (u,v) € E; for i € I. If Q@ = A then f is said to be an en-
domorphism. The set of all endomorphisms of a relational structure {2
forms a monoid under composition of functions and is denoted by End(€2) or
End(Vy, &q). Clearly, if f : Vi — V) is a homomorphism of relational struc-
tures then the image of f induces a relational structure on A. Where there
can be no confusion, we may abuse the notation to write im f to mean the
relational structure induced by the image set (i.e. (im f)) as well as simply
the image set itself.

If f: Vo — Vi is an injective function such that (u,v) € E; if and only
if (uf,vf) € F;, then f is said to be an embedding (of Q into A). If instead
f is bijective and (u,v) € E; if and only if (uf,vf) € Fj, then f is said
to be an isomorphism. Thus an embedding 2 — A is a map f : Vo — Vi
which defines an isomorphism between (2 and the relational substructure of
A induced by im f. If 2 and A are relational structures and there exists
an isomorphism f : 2 — A, then €2 and A are said to be isomorphic and
this is denoted by 2 =2 A. When Q) = A, we call f an automorphism. The
set of all automorphisms of a relational structure €2 forms a group under
composition of functions and is denoted by Aut(Q2) or Aut(Vg,E&q). The
function 1 : Vo — Vg defined by v1 = v for all v € Vg is an automorphism
which we call the identity automorphism. Where the domain needs to be
made clear we may write 1y, to mean the identity function Vo — Vo. If
f: Q — A is an isomorphism we define the inverse of f to be the map
f~t 1 V) — Vg such that vf~! = u, where u € Vg is the unique element
such that wf = v. Since f is an isomorphism (v,w) € E; if and only if
(vf,wf) € F;. In other words, (x,y) € F; if and only if (zf~',yf™!) € E;.
Thus the inverse map f~! is also an isomorphism.

A relational structure €2 is said to be homogeneous if any isomorphism
between finitely generated substructures of {2 can be extended to an automor-
phism of €). That is, whenever A; and A, are isomorphic finitely generated
substructures of € via the isomorphism f : A; — A, then there exists an
automorphism g : Q — € such that g|a, = f.

A graph T' = (Vr, Er) is a relational structure with an irreflexive and
symmetric binary relation Er. As is standard practice we call the set Vi the
set of vertices and Er the set of edges. If I' is a graph and U C Vi, we call
the relational substructure induced by U a subgraph of T'. If (u,v) € Er (and
hence (v,u) € Er also), we say that there exists an edge between u and v or
that u is adjacent to v. The degree of a vertex v € Vr (in I') is the number
of vertices to which v is adjacent in I'. Graph isomorphisms preserve degree,



in the sense that if f : ' — A is an isomorphism, then the degree of vf in A
is equal to the degree of v in I' for all v € V. A graph I is said to be locally
finite if every vertex of I' has finite degree. We call a graph I' connected if
for any pair of vertices u,v € Vr, such that u # v, there exists a sequence
of edges (u, 1), (x1,22), ..., (Tn-1,%n), (xn,v) in Er. The sequence of edges
(u,21), ..., (zn,v) will be called a path from u to v of length n. A path from
a vertex u to itself is called a cycle.

A graph I' = (Vp, Er) is said to satisfy the bipartite condition if there
exists a function ¢ : Vr — {0, 1} such that uc # ve whenever (u,v) € Er. In
other words we can write Vi = VoUV; where VoNV; = () and where (u,v) € Er
implies that u € Vi and v € Vj or vice versa. We call the decomposition of
V into the sets V and Vi a bipartition of I'. 1t is well known that a graph
can satisfy the bipartite condition if and only if it contains no odd cycles.
For m,n € N\ {0}, let K,,,, denote the graph with vertex set

va,n :{Ui,UjZi:l,...,m7j:1’.__,n}
and edge set
EKm,n = {(Ui,’l)j),(l)j,ui) D= 1,---m, ] = 1,71}

Then K,,, satisfies the bipartite condition with bipartition Vg, . = Vo UV}
where Vo = {w; : e =1,...,m} and V; = {v; : j = 1,...,n}. It must be
stressed that a graph satisfying the bipartite condition will not be called a
bipartite graph and a separate definition will be made (see Definition 7.1).
The reason for this will become clear in Chapter 7.

A directed graph (or digraph) is a relational structure I' = (Vr, Er) in
which the binary relation FEr is irreflexive. We continue to call Vi the vertices
and Er the edges of I' in this setting. Of course, every graph is a directed
graph but the converse does not always hold. If I' is a directed graph and
(u,v) € Er, we say that there is an edge from u to v in I'. Substructures
in this setting will be called directed subgraphs. Given a directed graph T,
the relational structure I' = (Vi, Er U {(v,u) : (u,v) € Ep}) is a graph.
A directed graph I' is said to be connected if the graph [ is connected. A
tournament is a directed graph I' in which for every pair of vertices u,v € Vr.,
exactly one of (u,v) € Er or (v,u) € Er holds.

If T is a directed graph and U is a subset of V1, then we call U a connected

component of T" if the induced directed subgraph (U) is connected and there
exist no edges between any vertex in U and any vertex in Vp \ U. It is easy
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to show that any automorphism of I' must map a connected component to a
connected component. If I' is a directed graph and U is a non-empty subset
of Vi such that (U) = (U, 0), i.e. the directed subgraph induced by U has
no edges, then U is said to be an independent set in I'. An independent
set U C Vp is said to be mazimal if for any v € Vp \ U, U U {v} is not an
independent set. Clearly if v € Vp, then v is contained in the independent
set {v}. By Zorn’s Lemma, every vertex of Vr is contained in at least one
maximal independent set and V1 is the union of its maximal independent sets.
The (directed) graph (Vr, (Ve x Vi) \ {(v,v) : v € V1}) is called the complete
graph on |Vp| vertices and is denoted by Kjy;|. If I and A are directed graphs
then T' is said to be A-free if there exists no directed subgraph of I" which
is isomorphic to A. A graph which is Kj3-free is said to be triangle-free for
obvious reasons.

Given two directed graphs I' and A, we can produce a new directed graph
by taking the union of I' and A. That is, we define I' U A to be the directed
graph with vertex set Vr U V) and edge set Er U Ey. Clearly, if I' and A are
both graphs, then I' U A is also a graph. If the vertex sets of I' and A are
disjoint we call their union a disjoint union and denote this by I'UA. These
definitions can be extended to form the union of an arbitrary set of directed
graphs.

A partial order Q2 = (Vg, Eq) is a relational structure with a single reflex-
ive, antisymmetric and transitive binary relation. When (2 is a partial order,
the binary relation Fq is called the order on Q. Often, when Q = (Vg, Eq)
is a partial order, the order is denoted by < and (u,v) € < is replaced by
u < v. In the case where u < v but u # v we can denote this by u < v. If
U, and U, are non-empty subsets of Vi, we write

U, < U, to mean v < v for all w € U; and for all v € Us.

If U; contains only one element, = say, then we may abuse notation and write
x < U, rather than {z} < U,. Likewise if U, contains only one element, y
say, we will often write U; < y to mean U; < {y}. An element u € Vg is
said to be mazimal if whenever v € Vi, and u < v, then u = v. A total order
is a partial order 2 satisfying totality. That is, for all u,v € Vg at least one
of (u,v) € Eq or (v,u) € Eq holds. If €2 is a partial order, then a chain in
Q2 is a subset U C Vg, such that (U) is a total order. If Q is a total order,
then clearly Vg, is chain itself. By an interval in a total order {2, we mean a
non-empty subset U C Vi, such that for all u,v € U with v < v, whenever
x € Vo and u < xz < v it follows that € U. It is easy to see that if T



and U are intervals in the total order Q such that T NU = (), then either
T < Uor U < T. Furthermore, if U is an interval in a total order €2 and
f:Q — Ais an isomorphism of total orders, then U f is an interval in A. An
automorphism of a total order Q2 = (Vq, <) is defined (as expected) to be a
function f: Vo — Vg such that v < v if and only if uf <vf. If f € Aut(Q)
and f # 1y, then we can show that f has infinite order as follows. For if
f # 1y, then there exists u € Vg such that v < uf or uf < w. If u < uf,
then f" = 1y, implies that u < uf" ! < uf" = u, and if uf < w, then
™ = 1y, implies that v = uf™ < uf"' < u, both contradictions. Thus f
has infinite order as claimed. A well order is a total order {2 in which for
every non-empty subset U C Vg, there exists u € U such that v < U. It is
not hard to show that a countable well order must have trivial automorphism
group (see [Cam08, Lemmas 2.1 and 2.3] for example).

2.3 Archimedean Groups

Let (G, -) be a group and suppose that < is a binary relation on the underlying
set G such that (G, <) is a total order. The total order (G, <) is said to be
translation invariant if for all f,g,h € G, if f < g then f-h < g-h and
h-f<h-g If (G,-)is a group and (G, <) is a translation invariant total
order then we say that (G, -, <) is a totally ordered group. If 1 is the identity
element of GG, then an element g € G is said to be positive if 1 < g and
negative if g < 1. An Archimedean group is a totally ordered group (G, -, <)
such that whenever g, h € G are positive elements with g < h, then there
exists n € N such that h < ¢g™. It is not hard to show that if (G, -, <) is
an Archimedean group then g < h implies that ¢" < h™ and h™" < ¢g~" for
all n € N. Archimedean groups will be of importance in Chapter 9. The
following theorem, originally proved by Holder in 1910, will be particularly
useful. For a proof see for example, [Dar97, Theorem 24.16].

Theorem 2.1 (Hélder’s Theorem). Any Archimedean group is isomorphic
to a subgroup of the additive group of real numbers.

Helpfully, the additive subgroups of the real numbers can be categorised
in the following manner.

Theorem 2.2 ([Goo86, Lemma 4.21]). Any additive subgroup of the real
numbers is either cyclic, or is a dense subset of the reals.

Proof. Suppose that (G, +) is a subgroup of (R, +) that is not dense. Then
there exists g, h € G, g < h, such that there exists no f € G with g < f < h.
Thus it must be the case that there exists no k € G such that 1 < k < h—g,
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for otherwise g < k + g < h, a contradiction. Hence h — ¢ is the minimal
positive element of G. So let h — g = n. Using the Euclidean algorithm, we
can express any element a € G as a = nqg + r, where ¢ € Z and 0 < r < n.
But since a, gn € G it follows that » € G and hence r = 0 since n is minimal
positive. Thus a = nq and it follows that G = nZ and G is cyclic. n

2.4 Fraissé Limits

Roughly speaking, a class of relational structures is defined to be a collection
of relational structures, such that each structure consists of a set with a
defined number of binary relations each having identical properties. For
example, the class of graphs consists of all relational structures which are
formed from a set and a irreflexive symmetric relation on that set. A more
precise definition can be made through model theory using words such as
‘signature’ or ‘type’. However, we do not require the full generality of the
model theoretic definition and so the description above will suffice for our
needs.

Let 2 be a countable relational structure. The age of €2 is the class of
all finite structures embeddable in €; that is, the class of all finite structures
which are isomorphic to a finitely generated substructure of 2. The following
three properties will be of importance.

A class K of structures is said to have the:

Hereditary property if for all A € K and for all finitely generated sub-
structures B of A, B is isomorphic to a structure in K.

Joint embedding property if for all A, B € K there exists a structure
C € K such that A and B are both embeddable in C'.

Amalgamation property if whenever A, By, By € K and there exist em-
beddings f; : A — B; and f; : A — Bs, then there exists a structure
C € K and embeddings ¢, : By — C and ¢ : B, — C such that

fi-g1=fa- 9o

It can be shown that if A is the age of a relational structure €2 then A has
both the hereditary and joint embedding properties. Furthermore, Fraissé
[Frab3] showed that if K is a non-empty countable class of finitely generated
structures which has both the hereditary and joint embedding properties,
then K is the age of some countable structure €.
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Additionally Fraissé proved that if K is a non-empty countable class of
finitely generated structures with the hereditary, joint embedding and amal-
gamation properties then not only is K the age of some countable structure
Qp, but Qg is homogeneous and unique up to isomorphism. The unique
countable structures arising in this way are known as Fraissé Limits (of the
relevant class of structures).

2.5 Semigroups, Green’s Relations and Rela-
tional Structures

Let S be a semigroup and let S denote the semigroup S with an identity
adjoined if necessary. We define Green’s £-, %#-, -, - and 7 - (binary
equivalence) relations on S! as follows.

For s,t € S* we say that s is .Z-related to t and write s.Zt, if there exist
u,v € S' such that s = ut and ¢ = vs (or in other words s and ¢ generate the
same principal left ideals). Similarly sZt if there exist z,y € S! such that
s =tz and t = sy (equivalently s and ¢ generate the same principal right
ideals).

Two elements s and t are 7 -related if they are both .Z- and Z-related,
that is 7 = Z NZ. Green’s Z-relation is likewise formed from the Z-
and Z-relations. The relation Z is the smallest equivalence containing both
% and Z. Equivalently, two elements s,t € S* are Z-related, written sZt,
if there exists € S! such that s.Zx and zZt (see [How95, page 46]). Tt
should be easy to see that since 7 = L NZ, 7 C D.

The last relation is the two sided analogue of Green’s .Z- and Z-relations
and is known as Green’s _Z-relation. Two elements s,t € S' are _#-related,
written s_#t, if there exists u,v,z,y € S* such that usv = ¢ and zty = s
(that is, s and ¢ generate the same principal two-sided ideals). It should be

clear that .2, % C _# and hence it follows that 2 C _#. When S is a finite
semigroup we can show that 2 = ¢ (see [How95, Proposition 2.4.1]).

For s € S' we let H, = {t € S : st} and call H, the J#-class of
s. Likewise we can define Dy = {t € S : sZt}, the P-class of s, and
Jo={t e S:s_gt}, the #-class of s. Since each of Green’s relations is an
equivalence relation, the set of classes under each of the relations provides
a partition of the semigroup S. Furthermore the Z-classes are a union of
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ZL-classes of equal size, a union of Z-classes of equal size and a union of
s -classes of equal size (see [How95, Lemmas 2.21-2.23]).

For a semigroup S we let £(S) denote the set of idempotents of S, that
is the set of elements s € S such that s> = s. It can be shown that if
s € E(S) then Hy is a (maximal) subgroup of the semigroup S with identity
s (see [CP61, Chapter 2] for details). As a consequence, no J#-class of S can
contain more than one idempotent. Thus if s € E(S), H; is often called the
group F€-class of s. Conversely any maximal subgroup of the semigroup S
must be the group J#-class of an idempotent (the identity of the subgroup).
Thus the idempotents of S are in one-one correspondence with the maximal
subgroups of S.

If we let S above be the semigroup End(€2) for some relational structure
(2, the J-classes of functions f € E(End(Q2)) provide us with the maximal
subgroups of End(€2). With that said, understanding the properties of the
idempotents in End(€2) is then essential. In particular, the following results
are key to proving a theorem linking the 7-classes of an idempotent f €
End(Q2) with its image.

Lemma 2.3. Let Q2 = (V, &) be a relational structure. Then f € E(End(2))
if and only if flims = Lim;-

Proof. Suppose f € E(End(Q2)) and let v € im f. Then there exists u € V
such that v = uf. Now since f is idempotent vf = uf? = uf = v and hence
flimf = Limp. Conversely if flims = lims and v € V then uf € im f and so
uf? = (uf)f = (uf)lims = uf. Thus indeed f € E(End(f)). O

For the next result we require the notion of a regular element of a semi-
group S. An element s € S is said to be regular if there exists an element
t € S such that sts = s. If e € E(S) then e is regular since eee = e. Regu-
lar elements have many interesting properties. For example if s is a regular
element of a semigroup S, then every element of Dy is also regular [How95,
Proposition 2.3.1]. Such Z-classes are thus called regular themselves. It can
be shown that in a regular Z-class, every Z-class and every Z-class con-
tains an idempotent and hence a group #-class [How95, Proposition 2.3.2].
Additionally, if H and K are two group .##-classes contained in the same

regular Z-class then H and K are isomorphic groups [How95, Proposition
2.3.6].

Theorem 2.4 ([RS09, Proposition A.1.16]). Let S be a subsemigroup of a
semigroup T and suppose that s and t are reqular elements of S. Then s£t
in Sif and only if s$.£t in T and similarly, st in S if and only if s%t in T.
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Proof. 1t should be clear that s.Zt in S implies that s.Zt in T. Now suppose
that s.Zt in T'. Since s is regular in S there exists h € S such that shs = s.
Let d = hs so that d € S. Then d* = d and since sd = s and hs = d we
deduce that s.Zd in S. In a similar fashion we can construct an idempotent
e such that eZt in S. Since s.Zt in T, transitivity of Green’s Z-relation on
T implies that d.Ze in T. Thus there exists d’, ¢’ € T such that d'd = e and
e =d. Then ed = d'd*> = d'd = e and de = €'e* = €’e = d. Hence d%e in
S and by transitivity of Green’s .Z-relation on S it follows that s.Zt in S. A
similar argument for Green’s Z-relation completes the proof. O

In order to apply Theorem 2.4 to regular elements of End({2), for a rela-
tional structure €2, we consider the following lemma.

Lemma 2.5. Let V be a set and let Ty, denote the monoid of all functions
from V' to V under composition. Then for f,g € Ty, fZg if and only if
imf =img and fZqg if and only if ker f = kerg.

For a proof, see for example [CP61, Lemmas 2.5 and 2.6]. The following
corollary now tells us under which circumstances regular elements of End(2),
for a relational structure 2, are related.

Corollary 2.6. Let Q = (V,&) be a relational structure and let f,g €

End(Q2). If f and g are regular elements of End(QY) then f£q if and only if
im f =img and analogously fZq if and only if ker f = ker g.

Proof. First we note that End(2) is a subsemigroup of 7y,. By Lemma 2.5,
if f,g € Ty, then fZ¢gin Ty if and only if im f = im g and fZg in Ty if and
only if ker f = ker g. Thus, it follows from Theorem 2.4 that if f and g are
regular elements of End((2), then f.Z¢ in End(Q) if and only if im f =img
and fZg in End(Q) if and only if ker f = ker g. ]

Now, given the above corollary, we are able to prove the following impor-
tant theorem. This theorem is one of the main tools which will be repeatedly
used throughout this thesis.

Theorem 2.7. Let Q = (V,&) be a relational structure and suppose that
f € E(End(Q?)). Then Hy = Aut(im f) as groups.

Proof. Define ¢ : Aut(im f) — Hy by m¢ = fr for all 7 € Aut(im f). We
note foremost that ¢ is indeed well defined since fr is clearly an endomor-
phism of €2 and by Lemma 2.3 we have:

fofr=fm = fr,
frofrt = f,
fr-f = fm,
frt fr = f.



Thus fr 2 f and so fm € Hy.

Also for 7w, p € Aut(im f):

(mp)p = fmp
frfp (by use of Lemma 2.3)

= (m)o(p)o,

so that ¢ is indeed a group homomorphism. It should be clear by construction
that ¢ is injective so it only remains to show that ¢ is surjective.

So let ¢ € Hy. Define h := glims (= glimg by recalling im f = img
by Corollary 2.6). We claim that h € Aut(im f) and (h)¢ = g. First we
prove that h € Aut(im f). Since ¢.Zf, Corollary 2.6 allows us to deduce
that img = im f. Then imh = imglimy € im f so that h does indeed
define a function im f — im f. Let im f = {v; : ¢ € I} for some index
set I. Note that each v; lies in a unique kernel class of f. Furthermore,
since f is idempotent each kernel class of f has a unique point v € V, such
that vf = v (namely v; for some unique i € I). To see that h is injective,
suppose that v;h = v;h . Then by definition, v;g = v;g or equivalently,
(vi,vj) € ker g. Now, since g € Hy, it holds that ¢Z f and thus by Corollary
2.6, kerg = ker f. Hence (v;,v;) € ker f and by our observation above it
must then be the case that ¢ = j and hence v; = v;. To show that h is
surjective we suppose that v; € im f. Then by definition there exist some
u € Vg such that ug = v;. Now by our previous comments there is a unique
v;j such that (u,v;) € ker f = ker g. Then,

vih = v;9 = ug = v;.

We have thus shown that A defines a bijective function im f — im f. The
last condition to check is that h defines an automorphism of the relational
structure (im f). So let E € £ and suppose that v;,v; € im f with (v;,v;) €
E. Then, since g is a endomorphism of the relational structure €2 and A is
simply the restriction of ¢ to im f, we deduce that,

(v;h,v;h) = (vig,v,9) € E.

On the other hand suppose that we have v;,v; € im f with (v;,v;) & E.
Seeking a contradiction, suppose that (v;h,v;h) € E. Since fZg there exists
some ¢ € End(Q?) such that g¢' = f. Thus if (v;h,vjh) = (vig,v;9) € E
then (v;9¢’,v;99") € E since ¢’ is a homomorphism. Now, as g¢’ = f, we can
conclude that (v;f,v,f) € E. However f is idempotent and so, by Lemma 2.3,
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f acts as the identity on its image points. But this means that (v;,v;) € E
which is a contradiction to our original assumption. We can thus conclude
that (v;,v;) € E if and only if (v;h,v;h) € E for all E € £ and hence h is an
automorphism of im f.

Finally, to finish the proof, we show that (h)¢ = g. For each v € Vj; there
exists some v; € im f such that (v;,v) € ker f(= kerg) and v;f = v;. Hence,

(0)(h)¢ = (v)fh = (v)fg = (vi)fg = (vi)g = (v)g.
Thus (h)¢ = g and the proof is complete. O

Note that if f = 1 then the map ¢ defined in the proof of Theorem 2.7
is just the identity map and hence H; = Aut(€2).

In view of Theorem 2.7, the problem of understanding the group 7-
classes of the endomorphism monoid of a relational structure reduces to un-
derstanding the images of idempotent endomorphisms. Additionally, the
following theorems, originally proved in [MS74, Theorem 2.6, Theorem 2.8],
are useful for gaining information on the cardinality of the set of regular Z-
and _#-classes of End(£2).

Theorem 2.8. Let Q = (V, &) be a relational structure and let f, g € End(2)
be reqular. Then fPg if and only if (im f) and (im g) are isomorphic rela-
tional substructures of 2.

Theorem 2.9. Let 2 = (V,E) be a relational structure and let f, g € End(£2)
be reqular. Then f _# g if and only if there exist embeddings ¢ : (im f) —
(img) and 6 : (img) — (im f).

In this thesis we will only apply Theorems 2.8 and 2.9 in the case where
f and g are idempotents of End(Q2). Accordingly, we state and prove the
theorems in this case as follows.

Theorem 2.10. Let Q = (V,E) be a relational structure and let f,g €
E(End(Q2)). Then fZg if and only if (im f) and (im g) are isomorphic rela-
tional substructures of €.

Proof. Suppose that fZg. Then there exists h € End(Q2) such that fZh and
hZg. Since f%h we deduce that h = fs and f = ht for some s,t € End(2).
We will show that sliy, ¢ provides an isomorphism from im f onto im g. First
we show that sy, s defines a map im f — img. To see this note that for all
v € Vo, (v)fs = vh. Moreover since h.Zg we know from Corollary 2.6 that
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imh = img and hence vh € img. It is easy to see that s|, s is injective
since if there exists z,y € Vg such that (zf)s = (yf)s then (x)fst = (y) fst.
Hence (xz)ht = (y)ht and thus zf = yf. To see that s|i, s is surjective let
v € img. Since img = imh there exists u € V such that uh = v. Now
uf € im f and (uf)s|ims = uh = v. Now, since s is a homomorphism the
restriction of s to the subset im f of V{; is also a homomorphism. To see that
S|im ¢ 1s a isomorphism, suppose that (zfs,yfs) € E for some z,y € Vg and
for some F € &,. Then since t is a homomorphism (zfst,yfst) € E. But
since fst = ht = f we can conclude that (zf,yf) € E and hence that f is a
isomorphism.

Conversely suppose that (im f) and (im ¢) are isomorphic substructures.
Then there exists an isomorphism ¢ : im f — im g. The composition f¢ is a
homomorphism since both f and ¢ are homomorphisms. We will show that
fZfpand fp.ZL g so that fPg. First we claim that f¢ is regular. To see this
recall that since f is idempotent, f is regular. Hence every element of Dy,
the Z-class of f, is regular. Since f¢ is Z-related to f and since Z C %,
it immediately follows that f¢ is Z-related to f and thus f¢ is regular. By
Corollary 2.6 it then suffices to show that ker f = ker f¢ and im f¢ = img.
We begin with the former. If (u,v) € ker f then uf = vf. Hence ufé = vfo
and (u,v) € ker f¢. If on the other hand (u,v) € ker f¢ then uf¢ = vfo.
Since ¢ is injective this implies that uf = vf and hence (u,v) € ker f. Thus
ker f = ker f¢. Finally it should be easy to see that im f¢ = im g since ¢ is
an isomorphism from im f to img. O]

Theorem 2.11. Let Q = (V,E) be a relational structure and let f,g €
E(End(?)). Then f_#g if and only if there exist embeddings ¢ : (im f) —
(img) and 0 : (im g) — (im f).

Proof. Let f,g € E(End(f2)) and suppose that f_#g. Then there exists
s,t € End(Q2) such that f = sgt. Moreover since f is idempotent, Lemma 2.3
allows us to deduce that (sgt)|im f = 1|im r. We will show that (sg)|im s defines
an embedding of (im f) into (img). Clearly (5g)|ims is a homomorphism
im f — img. To see that it is injective suppose that v,w € im f are such
that vsg = wsg. Then vsgt = wsgt and hence since (5gt)|im s = 1|im s it
follows that v = w. Now suppose that £ € £ and that v,w € im f are such
that (vsg,wsg) € E. Then (vsgt,wsgt) = (v,w) € E and hence we can
conclude that (sg)|im r defines an embedding of (im f) into (img). Similarly
since f_¢ g, there also exists s',¢ € End(Q) such that g = ¢ ft' and dual
argument shows that if (s’ f)[im, defines an embedding of (im g) into (im f).

For the converse suppose that f,¢g € E(End(2)) and there exist embed-
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dings ¢ : (im f) — (img) and 6 : (img) — (im f). Then (im¢) = (im f)
and (im#) = (img). Thus let d : im f — im ¢ and e : im g — im € be the re-
sulting isomorphisms of the induced relational structures. Since im ¢ C im g,
Glim¢ = 1|im¢ and similarly since im € C im f, flims = 1|ims. Hence,

f=(fd)glgd™") and g=(ge)f(fe ).

Since f and g are endomorphisms of {2 and since d and e are automorphisms
between substructures of Q it follows fd, fe™!, ge and gd~! all lie in End(Q2).
Hence f_# g and the result is complete. m

It is worth observing that if (im f) or (im g) is finite, then the existence of
embeddings (im f) — (img) and (im g) — (im f) implies that im f and im g
are isomorphic. Hence if f and ¢ are regular then f_¢# g implies f%g¢ in this
case. However, if I" and A are infinite relational structures, then it is possible
for there to exist embeddings I' —+ A and A — I' even when I' and A are
not isomorphic. For example consider the graph I' = (J,, ./, the disjoint

union of the graphs K, for all n € N, and the graph A = |J,y(K, UK,),
the disjoint union of two copies of the graph K, for all n € N. Then I' and
A are clearly not isomorphic, but A can be embedded into I' by embedding
K,UK, into Ks,41 UKy for all n € N and T' can be embedded into A
by embedding K, into K, UK, for all n € N.
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Chapter 3
The Random Graph

In this section we introduce the well-known random graph R and consider
the maximal subgroups of its endomorphism monoid. We will show that if
I" is any countable graph, then there are 2% maximal subgroups of End(R)
isomorphic to Aut(I'). As a consequence to the methods developed, we will
also show that there are 2% regular Z-classes of End(R) and that each regular
P-class contains 2% group #-classes. Additionally, we show that there are

2% 7 _classes of End(R).

3.1 Defining Properties and Constructions

It can easily be shown that the class of all finite graphs has the hereditary,
joint embedding and amalgamation properties (see [Hod97, Lemma 6.4.3] for
example). Consequently, the class of finite graphs has a unique homogenous
Fraissé Limit, which we will call R. Now consider the following definition.

Let us say that a graph T' = (Vr, Er) is emistentially closed® (in the class
of graphs) if, for any two finite and disjoint subsets U; and U, of Vr, there
exists a vertex v € Vi \ (U; UUy) such that v is adjacent to all vertices in Uy
but to no vertices of Us. Since we will only be considering the class of graphs
in this chapter, we will simply call such a graph existentially closed with the
setting assumed.

In fact, if a graph I' is existentially closed then for any two finite and

!The term ‘existentially closed’ can be defined in general for relational structures using
model theoretic language (see [Hod97, Chapter 7] for example). However the general
definition is not particularly useful in this thesis and so existential closure will be defined
in each setting separately.
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disjoint subsets Uy, Us of Vi there must exist infinitely many vertices v €
Vr\ (U1 UUy) such that v is adjacent to all vertices of U; but to no vertices of
U,. For suppose that there were only finitely many such vertices, vy,...,v,
say. Then Uy U{vy,...,v,} would be a finite set of vertices for which there
exists no vertex in V- adjacent to every member: a contradiction. Perhaps a
somewhat surprising result about existential closure is the following theorem.

Theorem 3.1. Let T be an existentially closed graph. Then every finite
graph can be embedded into I

For details of the proof see for example [Cam97|. Alternatively, the con-
struction described in Definition 3.3 will make this clear. In other words,
Theorem 3.1 says that if I' is an existentially closed graph, then the age of I'
is exactly the class of all finite graphs. Furthermore, it is easy to show that
any existentially closed graph must be homogeneous (see [Hod97]). Since we
observed that the class of all finite graphs has unique homogeneous Fraissé
limit R, it follows that if I" is an existentially closed graph, then I' = R. We
could thus have equally defined R to be the unique existentially closed graph.

It should be clear that not all graphs are existentially closed, for example
no finite graph can be, but an example of an existentially closed graph may
not be immediately obvious. However in [ER63] Erdés and Rényi made the
following observation.

Theorem 3.2. Let A be a graph with vertices V) = {v; : i € N} and edge set
E\ formed by selecting 2-element subsets independently and with probability
%, from the set of all 2-element subsets of the vertex set. Then with probability
1, A is existentially closed and hence A = R.

Notice that Erdds and Rényi defined a graph to be a set V' with a set of
two element subsets of V. In order to correlate this with the definition of
a graph given earlier we need only identify the 2-element subsets {v;, vy},
j # k, with both the ordered pairs (v;,vx) and (vg,v;), so that the edge set
Er becomes an irreflexive, symmetric binary relation on Vg. The proof of
their result then follows through in this setting.

Erdés and Rényi’s probabilistic, or ‘random’ construction of R has led to
R being commonly referred to as the random graph. Note that we can truly
use the word the since R, being the Fraissé limit of the class of graphs, is
unique up to isomorphism.

An explicit construction of the random graph was not given by Erdos and
Rényi — instead this was first achieved by Rado who was able to construct
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a countable graph and exhibit explicitly that it was existentially closed. See
[Rad64, Theorem 1] for details. Since then many other constructions of the
random graph have been exhibited. The following is a standard construction
of the random graph which will be used throughout this chapter.

Definition 3.3. Let I' = (Vr, Er) be any countable graph. Construct a
new graph G(I') from I' by adding, for each finite subset U of V., a vertex
v adjacent to every member of U but to no other vertices. That is if we
enumerate the finite subsets of Vr as {U; : ¢ € N} (replacing the natural
numbers with some finite subset if I' is finite) then we let,

Lbaj IZV}LJ{Uiii GIN},

and
Egry = Er U{(vi,u), (u,v;) s u € Uj, i € N}.

If T is finite, [Vgry| = 27l 4+ |Vr| and hence G(T') is a finite graph.
Likewise, if I' is countably infinite then so is G(I'), since the set of all finite
sets of a countably infinite set is itself countably infinite.

Now inductively define a sequence of graphs by setting 'y =T"and ', 11 =
G(I',) for n € N. Define ', to be the limit of this process, in the sense that,

Fm:UFn:(van,UErn)
neN neN neN

Then it is easy to see that 'y, is a graph since the edge set consists of
a union of irreflexive and symmetric binary relations and therefore possesses
these properties itself.

Example 3.4. [Construction of 'y, 'y and T’y when I' = ({v}, 0)].

Dots represent vertices and continuous lines represent edges.

FOIF
o
Iy
[ ]
[ ] [ ]
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Lemma 3.5. For any countable graph I', I'y, is existentially closed and thus
' = R.

Proof. Let U and V be finite disjoint subsets of V. Then U,V C Vp,
for some k € N. Then by construction of I'y,;, there exists a vertex v €
Ve \ Vo, adjacent to every member of U but to no member of V¢, \ U.
In particular this means that v is adjacent to every member of U but to no
member of V' in Iy, ;. Since the construction of ', makes no changes to
edge set of the induced subgraph 'y, it follows that v is adjacent to every
member of U but to no member of V' in I'. O

The construction of I'y, from any countable graph I' makes it easy to see
that any finite graph can be embedded into R. For we can easily define an
embedding I' — I', by identifying I with I'y C I'..

3.2 Group J7-classes of End(R)

By Theorem 2.7, the group s#-class of an endomorphism f € F(End R) is
isomorphic to the automorphism group of its induced image subgraph. In
[BDO00], Bonato and Deli¢ provided some insight into the structure of the
image graphs of such endomorphisms. Their main result is encapsulated in
Theorem 3.10, although an alternative approach to the proof is given.

Definition 3.6. We will say that a graph T is algebraically closed® (in the
class of graphs), if for each finite subset U C Vr, there exists a vertex v € V-
such that v is adjacent to every member of U.

2 Algebraic closure can also be defined in general for relational structures using model
theoretic terms (see for example, [Doll12]). Once again, the general description is not
particularly helpful for this thesis and so the definitions will be explicitly made in each
setting.
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Again we will omit explicitly stating the setting of algebraic closure where
it is clear. Note that as a consequence of this definition, any algebraically
closed graph must be infinite. For suppose that I' was a finite algebraically
closed graph. Then Vr is finite and so there should exist a vertex x € V- such
that (z,v) € Er for allv € Vp. In particular this would mean that (x,z) € Er
which is a contradiction. We can easily show (using the same argument as
for existential closure) that if T" is an algebraically closed graph then for a
finite subset U of VI there must exist infinitely many vertices v € V- such
that v is adjacent to all members of U. Furthermore, each of these vertices
must lie outside of U since Er is irreflexive. Additionally, it should be easy
to see that R itself is algebraically closed since it is existentially closed.

Lemma 3.7. Let I' = (Vr, Er) be a countable algebraically closed graph and
let f € End(T"). Then im f is a countable algebraically closed graph.

Proof. 1t is clear that since I' is a countable graph, so is im f. Now let X
be a finite subset of the vertices of im f. Enumerate X as {v; : 1 <i < n}
for some n € N. Since each v; lies in the image of f there exists some vertex
u; € Vp such that u;f = v;. Solet U = {w; : 1 < i < n}. Then since I is
algebraically closed, there exists a vertex x € Vi \ U such that z is adjacent
to u; for all . Furthermore since f is a graph homomorphism we can deduce
that zf € im f \ X and xf is adjacent to v; for all i € {1,...,n}. H

Corollary 3.8. Let f € End(R). Then im f is a countable algebraically
closed graph.

Proof. By definition, R is a countable graph. Furthermore, since R is ex-
istentially closed, it is algebraically closed. Thus, by Lemma 3.7, im f is
algebraically closed. ]

Lemma 3.9. Let I' be a countable graph and let f : I' — ' be a homo-
morphism such that im f is algebraically closed. Let G(I') be the graph con-
structed from T as in Definition 3.3. Then there exist 2%° distinct extensions
f:G(@) = G(T) of f such that f is a homomorphism and im f = im f.

Furthermore, if f is idempotent, then so is each f.

Proof. Since im f is an algebraically closed subgraph of T" it follows that
[' is countably infinite. Thus we will enumerate the vertices of G(I') \ T
as {v; : ¢ € N}. An important observation is that by construction, each
vertex v; is adjacent in G(I') to every member of some finite subset U; of

Vr and to no other vertices. Now, inductively define a sequence of maps
fi: (CU{vr,...,u}) = G(T) as follows.
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Let fo = f and suppose that for n € N we can extend f to a homo-
morphism f, : (' U {vg,...,v,}) = G(I') with im f,, = im f. Since im f is
algebraically closed there exists a vertex w € (im f,,\Upy1f) = (im f\Upy1f),
such that w is adjacent to every member of U, 1 f. We can even ensure that
w # v, f for v = 0,...n by adding the requirement that w should be adjacent
to Upy1fU{vof,...,vnf}. Now define f, 1 : (D'U{vg, ..., vnq1}) — G(I') by,

vf, ifveT U{vg,...,0},
Ufn-i-l = .
w if v="uv,41.

It is clear that f,; defines a map of vertices VrU{vo, ..., Vpi1} to V). It
is a graph homomorphism since by hypothesis f,, was a graph homomorphism
and additionally if (v,41,2) € Egry then it must be the case that z €
Uni1 € Vp. Hence zf,11 € Upi1f and so by choice of w, (w,zf,11) =

(Un+1fn+17 x.fn-i—l) € EQ(F)-

Since f,.1 is exactly f,, when restricted to the domain of f,, and v, 1 f €
im f,, im f,.1 = im f,,. Furthermore if f,, is idempotent then so is f,; since
by choice w € im f,, and,

vn+1f2+1 = wfnJrl = wfn =w= UnJrlfnJrl'

Now let -
n=0

Then f is a graph homomorphism from G(I') to G(I') extending f, for all
n € N and if f is idempotent so is f. Since im f,, = im f for all n € N, it
follows that im f = im f.

Finally, we take a moment to notice that since im f is algebraically closed,
for each n € N there are actually infinitely many choices for the vertex
w € im f \ Upy1 f with w adjacent to every member of U, f. That is to
say, there are infinitely many choices for the image of v,,,; when constructing
fna1. Since the choice for v, 1 f,1+1 is determined only by the subset U, .1 f
and since v, 1 is not adjacent to v, for all m € N, the choice of vertex made
for v,41 fry1 is independent from any v, f,,, chosen for m < n. Consequently,
for each n € N, there are infinitely many distinct extensions f,, 1 of f,, which
differ on v, ;. It follows now that there are RN = 2% distinct extensions f

of f. O

Theorem 3.10. Let I' be a graph. Then there exists an idempotent f €
End(R) with im f = T if and only if T is a countable algebraically closed
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graph. Furthermore, for every countable algebraically closed graph T, there
exist 2% idempotents f € End(R) with im f = T.

Proof. If f € E(End(R)) then by Corollary 3.8, im f is countable and alge-
braically closed.

Conversely suppose that I" is a countable algebraically closed graph. Ap-
ply the construction in Definition 3.3 to produce the graph I'sc = |J,,cy I'n-
Then, by Lemma 3.5, I'o, = R. Define inductively a sequence of functions
fn T — ' as follows. Let fy : I'g — ' be the identity function on
['oy =T, i.e let vfy = v for all vertices v € V. Then fy is trivially an idem-
potent graph homomorphism and im f = I'. Now for n € N, we let foy1 = f,,
be an extension of f, to G(I';,) = I',41 constructed in Lemma 3.9. The proof
of Lemma 3.9 ensures that f,. is an idempotent graph homomorphism from

[,41 to ' and that im(f,) = I'. Now let,

f=U#

Then as the union of idempotent graph homomorphisms such that each f,.1
is an extension of f,, f itself is an idempotent graph homomorphism from
' to I'. Furthermore, since im f, =" for alln € N, im f =T

Finally, since Lemma 3.9 tells us that there are 2% distinct extensions fn
of f,, it follows that there are 2% distinct extensions f,,;; of f, for all n € N.
Hence there are (2%0)% = 2% many distinct idempotents f € End(R) with
imf=T. O]

In light of Theorems 2.7 and 3.10 we can conclude that the group 77-
classes of End(R) are exactly the automorphism groups of countable alge-
braically closed graphs. The question of which groups are automorphism
groups of countable algebraically closed graphs now arises. We can easily
find an example where such an automorphism groups is uncountable. For
example, the complete graph on a countably infinite number of vertices is
trivially algebraically closed and has automorphism group isomorphic to the
uncountable group Sy. But what about countable groups? Does the trivial
group arise? How about any given countable group?

Fortunately, to help us, there is the following theorem due to Frucht, see
[Fru39] for details.

Theorem 3.11. If G is a finite group then there exists a finite connected
graph T' such that G = Aut(I).
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This result was later extended to infinite groups by de Groot in [Gro59]
and independently by Sabidussi in [Sab60]. In particular we have the follow-
ing theorem.

Theorem 3.12. Fvery infinite group G can be realised as the automorphism
group of a connected graph with vertez set of size |G|.

Using Frucht’s theorem as inspiration, we will show that for any countable
group G there exists an algebraically closed graph I' such that G is isomor-
phic to Aut(T"). Thus showing that every countable group can be found as
a (maximal) subgroup of End(R). To do this we will need the following
definition and subsequent lemmas.

If I' = (Vp, Er) is a directed graph we can define the complement of " to
be the relational structure I'f = (Vi+, Bt ), where Vi = Vp and

EFT = (VF X VF) \ (EF U {(U,U) U E VF}>

Since Fp+ is irreflexive by construction, it follows that I'f is a directed graph.
If ' is a graph, then Er is a symmetric relation and hence the binary relation
ErU{(v,v) : v € Vr} is symmetric. Thus Ert, being the complement of a
symmetric relation, is symmetric. Consequently, it follows that if [' is a
graph, then I'f is also a graph. If T' is a graph, I'! can be thought of as the
graph formed from I" by replacing all edges with a non-edge and all non-edges
with an edge. If I' is a directed graph, then the symmetric edges in I' behave
as above and additionally the orientation of the non-symmetric edges in I’
are reversed in I'T.

Example 3.13. [Example construction of I'l given a graph T'.]

r It

It is not hard to see that for any graph I' it follows that (I')f = T.
Furthermore, the following useful properties hold.
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Lemma 3.14. Let I" and A be directed graphs and suppose that f : Vi — Vi
defines an embedding of T" into A. Then f also defines an embedding of the
complement T'T into AT.

Proof. Since f defines an embedding of I" into A, it is immediate that f is
an injective function. Now suppose that (u,v) € Epi. Then (u,v) ¢ Er and
since f is an embedding it follows that (uf,vf) € Ex. Thus either uf = vf
or (uf,vf) € Eyi. Clearly the injectivity of f rules out the former case and
so (uf,vf) € Epi. On the other hand if (u,v) € Eri then either u = v or
(u,v) € Ep. If u = v then uf = vf and hence (uf,vf) & Ey:. If instead
(u,v) € Er then since f is an embedding (uf,vf) € Ej and hence we can
still conclude that (uf,vf) € Ex+. Thus f defines an embedding I'f — AT as
required. ]

Corollary 3.15. Let I' be a directed graph. Then Aut(I') = Aut(I'T).

Proof. Let f € Aut(I'). Then clearly f is a bijective map Vr — Vi which
defines an embedding of I' into itself. Hence by Lemma 3.14 the bijective
function f also defines an embedding of I'! into itself. In other words f €
Aut(I'") and we can conclude that Aut(I') € Aut(I'"). Now suppose instead
that ¢ € Aut(I'"). Then g is a bijective map V¢ — Vi which defines an
embedding of I'f into itself. Another application of Lemma 3.14 allows us to
deduce that the bijective function g also defines an embedding of (I'")T =T’
into itself. Hence Aut(I') € Aut(I') and it now follows that Aut(I') =
Aut(TT). O

There is also a nice connection between algebraic closure and the com-
plement I'f for certain graphs I'. Recall from Chapter 2, that a graph I is
locally finite if every vertex v € V1 is adjacent to only finitely many vertices
in I.

Lemma 3.16. Let I' = (Vr, Er) be an infinite, locally finite graph. Then the
complement T'M is algebraically closed.

Proof. Let U C V¢ be a finite subset of vertices of I'f. Since I' is locally
finite each u € U is adjacent to only finitely many vertices in I'. So let
[(u) ={veVr:(u,v) € Er}andlet W =J,., ['(v). Then U UW is finite
and so there exists € Vi \ (U U W). Then z is not adjacent to any vertex
of U in T' and so z is adjacent to all vertices of U in I'f. m

Lemma 3.17. Let I' be a countable graph and let A be an infinite locally
finite graph. Then (U UA)T, the complement of the disjoint union of T and
A, is an algebraically closed graph.
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Figure 3.1: The line graph L.
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Proof. Let A = (I'UA)' so that A has vertex set VA = Vr UV,. Let U be a
finite set of vertices from Va. Since U is finite U NV}, is finite. Furthermore,
since A is infinite and locally finite, A is algebraically closed by Lemma 3.16.
Thus there exists a vertex v € V, such that v is adjacent to every member of
U NV, in AT, Now since v is also adjacent to every member of Vp in (I'UA)T
it follows that v is adjacent to every member of U in (I'UA)T. O

We now consider the line graph L = (Vp, Ep) with V, = {l,, : n € N}
and where (1;,1;) € Ey if and only if j = ¢+ 1 or ¢ = j + 1. See Figure 3.1
for a pictorial representation. It should be clear that Aut(L) = 1 since any
automorphism must fix [y and thus every vertex in V.

Definition 3.18. Let X be a subset of N\ {0,1}. Using L and ¥ we define
a new graph Ly with vertices Vi, = VL, U{v, : 0 € X} and edges Er . =
ErU{(l,,v,), (vs,1ls) : 0 € ¥}, See Figure 3.2 for a pictorial representation
of Ly, when ¥ = {0, : n € N}.

Lemma 3.19. Let ¥ C N\ {0,1}. Then Aut(Ly) = 1.

Proof. Since [y is the only vertex of degree one adjacent to a vertex of degree
two, it must be fixed by any automorphism of Ly. Subsequently, since [; is
the sole vertex adjacent to [y it must also be fixed by any automorphism.
Continuing by induction we see that [; must be fixed for all ¢+ > 2. Finally
since each vertex v, is adjacent to only [, it must be the case that each v, is
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also fixed. Thus any automorphism must act as the identity on all vertices
and the result follows. ]

For a subset 3 of N\ {0,1} and for £ € N we will define 3 + k to be the
set X+ k={oc+k:0¢e X} CN\{0,1}. The set ¥ + k is said to be a
(positive) translation of X.

Lemma 3.20. Let X, ¥ C N\ {0,1}. Then there exists a graph embedding
fiLs — Ly if and only if ¥+ k C U for some k € N.

Proof. So suppose that f : Ly — Ly is a graph embedding. Since f must
map the infinite path (lo, l1), (I1,12), (I2,13), ... of distinct vertices contained
in Ly to an infinite path of distinct vertices in Ly, it must be the case that
lif = liyx for all © € N and for some k € N. Now let 0 € ¥. Then v, € Ly,
and (v,,l,) € EL,. Hence since f is a graph homomorphism, we can deduce
that (v, f,lo4x) € Er,. But the only vertices in Ly to which [, is adjacent
are ly g1, loyrks1 OF Uoig if o +k € W. Since 0 +k — 1> k+ 1 and since f
is injective it follows that v, f # [; for j € {o + k — 1,0 + k + 1}. Thus it
must be the case that 0 + k € ¥ and v, f = v, . Since o € ¥ was arbitrary
it now follows that X + k C W.

Now suppose that X 4+ k& C U for some k£ € N. Define a function on Vi
by

f livg if u=1[; for some ¢ € N,
u =
VUgir if u = v, for some o € X.

Since X + k C VU, f defines a map Vi, — Vi, . It is obviously injective and
to finish the proof we will show that it also defines a graph embedding. So
suppose that (¢,u) € V.. Then without loss of generality either ¢ = [; and
u = l;y1 for some i € N, or t = v, and u = [, for some o € ¥. In either case
it is easy to see that (tf,uf) € Vi,. If instead (¢,u) & Vi, then without
loss of generality either ¢ = {; and v = [; for some ,j € N, j #i—1,i+ 1 or
t = v, and u = [, for some n # o. In the former case, if j ¢ {i — 1,i + 1}
then j+k & {i+k—1,i+k+1} and so (tf,uf) = (lisk,lj+x) &€ Er,. In
the latter case (v, f, i f) = (Votk, lj+k) & EL, since j # o. Hence f defines a
graph embedding as required. O]

Corollary 3.21. Let ¥, ¥ C N\{0,1}. Then Ly = Ly if and only if ¥ = V.

Proof. 1t is clear that if ¥ = ¥ then Ly = Ly. So suppose instead that
Ly, = Ly but that ¥ # W. Let f: Vi, — Vi, be an isomorphism of graphs.
Since f is an embedding Lemma 3.20 tells us that > +k C U for some k € N
where [; f = ;1 for all ¢ € N. But since [y is the only vertex of degree one

28



adjacent to a vertex of degree two in both Ly and Ly, it must be the case
that lof = Iy and hence by induction that [;f = [; for all i € N. Thus £ =0
and ¥ C W. A dual argument with the isomorphism f~*: Vie — Vi leads
us to deduce that ¥ C ¥ and hence > = W. O

As we will see in the following lemmas, the graphs Ly, for ¥ C N\ {0, 1},
will play a critical part in the process of constructing algebraically closed
graphs with a given countable automorphism group.

Lemma 3.22. Let ' be any countable graph and let Ay = (I'U Lx)', the
complement of the disjoint union of I' and the line graph Ls defined in
Definition 3.18. Then Ay, is algebraically closed for all subsets ¥ C N\{0,1}.

Proof. In light of Lemma 3.17 we only need to note that Ly, is a countably
infinite locally finite graph for all subsets ¥ C N\ {0, 1}. O

Lemma 3.23. Let I" and A be countable (directed) graphs with no isomorphic
components. Then Aut(T'UA) = Aut(I") x Aut(A).

Proof. Define a map ¢ : Aut(TUA) — Aut(T") x Aut(A) by fo = (f|r, fla)-
First we show that this map is well defined. Recall that a (directed) graph
homomorphism must map connected components to connected components.
Since I" and A have no isomorphic connected components it must be the case
that any automorphism f of T UA is such that im f|r = I' and im f|, = A.
Using this observation we can easily deduce that the restrictions f|r and f|

define automorphisms since f itself is an automorphism. Hence it follows
that (f|r, fla) € Aut(I") x Aut(A) and the map ¢ is well defined.

Now for any pair f,g € Aut(TUA),

(f9)¢0 = ((f9)lr, (f9)la) = (flr-glr, fla-gla) = (o, fa)-(glr, gla) = fo-g0.

This shows that ¢ is a group homomorphism. To show that the map ¢
is injective, suppose that f and g are automorphisms of I'UA such that
fo = gop. Then f|r = g|r and f|po = g|a. Now since im f|r = im g|r = I" and
im f|p = img|y = A we deduce that f = ¢g. To show that ¢ is surjective let
(f,g) € Aut(T') x Aut(A). Define the map h: TUA — TUA by

vf ifvelp,
vh =
vg if v e Vj.

Since f and g are automorphisms of I" and A respectively, and since there are
no edges between I and A in the disjoint union, i defines an automorphism of
I'UA. Moreover, h¢ = (f, g) and thus ¢ is surjective. We can now conclude
that ¢ is an isomorphism of groups and the result is complete. O
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Lemma 3.24. Let T’ be a countable graph and let Ay, = (I'U L)', the
complement of the disjoint union of I' and the line graph Ly, defined in
Definition 3.18. Then there exist 2% subsets ¥ C N\ {0,1} such that
Aut(Ay) = Aut(D).

Proof. Since I is a countable graph, the number of connected components of
' is countable. As a result at most countably many choices of > would result
in the graph Ly being isomorphic to some component of I'. Since the set of
all subsets of the natural numbers has size 2% this still leaves 2% distinct
choices for the subset ¥ which ensure that Ly, is isomorphic to no component
of T.

For each of these distinct choices we can form the graph Ay = (I'U Ly)T
and by Corollary 3.15 we can deduce that Aut(Ayx) = Aut(I'U Ly,). Further-
more, since I' and Ly, have no isomorphic components, Lemma 3.23 allows us
to conclude that Aut(Ay) = Aut(T") x Aut(Ly). All that remains is to recall
our earlier observation that Ly, has no non-trivial automorphisms. Then,

Aut(Ayg) = Aut(I') x 1 = Aut(I),
as required. O]

We now have collected enough machinery to state and prove the main
theorem of this chapter.

Theorem 3.25. Let I' be a countable graph. Then there exist 280 group
H-classes H of End(R) such that H = Aut(T").

Proof. By applying Lemma 3.24, there exist 2% sets ¥ C N\ {0,1} such
that Aut(Ayx) = Aut(I'). By Lemma 3.22, Ay, is algebraically closed for each
choice of ¥ and so by Theorem 3.10 there exists an idempotent fy, € End(R)
such that im fs, = Ay. Now Theorem 2.7 tells us that,

Hy, = Aut(im fy) = Aut(Ay) = Aut(D).

We know from Corollary 3.21 that Ly is not isomorphic to Ly for 3 # ¥ and
by choice both are isomorphic to no component of I'. Hence we can deduce
that Ay, and Ay are not isomorphic for ¥ # W. In other words im fx # im fy
for X # ¥ and the idempotents are all distinct. Since no group #-class can
contain more than one idempotent, the result now follows. O

Corollary 3.26. Let G be any countable group. Then there exist 28 group
A -classes H of End(R) such that H = G.
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Proof. By (the extended version of Frucht’s) Theorem 3.12, G can be re-
alised as the automorphism group of a countable graph I'. Now by applying
Theorem 3.25 the result is complete. O

In summary, Theorems 3.10 and 3.25 tell us that if H is a maximal
subgroup of End(R) then H = Aut(I") for a countable graph I" and conversely,
if A is a countable graph, then there exist 2% maximal subgroups of End(R)
isomorphic to Aut(A). We are also able to deduce the following Corollary.

Corollary 3.27. There exist 2%° non-isomorphic mazimal subgroups of
End(R).

Proof. Corollary 3.26 tells us that for any countable group G, there exists a
group #’-class which is isomorphic to G. Thus it suffices to show that there
are 2% non-isomorphic countable groups. This is a well known fact but can
easily be shown by considering the following groups. Let S be a set of prime

numbers and let
Gs = [[Z/vz,

peS
with addition component-wise. Clearly if S and T are two sets of prime
numbers such that S # T, then Gg 2 Gp. To see this note that if p € S\ T,
then G g contains an element of order p, where as G does not. Thus since the
set of all subsets of the prime numbers has size 2%, the result is complete. [J

3.3 Regular Z-classes and ¢ -classes of End(R)

From the results obtained in the previous subsection we can gain some insight
into the structure and cardinality of the set of regular Z-classes of End(R).

Theorem 3.28. There exist 2% distinct reqular Z-classes of End(R).

Proof. Recall from the preliminary chapter that if two group .77-classes are
contained in the same Z-class then they are isomorphic as groups. Thus
since, by Corollary 3.27, there exist 2% non-isomorphic group #-classes of
End(R), there must exist 2% distinct (regular) Z-classes of End(R). O

Any two group #¢-classes which are contained in the distinct Z-classes
provided by the proof of Theorem 3.28 are not isomorphic. The next result
shows that there also exist distinct (regular) Z-classes whose group -
classes are all isomorphic.

Theorem 3.29. There exists a set of 2% distinct reqular 2-classes of End(R)
for which any two group F€-classes are isomorphic.
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Proof. In Theorem 2.10 we have shown that if f and g are two idempotents
of End(R) then fZg if and only if (im f) and (im g) are isomorphic. By the
details of the proof of Theorem 3.25, if I is a graph then there exist 2% sets
Y. C N\ {0,1} such that Hp, = Aut(') and such that (im fx) 2 (im fg)
for any U C N\ {0,1} where ¥ # W. Therefore each idempotent f5 is
contained in a distinct (regular) Z-class, but the group #-classes Hy, are
all isomorphic. Now since any two group #-classes which are contained in
the same regular Z-class are isomorphic, the result follows. O

Theorem 3.30. Fach reqular P-class of End(R) contains 2% distinct group
J-classes.

Proof. 1f a P-class is regular it contains at least one group #-class. Let
f € E(End(R)) be the subgroup identity of this J#-class. By Corollary 3.7
im f is algebraically closed and so by Theorem 3.10 there exist 2% distinct
idempotents whose image is isomorphic to (im f). Thus, by Theorem 2.10
all of these idempotents are Z-related. However, since a group -class can
contain at most one idempotent, no two of these idempotents can lie in the
same 57-class and the result follows. m

As a further consequence of the previous work, we can gain some informa-
tion on the cardinality of the set of _#-classes of End(R). In order to prove
an analogous result to Theorem 3.28 for the set of _¢#-classes of End(R) we
will require the following lemma.

Lemma 3.31. There exists a set P of 2% distinct subsets of the natural
numbers such that for all ¥, ¥ € P and for oll k € N, X +k € ¥ and
U+ kY.

Proof. First we will need the following definitions. If A is a finite set, then by
a word A we will mean a finite or infinite string (or sequence) ajagas - - - such
that a; € A for all i € N. If w is a word consisting of finite string ajas - - - a,
on A, then w is said to have length n and we will denote this by [(w) = n.
If w consists of an infinite string, then accordingly w is said to have infinite
length and we write [(w) = co. Two words ajagas - -+ and bybgbs - - - will be
equal if and only if they have equal length and a; = b; for all . A finite word
biby - - - by, is said to be a prefix of a word w = ajasas - - -, where [(w) > n, if
bj=a; foralli=1,...,n.

Let {0, 1}™ denote the set of all words on the set {0, 1} of length at most
n. So that, for example {0,1}° = (0 and {0,1}*> = {0,0,1,00,01, 10, 11}.
Define a sequence of functions inductively as follows. Let fy : {0,1}° — N
be defined by () f = 1. Now suppose that f, : {0,1}* — N has been defined
for all k£ < n for some n € N such that:
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(i) wf —axf > 0 for all words w,z with I(z) < l(w) < k.

(i) If w,x,y,z are words with w # z and y # z and such that [(z) <
lw) <k, l(z) <lly) <k, thenwf—af =yf—zfifand only if y = w
and r = 2.

We will show that we can extend f,_; to a function f, : {0,1}" — N
which again satisfies the conditions above. We will do this by using a second
induction argument. For each n € N the number of words of length n is 2".
Enumerate the words of length n by wq,ws, ..., won. First set g9 = f,_1.
Now for j € N define,

gj: {0,1}n_1 U{wl,...,wj} — N

by

2g; = Tgj-1 if x € {O,l}”’lu{wl,...,wj_l}
! P if v = w;

where p € N is such that

p—zf>max{wf—yf:w,y€ {0,1}”_1U{w1,...,wj}},

for all z € {0,1}" ' U{wy,...,w;}. Clearly g; satisfies the conditions (i) and
(ii) above by construction. Let

on
fn = U gj-
=0

Then since g;; is an extension of g; for all j = 0,...2", it follows that f, is
itself a function. It is not hard to see that f,, also satisfies the conditions (i)
and (ii) since each g; did. Now let

Then f : {0,1}* — N is injective and satisfies the conditions (i) and (ii).
Now construct a set, P say, of subsets of the natural numbers by setting

P = {{@f, arf,arasf, ... } : ajasag . .. is an infinite word on {0, 1}}

We claim that for any two subsets ¥, ¥ € P, X+k € ¥ and V+k € ¥ for all
k € N. To see this let E:{(Z)f,alf,alazf,...} and\I!:{Q)f,blf,blef,...}
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for distinct words ajasas ... and bibybs. ... Now suppose that X+ k C W for
some k € N\ {0}, so that

{0f +k,aif + k,anaof +k,...} C 0.
Then there exist prefixes biby...b,, biby...bs with 1 < r < s such that

But then a1f — 0f = (biba...bs)f — (biby...b.)f. But clearly this is a
contradiction to property (ii) since biby...b. # (). Thus ¥ + k € ¥ and a
similar argument shows that ¥ + k € ¥ for all £ € N. Hence P has size 2%
and the result is complete. O]

Theorem 3.32. There exist 2% distinct ¥ -classes of End(R).

Proof. By Lemma 3.31 there exists a set P of 2% distinct subsets of the
natural numbers such that if ¥, ¥ € P then X 4+k € ¥ and V+k ¢ 3 for all
k € N. Thus by Lemma 3.20 if ¥, ¥ € P then Ly cannot be embedded into
Ly and similarly Ly cannot be embedded into Ly. Using Lemma 3.14, we can
hence deduce that LTE cannot be embedded into LTI, and vice versa. Since LT2
and LTI, are algebraically closed graphs by Lemma 3.16, we can apply Lemma
3.10 to conclude that there exist idempotents fs, fy € E(End(R)) such that
im fy, = LTZ and im fg = LTI,. But, by Theorem 2.11 and by the previous
observations, fs and fy are not _#-related. Thus since P contained 2% sets,
it follows that there must indeed exist 2% distinct _# -classes. O

As a consequence of Theorem 3.32, there are 2% ideals of End(R). It
should be noted that a proof of Theorem 3.32 has been previously provided
using an alterative method in [DD04, Theorem 3 and Remark 6].
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Chapter 4

The Random Directed Graph

In this chapter we describe the random directed graph D and, amongst other
things, consider the maximal subgroups of its endomorphism monoid in rela-
tion to those of End(R). Many of the results that held true for End(R), also
hold on End(D). We will show that if I is any directed graph, then there are
2% maximal subgroups of End(D) isomorphic to Aut(T"). We will also show
that there are 2% regular ZP-classes of End(D), each containing 2% group
H-classes, and that there are 2% ¢ -classes of End(D).

4.1 Defining Properties and Constructions

It is easily shown that the class of finite directed graphs has the hereditary,
joint embedding and amalgamation properties. Thus, the class of finite di-
rected graphs has a unique homogeneous Fraissé limit which we will call the
random directed graph, D. As with the random graph, we can prove that D
has certain properties.

To begin, let us say that a directed graph I' = (Vi Er) is existentially
closed (in the class of directed graphs) if for any four finite disjoint sets
Ui, ..., Uy C Vp, there exists a vertex x € Vp \ U?:1 U, such that there exists:
an edge from x to every member of U; but no edge from U; to x, an edge
from every member of U; to x but no edge from x to Us, an edge from z to
every member of Uz and from every member of Us to x and finally no edge
between x and Uy. More succinctly, I' is existentially closed if the following
conditions hold for some vertex z € Vi \ U?:l U .

(i) (z,u) € Er and (u,x) ¢ Er for all u € Uy,

(ii) (z,u) ¢ Er and (u,x) € Er for all u € U,
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(iii) (x,u), (u,x) € Ep for all u € Us, and
(iv) (x,u), (u,z) € Er for all u € Uy,

Unless otherwise stated, a directed graph which is said to be existentially
closed should be assumed to be existentially closed in the class of directed
graphs. Clearly, a directed graph which is existentially closed must be infinite
by condition (i). Existentially closed directed graphs also have the following

property.

Theorem 4.1. Let I be an existentially closed directed graph. Then I' is
homogeneous and every finite directed graph can be embedded into T.

For a proof, see for example [Hod97]. Alternatively, a proof will follow
easily from the construction described in Definition 4.3. Theorem 4.1 tells
us that the age of any existentially closed directed graph is exactly the class
of finite directed graphs. Since this class has a unique homogeneous Fraissé
Limit, we can thus conclude that if I" is any existentially closed directed
graph, then I' = D.

In fact, we can theoretically (and probabilistically) construct a countable
existentially closed directed graph in a similar manner to that exhibited for
the random graph by Erdds and Rényi in [ERG3].

Theorem 4.2. Let A = (Vi, Ep) be a countable directed graph with vertices
Vi = {v; : i € N} and edge set Ey constructed by selecting edges indepen-
dently, with probability %, from the set Vi x V. Then with probability 1, A
is existentially closed and hence A = D.

Proof. Let Uy, ..., U, be finite and disjoint subsets of V), and let |U;| = n; for
1 <i < 4. We will say that a vertex x € V} \ Ule U; is joined correctly (to
Uy, U, Us and Uy) if x satisfies the conditions (i)—(iv) above. We will show
that with probability 1, such a vertex exists. Given u € U; the probability
that (z,u) € Ej is 3 and the probability that (u,z) & Ej is also 3. Since
these probabilities are independent, the probability that both (z,u) € Ejy
and (u,x) € FEy is %. Similar arguments can be made for the sets U,, Uz
and Uy. Consequentially, the probability that = € Vj \ Ule U; is not joined

correctly is
1 Z?:l i
1—1-= .
(1)

Also, the event that a vertex x is not joined correctly is independent from
the event that a distinct vertex y is not joined correctly. Now since the set
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Vi, is infinite, the probability that no vertex of Vj \ U?Zl U, is joined correctly

15 &
) 1 i1
pm (1 (3) -

Since there are only countably many choices for the subsets Ui, ..., Uy it
follows that the probability that A is not existentially closed is 0. Thus, A is
existentially closed with probability 1. O]

Conveniently, we can also exhibit a standard and explicit construction of
the random directed graph as follows. We will use this construction through-
out this chapter.

Definition 4.3. Let I' = (W1, Er) be any countable directed graph. We will
construct a new graph H(I') by the addition of vertices and edges to I'. To do
this, we will consider ordered triples of subsets (S, T, U), where S,T,U C Vr
are finite and mutually disjoint. We allow the possibility that one or more of
the subsets are empty. If I" is countable then the set of all finite sets of V¢ is
countable and so the set of distinct triples (S, T, U) is also countable. Thus
we can enumerate all such distinct triples of Vi as (S;, T, U;)ien, where the
natural numbers are replaced by a finite set wherever necessary. For each
such ordered triple, we add a vertex v; and edges from v; to every vertex in
S; and U; and from every vertex in T; and U; to v;. That is, H(I') is the
directed graph formed by letting

L&“F):ZV%LJ{UiIiG:N}
and
Eyry = Er U{(v;, 5), (t,03), (v, u), (u,v) = s € S5, t € Ty, u € Uy, i € N}

If T is a finite digraph then |Vyyr)| = 471 + |V¢| so that H(T) is a finite
graph. If I" is countably infinite then Vj;r is a countable union of countably
infinite sets and hence H(I") is a countably infinite directed graph.

Now that we have described the construction of H(T'), we can inductively
define a sequence of graphs by setting I'y = I' and I',, ;1 = H(I',) for n € N.
Define I'y, be the limit of this process in the sense that,

Fm=UFn:(UVrWUErn>-

neN neN neN

It should be easy to see that ', is a countable digraph since the vertex set
is a union of countably many countable sets and since the edge set consists
of a union of irreflexive binary relations and is therefore irreflexive.
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Example 4.4. [Construction of I'y when I' = ({u, v}, (u,v)).]

I'="TY,

Iy

Lemma 4.5. Let I' be a countable digraph. Then 'y is existentially closed
and hence I'eg = D.

Proof. Let Uy, Uy, Us and Uy be finite and disjoint subsets of Vp__. Then
Uy, Us, Us and Uy lie in T'y, for some k € N. Thus the since triple {Uy, Uy, Us}
lies in I'y, the construction of I'y,; guarantees that there exists a vertex
v € Vr,,, \ Vr, such that:

(z,u), (u,z) € Er for all u € Uy,
(x,u) € Er for all u € Us, and
(u,z) € Er for all u € Us.

Moreover, these are the only edges between x and the sets Uy,...,U; in
['y11. Thus, the existential closure property holds for the subsets Uy, ..., Uy
in I'xy1. Since the construction process makes no changes to the edge set
of I'y41 it follows that the existential closure property holds for the subsets
Uy,...,Usin I'x and hence 'y, is existentially closed. O
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The construction of I'y, for any finite directed graph I' should make it
clear that any directed graph can be embedded into D as claimed in Theorem
4.1.

4.2 Group s7-classes of End(D)

An application of Theorem 2.7 in this setting allows the deduction that the
group #-classes of D are isomorphic to the automorphism groups of the
directed subgraphs of D induced by images of idempotents. We will see that
the directed subgraphs of D arising in this way can be characterised in a
similar fashion to the result for graphs given in [BD00).

Definition 4.6. A directed graph I' = (Vr, Er) is said to be algebraically
closed (in the class of directed graphs) if for any finite set U C Vi, there
exists a vertex x € Vr such that, (z,u), (u,z) € Er for all u € U.

Notice that the condition on the set U above is exactly the definition
of algebraic closure given for the class of graphs in the previous chapter.
Consequently, it should be easy to see that any graph which is algebraically
closed in the class of graphs is also algebraically closed in the class of directed
graphs. Alternately, any graph which is algebraically closed in the class of
directed graphs is algebraically closed in the class of graphs. But, of course, a
directed graph which is algebraically closed in the class of directed graphs is
not necessarily a graph and therefore not necessarily an algebraically closed
graph. The definition of algebraic closure for directed graphs is thus con-
sistent with the definition of algebraic closure for graphs. Consequently a
directed graph can be called algebraically closed (in the class of directed
graphs) for the remainder of this chapter with no ambiguity. This will be
important for much of the work in this chapter.

It is not hard to see that an algebraically closed directed graph must then
be infinite. This follows directly from the same reasoning as for algebraically
closed graphs. Similarly we can easily show that if I' is an algebraically
closed directed graph then for each finite subset U C Vi there actually exist
infinitely many vertices x € Vp \ U such that (z,u),(u,z) € Er for all
u € U. Of course, the random directed graph D is an obvious example of
an algebraically closed graph since it is existentially closed. For if W C Vp
is any finite subset, let Uy = 0, Uy = 0, U3 = W and U; = (. Then by
existential closure there exists a vertex x € Vp such that (z,u), (u,z) € Ep
for all u € W.
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Lemma 4.7. Let T' be an algebraically closed directed graph and let f €
End(T"). Then im f is an algebraically closed directed graph.

Proof. The proof is identical to the argument given for Lemma 3.7 when the
statement ‘y is adjacent to z’ is replaced by the equivalent statement that
(y,2),(z,y) € Er, wherever it appears. ]

Corollary 4.8. Let f € End(D). Then im f is a countable algebraically
closed directed graph.

Proof. 1t is immediate that im f is countable since D is a countable directed
graph. Now since D is algebraically closed, it follows by Lemma 4.7 that
im f is an algebraically closed directed graph. O]

Lemma 4.9. Let I' be a countable directed graph and let f : T — T be a
homomorphism such thatim f is algebraically closed. Let H(T') be the directed
graph formed from I as in Definition 4.3. Then there exist 2%° extensions
fH() = H(T) of f such that f is a homomorphism and im f = im f.
Furthermore, if f is idempotent then so is each f.

Proof. Since im f is algebraically closed, I' is countably infinite. So let us
enumerate the vertices of H(I') \ I' as {v; : ¢ € N}. Then, by construc-
tion, for each vertex v; there exist disjoint sets S;,7T;,U; C Vr such that
(vi, 8), (t,03), (vi, u), (u,v;) € Eyry for all s € S;, t € T; and u € U;. More-
over, there exist no other edges between v; and V). We will inductively
define a sequence of maps f; : (' U{vy,...,v;}) = H(I') as follows.

Let fo = f and suppose that for n € N we can extend f to a homo-
morphism f, : (I' U {vo,...,v,}) — H(I') with im f,, = im f. Since im f is
algebraically closed there exists a vertex w € im f\ {vof, ..., v, f} such that
(w,u), (u,w) € By for all u € (Sp41UT+1UU,11) f. Indeed we can ensure
that w # v, f for © = 1,...,n by insisting that there are edges to and from
w to every member of (S, 41 U T UUyi1)f U{vof,...,vnf}. Now define
frs1 (D UA{wo, ..., vn1}) — H(T) by,

vf, ifvel U{v,.., v},
Ufn—i-l:{f {0 }

w if v="uvp11.

Evidently, f,11 defines a map of vertices Vr U {vg, ..., vn41} = Vo)
We must check that it is a graph homomorphism. Since f,, is a graph ho-
momorphism, it follows that f,+1|dom s, 18 a graph homomorphism. Now
suppose that (vn41,y) € Eye) then by the observations we made at the
start of the proof, y lies in either S, or U,,;. Thus, by choice of w,
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(Vns1fns1,yf) = (w,yf) € Eyqy. Similarly if (2, v41) € Ey ) then z lies in
either T}, or Up41 and we can again deduce that (2 f, v,11f) € Eye). Thus,
fn+1 defines a graph homomorphism (I'U{vy, ..., v,41}) — H(T). Since f,11
is exactly f, when restricted to the domain of f,, and since v, 1 f € im f it
is guaranteed that im f,,,; = im f. Additionally, if f,, is idempotent, then so
is f,, since w € im f, and thus,

Un+1f3+1 = wfn+1 = wfn =w = Un+1fn+1~

Now let -
n=0

Then f is a graph homomorphism #(I") — H(T') extending f, for all n € N.
If f is idempotent then each f, is idempotent and consequently so is f.
Furthermore, since im f,, = im f for all n € N, it follows that im f = im f.

Finally, since im f is algebraically closed, for each n € N there are actually
infinitely many choices for the vertex w € im f with (w,u), (u,w) € Eyr) for
allu € (S,41UT,41UU,11)f. In other words, there are infinitely many choices
for the image of v, +; when constructing f, ;. Since v,1; is not adjacent to
vy, for all m € N the choice of vertex made for v, f,+1 is independent
from any v, f,, chosen for m < n. Consequently, for each n € N, there are
infinitely many distinct extensions f, ;1 of f,, which differ on v, ;. It follows
now that there are R0 = 2% distinct extensions f of f. O]

Theorem 4.10. Let I' be a directed graph. Then there exists an idempotent
f € End(D) withim f = T if and only if T is a countable algebraically closed
directed graph. Furthermore, for every algebraically closed directed graph T,
there exist 2% idempotents f € End(D) with im f = T.

Proof. It f € E(End(D)), then by Corollary 4.8, im f is an algebraically
closed directed graph.

Conversely suppose that I" is an algebraically closed directed graph. From
', construct I'sc = (J,,cnI'n as described in Definition 4.3. By Lemma 4.5,
we can assume that ', = D. Now, define inductively a sequence of functions
fn i Ty — I'g in the following way. We let fy : I'g — ' be the identity
function on I'. That is, we set vfy = v for all v € V. Then fy is an
idempotent directed graph homomorphism such that im f = I'. As I' is
algebraically closed we can apply Lemma 4.9. Thus, for n € N, we define
frna1 = fn, where fn is an extension of f,, to H(T',) = I',41 constructed in

41



Lemma 4.9. The proof of the lemma ensures that f,,; is idempotent and
that im f,,; =im f =1T.

Let -
n=0

Then as a union of idempotent directed graph homomorphisms such that
fnt1 1s an extension of f,, for all n € N, f is an idempotent directed graph

homomorphism I'y, — I',. Moreover, since im f,, =T for all n € N, im f =
I.

Finally, since Lemma, 4.9 tells us that there are 2% distinct extensions fn
of f,,, it follows that there are 2% distinct extensions f,,;; of f, for all n € N.
Hence there are (2%)% = 2% many distinct idempotents f € End(D) with
imf=T. O]

The group .#-classes of End(D) are thus exactly the automorphism
groups of algebraically closed directed graphs. Interestingly, since the random
graph R is an example of an algebraically closed directed graph, Theorem
4.10 guarantees that Aut(R) appears as a maximal subgroup of End(D).
But what other groups can be realised as the automorphism group of an
algebraically closed directed graph?

In Chapter 3 we showed that if a group arose as the automorphism group
of a countable graph, then in fact there are 2% non-isomorphic algebraically
closed graphs with the same automorphism group. Thus showing that any
automorphism group of a countable graph is isomorphic to 2% distinct group
A -class of End(R). Since every algebraically closed graph is an algebraically
closed directed graph, the following theorems and corollaries can be deduced
almost immediately.

Theorem 4.11. Let T’ be a countable graph. Then there exist 280 group
H-classes H of End(D) such that H = Aut(I").

Proof. Since I is a countable graph, Lemmas 3.22 and 3.24 tell us that there
are 2% non-isomorphic algebraically closed (symmetric) digraphs Ay, (X C
N\ {0,1}) such that Aut(Ay) = Aut(I'). By Theorem 4.10, for each of these
digraphs there exists an idempotent fx € End(D) such that im fy, = Ar.
Theorem 2.7 now ensures that

Hy, = Aut(im fy) = Aut(Ay) = Aut(D).
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Furthermore, since the Ay’s are all non-isomorphic the idempotents f5, are
distinct. Since no .7#’-class can contain more than one idempotent, the result
now follows. O]

Corollary 4.12. There exist 2% group F-classes H of End(D) such that
H = Aut(R).

Proof. Since the random graph R is an algebraically closed (symmetric) di-
rected graph, the result follows immediately by Theorem 4.11. O]

Corollary 4.13. Let G be a countable group. Then there exist 280 group
A -classes H of End(D) such that H = G.

Proof. By Theorem 3.12, for any countable group G there exists a countable
(symmetric) directed graph I' such that G = Aut(I'). Hence by Theorem
4.11 the result follows. O

Corollary 4.14. There exist 2% non-isomorphic maximal subgroups of
End(D).

Proof. In the proof of Corollary 3.27 we showed that there exist 2% non-
isomorphic groups. The result now follows from Corollary 4.13. O

So far we have shown that the groups which arise as maximal subgroups of
End(R) also appear as maximal subgroups of End(D) to the same cardinality
of repetition. It might, however seem plausible that there exist maximal
subgroups of End(D) which cannot be found in End(R). In other words,
that there exists a group which arises as the automorphism group of an
algebraically closed directed graph, but cannot be realised as the group of an
algebraically closed graph. We will show that this is not possible through an
application of the following construction and accompanying lemmas.

Let I' be a countable directed graph. We will construct a graph I'" as
follows. Enumerate the vertices of I as Vi = {v; : ¢ € N}, where we replace
N with a finite set if I' is finite. We then let

Vo=V U {J,’j,k, Yiks Zjk (Uj, Uk) S Ep}

and we let

B = {(vj, )5 (€50, 05), (T Ysik)s Wik ),
Wik 2k)s (Zies Ysik)s (W Ui)s (Ve )+ (vj, ve) € Ep}
Intuitively we can think of the construction of I'" as taking the directed
graph I' and for each pair of vertices u,v € Vp with an edge from u to v,
replacing the edge with a finite graph which, in some sense, still retains some
information about the direction of the original edge between u and v. See
Figure 4.1 for a pictorial representation.
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Figure 4.1: The finite graph replacing an edge (v, vg).
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Example 4.15. [Construction of the graph I'"! given a directed graph T']
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It is important to note that the degree of a vertex v € V¢, in ', is equal
to sum of the number of edges which start at v and the number of edges
which end at v in I'. For a directed graph A and v € V,, we will let,

A_(v) ={x: (v,x) € Ep}
AL (v) ={x: (x,v) € Ep}.

Thus, if A is a directed graph then |A™(v)| = |A_(v)| + |AL(v)| for v € Vj.
|A_(v)] is often called the out degree of v, and |A;(v)| the in degree of v. Of
course, if A is a graph then |A(v)] = |A_(v)| = |A4(v)].

Lemma 4.16. Let I" be a directed graph. Suppose that |[I'_(v)|+ [T+ (v)| > 3
for allv € Vp. Then Aut(T'™) 22 Aut(T).

Proof. Consider the vertex set of V4. In I'', every vertex in the set X =
{zjx : (vj,vx) € Er} has degree 2, every vertex in the set Y = {y;;, : (vj, vy) €
Er} has degree 3 and every vertex in the set Z = {zj; : (v;,vx) € Er} has
degree 1. Also, by assumption the degree (in I'") of every v € Vr is greater
than three. Thus if f € Aut(l'"), then Xf = X, Yf =Y, Zf = Z and
Vif = Vr. Now define a map ¢ : Aut(I'") — Aut(T') by f¢ = [l for
all f € Aut(T'). First we check the map is well defined. By the previous
observations, f|y. is a bijective map Vr — V. To see that f|y. defines a
graph homomorphism we note that by construction of I'", (u,v) € Er if and
only if there exists z € X, y € Y such that (u,z,)(z,y), (y,v) € Ep+. Thus
if (u,v) € Er then there exists € X, y € Y such that (u, ), (z,y), (y,v) €
Er-. Now, since f € Aut(I'") it follows that (uf,zf), (xf,yf), (yf,vf) €
Er+. By our previous observations zf € X and yf € Y and we can now
deduce that (uf,vf) = (uf|v,vfln) € Vr. A similar argument shows that
(u,v) ¢ Er implies that (uf|v.,vfl) € Er and hence completes the proof
that f¢ is a graph automorphism. The map ¢ is a group homomorphism
since clearly if f,g € Aut(I'") then

The map ¢ is clearly injective since if f¢ = g¢ then f|i. = g|y.. Now since
the images of xji, y;i and zjx, for (v;,vx) € Er, are determined completely
by the image of v; and v; under f, we can conclude that f = g. The map
¢ is surjective since if we are given h € Aut(I') then we can extend h to
an automorphism & of Aut(T'™) by defining xjkfz = T, yﬂjL = Ymn and
gjkiz = Zmn Where v;h = v,, and vh = v,,. Now, since h is an extension of h,

h¢ = h and we are finished. O]

Theorem 4.17. Let " be a countable directed graph. Then there exists a
countable graph A such that Aut(A) = Aut(T).
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Proof. Consider the (directed) graphs Ly, 3 C N\ {0, 1}, described in Defi-
nition 3.18. Since I' is a countable digraph, there exists a set Y such that Ly,
is isomorphic to no component of T'. By Corollary 3.15, Aut((T'U Ly)t) =
Aut(T") and moreover, every vertex in (I' U Ly)" has infinite in degree and infi-
nite out degree. Now construct the graph ((I'U Ly)")™. Then by Lemma 4.16,
Aut((TULg)N) ™) & Aut((TU L)) = Aut(T'). Taking A = (T'ULxg)")
gives the required result. O]

As a direct consequence of Lemma 4.17, the following results can now be
deduced.

Corollary 4.18. Let I be a countable directed graph. Then there exist 280
distinct 7 -classes H of End(D) such that H = Aut(T").

Proof. Theorem 4.17 guarantees that there exists a countable graph A such
that Aut(A) = Aut(I'). Now by Theorem 4.11 the result follows. O

In summary, Theorem 4.10 and Corollary 4.18 tell us that if H is a max-
imal subgroup of End(D) then H = Aut(I") for a countable directed graph
I' and conversely, if A is a countable directed graph, then there exist 2%
maximal subgroups of End(D) isomorphic to Aut(A). Furthermore, we are
also able to deduce the following theorem.

Theorem 4.19. The group F€-classes of End(D) are the same (up to iso-
morphism) as the group S -classes of End(R).

Proof. If H is a group #-class of End(R) then let f € E(End(R)) be the
idempotent identity of the subgroup. We saw in the previous chapter that
im f must be an algebraically closed graph. Thus by Theorem 4.11 there
exists an idempotent g € End(D) such that H, = Aut(im f) = Hy = H.

Now suppose that K is a group .#-class of End(D) then let g € End(D)
be the idempotent identity of the subgroup. Then by Theorem 4.10, im g is
an algebraically closed directed graph. By Theorem 4.17 there exists a graph
I' such that Aut(I') = Aut(img). Now by Theorem 3.25 there exists an
idempotent f € End(R) such that Hy = Aut(I') 2 Aut(im f) = H, = K. O

4.3 Regular Z-classes and _¢-classes of End(D)

We can also obtain analogous results about the regular Z-classes and _¢-
classes of End(D).
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Corollary 4.20. There are 2% distinct regqular 2-classes of End(D) such
that no two group F€-classes from distinct P-classes are isomorphic.

Proof. By Corollary 4.14 there exist 2% non-isomorphic group .##-classes of
End(D). Since each of these must lie in a distinct regular Z-class the result
follows. ]

Corollary 4.21. There are 2% distinct reqular Z-classes of End(D) whose
group € -classes are all isomorphic.

Proof. By the proof of Theorem 4.11, if T" is a (symmetric) directed graph
then there exist 2" idempotents fx € FEnd(D) such that Hy, = Aut(T)
but such that (im fx) 2 (im fy) for ¥ # ¥. Hence by Theorem 2.10, each
fs is contained in a distinct regular Z-class but the Hy, are all isomorphic
to Aut(I'). Since every group ##-class contained in one of these Z-classes
must also be isomorphic to Aut(I") the result is complete. ]

Corollary 4.22. Each reqular 9-class of End(D) contains 2% distinct group
FC-classes.

Proof. If a Z-class is regular, it contains at least one group -class. Let f €
E(End(D)) be the identity of the group #-class. Since im f is algebraically
closed Theorem 4.10 guarantees the existence 2% distinct idempotents whose
images induce subgraphs which are isomorphic to (im f). By Theorem 2.10
these idempotents all lie in the same Z-class, but since no .7#-class can
contain more than one idempotent they lie in distinct group #7-classes. [

Corollary 4.23. There are 2% distinct _# -classes of End(D) .

Proof. In the proof of 3.32 we saw that there exist 2% algebraically closed
(symmetric) directed graphs which are mutually non-embeddable. By The-
orems 4.10 and 2.11, there thus exist 2% idempotents in End(D) which are
not _#-related and hence the result follows. O
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Chapter 5

The Random Tournament

In this chapter we will briefly discuss the random tournament and see why,
in the context of this thesis, its endomorphism monoid is a somewhat less
interesting structure.

5.1 Defining Properties and Constructions

Recall that a tournament is a directed graph in which for every pair of distinct
vertices there exists exactly one edge between them (in one direction or the
other). It is not hard to show that the class of finite tournaments has the
hereditary, joint embedding and amalgamation properties. Therefore, the
class of finite tournaments has a unique homogeneous Fraissé limit which we
will call the random tournament, T. We can show that T has the following
properties.

We will say that a tournament I' is existentially closed in the class of
tournaments if for all finite subsets Uy, Us € Vi there exists a vertex x €
Vi \ (U3 UUs) such that there exists an edge from z to every vertex in U; and
from every vertex in Us to . For the remainder of this chapter a tournament
which is said to be existentially closed should be assumed to be existentially
closed in the class of tournaments.

Clearly any existentially closed tournament must be infinite, for if I' is a
finite tournament then V1 is a finite set for which there exists no vertex
with an edge from x to every member of Vr.

Theorem 5.1. Let I' be an existentially closed tournament. Then I is ho-
mogeneous and every finite tournament can be embedded into T'.
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For a proof see for example [Hod97] or alternatively, the construction
described in Definition 5.3 will make this clear. Theorem 5.1 tells us that the
age of any existentially closed tournament I is exactly the class of all finite
tournaments. Since the class of finite tournaments has a unique homogeneous
Fraissé limit it follows that if I' is an existentially closed tournament then
[' =2 T. Asone might expect, we can probabilistically carry out a construction
of an existentially closed tournament as follows.

Theorem 5.2. Let A be a countable tournament constructed as follows. Let
Vi be a countably infinite set, and for any two distinct vertices u,v € Vj
chose either (u,v) or (v,u) to be in the edge set (each with probability 3 )
independently from any other pair of distinct vertices. Then with probability
1, A is existentially closed.

Proof. Let Uy and U be finite subsets of V. Suppose that |U;| = m and
|Us| = n for m,n € N. We will say that a vertex x € Vi \ (U; U Us) is joined
correctly to U; and U, if there exists an edge from z to every vertex of Uj
and an edge from every vertex of Us to x. The probability that a vertex x is

not joined correctly is
1

2m+n

and is independent from the probability that any other distinct vertex y is
not joined correctly. Now since V) is infinite, the probability that no vertex
of Vi \ (U; UUs) is joined correctly to U; and Uy is,

1 k
li 1-— =0.
k1—>1£10 ( 2m+”> 0

Thus the probability that existential closure is not satisfied for the sets U
and Us is 0. Since there are only countably many choices for the sets U; and
U, it follows that the probability that A is not existentially closed is 0 and
hence it is existentially closed with probability 1. O]

As in the other settings, there exists a standard explicit construction of
the random tournament from any given tournament.

Definition 5.3. Starting with any countable tournament I' we can create
a new tournament J(I') by the addition of vertices and edges. Since I is
countable we can enumerate the finite subsets of Vi as {U,}ien where the
natural numbers can be replaced by a finite set if ' is finite. Now for each
finite set U; add a vertex v; and edges from v; to every vertex in U; and
from every vertex in V¢ \ U; to v;. In order to make the resulting graph a
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tournament we need to have an edge between each pair {v;, v;}. The direction
of these edges turns out to be irrelevant. So we let

Vi = Ve U{v; i € N},
and
Ezry = Er U{(v;,u), (w,v;) :u € Uj,w € Vp \ U}
U{(vi,vj) 14,5 € Nyi < j}.
If T is a finite graph then |V | = 21+ V5| and hence J(T') is also a finite

tournament. If I' is in fact countably infinite, then since the set of all finite
sets of Vi is also countably infinite, J(I') is countably infinite itself.

Now inductively define a sequence of tournaments by setting I'y = I" and
[ = J(0,) for all n € N\ {0}. Let I's be the limit of this process so

that,
T =|JT0n= (U Vi, UEF>

neN neN neN
Since 'y is a countable union of tournaments I',, such that I',,_; is con-
tained in I',, for all n € N\ {0}, it should be easy to see that I'y, is a countable
tournament itself.

Example 5.4. [Construction of I'; given I']

S—

Since the construction of ', is dependent on the enumeration of the finite
sets U C Vr, it may seem plausible that taking a different enumeration would
give us a different (non-isomorphic) graph. However the following theorem
proves that this is not true.
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Theorem 5.5. Let I' be a countable tournament. Then I'y is existentially
closed and thus I'nc = T'.

Proof. Suppose that U; and U, are finite and disjoint subsets of V. Then
U, Uy C T, for some k € N. By construction of 'y, there exists a vertex
v € Vi, \ Vi, such that there is an edge from v to every vertex in U; and
from every vertex in Vi \ U; to v. In particular this means that there is an
edge from v to every vertex in U; and from every vertex in Us to v in I'gyq.
Since [', 1 is contained as an induced substructure of I', it follows that there
is an edge from v to every vertex in U; and from every vertex in Us to v in
. Thus since U; and U, are arbitrary, 'y, is existentially closed. O

The construction of I'y, from a countable tournament I' should make it
clear that any finite tournament can be embedded into 7.

5.2 Group -classes and Regular Z-classes
of End(T)

When considering endomorphisms of a tournament I" we note any endomor-
phism must be an embedding.

Lemma 5.6. Let I' = (V, Er) be a tournament and let f € End(I"). Then
f 1s an embedding of T" into I.

Proof. Let u,v € Vp with u # v and assume without loss of generality
that (u,v) € Er. Now, since f is an endomorphism of T', if uf = vf then
(vf,vf) € Er which is a contradiction. Hence uf # vf and f is indeed
injective. Furthermore if (uf,vf) & Er then (vf,uf) € Er and so it must
be the case that (u,v) ¢ Er since otherwise we would have a contradiction.
Thus it follows that if (uf,vf) € Er then (u,v) ¢ Er and hence since f was
an injective endomorphism it is an embedding. O]

With Lemma 5.6 in mind, the following result is then of no surprise.

Theorem 5.7. Let f € End(T). Then im f is existentially closed and hence
imf=T.

Proof. Let U; and U, be finite and disjoint subsets in im f. Suppose that
|U1| = m and |Us| = n for m,n € N. Enumerate U; as {u; : 1 <i < m} and
Uyas {u; :m+1<j<m+n} Sinceu, € im f for all 1 < k < m +n,
there exist vertices vy, such that vpf = ug. Let V3 = {v; : 1 < i < m} and
let Vo = {v; : m+1<j <m+n}. Then V; and V; are finite disjoint
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subsets of V. Since T is existentially closed it follows that there exists a
vertex © € Vp \ (V1 U V3) such that there is an edge from z to every member
of V1 and from every member of V5 to x. Now since f is an endomorphism it
follows that xf € im f \ (U; U Us) and that there exists an edge from zf to
every member of U; and from every member of Us to xf. Since U; and U,
were arbitrary the result is complete. O]

Lemma 5.8. Let f € E(End(T)). Then f =1.

Proof. If f € E(End(T)) then flimfs = 1|ims. We also observed that f must
be an injective embedding. So suppose that y € V. Then yf = x for some
x € im f. Since f is idempotent x f = x and hence by injectivity, x = y. Thus
y € im f and hence Vy \ im f = (. Thus, f = f|v, = 1y, as required. m

Consequently, we now have the following results on the group 7#-classes
and regular Z-classes of End(T).

Theorem 5.9. The only group F€-class of End(T") is Aut(T).

Proof. Every group #-class of End(T") contains an idempotent (the sub-
group identity). By Lemma 5.8 the only such idempotent is the identity
idempotent 1, and H; = Aut(7) as required. O

Corollary 5.10. End(T') has only one reqular P-class.

Proof. Every regular Z-class contains at least one idempotent. Hence, since
Lemma 5.8 told us that the only idempotent in End(7") is the identity, there
can only be one regular Z-class. [

We can now conclude that the only maximal subgroup of End(7T) is
Aut(T).
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Chapter 6

Henson’s Graphs

In this section we discuss K,-free graphs for n > 3 and introduce Henson’s
graphs, G,,. We will see that, much like the random tournament 7', the
graphs (5, are somewhat uninteresting in terms of maximal subgroups.

6.1 Defining Properties and Constructions

Recall that a K,-free graph is a graph which has no substructure isomorphic
to the graph K, the complete graph on n vertices. It is not hard to show
that for n > 3, the class of finite K,,-free graphs has the hereditary, joint em-
bedding and amalgamation properties (see [Hen71], for example). Thus, the
class of finite K,,-free graphs has a unique homogeneous Fraissé limit, which
is known as Henson’s graph, GG,,. We will show that G,, can be characterised
by the following property.

We will say that a K,-free graph I' is ezistentially closed (in the class of
K,-free graphs) if for all finite and disjoint subsets U, V' € V- such that (U)
is K,_1-free, there exists a vertex x € Vr \ (U U V) such that x is adjacent
to every member of U but to no member of V. We will assume for the rest
of this chapter that whenever the phrase existentially closed is used for a
K, -free graph, we mean existentially closed in the class of K,-free graphs.

It is not hard to see that an existentially closed K,,-free graphs must be
infinite. For suppose that I' was a such a finite K,-free graph. Then there
would exists a maximal and finite K,,_;-free set of vertices U from Vr. But
by the existential closure property, there must exist a vertex x € V- \ U, such
that x is adjacent to no member of U. If |U| = |Vf|, then such an x cannot
exist. On the other hand if |U| < |Vr| then U U {x} is a K,,_;-free set which
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contradicts the maximality of U.

We can also show that any existentially closed K,,-free graph does not
satisfy the bipartite condition as follows. For suppose that I' is an existen-
tially closed K,-free graph and let v € V. Since v by itself is an independent
set, there must exist a vertex x; which is adjacent to v. Another applica-
tion of the property ensures the existence of vertices xo and x3 such that x,
is adjacent to v and not to x; and such that x3 is adjacent to x; and not
to v nor xy. Finally since {zy, x3} is then an independent set by construc-
tion we can find a vertex x, adjacent to both x5 and x3. Then the path
(v, 1), (21, 23), (T3, 24), (T4, T2), (z2,v) is a cycle of odd length and hence I'
cannot satisfy the bipartite condition.

In some sense the existential closure property for K,,-free graphs is ‘equiv-
alent’ to existential closure described for the class of all graphs but which
holds only where possible (that is, avoiding the sets for which the property
cannot hold due to the graph being K,-free). Existentially closed K,-free
graphs also have the following additional property.

Theorem 6.1. Let I' be a countable existentially closed K,-free graphs for
somen > 3. Then I' is homogeneous and every finite K, -free graph can be
embedded into T'.

A proof can be found in [Hen71, Theorem 2.3| or alternatively, the theo-
rem will follow easily from the construction described in Definition 6.2. The
age of an existentially closed K, -free graph is thus the class of all finite
K, -free graphs. Since the class of all finite K,-free graphs has a unique ho-
mogeneous Fraissé limit, it follows that if I" is an existentially closed K, -free
graph, then I' = G,.

In the case of the random graph and random directed graph, we are able
to exhibit a relatively easy probabilistic construction via a finitary method
in which edges are chosen one at a time with a set probability. However, to
exhibit a random or probabilistic construction of an infinite K,-free graph is
not so straightforward. For example, consider the triangle-free graph Gs. If
we start with a countably infinite vertex set V' and attempt to construct a
triangle-free graph by choosing edges (as symmetric pairs from V xV\{(z, z) :
x € V}) one at a time with probability % say, then we quickly run in to
trouble. For example, if we happen to have started the process by choosing
the edge (u,v) and then the edge (v, w), we are not allowed to chose the
edge (u,w) in order to ensure the graph remains triangle-free. Clearly, the
probability that the edge (u,v) is chosen is % and the probability that the
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edge (v, w) is chosen is also 3 and is independent from the choice of (u, v).

However the probability that the edge (u,w) is chosen is dependent upon the
choices for (u,v) and (v,w) and is thus (using the law of total probability)
equal to 0 - }L + % . ;1L + % . ;11 + % . % = %. Furthermore, this type of procedure
provides a graph which is dependent on the order in which we decide to

choose edges.

As Cameron discusses in [Cam01, Section 4.10] an attempt to bypass this
problem by constructing a random triangle-free graph in a finitary way which
is not dependent on the particular ordering of the vertices, still does not have
the desired outcome. Any such triangle-free graph which is constructed in
this way satisfies, by a result of Erdds, Kleitman and Rothschild [EKR76],
with probability 1 the bipartite condition, and thus cannot be the Henson
graph Gj.

At the moment, it is unclear how to construct Henson’s graph G5 using a
finitary probabilistic construction. However in [PV10, Section 3|, Petrov and
Vershik construct a measure-theoretic triangle-free graph on the real num-
bers and, by taking countably many independent samples from a probability
distribution on the real numbers, use it to produce a graph which is isomor-
phic to the Henson graph (3 with probability 1. In effect their method is
probabilistic on vertices rather than edges. It has been conjectured that a
consequence of some of the stronger results in this paper will show that a
finitary probabilistic construction of Henson’s graph G3 (and indeed G,, for
n > 3) is not possible. It is for this reason that the Henson graph G, not
normally said to be ‘random’ unlike its counterparts R, D and T'.

Even with that all said, we can give an explicit construction of Henson’s
graphs as follows.

Definition 6.2. Let I be a countable K,-free graph. We will construct a
new graph L,(I") from I' by adjoining vertices and edges in the following
manner. We will consider the set of finite and K,,_;-free subsets of Vr. If I’
is countable, then the set of all finite sets of Vi is countable. Thus the set
of all finite and K,,_;-free sets of Vi is a subset of a countable set and hence
countable. We can thus enumerate all such finite K,,_;-free sets from Vr as
{U; : i € N} — replacing the natural numbers by a finite set when necessary.

We create £, (I") by adding, for each such finite K,,_;-free set U;, a vertex
v; such that v; is adjacent to every member of U; and to no other vertices.
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More precisely, we let,
Vgn(p) =Vru {Ui S N}

and
Er,.amy = Er U{(vi,u), (u,v;) s v €U, i € N}

If I is a finite graph then [V, )| < 2"l + [V¢| and so £,(T) is a finite
graph. Likewise if I' is countably infinite then the set of all finite K,,_-free
sets is countably infinite (it cannot be finite for then there would exist an
infinite subset of vertices such that any two vertices are adjacent — i.e. a
complete graph which is impossible since it is not K,-free) and hence L, (I")
is countably infinite.

We can inductively define a sequence of graphs by setting I'y = ' and
L1 = L,(I). Now define 'y, to be the limit of this process by letting:

[ = (UVFMUVH>.

neN neN
It should be clear that I'y, is K,-free since it is the union of the K, -free
graphs I';, where I',; is an induced subgraph of T',, ;.

Example 6.3. [Construction of I'y = £3(I'g) and I'y = L£3(I";) when I' =
({0}, 0)]

Compare with Example 3.3

FO - F

[
Iy

[ ]

[ ] [ ]
[y

([ ]

[ ] [




Lemma 6.4. For any countable K,-free graph U, the K, -free graph I' is
existentially closed and thus I'sw = G,

Proof. Let U and V be disjoint subsets from I', such that U is a K,,_i-free
set. Then there exists k£ € N such that U,V C Vr,. By construction of I'y4q,
there exists a vertex v € Vr,,, \ Vi, adjacent to every member of U. Moreover
x is adjacent to no other vertices in V. Thus v is adjacent to every member
of U, but to no member of V in I'y,;. Since the construction of I'y, makes
no change to the edge set of the induced subgraph 'y, it follows that v is
adjacent to every member of U, but to no member of V in I',. m

Since any K,-free graph I' can clearly be embedded into I'y, and since
' = G, by Lemma 6.4, a proof of Theorem 6.1 should now be clear.

6.2 Group J/-classes and Regular Z-classes
of End(G,,)

To make use of Theorem 2.7 on the group J#-classes of End(G,,) we once
again seek information on the structure of the subgraphs of G,, induced by
the images of idempotents in End(G,). However, the following theorem,
originally proved in [Mud10, Proposition 1], makes this task trivial.

Theorem 6.5. Let f € End(G,,). Then f is an embedding of G, into G,,.

Proof. To show that f is an embedding we must show that f is an injective
function and that (u,v) € Eg, if and only if (uf,vf) € Eg,. We begin
with the latter. So suppose that u,v € Vi, and suppose that (u,v) € Eg, .
We claim that (uf,vf) € Eg,. To see this suppose for a contradiction that
(uf,vf) € Eg,. Then since {u,v} is an independent set and since G, is
existentially closed, there exists w; € Vi, such that w; is adjacent to both u
and v. Now for 1 < i < n—2 let w;;; be chosen such that w;, is adjacent to
{u,v,wy,...,w;}. Note that this is possible since u and v are not adjacent
and so for all 1 <i <n —2, {u,v,wy,...,w;} is K;;1-free and hence K,_;-
free. Hence existential closure of (G,, guarantees the existence of the required
vertices w;. Now since w; is adjacent to wy, for all j # k (1 < j, k <n—2), it
follows that w; f # wy f for all j # k. Similarly since w; is adjacent to u and
v it follows that w;f # uf and w; f # vf for all 1 < j <n —2. Thus since f
is an endomorphism and since by assumption (uf,vf) € Eg, it follows that
{uf,vf,wif,...,w,—of}) = K,. This is clearly a contradiction since G,, is
K,-free. Hence (uf,vf) & Eg, as claimed. Since f was an endomorphism it
now follows that (u,v) € Eg, if and only if (uf,vf) € Eg, .
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To show that f is injective let u,v € Vi, and suppose that uf = vf. If
u # v then since {u} is trivially K,,-free and since {v} is disjoint from {u},
it follows from existential closure that there exists a vertex x € Vg, such
that x is adjacent to uw but not to v. Then since f is an endomorphism x f
is adjacent to uf. But by our argument above we also know that zf is not
adjacent to vf = uf, a contradiction. Thus v = v and f is an injective
function. O

Lemma 6.6. Let f € E(End(G,)). Then f =1.

Proof. If f € E(End(G,,)) then flins = llims. We also observed that f
must be an injective embedding. So suppose that y € Viz . Then yf =«
for some z € im f. Since f is idempotent zf = = and hence by injectivity,
x =vy. Thus y € im f and hence Vr \ im G,, = 0. Thus, f = f|g, = 1g, as
required. O]

Consequently, we now have the following results on the group #-classes
and regular Z-classes of End(G,,).

Theorem 6.7. The only group 5 -class of End(G,,) is Aut(G,,).

Proof. Every group ##-class of End(G,,) contains an idempotent (the sub-
group identity). By Lemma 6.6 the only such idempotent is the identity
idempotent 1, and H; = Aut(G,,) as required. ]

Thus we can now conclude that the only maximal subgroup of End(G,,)
is Aut(G,,). Furthermore, we have the following result as a consequence of
Lemma 6.6.

Corollary 6.8. End(7T") has a only one reqular P-class.

Proof. Every regular Z-class contains at least one idempotent. Hence, since
Lemma 6.6 told us that the only idempotent of End(G,,) is the identity, there
can only be one regular Z-class. [

6.3 A Related Class of Triangle-free Graphs

Earlier we made the observation that, in some sense, the existential clo-
sure property for triangle-free graphs is ‘equivalent’ to existential closure de-
scribed for the class of all graphs but which holds only where possible (that is,
avoiding the sets for which the property cannot hold due to the graph being
triangle-free). In a similar manner, we can consider the property of algebraic
closure defined for graphs and examine the triangle-free graphs which satisfy
algebraic closure wherever possible. More precisely, we make the following
definition.
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Definition 6.9. We will say that a triangle-free graph I' has property x if
for each finite independent set U C V-, there exists a vertex v € V- such that
v is adjacent to every member of U.

Triangle-free graphs with property x can be finite or infinite. For exam-
ple, the graph ({vy,va}, {(v1,v2), (v2,v1)}) has property * having only the
independent sets {v1} and {ve}. On the other hand we can easily show that
(G5 has property %, since (G is existentially closed.

In the setting of graphs and directed graphs a pivotal mechanism was the
idea of taking the complement, in some sense or other, and producing another
graph or directed graph. However, when dealing with triangle-free graphs,
the complement of a triangle-free graph is not necessarily triangle-free. As
a result, examples of triangle-free graphs with property * (which are not
G3) are more difficult to produce since, for example, an analogue of Lemma
3.16 is not available to us. We could easily produce 2% algebraically closed
graphs with trivial automorphism group. It is unclear if even one triangle-
free graph with property x and with trivial automorphism group exists. It
is even unclear exactly which groups can arise as automorphism groups of
triangle-free graph with property .

We are, however, able to gain some information on triangle-free graphs
with property x and their automorphism groups. In the remainder of this
chapter we will provide partial classification results on the cardinality of the
automorphism groups of triangle-free graphs with property . In particular,
we will provide a complete description of finite triangle-free graphs with
property * which have exactly two maximal independent sets. We will also
show that if I' is a countably infinite triangle-free graph with property *
which has only finitely many vertices of infinite degree, then there are 2%
automorphisms of I'. First we start with some lemmas.

Lemma 6.10. LetI' be a graph. If T and U are mazimal independent subsets
of T then either T = U or there exists x,y € Vr such that x € T\ U and
yeU\T.

Proof. If U = T then we are done. So suppose that U # T. U\ T = )
then U C T. Thus T is a maximal independent set containing U as a proper
subset. But this is a contradiction to U being maximal. Similarly if T\U = ()
then T" C U and U would be an independent set containing 7" as a proper
subset. Hence T\ U # ) and U \ T # () and we are done. O

Lemma 6.11. If T’ is a finite triangle-free graph with property %, then Vi
has at least two mazimal independent sets and hence |Vr| > 2.
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Proof. Since Vi # () we know that T" has at least one maximal independent
set, U say. Since I' is finite, U is finite and so there must exist a vertex
v € Vp \ U such that v is adjacent to every member of U. Then {v} is an
independent set and is contained in a maximal independent set, T say, which
cannot contain any vertices from U. In other words 7" and U are distinct
maximal independent sets and the result follows. O

Lemma 6.12. Let I be a finite triangle-free graph with property x and sup-
pose that Uy, ..., U, is a list of all maximal independent sets in I'. Then

un---nu, =0.

Proof. Seeking a contradiction, suppose that v € Uy N---NU,. Then since I
has property x there must exists a vertex x € Vr\ {v} such that z is adjacent
to v. Since Vi = J;—, U;, © € U; for some i € {1,...,n}. But by assumption
v € U; and cannot be adjacent to z, a contradiction. Hence Uy N---NU, = ()
as required. O

Theorem 6.13. Let I' be a finite triangle-free graph with property = and
suppose that I' has exactly two maximal independent sets T and U. Then
TNU =0 and T ¥ K,,,, for some m,n € N\ {0}.

Proof. If T has exactly two maximal independent sets 1" and U, then Vp =
TUU. Also, by Lemma 6.12, TNU = (). Let x,y € Vr and suppose without
loss of generality that x € T and y € U. Suppose that (z,y) ¢ Er. The
{z,y} is an independent set contained in neither 7" nor U and thus must
be contained in a maximal independent set not equal to 7" or U. This is
a contradiction and so it follows that (z,y) € Er for all x € T and for all
y € U. Since |T|,|U| > 0, the result follows. O

Corollary 6.14. Let I' be a finite triangle-free graph with property = and
suppose that I' has exactly two maximal independent sets T' and U. Then the
automorphism group of T either has cardinality 2(n!)? for some n € N\ {0}
or has cardinality n!m! for some m € N\ {0}, m # n.

Proof. 1t is well known that the automorphism group of the graph K, .,
m,n € N\ {0}, is S,,, X S, if m # n and (S, x S,,) x Cy if m = n, [Ros99,
Section 8.10.2 Example 2]. Thus it immediately follows from Theorem 6.13
that the automorphism group of I' has cardinality 2(n!)? or has cardinality
nlm!. O]

It remains an open problem to determine which groups occur as the au-
tomorphism group of a finite triangle-free graph with property = which has
three or more maximal independent sets. The following lemma tells us that
such a triangle-free graph with property x cannot contain a set of three or
more mutually disjoint maximal independent sets.
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Lemma 6.15. There does not exist a finite triangle-free graph with property
which contains a set of three or more mutually disjoint mazximal independent
sets.

Proof. Let S, T and U be maximal mutually disjoint independent sets in I
Since Vr is finite S, T and U are finite sets. Since I' has property x there
exists a vertex x € Vp \ S such that (z,s) € Fr forall s € S. If 2 ¢ T,
then since T is a maximal independent set there exists a vertex t € T' such
that (x,t) € Er. Furthermore, since S is also a maximal independent set and
t € S, there exists a vertex r € S such that (r,t) € Er. But then the induced
subgraph ({z,t,7}) is isomorphic to K3 - a contradiction to I' being triangle-
free. Hence x € T. But since U is maximal and = ¢ U, there exists u € U
such that (x,u) € Ep. Similarly since S is maximal and u ¢ S, there exists
q € S such that (u,q) € Er. In this case it follows that ({z,u,q}) = Kj,
another contradiction and the result follows. ]

We now consider infinite triangle-free graphs with property x. The fol-
lowing lemma will be of importance in the proof of Theorem 6.17.

Lemma 6.16. If ' is a countably infinite triangle-free graph with property
*, then I' contains a least one vertex of infinite degree and every vertex has
either infinite degree or is adjacent to a vertex of infinite degree.

Proof. Let v € Vp. If v has infinite degree then we are done. So suppose
that T'(v) = {u € Vr : (u,v) € Er} is finite and hence that Vi \ (T'(v) U {v})
is infinite. Now for each w € V¢ \ (I'(v) U {v}), {v,w} is an independent
set and so since I' has property *, there must exist x € I'(v) such that z is
adjacent to both v and w. Since Vi \ (I'(v) U{wv}) is infinite and I'(v) is finite,
it follows by the pigeonhole principle that at least one member of I'(v) has
infinite degree. O]

The following theorem on countably infinite triangle-free graphs with
property * now follows.

Theorem 6.17. Let I' be a countably infinite triangle-free graph with prop-
erty x. Suppose that U has exactly n € N\ {0} vertices of infinite degree.
Then the automorphism group of T has cardinality 2%°.

Proof. Let vy,...,v, € Vi denote the n vertices of infinite degree and (as
usual) for u € Vp, let I'(u) = {w € V¢ : (u,w) € Er}. Clearly, since I is
triangle-free, T'(v;,) is an independent set for all k € {1,...,n}. Recursively
define a sequence of subsets of Vi as follows. Let,

Yo =) T(we).
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If Yy # (), then for all v € Yy, I'(v) = {v1,...,v,}. Hence since T is triangle-
free, Yy is an independent set. Let S C {1,...,n} such that |S| > 1. Suppose
that for all R C {1,...,n} such that |R| < |S|, Y has been defined. Now

define
Yg = ( ﬂ F(w)) \Z|s\—1,

k&S

where for r > 0,

Zr: U YR U{Ul,...,'l)k}.
|R|<r

If Ys # (), then for all v € Yg and for all for all &k ¢ S, v, € I'(v) . Hence,
since I is triangle-free, Ys is an independent set.

Now, by Lemma 6.16,

Vr = UF(Uk)U{Ul...,Un}

k=1
and thus
Vi\{o,..vt = ] Vs
SC{1,...,n}
Since I' is infinite and since the set of all subsets of {1,...,n} is finite, it

follows by the pigeonhole principle that Y is infinite for some S C {1,...,n}.
So fix T'C {1,...,n} such Yz is countably infinite. We will show that Aut(T")
contains a subgroup isomorphic to Sjy;|. To do this we will first show that

Vi \ < UF(vk)U{vl...,vn}) = 0.

keT

Seeking a contradiction, suppose that

Ve < UF(Uk)U{Ul...,vn}) £ (.

kT

Then there exists a vertex,

zel(u)\ ( UF(vk)U{vl...,vn}> :

kgT
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for some [ € T'. Since z has finite degree and since Y7 is infinite, there exists
an infinite subset of distinct vertices {y; : ¢ € N} C Y7 to which z is not
adjacent. Now, since I' has property x, for each ¢ € N there exists a vertex
x; such that z; is adjacent to both y; and to z. If all the z; are distinct
then z would have infinite degree which is a contradiction. Hence it must be
the case that infinitely many of the z; are equal. But in this case x; would
have infinite degree and thus must be equal to v; for some j € {1,...,n}.
However, since y; is not adjacent to vy for & € T and since z can be adjacent
only to v for k € T this is another contradiction. Hence it follows that,

Ve \ ( UF(vk)U{vl...,vn}) = 0.

keT

Now, if u € Y7 then wu is adjacent to vy for all £ ¢ T'. Hence since

V= J () U{or ... on},

kgT

and since [ is triangle-free, there can exist no edges between vertices in Y
and vertices in v € Vp\{v1...,v,}. Thus I'(u) = {vg : k & T} for all u € Y.
If we enumerate the vertices of Y7 as {u; : i € N}, then for each 7 € Sy, we
can define a map f; on Vr by,

Ufwz{v ifveYr,

u@yr if v = u; for some ¢ € N.

Since Yr is an independent set, and since I'(u) = {v, : k ¢ T} for all u € Y
it follows that f is a graph automorphism for all m € Syy,|. Furthermore, it
should be easy to see that the map ¢ : Sjy,| — Aut(I") defined on 7 € S)y,,
by m¢ = fr is an injective group homomorphism. Thus Aut(I') contains
a subgroup isomorphic to the infinite symmetric group. Since the infinite
symmetric group has cardinality 2% the result now follows. O]

It remains an open problem to determine the cardinality of the automor-
phism group of a countably infinite triangle-free graph with property * which
has infinitely many vertices of infinite degree.
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Chapter 7

The Random Bipartite Graph

In this chapter we will discuss the random bipartite graph, which we denote
by B. We will show that if I is a countable graph, then there exist 2%
maximal subgroups of End(B) isomorphic to Aut(I'). We will also show
that there are 2% Z-classes and 2% _#-classes of End(B). Furthermore, in
contrast with the random graph and random directed graph, we will show
that there exist regular Z-classes of End(B) which contain countably many
group 57 -classes as well as regular Z-classes which contain 2% group J7-
classes. First however, we will observe that we must make a slight adjustment
to the standard definition of a bipartite graph.

7.1 Defining a Bipartite Graph

Recall that a graph I' = (Vr, Er) satisfies the bipartite condition if there
exists a function ¢ : Vp — {0, 1} such that uc # ve whenever (u,v) € Er. In
other words we can write Vi = V5 U Vj where (u,v) € E implies that u € V;
and v € V] or vice versa.

If we let K be the class of finitely generated graphs which satisfy the bi-
partite condition, then K has the hereditary and joint embedding properties.
However, we will show that K fails the amalgamation property as follows.
We consider the following graphs which can be shown to satisfy the bipartite
condition, see Figure 7.1.

' = ({u17u2}7®)7
Ar = ({v1, v, v}, {(v1,v2), (v2,v1), (v2,v3), (v3,v2) }),

Ay = ({wl,wg,wg,w4},
{(wlv w2)’ (w2> wl)v (w27 U)3), (w3’ w2)> (ZU3, w4)7 (U)4, w3)})'
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Figure 7.1: The graphs I'; A; and A,.

r Aq Ay
(75} U1 (%R} w1 W3
[ ] [ ] [ ] [ [ ]
[ ] [ ] [ ] [ ]
Uz U2 Wa Wy

It is easy to see that I can be embedded into A; via the injective homo-
morphism which takes u; to v; and uy to vs. Similarly I' can be embedded
into Ay wvia the injective homomorphism taking u; to w; and us to wy. Now
suppose that there exists a finite graph A satisfying the bipartite condition
and embeddings f; : Ay — A and fo : Ay — A such that vy f; = wy fo and
v3f1 = wyfo. Since A satisfies the bipartite condition there exists a function
¢ : Vo — {0,1} such that uc # vc whenever (u,v) € FE,. Suppose that
(vifi)e = 0 and (vsfi)e = 1. Then since (vy,vy) € Ea, it must be the case
that (vafi)e = 1. However (vg,v3) also lies in Ea, so that (vafi)e = 0 a
contradiction to A satisfying the bipartite condition. Hence we deduce that
either (vyf1)c =0 and (vsfi)c =0, or (v f1)c =1 and (vsf1)c = 1. Without
loss of generality assume the latter. If (vyf1)c = 1 then (w;f2)c = 1 and
since (wy,we) € En,, (wafe)c = 0. Similarly if (vsfe)c = 1 then (wyfo)e =1
and since (w3, ws) € Ea,, (wsfo)c = 0. However (ws,ws3) also lies in Fa,
and so it cannot be the case that (wsfs)c = (wsf2)c. Hence again we have a
contradiction and there can be no such graph A which satisfies the bipartite
condition.

As a result the class of finite graphs satisfying the bipartite condition does
not have the amalgamation property and thus does not have a Fraissé Limit.
However, if we create a relational structure which ‘encodes’ the bipartite
structure of a graph which satisfies the bipartite condition, a Fraissé Limit
can be found. One of the ways in which we can do this is as follows.

Definition 7.1. A bipartite graph is a relational structure I' = (Vr, Er, Pr)
where the following two conditions are satisfied.

(i) (Vr, Er) is a graph satisfying the bipartite condition with bipartition
Ve =WUu.

(i) Pr= (Vo x Vo) U (Vi x VQ).
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The bipartite graph I' is said to have bipartition Vi = V, U Vi and Vj and
V1 will be known as the parts. The binary relation Pr is called the partition
relation. In order to make the bipartition clear we will sometimes denote
such a bipartite graph as I' = (Vo U Vi, Er, Pr) where it is assumed that
Pr= (Vo xVo)U (Vi x V).

A bipartite graph can thus be thought of as a graph with an extra binary
relation which identifies the bipartition. With this in mind, we will continue
to call Vi the set of vertices and Er the set of edges. Two vertices u,v € Vp
will said to be adjacent in T" if and only if (u,v) € Er. Likewise, we will
say that a bipartite graph (Vr, (Er, Pr)) is connected, locally finite or has
connected component U if the graph (Vr, Er) is connected, locally finite or
has connected component U C Vi respectively.

Of course if (V, E) is a graph which satisfies the bipartite condition with
bipartition V' = 1 U Vi, then we can produce a bipartite graph (V, E, P) by
setting P = (Vp x Vp) U (V4 x V7). Naturally, the endomorphism monoid of a
bipartite graph constructed in this manner will be dependent upon the choice
of bipartition. Two bipartite graphs which are formed from a single graph
satisfying the bipartite condition but with two distinct bipartitions are, in
general, not isomorphic. However, if a graph is connected then its bipartition
is unique (see [AGO7, Theorem 5.3] for details) and so the bipartite graph
formed from this graph is unique up to isomorphism.

It must be noted that if I' = (Vo U V4, Er, Pr) is a bipartite graph, then
an endomorphism f can map both Vj and V; solely to V; (or indeed V)
only when the edge set F is empty. However, there can exist endomorphisms
which allow the partition sets to be interchanged. More precisely, if an
endomorphism maps one vertex in Vj to a vertex in Vj then it must in fact
map all vertices of Vj to vertices in Vi and vice versa. These conditions are
enforced by the partition relation Pr. This discussion is summarised by the
following two lemmas.

Lemma 7.2. Let I' = (Vr, Er, Pr) and A = (Vy, Ea, Py) be bipartite graphs
with bipartitions Vr = Vo UV, and Vi = Wy U W1, respectively. Let f : Vi —
Vi be a function. Then f is a bipartite graph homomorphism if and only if f
defines a graph homomorphism (Vr, Er) — (Vi, Ep) and one of the following
four cases hold:

(i) Vof €Wy and Vi f C W,
(i) Vof C Wy and Vif CW,,
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(i) Er =0, Vof €Wy and Vif C Wy, or
(iv) Er =0, Vof €Wy and Vi f C Wh.

Proof. (=) Suppose f : Vr — V} is a bipartite graph homomorphism and
let w € Vr. Then necessarily (u,v) € Er implies that (uf,vf) € Ex and thus
f defines a graph homomorphism (Vi, Er) — (Vy, Ey).

Now suppose, without loss of generality, that u € V. Then for all v € Vj,
(u,v) € Vo x Vo C Pr. Since f is a bipartite graph homomorphism, it must be
the case that (uf,vf) € Py for all v € Vj. Since Py = (Wy x Wy)U (W7 x W)
we can deduce that if uf € Wy then Vo f C Wy. Similarly if uf € Wi then
Vof C Wh.

Suppose that Er # (). Then there exists (z,y) € Er, where z € 1, and
y € V1. Now, since f is an endomorphism we know that (zf,yf) € Ex. Thus,
if Vof € Wy then zf € Wy and hence yf € Wy since Ey N (Wy x Wy) = 0.
Now, since (y, z) € Vi x V; for all z € V] it follows that V; f C W;. Similarly
if Vo f € W, we can conclude that Vi f C Wy. Thus if Er # () then only cases
(i) and (ii) above can occur.

If Br = () and V; = () then there is nothing further to do. So suppose
that Er = () and y € V. Since Er = (), there exist no edges between y and
Vo and thus it is possible have either yf € Wy or yf € Wi. An identical
argument to that shown above then leads to the conclusion that V;f C W)
or V1 f C Wy independent of whether Vf C Wy or Vo f C Wj. In particular
if Ep = () then any of the cases (i)—(iv) above can occur.

(<) For the converse suppose that f : Vr — Vj defines a graph homo-
morphism (Vr, Er) — (Va, Ea). Then (uf,vf) € Ex whenever (u,v) € Er.
Now suppose that Vo f € Wy and Vi f € W (case (i) above). Then whenever
(u,v) € Vo x Vp it holds that (uf,vf) € Wy x Wy. Similarly (u,v) € V; x V;
implies that (uf,vf) € Wy x Wj. Thus together we have that (u,v) € Pr
implies (uf,vf) € Py. Hence f defines a bipartite graph homomorphism
(Vr, Er, Pr) — (Vi, Ep, Py). Similar arguments for the remaining three cases
completes the proof. O

If T' is a bipartite graph and f € End(T"), then f is said to be part fizing
if f follows case (i) in Lemma 7.2 above. In other words, f maps the sets in
the bipartition only to themselves.

67



Lemma 7.3. Let I' = (Vr, Er, Pr) and A = (Vy, Ea, Py) be bipartite graphs
with bipartitions Vp = Vo U Vi and Vy = Wy U Wy, respectively. Let f: Vp —
Vi be a function. Then f is an isomorphism of bipartite graphs if and only if
f defines a graph isomorphism (Vr, Er) — (Va, Ex) and one of the following
two cases hold:

(i) Vof =Wy and Vi f = Wh,
(ii) Vof =Wy and Vi f = Wy,

Proof. (=) Suppose f : Vi — V) is an isomorphism of bipartite graphs and
let w € Vp. Then, by definition, (u,v) € Er if and only if (uf,vf) € Ex and
thus f defines a graph isomorphism (Vr, Er) — (Vi, En).

Now suppose, without loss of generality, that « € Vy. Since f is an
endomorphism Lemma 7.2 tells us that either Vo f C Wy or Vo f € Wi, So,
suppose that Vof € Wy. If Vi = @ then the bijectivity of f ensures that
Wy = 0 and we are finished by deducing that Vo f = Wy . Otherwise let
x € Vi. Since (u,z) ¢ Pr and f is an isomorphism we can conclude that
(uf,xf) & Px. Since this holds for all x € V; we see that if Vf C Wy then
Vif € Wi. Moreover, since f defines a bijection of sets we can conclude that
Vof = Wy and Vi f = Wi. A similar argument leads us to deduce that if
Vof € Wy then in fact Vo f = Wy and Vi f = W,,.

(<) For the converse suppose that suppose that f : Vi — V, defines a
graph isomorphism (Vr, Er) — (Vj, Ex). Then f is a bijection and (uf,vf) €
E\ whenever (u,v) € Er. Now suppose that Vyf = Wy and Vi f = W, (case
(i) above). Then (u,v) € Vo x Vj if and only if (uf,vf) € Wy x Wy. Similarly
(u,v) € Vi x V7 if and only if (uf,vf) € Wi x Wi. Putting these together
allows us to deduce that (u,v) € Pr if and only if (uf,vf) € Py. Hence f
defines an isomorphism of bipartite graphs (Vr, Er, Pr) — (Va, Ex, Pr). A
similar argument for case (ii) completes the proof. O

As a consequence of the previous lemma we see that an isomorphism
between bipartite graphs I' = (Vo U Vi, Ep, Pr) and A = (W U Wy, Ey, Py)
is possible only if (i) [Vo| = |Wo| and |V4] = |W4], or (ii) |Vo| = |Wi| and
V1| = |Wo|. Additionally, if f : I' — A, is an embedding then f defines an
isomorphism between I' and the bipartite graph induced by im f. As a result
any such embedding f must follow either case (i) or (ii) in Lemma 7.2 above.

It will be important to identify those cases where the automorphism group
of a bipartite graph I is isomorphic to that of its underlying graph structure.
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Lemma 7.4. Let I' = (Vi, Er, Pr) be a connected bipartite graph. Then
Aut(T") = Aut((Vr, Er)).

Proof. Let Vi = V5 U Vi be the bipartition of I'. Since I' is a connected
bipartite graph, the graph (Vr, Er) is connected and satisfies the bipartite
condition. In particular this means that the bipartition of (Vf, Er) is unique.
It should be easy to see that Vyf UV f also provides a bipartition of (Vr, Er)
for any f € Aut(I'). Thus by the uniqueness of the bipartition we conclude
that for any f € Aut(I'), either Vof = Vp and Vif = Vi or Vo f = V4 and
Vif = Vo. Thusif f is an automorphism of (Vr, Er), it is an automorphism of
[' via Lemma 7.3. Thus Aut((Vr, Er)) € Aut(I"). Since the reverse inclusion
is clear, the result follows. n

Notice that connectivity is a sufficient but not necessary condition in
Lemma 7.4. For consider the following example.

Example 7.5. [Examples for the converse of Lemma 7.4.]

Let A; and As be the bipartite graphs shown in the figure below (where
continuous lines represent edges and dotted lines represent elements of the
partition relation).

A1 A2

N

g et
e

The bipartite graph Ay is not connected and it is easy to see that

Aut(A;) = Cy and Aut((Va,, Ea,)) = Cy x Cy. On the other hand, the

bipartite graph A, is not connected but
Aut(Ag) = Cg X Sg = Aut((VAQ,EAQ)).

Now let us reconsider the graphs
I = ({ub u2}7 (Z))a
A1 = ({Ula Vg, U3}a {(Ula U?)? (U27 Ul)) (,027 /U3)7 (037 UQ)})v

from the start of the chapter (see Figure 7.1). Since I' and A; satisfy the
bipartite condition we can produce the corresponding bipartite graphs

I = <{u17u2}7®7PF)>
Al = ({Ulv V2, U3}’ {(Ula U2)7 (,027171)7 (U27'U3)7 (U?n UQ)}v PA1)7
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Figure 7.2: The bipartite graphs [ and A7.
ro A

U o UVl @ o Us

Ug ® Vo @

by setting

PF :(ul,ul) U <UQ,’LL2),

Pa, ={(v1,v1), (v1, v3), (v3,v1), (v3,v3)} U (va, v2).

See Figure 7.2. Notice that since A; is a connected graph the bipartite graph
A, is the unique bipartite graphs formed from A;. The graph embedding
described earlier which takes u; to v; and us to v3 is not an embedding of
the bipartite graphs since (uy,uz) € Pr but (uf,usf) = (vi,v3) € Pa,.
In fact by Lemma 7.3, the partition relation prohibits any graph embedding
which does not preserve the bipartition from being an embedding of bipartite
graphs. Consequently, counterexamples such as the one at the start of the
chapter do not occur in the setting of bipartite graphs.

As it turns out we can then easily show that the class of finite bipartite
graphs has the hereditary, joint embedding and, unlike the previous class,
the amalgamation properties. As a result the class of finite bipartite graphs
has a Fraissé Limit, which we will call the random bipartite graph B and
which will be the subject of study for the rest of this chapter.

7.2 Defining Properties and Constructions

Definition 7.6. We will say that a bipartite graph I' = (V, U V3, E, P) is
existentially closed (in the class of bipartite graphs) if for all finite disjoint sets
To, Uy C Vo and Ty, Uy C Vj there exists ¢ € Vi \(T1UU;) and y € Vp\ (ToUUy)
such that:

(i) (z,s) € E for all s € Ty,
(ii) (x,u) € E for all u € Uy,
(iii) (y,t) € E for all t € T}, and
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(iv) (y,v) ¢ E for all v € U;.

For the rest of this chapter, existentially closed should be taken to mean
existentially closed in the class of bipartite graphs. If I' = (V, U Vi, E, P)
is an existentially closed bipartite graph, then we can easily show that I is
infinite in the following way. Suppose that I' is finite, that is, Vy and V
are finite. In order to satisfy the property of existential closure there must
exist x € V] such that (z,v) € FE for all v € V. However this means that
every vertex in Vj is adjacent to x and thus there does not exist a vertex y
in V, which is not adjacent to x. Consequently no finite bipartite graph can
be existentially closed. It is also not hard to show that if ' is existentially
closed, then there must in fact exist infinitely many vertices € Vi \ (T UU)
and y € Vy\ (ToUUy) as above. Furthermore, we have the following theorem.

Theorem 7.7. Let I' be an existentially closed bipartite graph. Then T' is
homogeneous and every finite bipartite graph can be embedded into T'.

For a proof see for example [Hod97], or alternatively the construction
given in Definition 7.9 will make this theorem clear. In view of Theorem 7.7,
the age of an existentially closed bipartite graph is exactly the class of all
finite bipartite graphs. Thus by Fraissé 's Theorem if ' is any existentially
closed bipartite graph, then I' = B.

As with the other existentially closed relational structures considered in
this thesis, we can probabilistically construct an existentially closed bipartite
graph A as follows. Let Vi = VU V; where V; and V; are countably infinite
sets and let Py = (Vo x V) U (V7 x Vj). Construct the edge set F, by
selecting edges independently with probability % from the set Vp x Vi. In
order to ensure symmetry add the edge (v,u) to the edge set £\ whenever
(u,v) is selected. The graph (V)y, E) satisfies the bipartite condition since,
by construction, V), contains no edges between vertices in V) and no edges
between vertices in Vi. Therefore, A = (Vi, Ex, Py) is a bipartite graph with

bipartition V, = VU V4.

Theorem 7.8. Let A = (Vy, Ea, Py) be a countable bipartite graph as con-
structed above. Then A 1s existentially closed with probability 1 and hence

A= B.

Proof. Recall that V, = V5 UV, where V; and V] are countably infinite sets.
Let Ty, Uy C Vo and T7,U; C V; be finite and disjoint subsets of V; and V;,
respectively. Let |Tp| = m and |Uy| = n for m,n € N. We will say that a
vertex x € V1 \ (171 U Uy) is joined correctly (to Ty and Up) if = is adjacent
to all members of Ty, but to no member of Uy in (Vi, Ey). We will show
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that with probability 1, such a vertex exists. The probability that a vertex
z € Vi \ (T1 UU,) is not joined correctly is

1
B om+n ’

Furthermore, if x and y are distinct vertices then the probability that x is
not joined correctly is independent of the event that y is not joined correctly.
Hence, since V; is infinite (and 7} U U is finite), the probability that no
vertex of V1 \ (71 U Uy) is joined correctly to Ty and Uy is:

1 k
fim (1= 5 ) =0

Similarly, we can show that the probability that there does not exists a
vertex of Vg \ (To U Up) joined correctly to T and U; is 0. Thus we have
shown that the probability that existential closure is not satisfied for the
sets Ty, Uy C Vo and Ty, U; C V; is 0. Since there are only countably many
choices for the subsets Uy, Uy, Vj and V; it follows that the probability that A
is not existentially closed is 0. In other words, A is existentially closed with
probability 1. O]

In a similar fashion to the previous chapters, we can exhibit a standard
and explicit construction of the random bipartite graph.

Definition 7.9. Let I' = (Vr, Er, Pr) be any countable bipartite graph with
bipartition Vr = Uy U U;. Construct a new graph Z(I') from I' as follows.
Enumerate the finite subsets of Uy as {S; : ¢ € N} and enumerate the finite
subsets of Uy as {T} : j € N} (replacing the natural numbers with some finite
subset if Uy or U is finite), we let

V():U()U{yj:jGN}and,

‘/1:U1U{£L'ZZEN}
Then Z(I') = (Vz(ry, Ez(ry, Prry) is the bipartite graph formed by letting

Vzey =WV uVy,

EI(F) = Er U {(.ﬁlfi,S), (8,.TZ') S e Si> Z & N} U {(yj,t), (t,yj) it e T’j, j € N},

and
Prry = (Vo x Vo) U (V1 x V7).
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Roughly speaking, Z(I") is the bipartite graph formed from I" by adding,
for each finite subset S of Uy and for each finite subset 1" of Uy, a vertex x to
the partition set U; and a vertex y to the partition set Uy such that there is
an edge between x and every member of S and an edge between y and every
member of T'.

Note that the induced bipartite graph (Vi) of Z(I") is just I itself. If T is
finite then |Vz(r| = 210l +2V11 4|14 | so that Z(T') is a finite bipartite graph.
If instead I' is countably infinite then, since the set of all finite subsets of a
countable set is countable, {y; : j € N} and {z; : i € N} are countable and
hence Z(I") is a countably infinite bipartite graph.

Now inductively define a sequence of graphs by setting I'j = I' and
I'hy1 =Z(I',) for n € N. Notice that by construction, P, C FPr,,, for
all n € N. Now define I'y, to be the limit of this process in the sense that,

To=JTn= ( Uw..UE.. U Ppn> :

neN neN neN neN

Then I'y, is a bipartite graph. This should be clear since at each stage
(Vr,, Er,) is a graph satisfying the bipartite condition, with Pr, , C Pr,.
Furthermore, since I',,;1 contains I',, as an induced bipartite graph for each
n € N, I', contains I' as an induced bipartite graph.

Example 7.10. [Construction of I'y and I'y given T'.]

r I'
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Theorem 7.11. Let I' be a countable bipartite graph. Then the bipartite
graph Uy is existentially closed and thus I's, = B.

Proof. Let 'y, = (VoUV4, E, P) and suppose that Ty, Uy C Vg and 177, U; €V
are finite disjoint subsets. Then T, T, Uy,U; C Vr, for some & € N. By
construction of I'y44, there exists a vertex z € Vi \ V, such that (z,s) € £
for all s € Ty and such that (z,s") € E for all s € Vi, \ To. Similarly there
must exist a vertex y € Vj \ Vr, such that (y,t) € E for all ¢ € T} and such
that (y,t') € E for all t' € Vi, \ 7. In particular this means that the vertices
x and y are such that:

(i) (z,s) € E for all s € Ty,
(ii) (z,u) & E for all u € Uy,
(iii) (y,t) € E for all t € T}, and

(iv) (y,v) & E for all v € U;.

Furthermore, since Ty, 11, Uy, Uy C VW, , it follows that x € Vi \ (77 UU;) and
y € Vo \ (To U Up). Thus existential closure holds for the sets Tp, T1, Uy and
U, inside I'y41. Since the construction process makes no changes to the edge
set of ['y11, existential closure holds for the sets Ty, T, Uy and U; inside and
in 'y, and the result follows. O

Clearly, if I' is a finite bipartite graph, then I' embeds into ', by identify-
ing I with I'y. Thus since I'y, = B for all finite bipartite graphs I', Theorem
7.7 should now be clear.
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7.3 Group .7/-classes of End(B)

As discussed earlier in Theorem 2.7, the group .#-classes of End(B) are
isomorphic to the automorphism groups of the bipartite graphs induced by
the images of idempotents in End(B). We will show that if I' is a countable
graph, then there exist 2% group J#-classes H of End(B) such that H =
Aut(T"). To do this, we first provide some results on the structure of the
bipartite graphs which arise as the images of idempotents from End(B).

Definition 7.12. A bipartite graph I' = (V, U V4, E, P) will be called alge-
braically closed (in the class of bipartite graphs) if for all finite sets Uy C Vj
and U; C V) there exist vertices z € V; and y € Vj such that x is adjacent
to every member of Uy and y is adjacent to every member of U;.

Unless otherwise stated, for the rest of this chapter the phrase ‘alge-
braically closed” will be used to mean algebraically closed in the class of
bipartite graphs. Unlike algebraically closed graphs or directed graphs, al-
gebraically closed bipartite graphs can be finite. For example the bipartite

graph,
A= ({U,U}, {(U, U)v (U’U’)}? {(u7u)7 (Uw U>})

is algebraically closed. This is a major difference to the previous classes of
relational structures. In particular, it means that we are no longer able to
deduce that any two finite sets Uy C 1V, and U; C V; have an infinite set of
vertices to satisfy algebraic closure. Instead we make the following separate
definition.

Definition 7.13. A bipartite graph I' = (VoUV4, E, P) will be called strongly
algebraically closed (in the class of bipartite graphs) if for all finite sets Uy C
Vo and U; C Vj there exist infinitely many vertices x € V; and y € V4 such

that x is adjacent to every member of Uy and y is adjacent to every member
of Ul-

We can easily provide an example of a strongly algebraically closed bipar-
tite graph. For consider the bipartite graph Q = (Vq, Fq, Pq), with biparti-
tion Vo = VoUV] where |V| = |V1]| = Ry and (u,v), (v,u) € Eq for all u € V),
v € V1. Then clearly € satisfies the conditions for strong algebraic closure.
Additionally B is strongly algebraically closed since it is existentially closed
(recall that an existentially closed bipartite graph was defined in Definition
7.6).

Lemma 7.14. Let I be a countable bipartite graph and let f € End(T).
Suppose that im f s strongly algebraically closed. Then both parts of T' are
countably infinite.

75



Proof. Let I' = (V, U V4, Er, Pr) and suppose without loss of generality that
v € V. Then there must exist infinitely many vertices in V; adjacent to v
and hence V] is infinite. A similar argument shows that V4 is infinite. Since
[' is countable the result now follows. ]

An important observation for the application of Lemma 7.2 is that for any
algebraically closed graph I', Er # ). To see this suppose that Vr =V, UV}
is the bipartition of I". Since Vi is non-empty we can assume without loss of
generality that there exists a vertex x € Vfj. Then I being algebraically closed
guarantees the fact that there exists a vertex y € V; such that (z,y) € Er.
Furthermore the following lemma holds.

Lemma 7.15. Let ' = (Vr, Er, Pr) be an algebraically closed bipartite graph.
Then T is connected and hence Aut(I") = Aut((Vr, Er)).

Proof. Let Vi = Vo U V] be the bipartition of I' and suppose that u,v € Vr.
If u,v € Vj then since I' is algebraically closed there exists a vertex x € V
such that (u,z)(x,v) € Ep. Thus there exists a path of length two from u
to v. If u,v € Vi, then a similar argument leads to the same conclusion.
Now suppose without loss of generality that v € V; and v € V;. Once
again, the fact that I' is algebraically closed ensures the existence of vertices
x € V) and y € Vj such that (u, z), (z,v), (y,v) € Er. Hence there is path of
length three from u to v in this case. Since w and v were arbitrary we can
conclude that (Vr, Er) is connected and hence so is I'. Now by Lemma 7.4
Aut(T") = Aut((Vr, Er)), as required. O

The next two lemmas give the first step in determining the structure of
the bipartite graphs which arise as images of idempotents in End(B).

Lemma 7.16. Let I' be a countable algebraically closed bipartite graph and
let f € End(T"). Thenim f is a countable algebraically closed bipartite graph.

Proof. Let I' = (VoUW Er, Pr) and let f € End(T"). By definition im f is an
induced substructure of I' and hence is a countable bipartite graph. To check
that it is algebraically closed, let Uy C Vo Nim f and U; C V) Nim f be any
finite subsets. Enumerate Uy as {u; : 1 <i <m} and Uy as {v; : 1 < j < n}.
Since each u; (1 < i < m) lies in the image of f there exists a vertex
si € Vo U V) such that s;f = u;. Let S = {s; : 1 <i < m}. Since Uy C 1,
Lemma 7.2 allows the conclusion that either S C Vy or S C V4. So suppose,
without loss of generality, that S C V4. Since each v; (1 < j < n) also lies
in the image of f there exist vertices t; € V5 U V; such that t;f = v;. If we
let T'={t; : 1 <j <n}, then T C V; by a further application of Lemma
7.2. Now, since I' is algebraically closed there must exist vertices x € V;
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and y € V; such that (z,s;) € Er and (y,t;) € Ep for all 1 <7 < m and
foralll1 < j<n. Thenzf € ViNnimf, yf € VoNim f and, since f is a
bipartite graph endomorphism, (zf,u;) € Er and (yf,v;) € Er for all for all
1<i<mandforalll <j<n. ]

Corollary 7.17. Let f € End(B). Then im [ is a countable algebraically
closed bipartite graph.

Proof. By definition, B is a countable bipartite graph. Furthermore, since B
is existentially closed, it is algebraically closed. Thus, by Lemma 7.16, im f
is an algebraically closed bipartite graph. O

Lemma 7.18. Let I' = (Vp, Er, Pr) be a bipartite graph and let f: T — T
be a homomorphism such that im f is algebraically closed. Let Z(I') be the
bipartite graph formed from I' as in Definition 7.9. Then there exists an
extension f : Z(T') = Z(I") of f such that f is a homomorphism and im f =
im f and if f is idempotent then so is f. Furthermore if im f is strongly
algebraically closed then there exist 2% such extensions.

Proof. Let Z(I') = (Vo U Vi, E, P). Enumerate the vertices of Vi \ Vo as
{v; : i € N} replacing the natural numbers with a finite set if necessary. Let
To=VrNVyand let T3 = Vi N V] so that Vi = T U 17 is the bipartition of
[. For each i € N the vertex v; is such that (v;,u) € E if and only if u lies
in a specific finite subset U; of either Ty or T;. We will inductively define a
sequence of maps f; : (Vr U{vy,...,v;}) = Z(I") as follows.

First, let fy = f and suppose that for n € N we can extend f to a
homomorphism f,, : (Vp U {vy,...,v,}) — Z(T') with im f,, = im f. Let
Ve U{vy,...,v,} = SoUS) be the induced bipartition of (Vr U {vy,...,v;:}).
That is

S():me<VFU{Ul,...,'Un}):T()U(me{?)l,...,vn}),

and
S1=Vin(VrU{vg,...,0.) =T1U(Vin{v,...,v.}).

Suppose without loss of generality that v,.; € V; and that U, C Tg.
Since f,, is a bipartite graph homomorphism and im f,, = im f, Lemma 7.2
tells us that either Syf, C Ty or Sof, € T7. Suppose without loss of gen-
erality that Sof, € Ty. Now, since I' is algebraically closed, Er # () and
a further application of Lemma 7.2 allows the conclusion that Sif, C Tj.
Then (U,41)f € Ty and since im f is algebraically closed, there exists a
vertex = € im f such that (z,vf) € E for all v € Uy, ;.
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Now define f,11: (Vr U{vy,...,v001}) — Z(T) by

if Vr U e, Unty

x if u=uv,41.

Then f,, 41 defines a map of vertices Vo U{v1,...,vp41} = V). By assump-
tion, f, is a bipartite graph homomorphism extending f. Hence f, defines
a graph homomorphism from the induced subgraph (Vp U {vy,...,v,}) of
(Vzry, Ezry) to the graph (Vzry, Ezry). If (vnq1,u) € E then by the obser-
vation we made at the beginning of the proof, u € U,, 1. Thus by choice of z,
(Una1 fos1,ufni1) = (x,uf) € E. Hence f,,1 defines a graph homomorphism
from the induced subgraph (Vp U {vq,...,vp41}) of (Vzry, E) to the graph
(Vzry, £). All that remains is to note that, since f, is a bipartite graph
homomorphism, (Sy) f, C Ty and (S;)f, € 7. Hence,

(So)fnJrl = (So)fn - TOa
and
(Sl U {Un+1}}>fn+1 = (Sl)fn U {SL’} C 1.

Thus by Lemma 7.2, f,,1 is a homomorphism of bipartite graphs (Vi U
{v1,...,vn31}) — Z(T'). Since f,41 is exactly f, when restricted to the
domain of f, and since v,;1f € im f it is ensured that im f,,; = im f.
Furthermore if f,, is idempotent then so is f,, .1 since z € im f,, and thus,

Un+1f3+1 = xfn—&-l = xfn—&-l =T = Un+1fn+1'

F=Ut

1€EN

Now let,

Then f is a bipartite graph homomorphism Z(I') — Z(I) extending f; for
all ¢ € N. If f is idempotent then by construction so is f. Finally since
im f; =im f for all - € N, im f = im f as required.

Now suppose that im f is in fact strongly algebraically closed. Then
in the construction of f, 11 above, there exist infinitely many vertices = €
im f \ Up41f such that (z,vf) € E for all v € U,4;. That is to say, there are
infinitely many choices for the image of v, 1 when constructing f,,1. As a
result, there are infinitely many distinct extensions f,, ;1 of f,, which differ on
Up+1. By definition v, is not adjacent to v, for all m € N and hence the
choice of vertex made for v, f,+1 is independent of any v,, f,, for m < n.
It follows then, that there are Ro™ = 280 distinct extensions f of f. O
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The notable difference in Lemma 7.18, when compared with the analogous
results (i.e. Lemmas 3.9 and 4.9) in Chapters 3 and 4, is the fact that we
can no longer guarantee the existence of 2% extensions without placing an
additional condition on image of the homomorphism f:[' — I'.

It is worth observing that if im f is algebraically closed but not strongly
algebraically closed, then there can still exist 2% extensions f of f, as con-
structed in Lemma 7.18, provided that there exists at least two distinct
extensions f, 1 of f, for infinitely many n € N. In other words there must
exist at least two choices for the image of v, ; when constructing f, ., for
infinitely many n € N.

Theorem 7.19. Let I' be a countable bipartite graph. Then there exists
f € E(End(B)) with im f =2 ' if and only if ' is a countable algebraically
closed bipartite graph. Furthermore, if I' is a countable strongly algebraically
closed bipartite graph, then there exist 2% idempotents f € End(B) with
imf=T.

Proof. Let f € E(End(B)). Then by Corollary 7.17, im f is algebraically
closed.

Conversely suppose that ' is a countable algebraically closed bipartite
graph. Apply the construction given in Definition 7.9 to produce the bipartite
graph I'.. By Lemma 7.11, 'y, = B. Define inductively a sequence of
functions f,, : I, = I'sc as follows. Let fy : 'y = ' be the identity on
I' =Ty. That is we let vfy = v for all v € Vi, so that f; is an idempotent
homomorphism with im fo = I'. Now, for n € N| let f,11 = f, where f, is
the extension of f, to Z(I';,) = I',,41 defined in Lemma 7.18. By the proof
of Lemma 7.18, f,.1 is an idempotent graph homomorphism and im f,,+; =

im fo = I'. Now let,
f=U#
n=0

Then f is a function 'y, — ['s. Furthermore, f is a union of a sequence
of idempotent bipartite graph homomorphisms each of which extends the
previous. Thus f is an idempotent bipartite graph homomorphism and since
imf, =im fy foralln e N, im f =im fo =T

Finally, if I is strongly algebraically closed, Lemma 7.18 guarantees that
there exist 2% distinct extensions f, of f, for each n € N. Thus since there
are 2% extensions f,; of f, for each n € N, there are (2%0)® = 2% many
distinct idempotents f € End(B) with im f =T'. O
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Theorems 2.7 and 7.19 now allow us to deduce that the group -classes
of End(B) are exactly the automorphism groups of countable algebraically
closed bipartite graphs. Once again we now find ourselves asking a familiar
question: which groups can be realised as the automorphism group of a
countable algebraically closed bipartite graph?

By Theorem 7.15, any group which is the automorphism group of a count-
able algebraically closed bipartite graph, is also the automorphism group of
a graph. We will show that for any countable graph I', there exists a count-
able bipartite graph with the same automorphism group. As a consequence
we will then show that we can construct a countable algebraically closed bi-
partite graph with the same automorphism group as I'. We begin with the
following construction and subsequent lemmas.

Definition 7.20. Given any countable graph I" = (V, Er), we can produce
a countable bipartite graph IV = (Viv, Erv, Prv) in the following way. First,
enumerate the vertices in I' by Vp = {v; : i € N}, replacing the natural
numbers by a finite set wherever necessary. We let X be a set disjoint from
Vi with elements z; ; for all @ < j such that (v;,v;) € Ep. That is we let

X ={x;; i <jand (v;,v;) € Er}.
Define IV by setting Vi = Ve U X, P = (Vp x V) U (X x X) and
Er = {(vi, ij), (v, @i 5), (i, 00), (i3, 05) © w35 € X)}.

Intuitively, we are adding a vertex ‘in the middle’ of each edge of the graph
I'. The partition relation Pr then specifies that the bipartition consists of
the set of vertices from I'" and the set of new vertices, X, which are added to
create I".

Example 7.21. [Construction of I'" given I'.]

r I

V2 Uy
[ ] [ ]
o ——— 0
(%1 U3
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It easy to prove the following lemma using the construction of I".

Lemma 7.22. Let I' = (Vr, Er) be a countable graph and let T be the bipar-
tite graph constructed in Definition 7.20. Then the following hold.

(i) If (u,v) € Er, then either u € X orv € X but not both.
(i) If u,v € V¢ and (u,x), (z,v), (u,y), (y,v) € Er, then x = y.

We will make repeated use of the following sets for a bipartite graph
A= (VA, EA, PA) We will let,

A(w) ={u € Vy: (u,v) € Ex}, and
AN (v) ={u eV, : (u,v) € Ep}.

Lemma 7.23. Let I' = (Vr, Er) be a countable graph. Then |I"(v)| = |T'(v)|
for allv € Vp.

Proof. Let T" = (Vr U X, Erv, Prv) as in Definition 7.20. If Er = (), then
Er = () and we are done. So suppose v € Vi and suppose that (u,v) € Er.
Then (u,x), (z,v) € Ep for a unique € X C Viv. Hence |I'(v)| < |I'(v)].
Now suppose that (v,y) € Epr. Then by construction of IV, y € X and
there exists a unique w € Vi such that (y,w) € Er and (v, w) € Er. Thus,
IT"(v)| < |I'(v)| and it follows that |[V(v)| = |['(v)|. O

Lemma 7.24. Let I' = (Vr, Er) be a countable graph such that |I'(v)| > 3
for allv € Vr. Then Aut(I”) = Aut(I') and every automorphism of I'' is part

fixing.
Proof. Let Viv = VU X as in Definition 7.20. If f € Aut(I”) then f: Vi —

Vi must define an automorphism of the graph (Viv, Er/). Hence, since each
x € X has degree 2 and each v € V- has degree at least 3, any automorphism
of I'" must be such that Xf = X and Vrf = Vp. In other words, every
automorphism of I'" is part fixing. Now define a map ¢ : Aut(I) — Aut(I)
by fé = f|w forall f € Vi, By the previous comment f|y;. defines a bijection
Vi — Vp. Suppose that (u,v) € Er. Then there exists a unique x € X such
that (u,x),(x,v) € Er. Since f is an automorphism of I' we know that
(uf,zf), (xf,vf) € Er with zf € X. But, by construction of I'' this means
that (uf|v.,vf|v) € Ep. Similarly it is easy to show that (u,v) € Er implies
that (uf|v.,vf|w) € Er. Hence, f|y. defines an automorphism on T".

The map ¢ defines a homomorphism of groups since (fg)|v. = flwr - glvr.
It remains to check that ¢ is both injective and surjective. Since each z € X
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is joined to two unique vertices u,v € Vp, the images of v and v under an
isomorphism of I determines the image of x completely. Thus, if f,g €
Aut(I”) are such that f|y. = g|u. then f|x = g|x and so f = ¢ and ¢ is
injective. On a similar note, ¢ is surjective since if h € Aut(I") then we can
easily extend h to an automorphism h of T" as follows. For z € X , we let
xh =y, where y is the unique vertex in X such that (uf,y), (y,vf) € Ep for
some u,v € Vp. Then he = h and ¢ is a surjection. As a result we can finish
by concluding that ¢ is then a group isomorphism. O]

We now have the following theorem.

Theorem 7.25. Let I' be a countable graph. Then there exists a countable
bipartite graph A such that Aut(A) = Aut(I") and such that every automor-
phism of A is part fixing.

Proof. Let ¥ C N\ {0,1}. Recall that the infinite graph Ly, constructed
in Definition 3.18, is a countably infinite, locally finite graph. Let Ag =
(T U Ly)T, the complement of the disjoint union of the graph I' and the
graph Ly. Now let v € Vipyp,y = VU Vg, If v € Vp, then since v
is adjacent to no vertex of V7, in T'U Ly it follows that v is adjacent to
every vertex of Vg, in (U Ly)!. Hence since Vi, is infinite, v has infinite
degree. If on the other hand v € Vj, then since Ly is locally finite, v is
not adjacent to infinitely many vertices of V7, in I'U Ly. Thus v is adjacent
to infinitely many vertices of Vz,, in (I'U Lg)" and hence has infinite degree.
Thus every vertex in Ay = (I'U Ly)' has infinite degree. By Lemma 3.24,
there exists ¥ C N\ {0, 1} such that Aut(Ay) = Aut(I'). Now let Aj be
the bipartite graph constructed from Ay as in Definition 7.20. By Lemma
7.24, Aut(Ay) = Aut(Ay) = Aut(I') and every automorphism of Ay, is part
fixing. Taking A = A}, completes the proof. ]

We have thus shown that for any countable graph I', there exists a count-
able bipartite graph with the same automorphism group. We will now show
that if A is a countable bipartite graph such that all automorphisms of A
are part fixing, then we can construct an algebraically closed bipartite graph
with automorphism group isomorphic to Aut(A). The main theorem of this
chapter, Theorem 7.38, then follows by an application of Theorems 7.19 and
7.25.

First we will define the complement in the setting of bipartite graphs. Let
[' = (Vr, Er, Pr) be a countable bipartite graph with bipartition Vf = VoUV;.
The bipartite complement of I' will be defined to be the relational structure
Fi = (Vr;t, El“i, Pl"i), where Vri = Vr‘, Pl"i = Pp and

Eps = (Ve x Vo) \ {Er U (Vo x Vo) U (Vi x Vi)}.
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It should be easy to see that I'* defines a bipartite graph with bipartition
Vi+ = Vo U V4. The bipartite graph I'* contains edges between vertices of V;
and V if and only if there are no such edges in I'. Hence (I'*)* = I" and so
in this sense, I'* is the bipartite graph complement to I'.

Example 7.26. [Construction of I'* given I'.]

.w. . ././‘.

Lemma 7.27. Let " and A be bipartite graphs and suppose that f : T' — A 1is
an embedding of T into A. Then f also defines an embedding of the bipartite
complement T* into A

Proof. Let T' = (Uy U Uy, Er, Pr) and let A = (Vo U Vi, Ey, Py). If f is an
embedding, then it is an injective function Vpr — Vj and by Lemma 7.3,
either Upf C Vo and Uy f C Vi or Upf C Vi and Uy f C V. Thus f defines
an injective function Vi — V) with the same properties. Now suppose that
(u,v) € Er:. Then w and v lie in distinct parts of I" and u # v. Thus
(u,v) & Er and since f is an embedding it follows that (uf,vf) & Es. Since
u and v were from distinct parts, uf and vf also lie in distinct parts and
hence (uf,vf) € Ey:. On the other hand if (u,v) &€ Ers, then either v and
v lie in the same part of I" or (u,v) € Ep. In the former case it follows that
uf and vf lie in the same part of A and hence (uf,vf) € E,:. In the latter,
f being an embedding allows us to deduce that (uf,vf) € E, and hence
(uf,vf) € Ep:. In either case we have shown that f defines an embedding
of I't into A} O

Corollary 7.28. Let T' be a countable bipartite graph. Then Aut(I') =
Aut(TH).

Proof. Let f € Aut(I"). Then f is a bijective function Vi — Vi which defines
an embedding of I' into I'. Hence by Lemma 7.27, f also defines a bijective
embedding of T'* into I'*. Thus it follows that f € Aut(I'"). On the other
hand suppose that g € Aut(I'*). Then g is a bijective function Vi — Vi
which defines an embedding of I'* into I'¥. A second application of Lemma,
7.27 tells us that f also defines a bijective embedding of (I'*)* = T" into itself.
Hence g € Aut(I') and the result is complete. O
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Figure 7.3: The bipartite graph As.

R R

Recall from Chapter 3 that, for ¥ C N\ {0,1}, Ly = (Vi., EL.) is the
graph with,
Vie ={l,:neN}U{v,:0€X}

and
Er. ={(li,lit1), (liy1, ) 11 € N} U{(ly,v5), (g, l5) 1 0 € X}
We can show that Ly satisfies the bipartite condition as follows. Define,
Vo=A{l:ieN,iiseven} U{v, :0 € X, 0 is odd},

and
Vi={l;:ieN iisodd}U{v, :0 € X, o is even}.

Then it should be clear by inspection that (u,v) € Ep. if and only if u € V}
and v € V) or vice versa. Consequently, Py, = (Vo x Vo) U (V4 x V1) is a
bipartition for Ly and so Ay = (Vi, FL, Pay,) is a bipartite graph. See
Figure 7.3 for a pictorial representation of Ay. Since Ly is a connected
graph, the bipartition of Ly is unique and so Ay is the unique bipartite
graph constructed from Ly.

Lemma 7.29. Let ¥ C N\ {0,1} and let Ay = (Vi., ELy, Pr) be the
bipartite graph defined above. Then Aut(Ag) = 1.

Proof. Recall that in Lemma 7.3 we proved that if f is an automorphism
of Ay, then f must also define a graph automorphism on Ly = (Vi, EL,.).
In Lemma 3.19 we showed that the only automorphism of the graph L =
(Viy, EL,) was the trivial automorphism, 1 : Vi, — Vi,. Thus, we can
immediately conclude that Aut(Ay) = 1. O
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Lemma 7.30. Let ¥, W C N\ {0,1}. Then there exists a bipartite graph
embedding [ : Ay — Ay if and only if X+ k C W for some k € N,

Proof. A consequence of Lemma 7.3 was that if f is an embedding Ay, — Ay,
then f also defined an embedding of Ly, into Ly. But we know from Lemma
3.20, that f defines an embedding of Ly, into Ly if and only if ¥ + k C ¥
for some k£ € N. On the other hand, if there does exist k € N such that
¥ 4+ k C ¥ then it can be shown that the embedding ¢ : Vi, — Vi, of
Ly, into Ly defined in Lemma 3.20 defines a bipartite graph embedding of
Ay, — Ay. Thus we deduce that f : Ay, — Ay is a bipartite graph embedding
if and only if X 4+ k£ C ¥ for some k£ € N. ]

Corollary 7.31. Let ¥, ¥ C N\{0,1}. Then Ay, = Ay if and only if ¥ = V.

Proof. We will again use the fact that by Lemma 7.3, if f is an isomorphism
As — Ay, then f also defined an isomorphism of Ly into Ly. But by
Corollary 3.21, f defines an isomorphism of Ly, into Ly if and only if ¥ = .
Hence the result follows immediately. O]

Lemma 7.32. Let ¥ C N\ {0,1}. Then the bipartite complement AL of As
s a countable algebraically closed bipartite graph.

Proof. Since Ay is a bipartite graph by definition, AIZ is a bipartite graph.
Recall that Ay, = (Vo U Vi, Er., P) where

Vo={li:ieN,iiseven} U{v, : 0 € ¥, ¢ is odd}, and
Vi={l:ieN,iisodd} U{v,:0 € X, oiseven}.

Now let Uy be a finite subset of vertices from V. Let m = max{n € N :
l, or v, € Up}. Then l,,13 € Vi and l,,13 is adjacent to no vertices from
Uy in Ay. Hence l,,,3 is adjacent to every vertex from Uy in Aiz. A similar
argument for any finite subset of vertices U; of Vi completes the result. [

The final construction required for our repertoire is the following. Let
I' = (Vp, Er, Pr) and A = (Vi, Ej, Py) be countable bipartite graphs with
bipartitions Vi = Vo U V; and Vi = Wy U W respectively. From I and A, we
can produce a new bipartite graph in the following way. We let I' LU A be the
bipartite graph with vertex set Vry = Vi U V), edge partition relation,

Prua = (Vo UWp) x (VoUWo)) U (Vi UWY) x (Vi UWY)).

When the vertex sets are disjoint, I' L A will be called a bipartite disjoint
union of I and A and this will be denoted by I" LI A. It is worth noting that,

(Veoa, Eroa) = (Ve UV, Er U Ey) = (Vi, Er) U(Va, En).
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In other words, I'LJ A is the bipartite graph formed from the disjoint graph
union (Vr, Er) U (Vy, Ey) with partition (Vo U Wy) U (V43 U Wh).

There is some ambiguity in this definition since we could interchange
the labels on the partition sets W, and W to potentially create a different
bipartite graph (with non-isomorphic automorphism group). However, this
will not cause any problems for us.

Example 7.33. [One possible construction of I'JA given T and A.]

A

SN

Lemma 7.34. Let I' = (Vp, Er, Pr) and A = (Vy, Ex, Py) be countable bi-
partite graphs such that the graphs (Vr, Er) and (Vi, Ey) have no isomorphic

components. Suppose that all elements of Aut(I') and Aut(A) are part fizing.
Then, Aut(T'UA) = Aut(T) x Aut(A).

Proof. Let Vi = Vo UV and let Vi = Wy U W, be the partitions of I' and
A respectively. Recall that Vppa = VrUVy and Erpp, = Er U Ey. If
f € Aut(T'UA), then f defines an automorphism of the graph,

(Vroa, Eron) = (Vio, Er) U (Vi, En).

Since the graphs (Vr, Er) and (Vy, Ey) have no isomorphic components it
must be the case that Vi f = Vp and V f = V,, for all f € Aut(I'UA). Hence
we can deduce that f|y;. defines an automorphism of the graph (Vr, Er) and
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similarly that fl|y, defines an automorphism of the graph (Vi, E). Further-
more since f is an automorphism we know from Lemma 7.3 that either,

(VE)UW())f:%UWO or (%UWo)f:‘/iuwl.

Suppose the latter holds true. Then our previous observation implies that
Vof = V4 and Wy f = W, — a contradiction. Hence it must be the case that
(Vo U W) f = VoUW, and we can deduce that Vof = Vp and Vif = Vi, A
similar argument shows that Wy f = Wy and Wi f = W;. As a consequence,
we can conclude that f|y. € Aut(T") and f|y, € Aut(T'). Thus, if we define
amap ¢ on Aut(TUA) by fé = (flw, flv,), for all f € Aut(TUA). Then ¢
defines a map Aut(I'UA) — Aut(T') x Aut(A). The map ¢ defines a group
homomorphism since for any pair f, g € Aut(T'UA),

(f9)b = (Fglves F9lva) = (Flves fli) - (9lves glva) = Fé - 9.

The map ¢ is clearly injective since if f and g are two automorphisms of I LJ A
such that f¢ = g¢, then fi. = glw. and flv, = glv,. Since Vppa = Ve U Vi
we can immediately conclude that f = g¢g. It remains to check that ¢ is
surjective. So, suppose that (f,g) € Aut(I') x Aut(A). Let h be the map
defined by:

vf ifueVp,
vh = )
vg if u € V.

Then h defines a map Vpp — Vppa. By assumption f € Aut(I') is such
that Vo f = Vy and hence Vi f = Vj. Similarly we assumed that Wyg = W)
and hence Wig = Wi. Thus (Vo U Wy)h = Vo U Wy and (V3 U Wy)h =
Vi UW;. Now, f and g are bipartite graph isomorphisms and so they define
an automorphism on the graphs (Vr, Er) and (Vi, Ej) respectively. Since
there exist no edges between Vr and Vj in the graph (Vr, Er)U(Vy, Ey)
it follows that h defines a bipartite graph isomorphism on (Vpyya, Erpia)-
Now, an application of Lemma 7.3 allows the conclusion that h is a bipartite
graph isomorphism I'lJA — I'UA. Furthermore h¢ = (f, g) and thus ¢ is a
surjective group homomorphism. All together we have shown that ¢ defines
a bijective group homomorphism and the result is complete. O

The next lemma exhibits the connection between bipartite complement,
bipartite disjoint union and algebraic closure.

Lemma 7.35. Let I be a countable bipartite graph and let A be a countable
locally finite bipartite graph such that both partition sets are infinite. Then
(U A)*, the bipartite complement of a bipartite disjoint union of T' and A,
15 a countable strongly algebraically closed bipartite graph.
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Proof. Let Vi = Vo U Vi and V) = Wy U W, be the partitions of I' and
A respectively. Then W, and W; are countably infinite sets. Recall that
Viroiayr = VUV, and that the partition of (I L1 A)* is then given by Viroay: =
(VoUWs)U (V1 UWY). Since Vi and Vj are countable, so is Vi) and hence
(U A)* is a countable graph.

Now, let U be a finite subset of V5 U W,. Then U N W} is finite. Since A

is locally finite and since W is infinite there exist infinitely many vertices,

re W\ U A(u).

ueUNWy

Since there does not exist an edge between x and any member of U U W} in
A (and hence in T'LJ A), there must be an edge between x and every member
of UU Wy in (I'UA)*. Similarly since by construction there exists no edge
between z and any vertex in UUV, in ' J A, there must exist an edge between
 and every member of UUV} in (T'UA)!. In other words, (z,u) € Epy ) for
all w € U. A similar argument shows that for any finite subset 7' C V; U W7,
there exist infinitely many vertices y € W such that (y,t) € Ea): for all
teT. O

Corollary 7.36. Let " be any countable bipartite graph and let ¥ C N\{0,1}.
Then (T U Ax)}, the bipartite complement of a bipartite disjoint union of T
and Ay, is a countable strongly algebraically closed bipartite graph.

Proof. Recall that Ay is locally finite and that the partition of Ay is given
by Ay, = Vo U V] where,

Vo={li:ieN,iiseven} U{v, : 0 € X, 0 is odd},

Vi={li:ieN iisodd} U{v, :0 € X, o is even}.
Thus, both V; and V; are infinite sets. Now by Lemma 7.35, (I' U Ay)* is a
countable strongly algebraically closed bipartite graph. O

The next lemma now shows that for any countable bipartite graph which
has only part fixing automorphisms, there exist 2% algebraically closed bi-
partite graphs with the same automorphism group.

Lemma 7.37. Let I' be a countable bipartite graph such that all automor-
phisms of T are part fizing. Then there exist 2% subsets ¥ C N\ {0,1} such
that Aut((T'UAx)}) =2 Aut(T).
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Proof. Let I' = (Vr, Ep, Pr). Since T' is a countable bipartite graph, the
graph (Vp, Er) is countable and thus has only countably many connected
components. Thus, at most countably many choices for ¥ C N\ {0, 1} would
create a Ay, with (Vj, Ea.) isomorphic to a component in (Vr, Er). Since
the set of all subsets of the natural numbers is uncountable, this leaves 2%
choices of the subset ¥ C N\ {0,1} which ensure that Ay is isomorphic to
no components in I'.

For each of these distinct choices we can deduce from Corollary 7.28
that Aut((I'UAx)*) = Aut(TUAyx). Now, by Lemma 7.29, Aut(Ay) = 1,
thus the sole automorphism of Ay fixes its bipartition. Furthermore, by
assumption, any automorphism of I' fixes its bipartition. Thus since I'" and
Ay, have no isomorphic components, Lemma 7.34 allows the conclusion that
Aut(TUAr) = Aut(T') x Aut(Ag). Hence,

Aut(TUAr) = Aut(T") x 1 = Aut(D).
Putting this all together gives the required result. O
We can now state and prove the main theorem for this chapter.

Theorem 7.38. Let I' be a countable graph. Then there exist 280 group
H-classes H of End(B) such that H = Aut(I").

Proof. First, by Theorem 7.25, there exists a bipartite graph Ar such that
Aut(Ar) = Aut(I') and such that all automorphisms of Ar are part fixing.
Now, by Lemma 7.37 there exist 2% sets ¥ C N\{0, 1} such that Ay is isomor-
phic to no component of Ar and such that Aut((Ar U Ax)) = Aut(I") Fur-
thermore, for each such choice of 3, Corollary 7.36 ensures that (Ar U Ay)*
is algebraically closed and so by Theorem 7.19, there exists an idempotent
fs € End(B) such that im fg = (ArUAs)*. Now Theorem 2.7 allows the
conclusion that,
Hfz = Aut((Ap |_| Ag>i) = Aut(F)

By Corollary 7.31, Ay is not isomorphic to Ay for 3 # ¥ and since both are
isomorphic to no component of Ap. Hence we can deduce that Ar LAy, and
Ar Ay are not isomorphic for ¥ # W. In other words im f5 # im fy for
[' # ¥ and the idempotents are all distinct. Since no #-class can contain
more than one idempotent, the result now follows. O

Corollary 7.39. Let G be a countable group. Then there exist 280 group
H-classes H of End(B) such that H = G.
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Proof. If G is a countable group then, by the extension of Frucht’s Theorem
(Theorem 3.12), there exists a countable graph I' such that Aut(I') = G. An
application of Theorem 7.38 now gives the required result. O

Corollary 7.40. Let I be a countable algebraically closed bipartite graph.
Then there exist 2% group s -classes H of End(B) such that H = Aut(T).

Proof. Let I' = (Vr, Er, Pr). Since I' is algebraically closed, it is both con-
nected and Aut((Vr, Er)) = Aut(I') by Lemma 7.15. Thus by applying
Theorem 7.38 to the graph (Vr, Er) the result follows. ]

Theorem 7.38 tells us that every group which arises as a group #-class
of End(R) appears as a group .#-class of End(B) and we can now state and
prove the following additional theorem.

Theorem 7.41. The groups arising as group € -classes of End(B) are the
same (up to isomorphism) as those of End(R) and thus End(D).

Proof. Let H be a group #-class of End(R) and so let f € F(End(R)) be
the idempotent identity of H. Then im f is an (algebraically closed) graph.
Now by Theorem 7.38 there exists an idempotent g € End(B) such that
H, = Aut(im f) = 5 = H.

Now suppose instead that K is a group #-class of End(B). Let g €
E(End(B)) be the idempotent identity of K. Then by Theorem 7.19, im g
is a countable algebraically closed bipartite graph. Let im g = (V,, (E,, P,))
where, of course, V, C Vi, E;, C Ep and P, = Pg N (V, x V). By Lemma
7.15, im g is connected and so by Lemma 7.4 the countable graph (V;, E,)
is such that Aut(V,, E,;) = Aut(im g). Now by Theorem 3.25 there exists an
idempotent f € End(R) such that Hy = Aut(V, E,) = Aut(img) = H,,.

Thus we have shown that the groups arising as group .#-classes of End(B)
are the same (up to isomorphism) as those of End(R). By combining this
with Theorem 4.19, the result is complete. O

7.4 Regular Z-classes and 7 -classes of End(B)

The results obtained so far in this section also allows us the liberty of gaining
some information about the regular Z-classes and number of _#-classes of

End(B).

Lemma 7.42. There exist 2% non-isomorphic group #-classes of End(B)
and hence 2% distinct reqular P-classes where the group J€-classes in dif-
ferent P-classes are non-isomorphic.
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Proof. In the proof of Corollary 3.27 we saw that there exist 2% non-isomorphic
countable groups. Corollary 7.39 tells us that End(B) has a group #-class
isomorphic to each of these and hence there exist 2% non-isomorphic group
A -classes of End(B). However, we also know that if two group -classes
are contained in the same Z-class, then they must be isomorphic. Hence
these 2% non-isomorphic maximal group .##-classes must be contained in
2% distinct regular P-classes of End(B) and the result follows. O

Theorem 7.43. There exist 2% distinct reqular P-classes of End(B) for
which any two group F€-classes are isomorphic.

Proof. In Theorem 2.10 we saw that if f and g are two elements of F(End(B))
then f%g if and only if the induced bipartite graphs (im f) and (im g) are
isomorphic. By the details of Theorem 7.38, if I' is a countable graph, then
there exist 2% sets ¥ C N\ {0,1} such that H;, = Aut(I') and such that
(im fy) 2 (im fy) for any v € N\ {0,1} with ¥ # W. Therefore these
idempotents are contained in 2% distinct regular ZP-classes of End(B) but
the group J7-classes Hy, are all isomorphic. Since any other group .7’-class
contained in one of these Z-classes must then also be isomorphic to Aut(I")
the result follows. O

So far all of the results obtained have been analogous to a result proved
for the random graph, R. The next example illustrates that End(B) has
P-classes which are ‘smaller’ than any of those of End(R), thus exhibiting a
difference in the semigroup theoretic structure of these two semigroups.

Example 7.44. Let f € F(End(B)) and suppose that im f is isomorphic to
A= ({u> U}7 ({(u’ U)? (Ua u)}’ {<u7 u)’ (U’ U)}>>

Then Dj contains exactly countably many group 7-classes.

Proof. First we note that since A is algebraically closed an application of
Theorem 7.19 guarantees the existence of an idempotent f € End(B) with
imf = A. By Theorem 2.10, we know that an idempotent g € End(B)
lies in Dy if and only if img = A. Since Vj is countable and since B is
existentially closed, the number of finite subsets U C Vi such that (U) = A
is Ng. Furthermore, we can show that there exists exactly one idempotent g
such that img = (U) for each fixed U = {z,y} as follows. First note that
we can assume without loss of generality that x € Vj and y € Vi, where
Ve = Vo U V; is the bipartition of B. Thus if such an idempotent g existed
then g|y = 1y and so by Lemma 7.2 we can conclude that Vpg = z and
Vig = y. Clearly, this lone map is an idempotent homomorphism of B and
is then the unique map such that img = (U). Thus there exists exactly N,
idempotents g € D; and hence exactly Ry group #-classes in Djy. O]
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Theorem 7.45. Let g € E(End(B)) and suppose that im g is strongly alge-
braically closed. Then D, contains 2%° group J-classes.

Proof. Since im g is algebraically closed we can apply Lemma 7.19 to show
that there are 2% distinct idempotents with image isomorphic to im ¢g. By
Theorem 2.10 these idempotents are all Z-related and therefore lie in D,.
However since no group #-class can contain more than one idempotent they
lie in distinct #-classes and the result follows. [

Theorem 7.46. There exist 2% distinct 7 -classes of End(B).

Proof. By Lemma 2.11, we know that two maps g,h € E(End(B)) are #-
related, if and only if (im h) can be embedded in to (im g) and vice versa. By
Lemma 3.31, there exists a set P of 2% subsets of N\ {0, 1} such that if 3,
Ve Pthen X4+ kZ Vand V+ k¢ X for all £ € N. Hence by Lemma 7.30
Ay, cannot be embedded into Ay for any ¥, ¥ € P. Furthermore by Lemma
7.27 it follows that Aj;Z cannot be embedded into Afl, for any X, ¥ € P.
Now by Lemma 7.32, ATZ is an algebraically closed bipartite graph for all
Y € P. Thus for all ¥ € P there exists an idempotent fy, € End(B) such
that im fy = Aiz. By our previous observations, fy, and fy cannot be -
related for sets ¥ # W in P. Since P had size 2% it now follows that these
idempotents must be contained in 2% distinct ¢ -classes of End(B). O
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Chapter 8
The Total Order QQ

In this chapter we consider the well known total order Q. We will find that
it is a great deal more complicated to determine the maximal subgroups
of End(Q). We will first show that we can characterise the exact subsets
of @ which are the image of some idempotent from F(End(Q)). We call
these subsets retracts of Q. We will then show that if {2 is a total order
and there exists an embedding f : 2 — Q such that im f is a retract of
Q, then there exist 2% maximal subgroups of End(Q) which are isomorphic
to Aut(©2). We will also show that there exist regular Z-classes of End(Q)
which contain countably many group 77’-classes as well as regular Z-classes
which contain 2% group J#-classes.

8.1 Defining Properties

It is well known that the class of all finite linear orders has the hereditary,
joint embedding and amalgamation properties and thus that this class has a
unique Fraissé limit. We will first show that this Fraissé limit has particular
properties.

Recall that a total order Q = (Vo, <q) is called dense if for all u,v € Vy
with u <q v there exists z € V such that u <q x <q v. Additionally, € is
said to be without endpoints if for all u € V, there exists y, z € Vg such that
Y <gu<qZz.

Notice that if Q = (Vi, <q) is a dense total order, then for any u,v € Vq
with u <q v there must exist infinitely many elements x such that u <q = <q
v. Similarly if the total order €2 is without endpoints, then there must exist
infinitely many elements y and infinitely many elements z such that y <q u

93



and v <q z. Clearly, total orders which are dense or without endpoints must
then be infinite. Furthermore, the following theorem is well known.

Theorem 8.1. Let Q = (Vg, <) be a countable dense total order without
endpoints. Then every countable total order can be embedded into ).

Proof. First, let Vo = {q; : j € N}. Now let A = (Vj, <)) be any countable
total order. Enumerate the elements in Vi as {v; : i € N}, replacing the
natural numbers by a finite set when necessary. Now inductively define a
sequence of functions as follows. Let fy : {vg} — Vi be defined by vg fo = qo-
Then clearly fy is an embedding of (vg) into 2. Now suppose that for n € N
we have defined f, : {vo,...,v,} — © which is an embedding of (v, ..., v,)
into ). Let

N_={v; 1 v; <p Vpq1, 0 <@ < n},
and let

Ny =A{v; 101 <pa v, 0 <0 <n}.

Suppose that N_, N, # (). Then since Q2 is dense there exists ¢; € Vi such
that (N_)f, < ¢; < (N4)fn. On the other hand if N_ =0 or Ny = (), then
since  is without endpoints there exists ¢; € Vi, such that ¢; < (N1)f, or
(N_)fn < g; respectively. In any case define f, 11 : {vo,...,vnt1} = Q by,

f wfn fk=0,....n
Vg fni1 =
Find q; ifk=n+1.

Then clearly f,.; is an injective map since by assumption f,, was and since

q; # vifn for k= 0,...,n. Furthermore, v,41 <j vy for some £ = 0,...,n
it and only if ¢; = vp41 o1 < Uk frs1 and similarly vy <p v,4q if and only if
U fot1 < Ung1for1 = ¢j. Thus f,41 is an embedding of (vo, ..., v,41) into €.
Now let
f=U#
neN

Then as the union of embeddings f, such that f,.; is an extension of f, for
all n € N, f is an embedding of A into (2. ]

By Theorem 8.1, the age of any countable dense total order without
endpoints is exactly the class of all finite total orders. It thus follows that
any countable total order which is dense and without endpoints is isomorphic
to the unique homogeneous Fraissé limit of the class of finite total orders.
Of course (Q, <), the set of rational numbers with the natural ordering, is
a countable total order which is both dense and without endpoints. Thus
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(Q, <) is the Fraissé limit of the class of finite total orders. For convenience,
we will often abuse notation in this chapter and write Q to mean (Q, <).

As usual (Q, <) can be thought of as a substructure of the relational
structure (R U {—o00, 00}, <), the set of affinely extended real numbers with
the natural ordering. This allows for the definition of an interval in Q with
real or infinite endpoints as follows. For p, ¢ € RU{—00, 00} define the closed
interval in Q with closed endpoints p < g by

p,ql ={reQ:p<z<q}

The open interval in Q with open endpoints p and ¢ will be defined by

(p,q) ={reQ:p<z<q}

We similarly define the right closed interval in Q with left open endpoint p
and right closed endpoint ¢ by

(p,q)={zeQ:p<r<q}

and the left closed interval in Q with left closed endpoint p and right open
endpoint g by,
p.q) ={r€Q:p<a<qg}

Note that if p € (R\ Q) U {—oo} then the intervals in Q given by (p,q)
and [p,q) are equal as are the intervals [p,¢] and (p,q|. Similarly if ¢ €
(R\ Q) U{oo} then (p,q) = (p,q] and [p,q] = [p, q). Also worth mentioning
is that if p € RU {—o00, 00}, then (p,p] = [p,p) = (p,p) = 0. Furthermore if
p € Q then [p,p] = p and if p € Q then [p, p] = 0.

The term non-closed interval will be used to mean an interval which
cannot be written in the form [p, q] where p,q € RU {—o00,00}. Thus the
empty set is not a non-closed interval since [p,p] = ) for all p € R\ Q. As
we will see in the next subsection, non-closed intervals play a key part in the
structure of the images of idempotents from End(Q).

8.2 Retracts of End(Q)

By Theorem 2.7, the group ##-class of an idempotent f € End(Q) is isomor-
phic to the automorphism group of the total order induced by the image of
f. With the definitions from Section 9.1, we can prove the following theorem
on subsets of Q which are the image of an idempotent from End(Q).
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Theorem 8.2. Let X C Q. Then there exists f € E(End(Q)) such that
im f = X if and only if X = Q or X = Q\ S where S = J,; T; satisfies the

following properties.
(i) For each i€ I, T; is a non-closed interval in Q.
(i) Fori#j, T;NT; =0.
(iii) If T; <Tj then there exists x € X such that T; < x < Tj.

Furthermore, if one or more T; is an open interval with rational endpoints,
then there exists 2% such idempotents f such that im f = X.

To prove Theorem 8.2 we must first make a series of definitions and
accompanying lemmas. For the following, fix f € F(End(Q)).

Definition 8.3. For x € Q define

zf ' ={qeQ:qf =x}.

If z € im f then by definition zf~! = (). On the other hand if z € im f then,
since f is idempotent, 2f = x and so x € xf~!. Now let

J={xcimf af ' #{x}}.
Note that if J = (), then clearly f = 1p and im f = Q.

For each z € J we will define non-closed intervals U, and L, such that
Ug, Ly CQ\im f. From the set {U,, L, : * € J} we will construct the set S
for the proof of the only if statement in Theorem 8.2.

In the next lemma we will require the concept of the infimum (or great-
est lower bound) and supremum (or least upper bound) of a subset of real
numbers. Recall that if R C R, then the infimum of R, denoted inf(R), is
an element x € R such that x < R and such that if there exists y € R with
r <y < R, then x = y. If no such element = exists then we define inf(R) to
be —oo. Dually, the supremum of R, denoted sup(R), is an element =’ € R
such that R < 2/ and such that if there exists 3/ € R with R < ¢/ < 2/, then
2’ =y'. If no such element 2’ exists then we define sup(R) to be oco.

Lemma 8.4. Let J={x € imf :xf ' # {z}} and let z € Q. Forxz € J
define I, = inf(zf~') and u, = sup(xf~') so that I, < x < u,. Then the
following statements hold.

(i) Ifl, < z <z, then zf = x.
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(i) If z <, then zf <l,.
(i) If xr <z < uy,, then zf = x.
(iv) If uy < z, then u, < zf.

Proof. Suppose that [, < z < z. Then z is not a lower bound for z f~! and so
there exists y € xf~! such that [, <y < z. Thus since f is a homomorphism,
yf < zf <xf. In other words z < zf < x and hence it follows that zf =«
and statement (i) holds. Now suppose instead that z < [,,. Then since [, < x
and f is a homomorphism, we deduce that zf < zf. If [, < zf, it follows
that [, < zf < af = z. Thus by case (i), 2f? = zf = v and so z € zf L.
But this contradicts the assumption that I, is a lower bound for  f~!. Thus
zf <, and statement (ii) holds.

Statements (iii) and (iv) are proved in a dual manner as follows. Suppose
that v < 2z < u,. Then z is not an upper bound for #f~! and so there
exists y € xf~! such that z < y < w,. Thus since f is a homomorphism,
xf < zf <wyf. In other words z < zf < x and hence it follows that zf =«
and statement (iii) holds. Now suppose instead that u, < z. Then since
x < uy, and f is a homomorphism, we deduce that xf < zf. If 2f < u,, then
it follows that © = of < 2f < u,. Thus by case (iii), 2f*> = zf = x and so
z € xf~!. But this contradicts the assumption that u, is an upper bound
for zf~1. Thus u, < zf and statement (iv) holds. O

Definition 8.5. For = € J we define

m, =max{q € im f : ¢ < x},
n, =min{q € im f : x < ¢},

whenever the maximum or minimum exist.

Lemma 8.6. Let J = {z € imf : zf ' # {z}}. Forxz € J let l, =
inf(zf~1). If I, € im f then one of the following three cases hold.

(a) m,; = max{q € im f : ¢ < x} exists and m, <.
(b) l, = —oc.

(c) There exists a sequence {q;}ien in Q such that ¢; < l,, ¢; € im f and
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Proof. 1f [, = —o0, there is nothing to do. So suppose that [, # —oo and
let p € Q such that p < [,. By Lemma 8.4, pf <[, and since [, &€ im f it
follows that pf < l,. Let qo = pf. If my, = max{q € im f : ¢ < z} exists
then clearly g9 < m, < [, and again there is nothing to do. So suppose
that m, does not exist. We show that there exists ¢ € im f such that
l. — (I —q0)/2 < q1 <l as follows. Seeking a contradiction, suppose that
there exists no ¢ € im f such that I, — (I, —qo)/2 < q¢ < l,,. Let r € Q be such
that I, — (I, — qo0)/2 < r < l,. By Lemma 8.4, rf <, and since [, & im f it
follows that rf < [,. Furthermore, since there exists no ¢ € im f such that
l. — (I, —q0)/2 < q < 1, it follows that rf < I, — (. — qo)/2. But since m,
does not exist, there exists s € im f such that rf < s < [, — (I, — q0)/2.
Thus we have s < r but rf < s = sf, a contradiction. Hence there must
exist ¢; € im f such that I, — (I, — q0)/2 < 1 < [, as claimed. By repeating
this argument we can produce a monotonic increasing sequence {g; }ien in Q
such ¢; € im f for all i« € N and such that
l, — M < g < L.
21

Moreover, for any a € R such that a < [,, there exists NV € N such that a <
lo — (I — qo)/2N. Thus a < q, <, for all n > N and so lim; o0 ¢; = l,. O

Lemma 8.7. Let J = {x € im [ : of ' # {z}}. Forz € J let u, =
sup(zf~1). If u, € im f then one of the following three cases hold.

(') n, =min{q € im f : © < q} ezists and u, < ng.
(') u, = oo.

(') There exists a sequence {p;}ien in Q such that u, < p;, p; € im f and
The proof of Lemma 8.7 is dual to that of Lemma 8.6 and is therefore

omitted.

We will now make the definition of the interval L, for each z € J. The
definition of L, will be dependent on whether [, € im f or [, € im f and
therefore which case of Lemma 8.6 holds for .

Definition 8.8. Let J = {z € im f : 2! # {x}}, as defined in Definition
8.3. For x € J we define the interval L, as follows. If [, € im f then one of
cases (a), (b) or (¢) in Lemma 8.6 holds. In case:

(a) let L, be the interval in Q given by L, = (m,, x).
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(b) let L, be the interval in Q given by L, = (—o0, x).
(c) let L, be the interval in Q given by L, = [I,, x).

On the other hand, if [, € im f, then let L, be the interval in Q given by
L, = (I, x). It is not hard to see that if [, € im f, then [, = m, and so we
could have equally defined L, = (m,, z) in this case. Notice that L, = () if
and only if [, = x.

We dually make the definition of the interval U, for each x € J as follows.
The definition of U, will be dependent on wether u, € im f or u, ¢ im f and
therefore which case of Lemma 8.7 holds for x.

Definition 8.9. Let J = {z € im f : xf ' # {z}}, as defined in Definition
8.3. For z € J we define the interval U, as follows. If u, ¢ im f then one of
cases (a’), (b') or (¢') in Lemma 8.7 holds. In case:

(a') let U, be the interval in Q given by U, = (x, n,)
(b') let U, be the interval in Q given by U, = (z, 00).
(') let U, be the interval in Q given by U, = (x, u,].

If on the other hand w, € im f, then let U, be the interval in Q given by
U, = (x,u,). It is not hard to see that if u, € im f, then u, = n, and so we
could have equally defined U, = (x,n,) in this case. Notice that U, = 0 if
and only if u, = x.

It is worth observing that since x € J, at least one of L, and U, is non
empty. For suppose that L, = U, = (. Then, [, = 2 = u, and hence
xf~' = {x}. Since this contradicts the assumption that z € J we find that
at least one of L, and U, is non empty as required.

Lemma 8.10. Let J = {x € im f : xf ™' # {z}} and let x € J. Then L,
and U,, the intervals defined in Definitions 8.8 and 8.9, are either empty or
are non-closed intervals in Q which do not meet im f.

Proof. We first consider the interval L,. If L, = () then there is nothing to do.
So suppose that L, # () and hence that [, < z. If [, € im f then L, is of form
(a), (b) or (¢) from Definition 8.8. In case (a), L, is the interval in Q given by

» = (mg, x). It should be clear that in this case L, is a non-closed interval
since m,, x € Q. To see that L, does not meet im f notice that if there exists
y € im f such that y € L, then m, < y, contradicting the definition of m,.
In case (b), L, is the interval in Q given by L, = (—o0,z) = (I;,z) and in
case (c¢), L, is the interval in Q given by L, = [l;,z). In both cases L, is a
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non-closed interval since x € Q and since [, < z. Furthermore, by Lemma 8.4
any z € Q with [, < z <z issuch that zf = x. Sinceyf =y forally € im f,
it thus follows that in both cases L, is a non-closed interval which does not
meet im f. If on the other hand [, € im f, then L, is the interval in Q given
by L, = (I;,x). Notice that in this case I, = max{q € im f : ¢ < x} = my,
and so an identical argument to that of case (a) above allows us to deduce
that L, is a non-closed interval and does not meet im f. A dual argument
for the interval U, completes the proof. O

Lemma 8.11. Let J = {x € im f : xf~' # {x}}. Let x,y € J and suppose
that © < y. Then

L.nU,=L,NU,=L,NU,=L,NL,=U,NU, =10,
and either L,NU, =0 or L, = U,.

Proof. 1f, for example, U, = 0 then clearly L, NU, = U, NU, = L,NU, = 0.
So suppose Uy, Uy, Ly, L, # 0. By construction it is true that L, < x < U,
and L, <y < U, and so we can easily deduce that,

L.NnU,=L,NU,=L,NU, =0.

By Lemma 8.4, if z € Q is such that [, < z <y, then zf = y. Hence since
x <y and x € im f it must be the case that z < [, and if m, exists that
x < m,. Thus by construction, L, < x < L,. A similar argument shows
that U, <y < Uy, and hence it holds that L, "L, = U, N U, = .

It remains to consider the intersection U, N L,. Notice that if x <y then
L, is either of the form (m,,y) or of the form [l,,y) where [, ¢ im f and
where there exists a sequence {¢; }ien in Q such that ¢; < I, ¢; € im f and
lim; ;o ¢ = [,. Similarly U, will be of the form (z,n,) or the form (z,u,]
where u, ¢ im f and where there exists a sequence {p;}ien in Q such that
Uy < Pi, pi € im f and lim;_, p; = u,. We will check the intersection U, N L,
for each of these possibilities case by case.

So suppose that U, = (x,n,) and L, = [l,,y). In this case we know that
l, & im f and there exists a sequence {g; };en in Q such that ¢; <[, ¢; € im f
and lim; ., ¢; = [,. Suppose that [, < n,. Since lim;_,~ ¢; = [, there exists
J € N such that 2 < ¢; < [, < n,. But this contradicts the fact that
U, = (x,n;) does not meet im f by Lemma 8.10. Hence we conclude that in
this case n, <[, and thus L, N U, = (. If we suppose that U, = (x,u,] and
L, = (my,y) then u, ¢ im f and there instead exists a sequence {p; };en in
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@ such that u, < p;, p; € im f and lim; ., p; = u,. By a similar argument
to that above we can easily deduce that u, < m, and hence L, N U, = 0.

Now suppose instead that U, = (z,u,| and L, = [l,,y), then since [, ¢
im f the existence of the sequence {¢;};eny converging to [, ensures that we
can find an element ¢; € im f such that z < ¢; < [,. But by Lemma 8.10,
L, = [ly,y) does not meet im f. Thus u, < ¢; < l, and hence L, N U, = 0
as required. The last case is to suppose that U, = (z,n,) and L, = (my,y).
If n, = m, there is nothing to do. So suppose that m, < n,. Then by
definition of n, and m, it must be the case that < m, <n, <y. fz <m,
then there is a contradiction since n, was minimal. Similarly we obtain a
contradiction to m, being maximal if we supposed that n, < y. The only
remaining possibility is that = m, and y = n,. In this case L, = U,. [

Lemma 8.12. Let J = {x € im f : xf~' # {x}}. Let x,y € J and suppose
that x < y. Now let S,T € {L,,L,,U,,U,} be such that S < T. Then there
exists z € im f such that S < z < T.

Proof. By definition it is true that L, < v < U, and L, <y < U,. Thus
since z,y € im f it follows that if

(5,T) € {(La, Us), (La, Ly), (L, Uy), (Uz, Uy), (Ly, Uy) },

then the result holds. It remains to check that if S = U, and T' = L,, then
there exists z € im f such that S <z < T.

We will again use the observation that if x < y then L, is either of the
form (my,y) or [l,,y) and U, is either of the form (z,n,) or (z,u,]. We
will check these possibilities case by case. So suppose that U, = (z,n,) and
L, = [l,,y). By the proof of Lemma 8.11, it follows that n, < [,. Thus
U, < ny < L, and since n, € im f by definition, we are finished. If we
suppose that U, = (z,u,| and L, = (m,,y) then a similar argument shows
that U, < m, < L, and since m, € im f by definition the result holds.

If we suppose instead that U, = (z,u,] with L, = [l,, y) then by the proof
of Lemma 8.11 shows that there exists ¢ € im f such that v, < ¢ <[,. Hence
U, < q < L, as required. The last case is to suppose that U, = (x,n,) and
L, = (my,y). By the proof of Lemma 8.11, if n, # m, then U, = L,. Since
by assumption U, = S < T = L, it must be the case that n, = m,. But then
U, < ng < L, and since n, € im f by definition, the result is complete. [

We are now able to restate and prove Theorem 8.2.
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Theorem 8.2. Let X C Q. Then there exists f € E(End(Q)) such that
im f = X if and only if X = Q or X = Q\ S where S = J,; T; satisfies the

following properties.
(i) For each i € I, T; is a non-closed interval in Q.
(i) Fori#j, TiNT; = 0.
(iii) If T; < Tj then there exists x € X such that T; < x < Tj.

Furthermore, if one or more T; is an open interval with rational endpoints,
then there exists 2% such idempotents f such that im f = X.

Proof. Suppose first that f € F(End(Q). Let J = {x € im f: zf ' # {x}}
as defined in Definition 8.3. If J = () then f = 1gp and hence im f = Q.
Otherwise consider the non-empty set {L,,U, : = € J}, where L, and U,
are the intervals defined in Definitions 8.8 and 8.9. If z,y € J and = < y
then by Lemma 8.11 the list: L,, L,, U,, U, contains at most one repetition,
namely when U, = L,. Furthermore, since U, N U, = L, N L, = ( for
all z € J, 2z # x,y, we can deduce y is the only element of J for which
L, = U, Solet{T; : ¢ € I}, |I| < 2|J|, be an enumeration of the set
{Us, Ly : x € J} with the empty set discarded. Then by Lemma 8.10, each
T; is a non-closed interval in Q which does not meet im f. Furthermore, by
Lemma 8.11, T; N T; = () for i # j. We have also shown in Lemma 8.12 that
it T; < T}, then there exists x € im f such that 7; < x < Tj. Finally since T;
does not meet im f for each i € I, it holds that im f C Q' (Uiel TZ) . If there
exists y € Q\ (U,; T3) such that y ¢ im f then yf = z for some z € Q where
z #y. If y < z then by construction y € L, C |J,; T}, a contradiction. If
instead z < y then y € U, C |J,; T; which is another contradiction. Thus
Q\ (Uie; T7) € im f and we can deduce that im f = Q\ (U, T;) - Taking
S = U;e; Ti completes the proof of the only if statement.

For the converse it should be clear that if X = Q, then 1g is idempotent
and that im1g = X. Now suppose that X = Q \ S where S = J,.; T
satisfies properties (i), (ii) and (iii). Let ¢ € I. By assumption (i), 7; is a
non-closed interval in Q and so must have one of the following forms (since
otherwise T; can be written as [z, y] where z,y € RU {—o00,00}).

(a) [z,y) where z,y € Q.
(b) (z,y] where z,y € Q.

(¢) (z,y) where z € Q, y € (R\ Q) U{—o00,00}.
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(d) (z,y) where y € Q, z € (R\ Q) U {—00, 00}.

(e) (z,y) where z,y € Q.

For each i € N, we will define a function f; : T; — Q as follows. If
T; has form (a), (d) or (e), we define zf; = y for all z € T;. If instead T;
has form (b) or (c) then we let zf; = x for all z € T;. In any case it is
trivial to show that we have defined a homomorphism f; : T; — Q such that
|im f;| = 1. Furthermore, for any 7; of form (a), (d) or (e) it clearly holds
that 7; < {y} = im f; and that there exist no z € X such that T; < z < y.
Thus for any T} such that T; < T} it must follow that im f; = {y} < T}
since otherwise we contradict property (iii). In other words im f; ¢ 7} for
any j # i and im f; € Q\ S. Similarly for any 7; of form (b) or (¢) we can
show that im f; € Q\ S and hence we can conclude that im f; € Q\ S for all
1€ 1.

Now let f: Q — Q be defined by

qf:{qf q

q otherwise .

First we note that f is a well defined function since by property (ii),
T;NT; = for i # j. Additionally, by our previous observation im f; € Q\ S
and since Q \ S C im f it follows that im f = Q\ S.

To see that f is an endomorphism let z <y € Q If z,y € Q\ S then
clearly zf = # <y = yf. So suppose that z € S and y € Q\ S. Then by
definition x € T; for some i € I. Since T; is an interval and since y € Q\ .S we
can deduce that T; < y. If T; has form (b) or (c) then clearly f = = f; < T;
and hence zf < y = yf. If on the other hand 7; is of form (a), (d) or (e),
then T; < xf; = xf and by definition there exist no z € Q \ S such that
T, < z<uxf. Hence xf <y =yf. A dual argument shows that if y € S and
x € Q\ S then zf = 2 < yf. The last case to consider is the case where
x,y € S. If x;y € T, for some ¢ € I then xf = yf and we are done. So
suppose that x € T; and y € T} for some 7, j € I where of course it must be
the case that T; < Tj. If T; has form (b) or (c¢) and 7} has form (a), (d) or
(e) then by definition,

ef=xf;<T, <Ty<yfi=yf.

Similarly our previous observations allow us to deduce that if 7; and T; both
have form (a), (d) or (e), then

Ti<xfi=af <T;<yf;=yf,
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if they both have form (b) or (c), then

of =af, <T, <yfy=yf <T,.

and if 7; has form (a), (d) or (e) and T} has form (b) or (c¢) then

Ii<zf=xfi<yf;=yf <Tj.

In any case we have shown that z < y implies that xf < yf and hence
f € End(Q). Additionally since

f’imf = f‘Q\S = ]-imfa

we can conclude by Lemma 2.3 that f € F(End(Q)) is idempotent.

To finish we observe that if one of the 7} is of form (e), then there are
actually a large number of possible homomorphisms f; : T; — Q which could
have been chosen in the construction of f above. For if T; = (z,y), where
xz,y € Q, thenlet a € {r € R: x < r < y} and define a function g;, on T; by

{:c if z <a,
ZGia = .
y ifa<z.

It should be easy to see that g;, defines a homomorphism 7; — Q. Further-
more, if a,b € {r e R: x <r <y} and a # b, then we can show that g;, # gi
as follows. For suppose without loss of generality that a < b. Then for all
¢ € (x,y) such that a < ¢ < b, cg;u = y whereas cg; = x. Thus since there
exist 2% choices for the element a € {r € R : x < r < y}, there exist 20
choices for the map f; : T; — Q (namely gy, for all x < a < y). Consequently
there exist 2% distinct idempotents f as required. O

Theorem 8.2 exhibits a result that we are unable to achieve for the other
relational structures discussed in this thesis. It identifies exactly which sub-
sets of Q are the image of an idempotent from End(Q). In the setting of
graphs for example, we saw in Theorem 3.10 that the image of an idempotent
f € End(R) induces an algebraically closed graph. However, given a subset
U C Vg, such that (U) is algebraically closed, Theorem 3.25 only guarantees
the existence of an idempotent g € im f such that img = (U). With the
total order Q, Theorem 8.2 gives an explicit description of the subsets X of
Q for which there exists an idempotent A € End(Q) with imh = X.

Theorem 8.2 together with Theorem 2.7 tells us that the group 7-classes
of endomorphisms of End(Q) are exactly the automorphism groups of the
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induced total orders (Q \ S) of Q where either S = 0 or S = |J,; T; and
satisfies properties (i)-(iii) in Theorem 8.2. For convenience we will call Q
and the subsets Q \ S which have properties (i)-(iii) retracts of Q. That is,
a retract of QQ is a subset U C Q which is the image of an idempotent from

End(Q).

If ©2 is a countable total order then clearly, by Theorem 8.1, there exists
an embedding g : Q@ — Q. If im g is a retract it follows that Aut(Q2) = H;
for some idempotent f where im f = im g. Therefore if we could identify the
total orders which can be embedded into Q via an embedding ¢ such that
img is a retract, then we would be able to discover exactly which groups
appear as maximal subgroups of End(Q). Unfortunately, for the moment,
it is not clear exactly which total orders can be embedded into Q in this
manner. Of course, the automorphism group of any total order ) cannot be
non-trivial and finite. Since if f € Aut(Q2) and f # 1 then f has infinite
order. As a result, we can at least deduce that no finite group can be a
maximal subgroup of End(Q).

It should be observed that it can be possible to embed a total order (2
into Q wvia two embeddings f and g such that im f is a retract but such that
im g is not. For consider the following example.

Example 8.13. Consider the induced total orders
S = {((—o0,—2]U(-1,1) U[2,00)),
and
T = {(—00,0) U (1,00)),

of Q. Notice that both S and T' are dense and without endpoints so that
S = Q=T. Thus there exist embeddings f,¢g: Q — Q such that im f = .5
and img = T. Clearly im f = Q '\ ((—2, -1 U [1,2)) and therefore im f is
a retract of Q. However since img = Q \ [0, 1] it fails condition (i) and is
therefore not a retract of Q.

8.3 2% Total Orders with Trivial Automor-
phism Group

In this section we will exhibit 2% non-isomorphic total orders which have
trivial automorphism group. Furthermore we will show that each of these
total orders can be embedded into Q in such a way that their image under
the embedding is a retract of Q.
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Definition 8.14. Let X = (z, : n € N) be any enumeration of Q so that
Q = ({z, : n € N}, <). Furthermore let N = (N, <) be the natural numbers
with the natural total order inherited from (Q,<). For i € N, let B; =
{a0,a;1,...,a;} so that |B;| =i+ 1. Now let,

C:UBn

€N

and define the relational structure ¥y = (C,<x) where a;; <x ay if and
only if either z; < z; or t =k and j <.

Notice then that B; <x By if and only if z; < x; and B; = B, if and only
if « = k. Also, by construction, €y satisfies the following lemma.

Lemma 8.15. Let i,k € N and let a;j, aiy € C. Then there exist infinitely
many elements b € C' and infinitely many elements ¢ € C' such that b <x
a;j <x c. Furthermore, if x; < x), then there exist infinitely many elements
d € C such that a;; <x d <x ag. On the other hand if i =k and l = j + 1
then there exists no element d € C' such that a;; <x ¢ <x a.

Proof. Since Q is without endpoints, there exists a subset {i,, : m € N} C N,
such that z; , < z; for all m € N. Then by definition of <x, a;,,0 <x a;; for
all m € N. We can thus conclude that there exist infinitely many elements
b € C'such that b <x a;;. A similar argument shows that there exist infinitely
many elements ¢ € C' such a;; <x ¢. Now suppose that z; < z;. Then since
Q is dense, there exists a subset {k, : n € N} C N, such that x; < zy, <
for all n € N. Thus by definition of <x, it follows that a;; <x ax,0 <x aw
for all n € N. If on the other hand, i = k and [ = j + 1 then it should be
clear by construction of @x that there exists no element ¢ € C' such that
ai; <x € <x Qi(5+1)- ]

More importantly, we can show that € is a total order as follows.

Lemma 8.16. Let X be an enumeration of Q and let €x = (C, <x) be the
relational structure defined in Definition 8.14. Then €x is a total order.

Proof. Let X = (z,, : n € N). We must check that <x defines a reflexive,
antisymmetric and transitive binary relation on C' and that for all a;;, ay € C
at least one of a;; <x ay; or ay <x a;; holds.

It should be clear that <x is reflexive since ¢ = ¢, 7 < j and so a;; <x a;;.

Now suppose that a;; <x ay and ay <x a;;. Then since a;; <x ap we know
that either z; < x; or z = k and j < [. But since ay < a;; we also know
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Figure 8.1: Part of Q = ({z,, : n € N}, <) if 2y < 29 < 27 < 3.

that either xp, < x; or @ = k and [ < j. If x; < x; then it clearly cannot be
the case that x, < x;. Similarly if z;, < x; then it cannot be the case that
x; < xp. The remaining possibility is that i = k, j <l and [ < j. But since N
is a total order it follows that j = [ and hence a;; = a;. Thus antisymmetry
is satisfied.

To check transitivity we suppose that a;; <x ay and ay <x @pyn. Now
since a;; < ap we know that either z; < x; or 2 = k and j < [ and since
ar <x Qmn we know that either x, < x,, or kK = m and j < [. So suppose
that x; < xp and zp < x,,. Then by transitivity of Q, z; < x,, and hence
aij <x Qmy. If 7, <z and k = m then clearly z; < x,, and hence a;; <x
Q. Similarly if © = k, 7 < [ and z, < x,, then z; < x,, and once again
aij <x Qmp. Finally if i = k, 7 <[, k = m and | < n, then clearly i = m and
by transitivity of N, j < n. Thus a;; <x @mn and <y is indeed transitive. To
finish we note that totality of <x follows from totality of the natural order
< on Q and N. O

It can be helpful to have a pictorial representation of the total orders Q
and €x (and in fact any total order). Since total orders are antisymmetric
and transitive we can view the total order as arranging elements into an
ordered line from left to right. Thus an element b to the left of an element
c will signify that b < ¢. We will also use a continuous line between two
elements b < ¢ to represent the fact that there exists no element d such
that b < d < ¢. Dotted lines between two elements b < ¢ will represent the
existence of one or more element e such that b < e < c¢. See Figure 8.1 for
a representation the total order Q and Figure 8.2 for a representation of the
total order €.

Clearly the order on ¥x is dependent upon the enumeration X = (z,, :
n € N) of Q. Two enumerations X = (z,, : n € N) and Y = (y,, : m € N) of
Q are said to be equal, written X =Y, if x,, = y,, for all n € N. In general,
if X ZY then €x = (C,<x) and 6y = (C,<y) will be non-isomorphic
total orders. In particular, the identity map 1¢ : C' — C, may not define
an isomorphism from €x to 6y (see Theorem 8.20). However for any two
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Figure 8.2: Part of €y if o < x5 < 71 < 73
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enumerations X and Y of Q, we find that the following results hold.

Lemma 8.17. Let X and Y be any two enumerations of Q. Suppose that
¢ Cx — Gy is an isomorphism and let i € N. Then B; ¢ = B;.

Proof. Let X = (z,, : n € N) and let Y = (y, : m € N). First we will
show that B; ¢ C By, for some k£ € N. Seeking a contradiction, suppose that
B;¢p € By, for all k € N. Then

m =max{n € N:a;, ¢ € B;, ajny1)¢ € B;, for some j € N}

exists and m < 4. Since @i, <x im41) We must have that a;,, ¢ € B; and
Ui(m+1) @ € By, for some j,k € N such that y; < y,. Now, by Lemma 8.15
there exists ¢ € C' such that a;, ¢ <y ¢ <y ajm4+1)¢. But since ¢ is an
automorphism this means that a;, <x c¢~' <x @i(m+1), a contradiction to
Lemma 8.15. Thus it must be the case that B; ¢ C By for some k£ € N
as required. Furthermore, since |B,| = n + 1 for all n € N and since ¢ is
injective, we know that i < k. As ¢! : €y — € is also an isomorphism,
we can repeat the argument above to show that By, ¢~! C B, for some [ € N
with & < [. Then since B; C By, ¢!, it follows that B; C B;. But this implies
that ¢ = [ and hence k = 7. Thus B; ¢ C B; and since ¢ is bijective it follows
that B;¢ = B; as required. O

Theorem 8.18. Let X and Y be any two enumerations of Q and suppose
that ¢ : €x — Gy is an isomorphism. Then ¢ = 1.

Proof. By Lemma 8.17 we know that B;¢p = B; for all : € N. Now since both
the substructure of €x induced by B; and the substructure of %y induced
by B; are well orders of size i+ 1, we must have that ¢|p, = 1p, for all : € N.
It now follows that ¢ = 1. O]

Corollary 8.19. Let X be an enumeration of Q. Then Aut(€x) = 1c¢.

Proof. This follows immediately from Theorem 8.18 when we let X =Y. [J
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Theorem 8.20. Let X and Y be any two enumerations of Q. Then €x =
Gy if and only if the map f : Q — Q defined by x,f = y, for alln € N
defines an automorphism of (Q, <).

Proof. Let X = (z, : n € N) and let Y = (y,, : m € N). Suppose that
©x = €y. Then there exists an isomorphism ¢ : €x — %y. By Theorem
8.18, we know that a;;¢ = a;; for all 7,j € N, j < 7. Thus since ¢ is an
isomorphism we can conclude that a;; <x ay; if and only if a;; <y ax. Now
consider the map f : Q — Q defined by x,, f =y, for all n € N. Then clearly
f is a bijective function. Furthermore, by construction of €y, z; < zy if
and only if a;y <y ago and hence (by our previous observation) if and only
if a;0 <y aro. But by construction of €y, a;0 <y ao if and only if y; < y;.
Thus since z;f = y; and xf = y, we can conclude that z; < z;, if and only
if z;f < aif. Hence f defines an automorphism of (Q, <).

Now suppose instead that the map f : Q — Q defined by z,f = y, for
all n € N defines an automorphism of (Q,<). Let ¢ = 1¢. Then clearly
¢ defines a bijective function C' = C. Now suppose that a;; <x az. Then
x; < xp and hence since f is an isomorphism, y; < yi. But this means
that a;; <y ai and hence a;;¢ <y ap¢. A similar argument shows that
a;;¢ <y ap¢ implies that a;; <x ap. Thus ¢ defines an automorphism
©x — %y and the result is complete. O

We will now show that there exist 2% enumerations of the rational num-
bers which give rise to non-isomorphic total orders which have trivial auto-
morphism group.

Lemma 8.21. Let X = (z,, : n € N) be an enumeration of Q and let m € Sy.
Let ¢ : Q — Q be the function defined by x, ¢ = x, for allm € N. If the
disjoint cycle notation of 7 contains a finite cycle, then ¢ ¢ Aut(Q).

Proof. Seeking a contradiction, suppose that ¢ € Aut(Q). Let (nyns...ng)
be a finite cycle in the disjoint cycle notation of 7. Without loss of gener-
ality we can assume that z,, < x,, for all 1 < i < k. Now since ¢ is an
automorphism we have that z,,¢ < x,, ¢, but this says that z,, < z,,, a
contradiction. Thus ¢ ¢ Aut(Q) as required. O

Theorem 8.22. There exist a set P of 2%° enumerations of Q such that if
X, Y e Pand X £Y then €x ¥ 6y.

Proof. Let Z = (2, : n € N) be any enumeration of Q and for i € N, let
m = (21 2i + 1) € Sy. Now for 3 C N define,

sy, = Hﬂ'g.

ceY
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Then for each ¥ C N, 7y, € Sy and g7y, = 1g,. Furthermore if we also have
U C N, then mymy = Tnow, where Yo ¥ = (XU W)\ (XN V), the symmetric
difference of ¥ and V. Thus 77y is a product of finite and disjoint cycles.
Now for ¥ C N we let,

Yy = (v, : n € N) where x,, = 2,,,_ for all n € N.

Then clearly Yy, is an enumeration of QQ for all ¥ C N. Furthermore, if
U C N and ¥ # VU then Yy # Yy. Additionally, by Lemma 8.21 it follows
that the map ¢n - : Q — Q defined by ZnPrimy, = Znmom, 18 such that
Gryr, & Aut(Q). If we let

Y = (z,:n €N) and Yy = (y, : n € N),

then for all n € N,

i =z =z = .
n¢7r2 Ty N T Ty Ny Yn

Thus by Theorem 8.20, @y, # by, for ¥ # W. Letting P = {Ys : ¥ C N}
completes the proof. O

We will now show that for each enumeration X of Q, we can find an
embedding f : €x — Q such that im f is a retract of Q. First we require the
following two lemmas.

Lemma 8.23. Let n € N and let {i1,...,i,} C N. Suppose that

is an embedding of (B;; U---U B;,) C €x into Q. Now let i, € N\
{i1,...,in}. Then f can be extended to an embedding,

Proof. By the construction of €x, one of the following three statements hold.

(i) There exists k,l € {i1,...,4,} such that By <x B;,,, <x B; and such
that for any p,q € {i1,... i}, if By <x B, <x Bi,,, <x By <x B
then k = p and [ = ¢q. Roughly speaking, By, is the maximum B;,
less than B and B; is the minimum B;; greater than B; , for j =
1,...,n.

Int1 int1

(ii) Only k exists as above.

(iii) Only [ exists as above.
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So suppose that we are in case (i). Since Q is dense we can find ¢; € Q,
J = 0,... 041 such that apf < g < ¢ < -+ < ¢, < apf. Now define
fﬁBi1U"'UBin+1 —>@by,

~ {cf itce B;,,, m=1,...,n,
cf =

¢ fec=a; jforj=0,... 1.

Then clearly f is a injective map B, U---UB;, , — Q. Nowif b,c €
B, U---U B, , then clearly b <x c if and only if bf < cf since f was an
embedding. Also, by construction of €, if b,c € B; ., then b <x c if and
only if b = a;,.,;, ¢ = a;,, ) and j < k. But by choice, ¢; < g, if and only if
j < k. Thus it follows that b < ¢ if and only if

bf =q; < q. = cf.

Now suppose that b € B;, ., and c € By, U---U B;, . Then ¢ € By, for some
j €{l,...,n} such that B, ,, <x B; <x B;,. Hence b <x c if and only if
ajp < c. Thus it now follows that b <x c if and only if

bf < Qi < apf <cf = Cf-

A dual argument shows that if b€ B, U---UDB,; and c € B
if and only if,

ina then b <x c
bf =bf < anf < qo < cf.

Thus f is indeed an embedding of (B;, U---U B;, .,) into Q as required. A

similar argument (using the fact that Q is without endpoints) shows that

if we are in cases (i) or (iii), then we can again extend f to an embedding

Lemma 8.24. Let n € N and let {iy,...,i,} C N. Suppose that,

is an embedding of (B;; U---UB; ) C €x into Q. Now let ¢ ¢ im f and
suppose that for all 7 € {iy,...,i,} there exists no k € N, k < j such
that a;rf < q < ajgs1)f. Then there ewists iny1 € N\ {i1,...,i,} and an
extension

of f such that f is an embedding and such that q € im f.

Proof. By assumption, for all j € {iy,...,i,} there exists no k € N, k < j
such that a;.f < ¢ < ajg41)f. Thus one of the following three cases must
hold.
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(i) There exists k,l € {iy,...,i,} such that B,f < ¢ < B;f and such
that for any p,q € {i1,...,i,}, if Byf < B,f < q < B,f < B;f then
k = p,l = q. Roughly speaking, By f is the maximum B, f less than ¢
and B, f is the minimum B;, f greater than ¢ for j =1,...,n

(ii) Only k exists as above.
(iii) Only [ exists as above.

So let us suppose that we are in case (i). Since Q is dense we can find
Zi., € Q such that z, < z;,,, < 2 and hence B, <x B, ., <x B.
Furthermore, we can find ¢; € Q, j =0, ..., ¢,4; such that,

g<q <<, <apf.
Nowdeﬁnef:BhU---UBinH—>Qby,
cf ifceB;,,m=1,...,n
cf =<q if ¢ = aj,, 0

g fec=a; jforj=1,... 1.

Then clearly, f is an injective map. We will show that it also defines an
embedding. Since by assumption f was an embedding, if b,c € B;, U---UB;,
then clearly b <x c if and only if b f<e f So suppose that b E B; .. and
ce B;,U---UB, , then by definition of f, b <x cif and only if

In+1

bf < i, < anf <cf =cf.

Similarly if b€ B;, U---UB;, and c € B;

In+1

then b <y c if and only if,

bf =bf <awf <q<cf.

Finally if b,c € B;,,, then b <x c if and only if b = a;,,,; and ¢ = a;,,,m
for some 1 < 7 < m < i,,,. But since aznﬂof =q < qn = a,nHWf for all
1 <m < 4,41, and since aznﬂjf =q; < Qm = a,nﬂmf forall 1 < j <m, it
follows that if b,c € B;, ., then b <x c if and only ifbf < cf Hence f is an
embedding (B;, U---UB;,,,) — Q and ¢ € im f. A similar argument (using
the fact that Q is without endpoints) shows that if we are in cases (ii) or (iii),
then we can again extend f to an embedding f : (B;, U---UB; UB;,.,) — Q
with ¢ € im f. O]

Theorem 8.25. There exists an embedding g : €x — Q such that im g is a
retract of Q.
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Proof. First, recall that €x = (C, <), where C' = J,oy By. Enumerate Q as
Q = {qn : n € N}. We will construct an embedding g : C' — Q inductively
as follows. Define the map fy : {aeo} — {q} by aofo = q. Then clearly
fo is an embedding (ago) — (qo). Now suppose that for n € N, f,, has been
defined and is an embedding (By U B;, U---U B;,) — Q for some i; € N,
j=1,....n. If nis even let

a=min{i € N: B; Z dom f,}

and by use of Lemma 8.23, extend f,, to an embedding f,,; such that B, €
dom f,. If on the other hand n is odd, let

b=min{l € N: ¢ & im f, such that for all j € {iy,...,%,} there
exists no k < j such that a;f < ¢ < ajus1)f}-

Then by use of Lemma 8.24, extend f, to an embedding f,.; such that
B;, ., € dom f, 41 for some 4,11 & {0,41,...,%,} and such that g, € im f,1;.

Now let -
n=0

Then g is a well defined injective function since each f,,; was injective and
was an extension of f,,. By alternately going back and forth we have ensured
that g is defined on every element of ¥x and that if ¢ € im g then there exist
i,7 € N such that a;;9 < ¢ < a,(j4+1)g9. Furthermore, since each f, was an
embedding g is an embedding of €x — Q.

We will now show that im g is a retract of Q. For i, € N, j < 4, let
Ti; = (aijg,aij+1)9). Then clearly T;; is a non-closed interval in Q for all
i,j € N and since ¢ is an embedding, T;; # Tj; whenever (i,7) # (k,[).
Furthermore, since there exists no ¢ € C' such that a;; <x ¢ <x a;(j4+1) and
since ¢ is an embedding, it follows that there exists no ¢ € C such that
aijg < cg < aij+1g. Thus Tj; Nim g = () for all 4,7 € N, 5 < 4. Thus we can
deduce that,

img C Q\ U T;j.
i,jeN
1<t
Moreover, by our previous observations, if ¢ € im g there must exist i, j € N
such that a;;g < ¢ < a(j4+1)g. In other words g € Tj; and hence have shown

that
img=Q\ U T;.
i,jEN
1<t
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We claim that

U E]a

i,jeN

1<t
satisfies conditions (i), (ii) and (iii) of Theorem 8.2. We have already observed
that T;; is a non-closed interval in Q for all 7, j € N and thus statement (i)
of Theorem 8.2 holds. Now suppose that T;; # Ty. If i # k then we
can suppose without loss of generality that x; < x,. Hence by definition
of €x, aij+1) < ar and thus since g is an embedding a;(j+1)9 < arg and
T;; < Ti. On the other hand, if ¢ = k£ but j # | we can assume without
loss of generality that j < [. Then since a;; < a;, for all j < n, it follows
that a;j41) < ay = ap. Thus since g is an embedding we can conclude
that a;j11)9 < arg and hence that T;; < Tj;. In either case we have shown
that T;; N Ty = 0 whenever T;; # T}, and thus statement (ii) of Theorem
8.2 holds. Finally if Tj; < Tj; then we observed above that a;;j;1) < aw
and hence it follows that a;;41)9 < awg. Thus since a;j11)g € img and
Ty < ai+1)9 < ang < Ty, statement (iii) of Theorem 8.2 holds. Thus since

img=Q\ U 13
i,jEN
1<t
and conditions (i), (ii) and (iii) of Theorem 8.2 are satisfied, it follows that
im g is a retract of Q. O

Theorem 8.26. There exist 2% idempotents f € End(Q) such that Hy = 1.

Proof. By Theorem 8.22, there exists a set P of 2% enumerations of Q such
that if X, Y € P and X Z Y then €x 2 %y. Now by Theorem 8.25, for each
X € P there exists an embedding gx : ¥x — Q such that im gy is a retract.
Hence by Theorem 8.2, for each X € P there exists fx € F(End(Q)) such
that im fx = imgyx. Since im fx = %x for all X € P and since €x ¥ %y
for all Y € P with X # Y, we can deduce that the idempotents fx are all
distinct. Now by Theorem 2.7 it follows that,

Hy, = Aut(im fy) = Aut(im g) = Aut(éx).

But by Corollary 8.19, Aut(éx) = 1 for all X € P. Thus Hy, = 1 for all
X € P and the result is complete. O

8.4 Group J/-classes of End(Q)

In this section, we will show that if 2 is a countable total order and there
exists an embedding f : Q — Q such that im f is a retract of Q, then there
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exist 2% group J#-classes H of End(Q) such that H = Aut(Q). First, we
will see that if we are presented with a total order €, we can construct 2%°
total orders with the same automorphism group as 2.

Definition 8.27. Let Q = (Vq, <q) and A = (Vi, <,) be total orders. When
Vo NV, = ) we can construct a new total order, Q +A = (Voia, <qia) from
Q and A as follows. We define Vo p = Vo UV, and say that u <q,5 v if and
only if either,

u,v € Vg and u <q v,
u,v € Vy and u <p v or,
u € Voand v € Vy.

Thus in Q + A, Vo <gia Va. To avoid cumbersome notation we will denote
<qia by < from now on.

Notice that if Q = (Vo, <q) and A = (V), <,) are total orders and Vo N
Vi # 0 then we can consider the total orders ' = (Voy, <) and A’ =
(Var, <) defined by setting

VQ/ :{(u, 1) U € VQ},
Ve ={(v,2) : v € Vj },

and where (¢,1) <o (u,1) if and only if t <g u and (v,2) <j (w,2) if and
only if v <, w. Then it is easy to see that Q = Q. A = A’ and Vo NV = 0.
For this reason we will abuse notation in this chapter and often write 2 + A
even when we have not asserted that Vo NV, = 0.

Let R, = (R; U {—001,00:},<) and Ry = (Ry U {—005, 005}, <) be two
disjoint copies of the affinely extended real numbers with the natural order-
ing. Let Q; and @, be copies of the total order Q, thought of as substructures
of R; and R, respectively. Then the following lemma is easy to prove.

Lemma 8.28. Let Q; and Q, be copies of Q. Then Q; + Qy = Q.

Proof. We observed that Q is the unique countable dense total order without
endpoints. Thus it suffices to observe that QQ; + Qs is countable, dense and
without endpoints. O

Clearly, Q; + Q, is a relational substructure of R; +R,. Thus, similar to
the case with @, we can define an interval in Q; + Qy with real or infinite
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endpoints as follows. For p,q € Ry URy U {—001, —002, 001,002}, p < g we
define

p,ql ={r € Qi +Qy:p <z <q},
(p,g) ={reQ+Q:p<x<ql,
p,q) ={r € Q1 +Qs:p<zx<qg}
(P ={zcQ+Q:p<z<g}

It should be clear that every interval in Q; + Qy can be written in at least
one of the above forms. By a non-closed interval in Q; + Qs we will mean an
interval U in Q; + Qy such that U cannot be written in the form U = [p, ¢]
for some p, ¢ € Ry URy U {—00;, —009, 001,005 }. For example, if p € Q) + Qs
then the intervals (p,q] and (p,q) are non-closed, having the rational open

endpoint p. However, if p,q & Qi + Q, then [p,q] = [p,q) = (p.q] = (p,q)
and hence each of these intervals is not a non-closed interval.

Lemma 8.29. Let Q) = (Vo,<q) be a countable total order. Suppose that
there exists an embedding h : Q@ — Q1 + Qg such that imh = Q; + Q9 or
imh = (Qy 4+ Q2) \ U, where U = J,.; Vi satisfies the following properties.

(a) For eachi € I, V; is a non-closed interval in Qq + Qx.
(b) Fori#j, VinV; =10.
(c) If Vi <Vj then there exists x € imh such that V; <z < V.

Then there exists an embedding h:Q — Q such that im h is a retract of Q.

Proof. By Lemma 8.28, there exists an isomorphism of total orders ¢ : Q; +
Qy — Q. Let h = h¢. Then h is an embedding of the total order €2 into Q.
By Theorem 8.2, it suffices to show that either imh = Q or imh = Q\S
where S = (J;c;T; satisfies conditions (i), (ii) and (iii) of the theorem. If

imh = Q; +Qy, then im h= Q and hence im h is a retract of Q as required.
So suppose instead that imh = (Q, + Q,) \ U, where U = J,, V; satisfies
properties (a), (b) and (¢) above. Then clearly imh = Q \ U¢. So let
T, = V¢ for all i € I and let S = UielTi' Then since ¢ is an isomorphism
of total orders, T} is an interval in QQ for all 7 € I. We will now show that
T; is non-closed for all 7« € I. By property (b), V; is a non-closed interval in
Q1 + Q, for all 7 € I. Thus it is not hard to see that V; must have one of
the following forms (for otherwise written in the form V; = [p, q] for some

p.q € Ry URy U {—001, —002, 001, 002 }).
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(1) [z,y) where z,y € Q; U Qx.

(2) (z,y] where z,y € Q; U Qx.

(3) (z,y) where z € Q1 UQ2, y & Q1 UQo.
(4) (z,y) where y € Q1 UQy, 2 ¢ Q1 U Q.
y)

where z,y € Q; U Qs.

3
4

() (z,

Suppose first that V; = [z,y) for 2,y € Q; UQs, as in case (1). Then it
should be easy to see that since ¢ is an isomorphism T; = [z, y)¢ = [0, yo).
Hence since x¢, y¢ € Q, T; is a non-closed interval in Q as desired. A similar
argument shows that if V; is of the form in case (2) and (5) then T} is a
non-closed interval in Q. If V; = (x,y) for z € Q; U Q2 as in case (3), then
x¢ is a rational open (left) endpoint for 7; and so 7T; is a non-closed interval
in Q. A dual argument for case (4) now completes the proof that 7; is a
non-closed interval in Q in all cases.

Furthermore we can easily show that if 7; # T}, then T, NT; = () as
follows. For if z € T; NT}, then x € V;¢p N V;¢. But then z¢p™' € V; NV},
a contradiction to property (b). Additionally, if 7; < T} then V¢ < V;¢
and since ¢ is an isomorphism it follows that V; < V;. Hence by property
(c) there exists x € imh such that V; < = < V;. Thus T; < z¢ < T;
and z¢ € imh¢ = imh. We have hence shown that imh = Q \ S satisfies
conditions (i), (ii) and (iii) of Theorem 8.2, and hence im & is a retract of

Q. O

Lemma 8.30. Let Q and A be total orders and let f : Q2 —- Q and g: A — Q
be embeddings. Suppose that im f and im g are retracts. Then there exists an
embedding h : Q@+ A — Q such that im h is a retract of Q.

Proof. Let Q = (Vq, <) and let Q = (Vq, <). Let @Q; and Q5 be copies of the
total order Q. We can assume without loss of generality that f : Q — Q
and g : A — Q. By Lemma 8.29 it suffices to show that 2 + A can be
embedded into Q; + Qs via an embedding h such that either imh = Q; + Q,
orimh = (Q;+Q5)\ S where S is a union of non-closed intervals in Q; + Q,
satisfying properties (b) and (c¢) of Theorem 8.29. Define h : Q+A — Q;+Q2
by,

vf ifveVy
vh = )
vg ifveV,.

Then since f and g are embeddings, h is an embedding of 2+ A into Q; + Q.
Furthermore, imh = im g Uim f. By assumption, im f and im g are retracts
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and so satisfy Theorem 8.2. If im f = Q; and im g = Qg then imh = Q1 +Q,
and we are finished. On the other hand, suppose that im f = Q; and img =
Q2 \ Ujcs Uj, where the U; satisfy conditions (i)—(iii) of Theorem 8.2. Then
imh = (Q1 +Q2) \ U, Uj. Since by assumption Uj is a non-closed interval
in Qy for all j € J, U; is a non-closed interval in Q; + Q9 for all j € J.
Furthermore, it is easy to see since the U; satisfy conditions (i) — (iti) of
Theorem 8.2, properties (b) and (¢) of Theorem 8.29 are satisfied. Thus
letting S = UjE ;U; we are finished. Similarly suppose that im g = Q, and
im f = Qi \ U,¢; Ti, where the T; satisfy conditions (i)-(iii) of Theorem 8.2.
Then a similar argument shows that imh = (Q; + Q2) \ U,c; Ti where T} is
a non-closed interval in Q; + @, for all ¢ € I and where conditions (b) and
(¢) of Theorem 8.29 are satisfied. Thus by setting S = |J,.; T; we are again
finished.

iel

Finally suppose that im f = Q1 \ U;c; 7i and im g = Q2 \ U, U;, where
the 7; and U; satisfy conditions (i)—(iii) of Theorem 8.2. Then

() 4)
()()

We first show that S is a union of non-closed intervals in Q; + Q5. Seeking a
contradiction, suppose that there exists a closed interval [g,r] C S for some
g7 € RyUR, U {—001, —002, 001,002 }. By assumption T; and U; are non-
closed intervals in @Q; and Qs respectively for all ¢ € [ and for all j € J.
Thus it follows that there must exist ¢ € I and j € J such that T; UUj is a
closed interval. It is not hard to see that since im f < im g this is possible
only if T; = [q,00) and U; = (—o0,7] for some ¢ € R; U {—o00;} and some
r € Ry U {oog}. But then T; = [g,00] and U; = [~o0, 7], a contradiction to
T; and U; being non-closed. Thus it follows that S is a union of non-closed
intervals in Q; + Q.

To see that S satisfies condition (b) of Theorem 8.29, we recall that since
imf C Q and img C Qy, im f < img. Thus T;NU; = 0 for all i € I and
for all j € J. Furthermore, since im f and im g are retracts it follows that
by condition (ii) of Theorem 8.2 that T; N Ty = ) for all i,k € I such that
i # k and similarly that U; N U; = 0 for all j,I € J such that j # [. Thus S
satisfies condition (b) of Theorem 8.29.
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To finish we verify that S satisfies condition (¢) of Theorem 8.29. Since
im f is a retract it follows that for all ¢,k € I such that T; < T} there exists
x € im f C imh such that T; < z < T}. Similarly since im g is a retract it
follows that for all j,l € I such that U; < U; there exists y € im f C imh
such that U; <y < U,;. It remains to show that if 1 € I, j € J and T; < Uj,
then there exists z € imh such that T; < z < U;. If there exists z € im f
such that 7T; < z, then T; < o < U; and we are done. Similarly if there exists
y € im g such that y < Uj, then T; < y < U; and we are finished. So suppose
that for all € im f and for all y € img, x <7 and U; < y. Then it must
be the case that T; = (¢,00) and U; = (—o0,r) for some ¢ € Q; and some
r € Q. Hence T, UU; = (¢,r) and T; U U; is actually one of the non-closed
interval in S. Moreover if T}, < T;, then since im f is a retract there exists
zp € im f Cim A such that T}, < z;, < T; U U; and similarly if U; < U; there
exists y; € img C imh such that T; UU; < y; < U; . Thus it follows that
condition (c¢) of Theorem 8.29 is satisfied. In any case, we have shown that
imh = Q\ S satisfies conditions (a), (b) and (c¢) of Theorem 8.2 and thus
im h is a retract of Q. O

Lemma 8.31. Let Q = (V, <q) be a total order. Let X be an enumeration
of Q and let €x be the total order defined in Definition 8.14. Then Aut(2+
(gx> = Aut(Q)

Proof. First recall that €x = (C, <x). We will first show that if g € Aut(Q+
¢x) and Cg C C, then in fact Cg = C. Consider B; C C for some i € N. We
start by showing that B;g C By for some k € N. The method is essentially
the same as the proof of Lemma 8.17. Seeking a contradiction, suppose that

Big  B; for all j € N. Then
m = max{n € N: a;,g € B, a;(n41)9 ¢ B, for some j € N}

exists and m < 7. Since @iy, <x @ipm41) it follows that ag, < aim1). Thus
aim+1)g € C and thus a;ms1)g € By for some k € N such that z; < z;.
Now, by Lemma 8.15 there exists ¢ € C such that a;,9 <x ¢ <x im4+1)9
and hence a;,g < ¢ < @im+1)g. Since g is an automorphism we now deduce
that a;, < cg™! < @j(m+1)- But then cg~t € C and a;, <x cg~! <x Qi(m+1)
a contradiction to Lemma 8.15. We can hence conclude that B; ¢ C B, for
some k € N as required. Furthermore, since |B,| = n+ 1 for all n € N and
since f is injective, we know that i < k.

Now suppose that ¢ # k so that ¢ < k. Then there exists some ay; € By
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such that ay, # ag for any a € B;. Let,

s =max{n <l: n €N, a, = bg for some b € B;}, and

t =min{m >1: m €N, ag,,, = cg for some ¢ € B;}.

Since B; g C By, at least one of s and t exist. So suppose that s exists. Then
s+ 1 <1, arsg™' € B; and ays11)g~ ' & B;. Since g is an automorphism
aksgt < ag(s41)g " and S0 ags+1yg ' € C. Thus there must exist some
| € N such that z; < z; and ag(s41)g~" € B;. However, by Lemma 8.15
there exists ¢ € C such that ar.g~' <x ¢ <x ak(sﬂ)g*l and hence a,g~! <
¢ < ags+ng . Since g is an automorphism we can thus conclude that
ags < cg < ajs41)- But then ap, <x cg <x ap@41) which is clearly a
contradiction to Lemma 8.15.

So suppose instead that ¢ exists. Then | < t — 1, ayy—1) ¢ B; and
ap; € B;. Also, since g is an automorphism ak(t,l)g’l < apg ' Suppose
that ay_1)g~" = v for some v € V. Then v < C. By Lemma 8.15, there
exists infinitely many elements ¢ € C such that ¢ <x apg~! and hence
v < ¢ < ag . Thus, since g is an automorphism vg < cg < ap. But
then ap;—1) < cg < ax and hence ap;—1) <x cg <x a;, a contradiction
to Lemma 8.15. Thus we conclude that ak(t,l)g*I € (. Thus there must
exist some [ € N such that z; < z; and ak(t,l)g_l € B;. However, by
Lemma 8.15 there exists ¢ € C such that ak(t_l)g_l <x ¢ <x apg and hence
ake-19 " < ¢ < agpyg~'. Since g is an automorphism we can thus conclude
that ag—1) < cg < ag. But then aypy—1) <x cg <x ax; which is clearly a
contradiction to Lemma 8.15. In any case we have shown that the assumption
that ¢ < k leads us to a contradiction. Hence we can now conclude that i = &
and hence B;g C B;. Thus since ¢ is bijective B;g = B; and it now follows
that C'g = C' as claimed.

We will now show that if f € Aut(Q2 4+ Cy), then Cf = C and Vo f =
Vo. It Cf C C, then by the observations above C'f = C and hence since
f is bijective it follows that Vo f = V. Suppose on the other hand that
there exists ¢ € C such that ¢f = v for some v € V. Consider then
inverse automorphism f~!. Then vf~! = ¢. Furthermore, since f~! is an
automorphism, if u € Vo4, and v < u then ¢ = vf~! < wf~!. In particular,
since v < C, ¢ < Cf~! and hence Cf~! C C. Thus by a further application
of the observation above, Cf~* = C and hence C'f = C. Now since f is
bijective we can again conclude that Vo f = V. In ether case, we have
shown that C'f = C and Vi f = V. Moreover, since f is an automorphism
and since we have just shown that C'f = C, f|c must be an automorphism
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on the relational substructure of 2 + %x induced by C. In other words
flo € Aut(%,). But by Lemma 8.18 this implies that f|c = 1¢.

Now define a map ¢ : Aut(Q2 + €x) — Aut(Q) by f¢ = fly, for all
f € Aut(2 + €x). Then by our previous observations ¢ is a well defined
function. Moreover, ¢ defines a group homomorphism since

(fg)o = (f9)la = fla-gla=fo-go.

To see that ¢ is injective suppose that f,g € Aut(Q2 + €x) are such that
fo = go. Then f|g = g|o and since we know that f|c = g|c = 1¢ we can
conclude that f = g. To show that it is surjective we note that if h € Aut(2)
then the map h : Q4+ €x — Q + Gy defined by,

“ v ifved
vh =
vh if v € Vq.

is an automorphism of Q2 + %y and fng = h. Thus ¢ defines a group isomor-
phism Aut(2 4+ €x) — Aut(Q2) and hence Aut(2 + €x) = Aut(9). O

As a direct consequence of the above lemmas, if we have a total order €2
and an embedding f : 2 — Q such that im f is a retract of Q, then we can
gain some insight into the number of group .77-classes which are isomorphic
to the automorphism group of €2.

Theorem 8.32. Let 2 be a total order. If there exists an embedding f : 2 —
Q such that im f is a retract of Q, then there exist 2% group H-classes H
of End(Q) such that H = Aut(£2).

Proof. By Theorem 8.22, there exists a set P of 2% enumerations of Q such
that if X, Y € P and X # Y then ¥x # 6y. Now by Lemma 8.30, for each
X € P there exists an embedding gx : Q + %x — Q such that imgy is a
retract. Hence by Theorem 8.2, for each X € P there exists fx € E(End(Q))
such that im fx = imgy. Sinceim fx = €y for all X € P and since €x % 6y
for all Y € P with X # Y, we can deduce that the idempotents fx are all
distinct. Now by Theorem 2.7 it follows that,

Hy, = Aut(im fx) = Aut(im g) = Aut(Q + €x).

But by Lemma 8.31, Aut(2 4+ @x) = Aut(Q2), for all X € P. Thus Hy, =
Aut(Q) for all X € P and the result is complete. O

We now know that if we can embed a total order €2 into Q such that the
image of € in Q is a retract, then the automorphism group of € is isomorphic
to 2% maximal subgroups of End(Q).
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8.5 Regular Z-classes of End(Q)

What we can deduce about the Z-classes of End(Q) now follows in this
section.

Theorem 8.33. There exist 2% reqular P-classes of End(Q) for which any
two group 7€ -classes are isomorphic.

Proof. By the proof of Theorem 8.26 there exists a set P of size 2% and
idempotents fx such that Hy, = 1 for all X € P and such that im fx %
im fy for all XY € P, X # Y. Thus by Theorem 2.10, the fx lie in
distinct Z-classes but Hy, =1 for all X € P. Now since any two group -
classes which are contained in the same Z-class are isomorphic, the result
follows. O]

We cannot yet say whether there exist 2% Z-classes for which any two
JC-classes from different Z-classes are not isomorphic. To do so we would
need to assert that there are uncountably many groups which can be realised
as the automorphism group of a retract of Q. This is, as yet, undetermined.

Theorem 8.34. Let f € E(End(Q)). If Q\ im f contains an open interval
with rational endpoints then Dy contains 2% group J-classes.

Proof. Since Q \ im f contains an open interval it follows from Theorem 8.2
that there exist 2% distinct idempotents g such that im g = im f. Further-
more, it follows from Theorem 2.10 that each of these idempotents ¢ lies in
Dy. Thus each H, is contained in Dy and so there exist 2% group ##-classes
in Dy as required. [

In view of Theorem 8.34 it is now easy to give an example of a Z-classes
of End(Q) which contains 2% group J#-classes.

Example 8.35. Let S = (—oo0,—1] U [1,00). Then Q\ S = (—1,1) and
hence by Theorem 8.2, there exists an idempotent f € End(Q) such that
im f = (S). Then by Theorem 8.34 above, D contains 2% group J#-classes.

On the other hand, we can show that there exists a Z-class of End(Q)
which contains countably many group 7¢-classes.

Example 8.36. Consider any element ¢ € Q. Then ({¢}) = ({¢}, (¢,9))
is trivially a total order. Furthermore, since Q \ {¢} = (—00,¢q) U (¢, 00) it
follows by Theorem 8.2 that there exists an idempotent f € End(Q) such
that im f = ({q}). Furthermore, it is not hard to see that the only such
idempotent is the map g, where xg, = ¢ for all x € Q. Now for any other
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idempotent h € E(End(Q)), we know from Theorem 2.10, that h € Dy if
and only if imh = im f = ({¢}, (¢,¢)). Clearly this is only possible when
imh = ({p}) and h = g, for some p € Q. Since Q is countable there exist
only countably many distinct elements p € Q and thus there exist exactly
Ry idempotents g, with im g, = im f. Hence D; contains exactly N, group
S -classes (namely H,, for each p € Q) as claimed.
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Chapter 9

Countable Groups which are
the Automorphism Group of a

Total Order

In Chapter 3 we observed that if I" is a countable graph, then End(R) contains
a maximal subgroup isomorphic to Aut(T"). Thus by use of Frucht’s Theorem,
we were able to show that every countable group is contained as a maximal
subgroup End(R). Analogous results were also obtained for End(D) and
End(B) in Chapters 4 and 7, respectively. In this chapter we will show that
this analogy breaks down in the setting of total orders. We will show that
if 2 is a total order and Aut(Q2) is countable, then Aut(Q2) = Z" for some
n € N. In particular, this means that any countable maximal subgroup of
End(Q) must be of this form. The proof will require the introduction of
many technical lemmas and so we provide a short overview of the chapter as
follows.

Throughout we fix a total order Q = (Vg, <). In Section 9.1, we define
what is meant by a orbital U C Vj, of an automorphism of 2 and develop the
necessary theory for use in this chapter. We will show wia Sections 9.2-9.4
that if Aut(2) is countable, then Aut({U})) is either cyclic or there exists an
order < on Aut(£2) such that (Aut((U)), <) is dense. In the latter case, there
is a close connection between the A-coloured rationals and (U). Accordingly
we use Section 9.5 to introduce the definition of the A-coloured rationals
and show that the automorphism group of this structure has cardinality 2%°.
We bring all the ideas together in the final sections, Section 9.6 and 9.7, and
conclude in Theorem 9.51 that, when Aut(2) is countable, Aut((U)) is cyclic
and that Aut(Q) = Z" for some n € N.
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9.1 Fundamentals of Orbitals

We begin with a definition.

Definition 9.1. Let Q = (Vq, <) be a total order and fix f € Aut(2). For
x € Vo we define U, C V,, to be the set,

U.={yeVq:zfm" <y < axf"for some m,n € Z},
and call U, an orbital of f. Clearly, x € U, for all x € V.

Orbitals will be pivotal to the proof of the major results in this chap-
ter. Accordingly, we will use this subsection to briefly develop the theory
of orbitals and provide some key lemmas for use later. For the rest of this
subsection we will let 2 = (Vq, <) be a total order and fix f € Aut(2) with
orbital U,.

Lemma 9.2. For x € Vg, either:
(i) uw < uf for allu € U, and U, is infinite,
(i) uf <u for allu € U, and U, is infinite, or
(ii) f =« and U, = {x}.

In case (i) we say that U, is a positive orbital and in case (ii) we say that
U, is a negative orbital.

Proof. 1If x € Vg is such that zf = z, then clearly xf™ = x for all n € Z.
Thus we can immediately conclude that U, = {x}. So suppose that xf # x.
Then either x < xf or xf < x. Suppose that x < zf and thus, since f is an
automorphism, that xf™ < zf"! for all n € Z. Clearly, since xf" € U, for
all n € N and since z f" # x f™ for all m € Z with m # n, it follows that U, is
infinite. Now, seeking a contradiction, suppose that there exists u € U, such
that uf < v and hence that uf'™ < u for all i € N. Since u € U, there exists
m,n € N such that zf™ < u < xf" and since x < zf it follows that m < n.
Now let p = n —m. Then zf™ < u but uf? < u < xf" = xf™P. This is
clearly a contradiction since f is order preserving. Hence we can conclude
that u < uf for all u € U,. A similar argument starting with zf < x shows
that in this case uf < u for all v € U, and that U, is infinite. O

Corollary 9.3. If f € Aut(2) \ {1}, then f has an infinite orbital.

Proof. Suppose that f € Aut(Q2) and that all orbitals of f are finite. Then
by Lemma 9.2 all orbitals are singletons and xf = x for all x € V. Hence
f =1 and the result now follows. ]
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Lemma 9.4. Let x € Vo and suppose that U, is an infinite orbital. Then
U, is an interval in §).

Proof. If u,v € U, then there exists ¢, j, m,n € Z such that xf™ < u < xf"
and zf* < v < xf’. Hence if w € Vg is such that u < w < v then,

xfm§u<w<v§xfj.

Hence we can immediately conclude that w € U, and hence that U, is an
interval in Q. O

Lemma 9.5. Suppose that U, is an infinite orbital. Then (U,) is without
endpoints.

Proof. Seeking a contradiction, suppose that there exists u € U, such that
u < v for all v € V. Since u € U, there exists m,n € Z such that zf™ <
u < zf". Hence we can conclude that zf™ = wu. If U, is positive then
rf™ !t < xf™ = u, a contradiction. If U, is negative then z f™*! < 2 f™ = u,
another contradiction. Hence it must be the case that such a u does not exist.
A dual argument to dismiss the existence of an element w € U, such that
v < w for all v € V completes the proof. n

Lemma 9.6. Let z,y € V. Ify € Uy, then U, = U,. Thus for any two
elements y, z € U,, there exists m,n € Z such that yf™ < z < yf™.

Proof. If y € U, then there exists m,n € Z such that zf™ <y < zf". Now
suppose that u € U,. Then there exists ,j € Z such that yf* < u < yfJ.
Hence,

ef™ < yff <u<yf! <afrt
and v € U,. Now suppose that v € U,. Then there exists k,[ € Z such that
zff <v < xf'. Hence,

yff T <aff <v<aft <yfor

and v € U,. Thus we have shown that U, C U, and U, C U, and hence
U, = U, as required. O

Lemma 9.7. Let v € V. Then U, = U,y = U, f.

Proof. The first equality is immediate from Lemma 9.6 since clearly x f € U,.
Now suppose that u € U,, then there exists m,n € Z such that zf™ < u <
xf". Hence xf™ 1 < uf~! < 2f"! so that uf~! € U,. In other words
u € U, f. On the other hand suppose that v € U, f. Then v = uf for some
u € U,. Thus there exists i, j € Z such that zf* < u < xf’. It now follows
that zf™! < v < zf*! and hence v € U,. Thus U, = U, f as required. [
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Corollary 9.8. Let x € Vo Then fly, € Aut((Uy)).

Proof. By Lemma 9.7, U, f = U,. Now since f is an automorphism of {2 it
follows that f|y, is an automorphism of (U,) and the result is complete. [

Define an equivalence relation ~ on Vo by x ~ y if and only if U, = U,,.
Let I C Vg, be a transversal of the set of equivalence classes of Vi, under ~.

Lemma 9.9. {U, : x € I} is a partition of Vg.

Proof. Let x € V. Then € U, and hence = € U, for some y € I with
U, = U,. Hence |J,.; U, = Voo. Now let 2,y € I and suppose that = # y.
Suppose that U, N U, # 0. Then there exists u € Vi such that u € U, and
u € U,. But by Lemma 9.6 it follows that U, = U, and U, = U,. Hence
U, = U,. But this is a contradiction to I being a transversal. Thus we can
conclude that U, NU, = 0 for all z,y € I and {U, : « € I} is a partition of
Va. O

As a point of interest, Lemmas 9.4 and 9.9 allow the formation of a natural
order on the set of orbitals {U, : € I'}. For if x # y, then by Lemma 9.9,
U, N U, = 0. Then, since U, and U, are intervals by Lemma 9.4, for z # y
we can define U, < U, if and only if U, < U,. lf weset U, X U, forall z € I,
then it is not hard to see that ({U, : x € I}, <) is a total order.

9.2 Orbital Constraints when Aut(€2) is Count-
able

For the rest of the chapter, we now assume that Aut(2) is countable (al-
though we often restate this fact for clarity). The next few results will show
that if Q = (Vi, <) is a total order, then the assumption that Aut(2) is count-
able places strong conditions on the orbitals of an automorphism f € Aut(£2).
First we will require the following lemma.

Lemma 9.10. Let Q2 be a total order and let {S; : i € N} be a set of non-
empty disjoint intervals in ). Let g; € Aut(S;) for all i € N. Define a map

rg; ifv €S,
rf = .
T otherwise.

Then f € Aut(Q).
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Proof. First we note that f is a well defined function since by assumption
the intervals S; are mutually disjoint. Since g; € Aut(.S;), we know that g; is
a bijection on S; and that S;g; = S; for all i € N. Thus by construction of f
it clearly follows that f is a bijective function Vo — V.

Now suppose that z,y € Vo and that © < y. If z,y € 5;, then since g;
is an automorphism of S5; it follows that zf = xg; < yg; = yf. Similarly, if
x € S; and y € S; for some 7,j € N with ¢ # j, then since S; and S; are
disjoint intervals, S; < S;. Since g; and g; are automorphisms of S; and S;
respectively, it then follows that o f = zg; < yg; = yf. If v,y € Vo \ U,e; Si
then zf = « < y = yf. So suppose that z € S; for some j € I and
that y € Vo \ U,e; Si- Seeking a contradiction, suppose that yf < xf.
Then y < zg; and hence x < y < zg;. But this means that y € §;, a
contradiction. Hence we can conclude that xf < yf. A similar argument
when x € Vo \ ;S and y € S; completes the proof that z < y implies

that xf <wyf.

Conversely, suppose that z,y € Vi, and that f < yf. If of € S; and
yf € Sjforsomesi,j € N, then S; < §j;. Since g; and g; are automorphisms of
Si and S; respectively, we can then deduce that < y. If o f,yf € Vo\U,¢; S
then it follows immediately that + = xf < yf = y. So suppose that zf € .S;
for some j € I and that yf € Vo \ U,c;Si- Then yf = y and of = wxg;.
Furthermore since g; is an automorphism of S; it follows that z € S5;. If
y < z, then zg; = 2f < yf < z. But then y € 5, a contradiction, and
hence we conclude that x < y. A similar argument when zf € Vo \ U,¢; Si

and yf € S; completes the proof that f is an automorphism of 2. n

Let = (Vg, <) be a total order. For u,v € Vi with u < v, we define
(u,v) ={w € Vo 1 u < w < v} and (u,v] = {w € Vo : u < w < v}. Then
(u,v) and (u,v] are intervals in €.

Theorem 9.11. Let Q = (Vo, <) be a total order and suppose that Aut(€2)
is countable. Let f € Aut(Q)) and suppose that U, is an infinite orbital of f.
Let u,v € U, with u <wv. If (u,v) # 0, then Aut({(u,v))) = 1.

Proof. First assume without loss of generality, that U, is a positive orbital
of f (otherwise replace f by f~!). Note that since u € U, = U,, there
exists m € Z such that v < uf™. Then (uff™, vfFm) < (ufk+bm o fltim)
for all & € N. Furthermore since f € Aut(Q?) it follows that ((u,v)) =
{((wf*™ v fFm)) and hence Aut({(u,v))) = Aut({(uf*™, vf*m))) for all k € N.
Define a map

¢+ [ Aut(((uf™ v f*™)) — Aut(€),

keN
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by defining, for g € [,y Aut({(uf*™, vf*™))) and for w € Vo,

()96 = { (0)(g) 0 & 00

otherwise .

By Lemma 9.10, g¢ is a well defined map. It should also be easy to see that
¢ is an injective group homomorphism so that ¢ defines an embedding of
groups. Now if Aut({(u,v))) # 1, then | Aut({(uf*™, vfFm)))| > 2 for all
k € N. Hence,

[T Aut(((uftm, vy > 2%.

But since Aut(2) is countable this is clearly impossible. Hence it follows
that Aut(((u,v))) = 1 and the result is complete. O

Theorem 9.11 shows us that the assumption that Aut(Q2) is countable
places a strong condition on the internal structure of an orbital U of f €
Aut(Q2). Using the next few lemmas, we will now show that the same as-
sumption also places a restriction on the number of infinite orbitals an auto-
morphism f € Aut(£2) can have.

Lemma 9.12. Let Q be a total order and let f € Aut(Q2). Suppose that
{U, : x € 1} is a partition of Vg into orbitals of f. For each x € I define a

map f.: Vo — Vo by
{vf ifve U,
vfy =

v otherwise.
Then for all x € I, f, € Aut(2). Clearly if U, = {x}, then f, = 1y,.

Proof. Note first that by Corollary 9.8, f|y, € Aut((U,)). Then by applying
Lemma 9.10 it follows immediately that f, € Aut(£2). O

Lemma 9.13. Let Q be a total order and let f € Aut(QQ). Suppose that
{U, : © € I} is a partition of Vg into orbitals of f. Let x,y € I. Then

fxfy = fyfx

Proof. If x = y there is nothing to do. So suppose that x # y. Then since
{U, : x € I} is a partition of Vg into orbitals of f it should be easy to see
that

vf, ifvel,,
fofyzvfyfm: Ufy ifUEUy,
v otherwise.
Thus for all z,y € I, f.f, = f, [+ as required. O
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Lemma 9.14. Let 2 be a total order and let f € Aut(§). Suppose that
{U, : © € I} is a partition of Vg into the orbitals of f. Let J = {zx € I :
U, is infinite}. Then there exists an isomorphism of groups

(fo: Uy is infinite) = 7.

Proof. Notice first that by Lemma 9.13, f, f, = f,f. for all ,y € J. Thus,
since f, has infinite order for all z € J, we can write every element of
(fz : U, is infinite) as a unique product [],, fi= for some i, € Z. Now
define a map ¢ : (f, : U, is infinite) — Z” by setting,

zeJ
for all y € J. Then ¢ is a group homomorphism since if g, h € G then,
g=[] fir and n =[] &,
zeJ zeJ

for some i, j, € Z and,

(¥)(gh)¢ = (v) (H fi””) ¢

= iy +Ji/
= (y) (H fé””) ¢+ (y) (H fiz) ¢.

Furthermore ¢ is injective since g¢ = h¢ implies i, = j, for all z € J and
hence g = h. Also ¢ is surjective since if p € Z7 and (z)p = i, for z € J,

1, € Z say, then clearly
( 11 fff) ¢ =p.

xzeJ
Thus ¢ is a bijective group homomorphism and hence an isomorphism. [J

Theorem 9.15. Let Q be a total order and let f € Aut(Q2). Suppose that
{U, : © € I} is a partition of Vg into orbitals of f. If Aut(QQ) is countable
then the set J = {x € I : U, is infinite} is finite.

Proof. By Lemma 9.14, if there exist infinitely many infinite orbitals then
there exists an isomorphism ¢ : (f, : U, is infinite) — Z”. Since the group
(f. : U, is infinite) is contained as a subgroup of Aut({2) and since Z”7 is un-
countable when J is infinite, it follows that the set J = {z € I : U, is infinite}
is finite. [
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From Theorem 9.15 we can thus conclude that if Aut(Q2) is countable
then every automorphism of €2 has finitely many distinct infinite orbitals.

9.3 Orbitals of Distinct Automorphisms

So far we have shown that if € is a total order and Aut(2) is countable, then
we are able to deduce strong results on the orbitals of a single automorphism
f € Aut(Q). In this subsection we will show that the assumption that
Aut(Q) is countable also allows us to deduce information on the relationship
between the orbitals of distinct automorphisms from Aut(€2). The main
result is stated below and proof of this theorem will take up the remainder
of this subsection.

Theorem 9.16. Let Q be a total order. Suppose that Aut()) is countable
and let f,g € Aut(QQ). Then for all infinite orbitals U of f and for all infinite
orbitals T of g, either UNT =0 or U =T.

The Proof of Theorem 9.16

Suppose that Aut(2) is countable and let f, g € Aut(Q2). Let U be an infinite
orbital of f and let 7" be an infinite orbital of g. If U N T = () then there is
nothing to do. So suppose that U N'T ## () but that U # T. Then without

loss of generality one of the following cases must hold (otherwise swap the
labels on U and T').

(A) U C T and there exists s,t € T such that s < U < t.

(B) U C T and there exists s € T such that s < U but no ¢ € T such that
U<t

(C) U C T and there exists t € T such that U < t but no s € T such that
s<U.

(D) U ¢ T and there exists u € U, t € T such that u <UNT < t.

See Figures 9.1 through 9.4 for a pictorial representation of each case. We
will show case by case that each of these scenarios leads us to a contradiction
and hence to the conclusion that U =T

We will further split the proof into two cases. First, case I, where we

assume that f and g commute, and second, case II when f and ¢ do not
commute. The following lemma will be of importance in both cases.
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Figure 9.1: The Orbital Intersection in case (A)

Large brackets denote the interval T, small brackets the interval U.

Figure 9.2: The Orbital Intersection in case (B)

U T

Q0 < e - P )

t

Lemma 9.17. Let Q be a total order. Let f,g € Aut(Q) and let U be an
infinite orbital of f. Suppose that i € Z. Then (U)g™" is an infinite orbital

of g'fg~".

Proof. First observe that since g is an automorphism of {2 and since U is
infinite, (U)g is an infinite set. Now let € U. Then,

U={yeVy:af™ <y <af" for some m,n € Z}.
Hence,
(g ={yg "y € Vo, of™ <y < af" for some m,n € Z}
={z€ Vo :af™ < zg" <af" for some m,n € Z}
={zeVo:afm"g " <z<af'g" for some m,n € Z}
={z€Va:(x)g g’ "y <z < (x)g g’ fg" for some m,n € Z}
={zeVo:(xg g fg " <z < (xg ) (g fg~")™ for some m,n € Z}

Thus (U)g~" is the infinite orbital of zg~ under ¢*fg~". O

I. The automorphisms f and g commute.
First we prove the following key lemma.

Lemma 9.18. Let ) be a total order. Let f,g € Aut(Q2) and let U be an
infinite orbital of f. If f and g commute then (U)g = U.
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Figure 9.3: The Orbital Intersection in case (C)

T U

Proof. First note that since U is an infinite orbital of f, f # 1. If g = 1,
then clearly (U)g = U and there is nothing to do. So suppose that g # 1.
By Lemma 9.15, f and ¢ have only finitely many infinite orbitals. So let
{Uy,...,Uy,} be the infinite orbitals of f and let {71,...7,,} be the infinite
orbitals of g for some m,n € N. Now for k =1,...n, let 2, € Uy. By Lemma
9.17, (Ug)g is the infinite orbital of z;g under g='fg. But since f and g
commute this says that (Uy)g is the infinite orbital of ;g under f. Since f
has only the infinite orbitals {U;,...,U,} and since g is an automorphism,
we can conclude that g must permute the orbitals of f. But since there are
only finitely many orbitals of f, it must be the case that (Uy)g = Uy for
all k = 1,...,n. For suppose without loss of generality that U; < U; for
all i < j < mn. Let m = max{k € {1,...n} : (Up)g # Ux}. If m exists,
then (U,,)g = Uy for some k < m and there exists some j < m such that
(Uj)g = U,,. But this contradicts g being order preserving since U; < U,,
but (Uy,)g = Ui < Uy, = (U;)g. Hence m cannot exist and we deduce that
(Ug)g = Uy for all k =1,...n. The result now follows. O

Case (A)

In this case we have assumed that U C T and there exists s,¢ € T" such that
s <U < t. Then (s,t) € T and hence, by Lemma 9.11, Aut({(s,?))) = 1.
But by Lemma 9.10, if h € Aut((U)), then the map h : (s,t) — (s,t) defined

by,

Uﬁ:{vh ifvel,

v otherwise,
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is an automorphism of ((s,t)). Thus we can conclude that Aut((U)) = 1.
But this is clearly a contradiction since by Corollary 9.8, f|y € Aut({(U))
and f|y # 1 since U was an infinite orbital of f. Thus we have quickly ruled
out this scenario for the orbitals U and 7.

Case (B)

In case (B) we suppose that, U C T and there exists t € T" such that U < t.
Let z € U. Then since x € T and since T' is an infinite orbital of g, there
exists m € Z such that ¢ < z¢g™. But By Lemma 9.18, xg™ € U and hence
xg™ < t. A contradiction. Hence this case also ruled out.

Case (C)

In case (C') we suppose that, U C T and there exists s € T" such that s < U.
Let x € U. Then since x € T and since T is an infinite orbital of ¢, there
exists n € Z such that x¢g" < s. But by Lemma 9.18, x¢g"” € U and hence
s < xg™. A contradiction. Hence this case cannot occur.

Case(D)

In this case we have assumed that U ¢ T and T' ¢ U and there exists u € U,
t €T such that u < UNT <t. Let x € UNT. Then since z € T" and since
T is an infinite orbital of g, there exists m € Z such that t < z¢™. But by
Lemma 9.18, xg™ € U and hence x¢g™ < t. A contradiction. Hence this case
cannot occur either.

We have thus shown that for all four cases, the assumption that f and g
commute leads us to a contradiction. Thus we can now conclude that if f
and g commute and U NT # () then U =T.

II. The automorphisms f and g do not commute.

Suppose on the other hand that f and ¢ do not commute. Then, f,g €
Aut(Q)\ 1, f # g and f~! # g. For the proof that follows, we can assume
without loss of generality that U and 7' are positive orbitals, since otherwise
we simply consider f~! or ¢g~!. Similarly, we can assume that U and T are
the only infinite orbitals of f and g, since otherwise we can consider the maps
f» and g, from Lemma 9.12, for some z € U and some y € T'.
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Case (A)

A contradiction is obtained exactly as in case I.(A).

Case (B)

In case (B) we suppose that, U C T and there exists t € T such that U < t.
In this case we will consider the automorphisms ¢¢fg~—* for i € N.

Lemma 9.19. For i € Z, let 0; = g'fg~*. Then 0; has one infinite orbital
which is equal to (U)g™".

Proof. By Lemma 9.17, (U)g~" is an infinite orbital of ;. Now suppose that
u € Vo and u ¢ (U)g™. Then ug’ ¢ U and since U was the only infinite
orbital of f by assumption, it follows that ug'f = ug’. Then ug'fg~" =
ug'g™" = w for all uw &€ (U)g~". Thus (U)g~* is the only infinite orbital of

Using the automorphisms 6;, we will show that we can produce 2% auto-
morphisms of {2, and hence provide the contradiction we require. Let > C N
be an infinite set where ¥ = {0, : n € N} and 0, < 0,41 for all n € N.
Define the function

hy = lim 0,, ... 0y,
n—oo

First we observe that this function is well defined. For let v € V. If u & T,
then ug = u so that in particular ug ¢ U. If u € T then, since T is a positive
orbital and by Lemma 9.6, there exists some k € N such that ¢t < ug®. But
since U < t it follows that ug® ¢ U. So for u € Vg, let

m(u) = min{n € N: ug™ ¢ U}.

Then by our previous observations m(u) exists for all u € V. Moreover, for
all i € N such that i > m(u), u € Ug™*, and hence by Lemma 9.19, uf,, = u.
Thus for each u € Vg,

(whs = (u) lim 05, -+ 055 = (u)05,, ., - Oop-

n—o0

Hence the function hy is well defined at every point u € Vj.

Furthermore since each 0,, is an automorphism, it follows that hy is an
automorphism of Q. For if u,v € Vy, let | = max{m(u),m(v)}. Then if
u < v it follows that,

(u)hE = (u)eﬂl e eio < (U)QUZ e 900 = ("U)hz.



Conversely if (u)hy < (v)hy then,
(u)egz T 900 = (u)hg < (U)hg = (U’)HUZ T 9007
and we can deduce that v < v.

Now let ¥ C N where ¥ = {4, : n € N} and v, < 1,41 for all n € N,
We will show that if ¥ # W then hy # hg. If ¥ # W, then r = min{n €
N:ne (XBuUWw)\ (ZNWY)} exists. Without loss of generality assume that
r € ¥ so that r = g, for some p € N. Pick u € Vg such that ug°” € U and
ug?»™ & U. To see that u exists, let v € Ug=°». If vg°»™! & U, the we are
done. Otherwise vg?» ™ € U and s0 0,41 < 0y Now let w = vgomw —or—t
then wg» = wg’»@ =1 € U and wg»*! = wg=w ¢ U, as required. Now if
we apply the maps hy, and hy we find that,

why =w lim 05, -+ 05 = wly,0,,_, 05 and,
n—o0

why :wnliﬁr{)lo Op Oy = Wls, -+ Oy,
since iy, = oy, for all £ < p and since ¢, > o, for all & > p. Suppose that
why = why. Then since the 6, are automorphisms it follows that wf,, = w.
In other words wg? fg=?” = w and hence wg?” f = wg’. But this brings
us to the conclusion that wg? ¢ U, which is clearly a contradiction. Hence

why, # why and so hy # hy.

Thus since the set {hy : ¥ C N, ¥ infinite} has size 2%, we have con-
structed 2% distinct automorphisms of €. Since Aut(f2) was countable by
assumption, we can conclude that this configuration for the orbitals of f and
g is impossible.

Case (C)

In case (C') we suppose that, U C T and there exists s € T" such that s < U.
This setting is effectively dual to case (B). As a result we can rule out case
(C) by making analogous arguments for the automorphisms ¢; = g~'f g’

which have orbital (U)g".
Case (D)

In this case we have assumed that U ¢ T and T' ¢ U and there exists u € U,
t € T such that u < UNT < t. Consider [g, f] = g7'f~1gf. We claim that
[g, f] has an infinite orbital S, and that it lies in 7.
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Lemma 9.20. [g, f] has an infinite orbital S which is a subset of T and there
exists r € T such that S < r.

Proof. First we note that since [f, g] # 1, it follows that there exists v €
Vo such that v[f,g] # v. Thus by Lemma 9.2, the orbital S, of [f,g] is
infinite. Now suppose that v € Vi and that v < UNT. Then v & T
and so vg ' f~lgf = vflgf. But since vf~! < v < U it now follows that
(vfHgf =vff and hence vf~lgf = v. Thus v[g, f] = v for all v € Vg
such that v < U NT. Similarly if w € V and tg < w, then U < t < wg™*
and hence wg='f~lgf = wg 'gf = wf = w. Thus since tg € T, any infinite
orbital S of [f, g] must lie in T and S < tg. O

Thus the orbitals S of [f,g] and T of g, fall into case (B) previously
discussed. We proved that this would lead us to contradict Aut(2) being
countable and so we can now discard case (D) as a possible configuration.

We have thus shown that for all four cases, the assumption that f and
g do not commute, leads us to a contradiction. Thus we can now conclude
that if f and g do not commute and U NT # () then U = T and the proof
of Theorem 9.16 is complete. In due course we shall in fact observe that if
Aut(Q) is countable then f and g always commute. However the proof of
Theorem 9.16 in both cases is a necessary step towards this result.

9.4 The Automorphism Group of an Orbital

The work from the previous sections will aid us in determining the auto-
morphism group of an orbital U when Aut(2) is a countable group. We
will show that Aut((U)), when equipped with a particular total order, is an
Archimedean group. This together with the results on Archimedean groups
introduced in Chapter 2, will help us to show that Aut((U)) = Z. First we
have the following useful lemmas.

Lemma 9.21. Let Q be a total order. Suppose that f € Aut(Q2) and that U
is an infinite orbital of f. If Aut(£2) is countable, then Aut((U)) is countable.

Proof. Suppose that ¢ € Aut((U)). Then by Lemma 9.10, the map ¢ : Vi, —
Vg defined by
. {vqb if v e U,

v = .
v otherwise,

is an automorphism of Q. Furthermore if ¢,0 € Aut((U)) and ¢ # 6, then

dlu # 0|y and so ¢ # . Thus if Aut(Q) is countable, it follows that Aut((U))
must also be countable. [
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Lemma 9.22. Suppose that f € Aut(Q2) and that U is an infinite orbital of
f. Let ¢ € Aut({(U)) \ 1. If Aut(QY) is countable then the map ¢ : Vo — Vo
defined by

V) =

v otherwise,

. {w ifvel

is an automorphism of 1 and has infinite orbital U. Thus either y < y¢ or
yo <y forally € U.

Proof. Tt follows immediately by Lemma 9.10 that ¢ € Aut(€2). Furthermore,
since ¢ # 1y it follows that gg # 1y, and so by Corollary 9.3, gg has an infinite
orbital. But since vngS = v for all v € Vo \ U, any infinite orbital ngS must be
contained in U. Thus ngS has an infinite orbital, T" say, contained in U. Now,
by Theorem 9.16 we can conclude that T"= U. Thus U is an infinite orbital
of é and so by Lemma 9.2, either y < y<§ or ng < y for all y € U. In other
words y < y¢ or yp < y for all y € U. m

Lemma 9.23. Suppose that f € Aut(Q2) and that U is an infinite orbital of
f. Lety € U. If Aut(2) is countable then,

stabaus(y) (y) = {¢ € Aut((U)) : y¢ =y} = 1p.

Proof. Seeking a contradiction, suppose that there exists ¢ € Aut((U)),
where ¢ # 1y and y¢ = y. The map ¢ : Vo — Vg defined in Lemma
9.22 by

v = .
v otherwise,

) {v(b ifveU

is an automorphism of ) with infinite orbital U. Thus ygg #yforallyeU.
But this says that y¢ # y, a contradiction. Thus it follows that ¢ = 1 and
the proof is complete. O

Corollary 9.24. Suppose that f € Aut(2) and that U is an infinite orbital
of f. Let x € U. If Aut(Q) is countable then the map & : Aut((U)) — U
defined by (¢)€ = x¢ for all ¢ € Aut((U)) is an injective map.

Proof. Suppose that ¢,0 € Aut((U)) are such that (¢){ = (6)¢. Then z¢ =
26 and so z¢f' = z. But since by Lemma 9.23, stabauuy)(z) = 1y, it
follows that ¢f = 1y and hence ¢ = 0. Thus £ is injective as claimed. m

The map & from Corollary 9.24, allows us to induce an order on Aut((U))
in the following way. Fix z € U. This element € U will now be fixed
until otherwise stated. For ¢,0 € Aut((U)), we define ¢ < ¢ if and only if
xo < x0.
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Lemma 9.25. Let Q be a total order. Suppose that f € Aut(Q2) and that
U is an orbital of f. If Aut(?) is countable then (Aut((U)),-,<) is an

Archimedean group.

Proof. We begin by checking that (Aut((U)), <) is a total order. It should
be clear that < is reflexive since €2 is a total order and hence z¢ < z¢ for
all ¢ € Aut((U)). It is similarly easy to show that < is transitive since for
all 9,0, € Aut((U)), z¢ < x6 < z1) implies that z¢ < x1p. To check
symmetry let ¢,0 € Aut((U)) and suppose that ¢ < 6 and § < ¢. Then
x¢p < z6 and 0 < x¢. Since () was a total order it thus follows that
x¢ = xf. Consequently, by Corollary 9.24 we can now deduce that ¢ = 6.
Finally, totality of (Aut((U)), <) follows from totality of ((U), <).

We now check that < is translation invariant. So let ¢,0,1 € Aut((U))
and suppose that ¢ < 6. Then z¢ < z6 and since ¥ is an automorphism
xpp < xfp. Thus it immediately follows that ¢y < 6. Furthermore, it
follows that x < 20¢~'. Thus by Lemma 9.22, y < yf¢ ! for ally € U. Hence
xp < 2P0~ since 1) is an automorphism, ¢ < zd. Thus ¢ < 10 and
hence < is indeed translation invariant. Thus Aut((U)) equipped with < is
a totally ordered group. Finally, suppose that 0, ¢ € Aut((U)) are positive
elements and that ¢ < 6. Let (;B : Vo — Vo be the map defined in Lemma
9.22 by,

vgzgz {vgb ifvel,

) otherwise.

Then Lemma 9.22, ¢ € Aut(Q) and U is an infinite positive orbital of .
Thus there exists 7,7 € N such that z¢' < 6 < z¢/. But this says that
20 < 2@, and hence § < ¢’. We have now completed all steps to show that
(Aut((U)), -, <) is an Archimedean group. O

By applying Lemma 9.25 together with Theorem 2.2 we can deduce that
if Aut(2) is countable and f € Aut(2), then for an infinite orbital U of f,
either Aut((U)) = Z or (Aut((U)), <) is dense. We will now show that the
assumption that (Aut((U)), <) is dense leads to a contradiction, and thus to
the conclusion that Aut((U)) = Z.

To do this we will consider the structure of the induced total order (U),

when (Aut((U)), <) is dense. We first we examine the action of Aut((U)) on
the elements of U. For y € U, define

orb(o () = {yé: 6 € Aut((U))}.
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That is, orbauuy)(y) is the orbit of y under the natural action of Aut((U)).
Then, U = U, ey orbau(wy) (y). When (Aut((U)), <) is dense, the following

lemmas hold.

Lemma 9.26. Suppose that (Aut((U)),<) is dense. Lety € U. Then,
{orbauwy) (¥)) = (Q, <).

Proof. First we recall from Corollary 9.24 that the map & : Aut((U)) — U
defined by (¢)¢ = z¢ for all ¢ € Aut((U)) is an injective map. Furthermore,
for 9,0 € Aut((U)), ¢ < 6 if and only if z¢ < zf. That is ¢ < 0 if
and only if (¢)¢ < ()¢ and hence ¢ is an embedding of (Aut((U)), <) into
(U). Furthermore im¢ = orbaywy (). Thus & defines an isomorphism
between (Aut((U)), <) and orbauwy)(z). We will show that (Aut((U)), <)
= (Q,<). It suffices to show that (Aut((U)),<) is countable, dense and
without endpoints. By assumption (Aut((U)), <) is countable and dense.
Now suppose that ¢ € Aut((U)). Since U is an infinite orbital of f, it
follows by Corollary 9.8 that f|y € Aut((U)). Furthermore, since U is an
infinite orbital of f, there exists m,n € 7Z such that zf™ < z¢ < zf".
Hence (f|o)™ < ¢ < (f|v)™ and so (Aut((U)), <) is without endpoints as
required. O

Lemma 9.27. Suppose that (Aut((U)), <) is dense. Let y,z € U. Then
for 9,0 € Aut((U)) such that ¢ < 0, there exists » € Aut((U)) such that

yo < 2z < yb.

Proof. If y € orbayywy)(2), then since orbayyuy)(2) = Q by Lemma 9.26
the result follows immediately. So suppose that y & orbayewy)(2) and so
orbaue(wy) (¥) # orbaugwy)(2). Note that if there exists ¢ € Aut((U)) such
that y < 2 < y8¢~! then y¢ < 210 < yf. Thus it suffices to show that for
all positive 8 € Aut((U)), there exists ¢ € Aut((U)) such that y < z¢ < y#.

We split the proof into two cases. First the case that z < y and second
the case where y < z. So suppose that z < y. Then 20 < y0. If y < 20 < yb
we are done by setting ¢ = 0. Otherwise 26 < y and hence 26% < yf. If
y < 260% < y0, then we are again finished by setting 1) = 62 otherwise 26% < y
and hence 20% < yf. Continuing this argument we find that either there
exists m € N such that y < z6™ < yf or 26" < y for all n € N. We will show
that the latter case cannot happen. Consider the map gfg : Vo — Vg defined

in Lemma 9.22 by
~ {vgb ifveU
vl =

v otherwise .
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Then by Lemma 9.22 g is an automorphism of () with infinite positive orbital
U. Consequently, there exists ¢+ € N such that y < zéi, or in other words y <
20", Thus we can conclude that there exists m € N such that y < z0™ < y6
and we can take ¢ = ™.

Now suppose on the other hand that y < z. If y < 2 < y#, then we are
finished by setting h = 1. So suppose that y < yf < z. Then y < 2671
If y < 207 < yB, then take ¢» = 1. Otherwise y0 < 2071 and y < 2072,
Continuing this argument as before we find that either there exists m € N
such that y < z60™™ < y#, or yf < z0~" for all n € N. In the latter case
this means that y" < z for all n € N. But above we saw that the map 6
is an automorphism of {2 with infinite positive orbital U. Hence there exists
j € N such that y < 267, or in other words y < z69. Thus we conclude that
there must exist some m € N such that y < 207 < yf. Taking ¢ = =™
completes the proof. O

In other words, Lemma 9.27 says that for any y,z € U and for any two
elements u,v € orbaye(y)(y) such that u < v there exists w € orbauguy)(2)
such that ©v < w < v.

Now consider the set,
Xo={S CU:Sisaninterval in U, SpNS =0 for all p € Aut((U)) \ 1}.

Since {y}f # {y} for all y € U, it follows that X, is not empty. If we order
the elements of S by inclusion, i.e. we let S < T if and only if S C T', then it
is easy to see that (Xj, <) is a partially ordered set. Now let Sy < 57 < ...
be a chain in (X, <) and consider J)~, S,. Clearly S, C J>~, S, for all
n € N. Moreover, | J~, S, is a interval in (X, <). For if r.t € |J,—, S,
then there exists some & € N such that r,t € S,. Thus since S is an
interval in U, if s € U and r < s < t, it follows that s € S,, and hence
s € U2, Sn. Additionally, if ¢ € Aut((U)) \ 1, then we can show that
(U2 Sn)en (U, Sn) = 0, in the following way. Seeking a contradiction,
suppose that (U)~, Sn)¢ N (Us—, Sn) # 0. Then there exists some s €
U2, S, such that s € S; and s € Sy, for some j, k € N. Suppose without
loss of generality that j < k (otherwise consider ¢—!). Then by assumption
S; C Sk. But this says that s € Sp¢ N S, a contradiction to the definition
of Sy. Hence (>, Sn)o N (U,~, Sn) = 0 as required.

It now follows that every chain Sy < 57 < ... in Xj has Ufil S; as an
upper bound. Thus by Zorn’s Lemma X, contains a maximal element, M,
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say. Define

To=U\ |J orbawquy®) =U\ | Motom.,
m=0

yEMo

where we let Aut((U)) = {¢,, : m € N}.

Now for a countable ordinal o suppose that for all ¢ < a we have con-
structed sets X; and M, such that M, is a maximal element of X, and such
that

T =U\J | Miw # 0.
i<am=0

Let
X0 ={SCT,:Sisaninterval in U, Sp NS =0 for all p € Aut((U)) \ 1}.

Then, once again, by ordering the sets in X, by inclusion we find that Zorn’s
Lemma guarantees the existence of a maximal element M,. Since U is a
countable set, there must exist a countable ordinal A such that,

T :=U\{J U Mo =0,

<A m=0
and thus -
U=J U M
i<\ m=0

Observe that since ¢, € Aut((U)) for all m € N, (M;¢p,,) = (M;) for all
t < A and for all m € N.

Lemma 9.28. Let i < A and let ¢ € Aut((U)). Then M;¢ is an interval in
U. Furthermore if j < X then M;¢p N M;0 = 0 for all 0 € Aut((U)) such that

0+ 6.

Proof. Since M; is an interval in U and since ¢ € Aut((U)) it follows imme-
diately that M;¢ is an interval in U for all ¢ € Aut((U)). Furthermore, by
definition of M;, M;0¢~' N M; = () for all ¢,0 € Aut({(U)) such that ¢ # 6.
Thus, M;0 N M;¢ = for all ¢,6 € Aut((U)). Now suppose that i # j. Then
we can suppose without loss of generality that ¢ < j. By construction, M; is
an interval in U\ Uy..; Up—o Mi¥m, where we set Aut((U)) = {¢h, : m € N}.
Thus M;p0~ N M; # (), and hence M;¢ N M;0 = 0 as required. O
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We will examine U = (J,_, U,-_o Mitn, to show that if (Aut((U)), <) is
dense, then Aut((U)) is uncountable.

Lemma 9.29. Suppose that (Aut((U)), <) is dense. Let ¢ € Aut((U)) and
let i < \. Then there exists 0,1 € Aut((U)) such that M;0 < M;¢p < M;1).

Proof. Let y € M;. Then since (orbauewy(y)) = (Q, <) by Lemma 9.26,
and is thus without endpoints, there exists 6,1 € Aut((U)) such that yf <
yo < yi. By Lemma 9.28, M0 and M;¢ are disjoint intervals in U and
hence we can conclude that M0 < M;¢. Similarly M;¢p < M;1) and the
result follows. O]

Lemma 9.30. Suppose that (Aut((U)), <) is dense. Let ¢,0 € Aut((U))
and let i < \. Then there ezists ¢ € Aut((U)) such that M;¢p < Mpp < M;0.

Proof. Let y € M;. Then since (orbauyuy)(v)) = (Q, <), and is thus dense,
there exists ¢ € Aut((U)) such that y¢ < yy» < yf. But by Lemma 9.28
M;¢, M;0 and M;y) are disjoint intervals in U and so it follows that M;¢ <

Corollary 9.31. Suppose that (Aut({(U)), <) is dense. Then,

Proof. Since Q is the unique countable dense total order without endpoints,
we need only show that ({M;1,, : ¢ < A\;m € N}, <) is countable, dense and
without endpoints. First notice that {M;1,, : i < A,m € N} is countable
since U is countable. Furthermore, by Lemma 9.30, {M;1,, : i < A\, m € N}
is dense and by Lemma 9.29, {M;1,, : i < A\,m € N} is without endpoints.
The result now follows immediately. O

Lemma 9.32. Suppose that (Aut((U)), <) is dense. Let ¢,0 € Aut((U))
and let 1,5 < X. If M;¢p < M,0 then for all k < X there exists 1y, € Aut((U))
such that M;p < My, < M;0.

Proof. Suppose that M;¢p < M;0. If i = j, let y € M;. Then by Lemma
9.27, for all k& < X there exists z, € M, and ¢, € Aut((U)) such that
Yo < zpr < y6. By Lemma 9.28 we know that M;¢p, M;0 and My (K < )
are disjoint intervals in U. Thus it now follows that M;¢ < M, < M;0 for
all & < .

Suppose on the other hand that ¢ # j. If there exists [ < A and ,¢’ €

Aut((U)) such that M;¢p < Mpp < Mp)' < M;0, then we are done by
applying the above argument to My and M;y)'. So suppose not. Then for
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each | <\, [ # 1,7, there exists at most one ¢; € Aut((U)) such that M;¢ <
My, < M;6. So let m < X and let {M},, : n < m} be the maximal subset of
{My : k < A\ k # 1,7} such that for all k,, there exists v, such that M;p <
My, by, < M;6. Then since U is an interval and U = U,y Uyeauwy Mt
it follows that

N = ( U Mknwkn> U M;é U M;0
n<m
is an interval in U. Furthermore by definition, (M;¢)m N M;¢ = 0, (M;0)7 N
M;0 = 0 and (My, 1y, )7 N My, 2p = 0 for all n < m and for all 7 € Aut((U)),
7 # 1y. Thus by applying Lemma 9.28, we can conclude that (M;¢)mr NN =
0, (M;0)r " N = 0 and (My, Y, )¢ NN = 0 for all n < m and for all
7€ Aut((U)), m # 1y. Thus N#NN = () for all 7 € Aut((U)), m # 1y. But
then since M;, M;07~! C N1 it follows that M;, C N7—'and N#~'NN =0
for all 7 € Aut((U)), m # 1y. This contradicts maximality of M;. Thus we
can conclude that there must exist [ < A and v¥,¢’ € Aut((U)) such that
M;¢p < Mpp < Mpp" < M;60 and the result follows. O

Corollary 9.33. Suppose that (Aut({U)), <) is dense. Let ¢ € Aut((U))
and let i < X. Then for all k < X\ there exists Oy, m, € Aut((U)) such that
ngk < M,qb < Mymy,.

Proof. By Lemma 9.29, there exists ¢',¢” € Aut((U)) such that M;¢’ <
M;¢p < M;¢". Then by Lemma 9.32, for all k& < )\ there exists 0,7, €
Aut((U)) such that M;¢ < Myt < M;¢ and M;¢p < Mym, < M;¢", and the
result follows. n

9.5 Interlude on Coloured Total Orders

Before we can continue on our way towards the proof of Theorem 9.51, we
must now introduce a new type of relational structure — a A-coloured total
order. In particular, we will introduce the A-coloured rationals. In the next
section we will show that the A-coloured rationals are closely connected to
the orbital U of an automorphism f € Aut(U).

Definition 9.34. Let )\ be a countable ordinal. Then an A-coloured total
order is a relational structure I' = (Vr, <p,(C};)i<)), where the following
conditions are satisfied.

(i) (Vr,<r) is a total order,

(11) VF = Uz‘<)\U’i with UzﬂUj = (Z) for i 7éj,
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The elements u € Uj;, for i < A, are said to have colour .

It is not hard to see that if Q = (Vi, <) is a total order, A is a countable
ordinal and Vi, = |, <y Ui is any partition of Vg, then the relational structure
Fo = (Vo, <, (Cy)icn) formed by setting C; = U; x U; for all i < A, is an
A-coloured total order.

Lemma 9.35. For a countable ordinal X\, let T' = (Vr, <,(C})i<r) be a A-
coloured total order and let f : Vi — Vi be a function. Then f € Aut(T') if
and only if f defines an automorphism of the total order (Vi, <) and U; f = U;
for all i < \.

Proof. Suppose first that f € Aut(I'). Then f is a bijective function Vp —
Vr and it holds that u < v if and only if uf < vf. Thus f defines an
automorphism of (Vr, <). Now for i < A, let u € U;. Then (u,u) € C; and
hence (uf,uf) € C;. In other words, uf € U; and thus U, f = U; as required.

Now suppose that f defines an automorphism of (Vf, <) and U;f = U;
for all « < A. Then f is a bijective function VI — Vp and it holds that u < v
if and only if uf < vf. Furthermore since U;f = U; for all i < A, it follows
that (¢,u) € C; if and only if (¢ f,uf) € C;. Thus f defines an automorphism
of I and the result is complete. O

Lemma 9.35 tells us that any automorphism of a A-coloured total or-
der, must map elements of colour i to elements of colour 7. An important
consequence of Lemma 9.35 is the following.

Corollary 9.36. Let I' = (Vr, <, (C;)i<a) be an A-coloured total order. Then
there exists an embedding of Aut(I') into Aut((Vr, <)).

Proof. Define an embedding ¢ : Aut(I') — Aut((Vr, <)) by f¢ = f. By
Lemma 9.35 ¢ is well defined. It is straightforward to see that ¢ is an
injective group homomorphism and so the result follows immediately. O]

It is not hard to show that the class of finite A-coloured total orders, for

any countable ordinal A, has the hereditary, joint embedding and amalgama-
tion properties. Consequently, the class of finite A-coloured total orders has
a Fraissé limit.
Definition 9.37. Let A be a countable ordinal. We define Q) = (Vg,, <,
(Ci)ica) to be a A-coloured total order with (Vg,,<) = Q, and such that
for all v,w € Vg,, v < w, and for all ¢+ < A, there exists u € U; such that
v < u < w. The A-coloured total order Q) is known as the A-coloured
rationals.
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It can be shown that, for countable ordinals A and « such that || = |«|,
every finite a-coloured total order can be embedded into Q). Therefore is
the unique homogeneous Fraissé limit of the class of a-coloured total orders
where |A| = |a| and therefore Q) exists. In the next theorem, we will show
that the automorphism group of Q, has cardinality 2%. In order to prove
this, we will need make the following definition.

Definition 9.38. Let A, = (V,, <a,, (Din)icx) be a A-coloured total order
for all n € Z, where D;,, = U;,, x U, ,, for all i < A. Suppose that the sets
Vi, are mutually disjoint for all n € Z. We define

@ An = (V@nez An> ja (EZ)Z<>\)
neL

to be the A-coloured total order formed from the A, by setting Vig _ A, =

Unez Van, Ei = (UnEZ Um) X (UnEZ Ui,n) and where for u,v €, u < v if and
only if either,

u,v € V}, for some n € Z and u <,, v or,

u€ Va,,veVy and m <n.
Notice that by definition Vy,, < Vi, for all m <n
Theorem 9.39. For all countable ordinals X\, Aut(Q,) has cardinality 2%°.

Proof. For n € Z, let Qy, be a copy of the A-coloured rationals so that
Qan = Vo, <, (Cin)icn)- First we claim that

@Q)\,n = < U [Nt (Ei)i<)\> = Q.

nez ne’

Since @, is the unique homogeneous Fraissé limit of the class of finite A-
coloured orders it suffices to show that @, ., Q. satisfies the properties
described in Definition 9.37. In other words, we need only show that

nez

and show that for all v,w € J,c; Va,, With v < w, and for all i < A,
there exists u € E; such that v < u < w. It should be clear that since
(Var., <) = Qforalln € Z,

(U V@M,j> ~Pa

ne” ne”Z
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It can easily be shown that €, ., Q is dense and without endpoints. Thus
since QQ is the unique total order which is both dense and without endpoints,
it follows that (U,cz Vo, =) = Q as required. Now suppose that v, w €
Unez Vors v < wand @ < A If v,w € Vg, for some n € Z, then by
definition of Q) ., there exists u € C;,, such that v < v < w. Thus v € £
and v < v < w. Now suppose instead that v € Vg, ., w € Vo, , for some
m,n € Z, m # n. Since (Vg, ,,, <) = Q it follows that there exists z € Vg, ,,
such that v < z and hence v < . Furthermore, since Vg, , < Vg, , it
follows that < w. Now by definition of Q) ., there exists u € C;,, such that
v<u<ax Thusu € F; and v < u < w as required. In either case we have
shown that for all v,w € |J,c; Vo, .., ¥ < w, and for all i < A, there exists
u € B; such that v < v < w. Thus

Pa..= ( U Ve, = (Ei)i<)\> =Qi,

neL neZ

as claimed. We will show that Aut(€D,., Q) has cardinality 2% and the
result will then follow.

Now consider a sequence of automorphisms f = (fn)nez such that f, €

Aut(Qyp) for all n € Z. Define a map f : @, ., Qxn — @,c, Qi by
of = vf, where v € Va,,.- Since f, € Aut(Qy,) for all n € Z, it follows

that for all n € 7Z, f maps the set Vg, . back to itself. It should thus be easy

to see that f is a well defined automorphism of €, ., Qxn. Furthermore,
if g = (gn)nez is another sequence of automorphisms such that such that
gn € Aut(Q,,,) for all n € Z, and there exists m € Z with f,, # gm, then
clearly f # g. Now since Q,, is a copy of the A-coloured rationals, it is
homogeneous for all n € Z. In particular this means that | Aut(Q,,,)| > 2
for all n € Z. Thus there exist 2% distinct sequences of automorphisms
f = (fu)nez such that f, € Aut(Q,,) for all n € Z. Consequently, {f‘ :
f = (fu)nez, fn € Aut(Qy,,) for all n € Z} is a set of size 2™ contained in

Aut(6P,,c;, Qrn) and since B, ., Qrn = Q) the result now follows. O

Definition 9.40. Let )\ be a countable ordinal and for each 7 < A, let €2; be
a countable total order. By Q) ((€2;)i<x) we will mean the relational structure
formed from Q,, where each u € U; is replaced by a copy of €2;. More formally,
suppose that for i < A\, U; = {u, : m € N} and let Q; = ({2 : 7 € N}, <)
(replacing the natural numbers with a finite set if €); is finite). For each i € N,
form a copy of §2; as follows. Let X, = {Zim, : 7 € N} and set 2 < Tins
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if and only if z;, < z;. Now let X, < X, if and only if 4, < u;,. Then

QA ((2)icn) = ( U UX'im , <, (Di)i<)\> :

m=0 i<\

where

Lemma 9.41. Let €, i < A, be countable total orders. Then Qx((€2;)i<x) is
a countable \-coloured total order.

Proof. First we note that since €); is countable for all i < A and since Q,
is countable, @((€2;);<x) is a countable relational structure. We will now
check that (U _o U<y Xim , <), is a total order. It should be clear that <
is reflexive since €; is a total order and hence for all i« < X\ and for all r € N,
Zir < 2 and hence T, < Xjpmr. To check symmetry suppose that T, < Tjns
and jns < Tipr. Then i, < ujp and wj, < Uy, Since Q) is a total order
it follows that w;, = u;, and hence 7 = j and m = n. It now follows that
Zir < Zis = 2js and zj5 = 2;5 < 2. But since §2; is a total order, this implies
that 7 = s. Thus @, = Zjms and symmetry is satisfied. To see that < is
transitive, suppose that x;n, < xj,s and xj,s < Tpe. Then wp, < wjn < ugy
and hence u;, < ugy. If i # j or m # n then X, < Xj, < X, and hence
Timr < Tppe. Similarly if j # k or m # p then X, < X, < X}, and hence
Timr < Tipt. SO suppose that ¢ = j = k and m = n = p. Then it must be the
case that z;, < z;s < z;; and since (; is a total order it follows that z;, < z;.
Hence @y < Time = Ti and transitivity is satisfied. Finally, totality follows
from the totality of the orders on Q, and §2; for all ¢ < A. To finish the proof
we observe that if ¢, j < A and i # j, then (U, _q Xim) N (U g Xjm) = 0,
since Wi, 7# wjp if © # 7. O
Lemma 9.42. Let i,j7 < A and let m,n € N. If X;,, < Xj, then for all
k < X there exists p, € N such that X, < Xj,, < Xj,.

Proof. 1f X;, < Xj,, then u;,, < uj, and so by definition of Q,, for all & < A
there exists p; € N such that u;,, < up, < ujn. Then X, < X, < X, as
required. O]

Lemma 9.43. Let ©+ < A and let m € N. Then for all k < X\ there exists
D> @k € N such that Xy, < Xim < Xiq, -

Proof. By definition of Q, there exists j < A and n € N such that u;, < w;,.
Thus X, < X}, and so by Lemma 9.42 for all £ < X there exists g, € N such
that X, < Xig < Xjn. A dual argument shows the existence of p, € N
such that X, < X, for all & < A O
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Lemma 9.44. Let A\ be a countable ordinal and let €;, i < X\, be countable
total orders. Then there exists an embedding Aut(Qy) — Aut(Qx((2i)i<r))-

Proof. Let f € Aut(Q,). Then by Lemma 9.35, U;f = U; for all i <
A Let ¢ @ Aut(Q)) — Aut(Qx((£2;)i<r)) be the map defined on f €
Aut(Q,) by setting (Tim,)fd = Tiny, where wi,f = uy,. We claim that
fo € Aut(Qa((£2:)i<n)). To see that f¢ is injective first note that by defi-
nition of f¢, (Timr)fP = (x)ps) f¢ implies that ¢ = j and » = s. Suppose
that (Zim:) fO = Tinr = (ipr) fP. Then wi f = w;pf = wiy, and since f was
injective we can deduce that m = p. Thus 2, = 2, and it follows that
f¢ is injective. Furthermore, f¢ is surjective. For consider any element ;.
Since f is an automorphism of Q,,, there exists u;, such that w;,f = u;,.

Then (i) fO = Ting-

We must now check that f¢ is an automorphism of the A-coloured total
order @, ((€2)i<x). So suppose that iy, < z;ps and that . f¢ = z;,, and
Tjps [ = xjqs. We seek to show that x;,, < 4. Since zy,, < 2,5 we know
that w;, < u;, and since f is an automorphism it follows that wu;,, < wj,.
Thus X, < Xj,. If i # j or n # ¢ then X;,, < X, and hence z;,, < xj4s. If
¢ = j and n = ¢ then u;, f = u;, = u;, = u;,f and hence since f is injective
we can conclude that m = p. But since @y, < Tjps = Tims it must be the
case that z;, < z; and hence xip, < Tjs = Tj¢s as required. Now suppose
instead that x;,, < %j4s, Where Tjp, f¢ = Tipr and zjp fO = @45, We will
show that xip, < 2jps. Since T, < xj4s, we know that wu;, < uje, and since
f is an automorphism it follows that w;, < u;,. If ¢ # j or m # p then
Ui, < Ujp. Thus X, < X, and we can deduce that @, < z;ps. If on the
other hand 7 = 5 and m = p, then w;,f = u;,f and hence we can conclude
that n = p. Since 4, < xjps = Tins it must be the case that z;, < z;, = 2,
and hence it now follows that m,, < Timns = Tjps as required. We must also
show that (i, Tins) € D; if and only if (i f@, Tins f@) € D;, where for

1< A,
m=0 m=0

This should be clear since by definition x;,,, € X;,, if and only if x;,,,.f¢ €
Xp for some p and similarly x;,s € X, if and only if 2,5 f¢ € X;, for some
q.

To finish the proof, we show that ¢ is an injective group homomorphism.
For suppose that f,g € Aut(Q,,) and that w,f = w;, and u;,g = ;. Then,
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Thus it easily follows that ¢ is a group homomorphism. It is injective since
if fo = go, then ;. fo = Timrg@ for all © < X and for all m,r € N. Thus
Uim [ = wimg for all ¢ < A and for all m € N. In other words f = g and we
can conclude that ¢ is an injective group homomorphism. ]

9.6 The Automorphism Group of an Orbital
and the A-coloured Rationals

We now return to the orbital U of an automorphism f € Aut(€2) and consider
the induced total order (U). Recall from page 142 that

U= UM,
m=0i<\

where Aut((U)) = {¢m, m € N}. Moreover, by Lemma 9.28,

for all i # j. Thus, the relational structure (U, <, (E;)i<»), formed by setting

E; = (D Mz’@%) X (G Mi¢m> :
m=0 m=0

is a A-coloured total order (to see this recall Definition 9.34). Since U is a
countable union of countable sets, we can write U = (J,cy M;,70;, where for
l €N, j; =i for some i < A and ¢;, € Aut((U)). It will be convenient for us
to write U in this way for the next few lemmas.

Since U is countable, for each i < X\ we can write, M; = {z;, : r € N}
(replacing the natural numbers with a finite set if M; is finite). Let X, =
{Ziny : v € N} where 4, < xns if and only if z;, < z;5. Now recall from
Definition 9.34, that

QA((M;)icn) = (U U Xin, <, (Di)i<)\>

i<An=0

is the A-coloured total order formed from the A-coloured rationals,

Q= <U{uzm :m € N}, <, (Ci)i<)\) ;

i<

150



by setting X, < Xj, if and only if u;, < wjs and where D; = (U7 Xin) X
(U,—o Xin) - It will be convenient to write

o
U U X’Ln = U Xikpkv
i<An=0 keN
where for k € N, i < X and p, € N. Note that this is possible since A is a
countable ordinal.

We will show that if (Aut((U)), <) is dense, then (U, <, (E;);<») is isomor-
phic to Qx((M;)i<»), the A-coloured total order formed from the A-coloured

rationals by replacing each element of colour ¢ < A by a copy of the total
order (M;).

Lemma 9.45. Let S C N be finite. Suppose that

@ < U Mjl¢jl> — QA((Xi)i<n)
les

is an embedding of A-coloured total orders such that for all v € N and for all

Le S, (zr)h)p = iy, iy for some k; € N such that iy, = j;. Suppose that

t¢S. If (Aut((U)), <) is dense then there exists an extension,

p: < U sz¢jz> — Qa({(Xi)i<r),
lesu{t}

of @ such that ¢ is an embedding and such that for all r € N, ((2;,,)¢;,)p =

iy, pp,r JOr some ky € N such that iy, = jy.

Proof. First note that by assumption, for each | € S, (M;,¢;)p = X, , for
some k; € N. Solet A={le€S: My, < M} andlet B={l € S :
M;pj, < Mj,p;,}. Then since S is finite, both A and B are finite. If a € A
and let b € B, then since M; v;, < M;,v; and ¢ is an automorphism, it
follows that X, ,, < Xi, p,, . Suppose that both A and B are non-empty.
Then by Lemma 9.42 there exists k; € N such that 7;, = j; and such that
Xirarra < Xigypr, < Xip,py, for all a € A and for all b € B. If on the other
hand A = () but B is non-empty, then by Lemma 9.43 there exists k; € N
such that ix, = j; and such that Xiktpkt < Xikbpka for all b € B. Similarly if
B = () and A is non-empty, then by Lemma 9.43 there exists k; € N such
that i, = ji and such that X, ,, < Xj, ,, foralla € A. In any case define

@+ (Uresury Mi¥i) = Qu((Xi)icn) by

(Zjﬂ“wjl)(p if I € S>

(Zjlﬂ/}jl)@ - { Hl=t

Lig, pry
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Then clearly ¢ is an injective function since ¢ is an injective function and
since by choice Xj, p, # X, p, forallleS.

Since ¢ was an embedding (| J;cq Mj%;,) — Qa({Xi)i<x), it follows that
if n,l € S and r,;s € N, then z;,¢;, < z, s, if and only if (z;,,¢;,)p <
(2insti, )p. Furthermore, 2,1, < zj,s%;, if and only if | € A. Hence z;,,1;, <
th3¢jt if and only if Xiklpkl < Xiktpkt‘ Thus it follows that Zj”«l/le < thsl/th
if and only if @, p, » < @i py, s, that is, if and only if (25,959 < (2),s05,)P-
A similar argument shows that zj,,1;, < z;¢;, if and only if (zj,,¢;,)¢ <
(2j,s¢;)@. Finally, since 1, is an automorphism for all I € S U {k}, it
follows that z;,v; < z;s1; if and only if 2z, < zj,. But by construction
Tjpr S Tjpys if and only if zj, < z;,. Thus since j; = iy, it follows
that j, p,r < Zjy py, s if and only if z;, < z;,,. Hence we can conclude that
Zjlr¢jl < Zjls¢jl if and only if (zjo¢jz)95 < (Zjlsq/)jz)@'

Furthermore, for all | € SU{t}, ((2j,r)¥j,)¢ = @iy p,,r for some k; € N such
that i, = j;. Hence it follows that (u,v) € (U *_y Mithm) X (U Mithy,) if
and only if (up,ve) € (U.—y Xin) X (U;—y Xin) - Thus ¢ is an embedding of
(Uiesugry Mitby,) into Qx({M;)i<x) as required. O

Lemma 9.46. Let S C N be finite. Suppose that

P < U sz¢jl> — Qa((Xi)icr)

les

is an embedding of A-coloured total orders such that for all v € N and for
alll € S, ((zjy)¥j,)p = Ty, iy for some p; € N. Suppose that X; ,,, ¢ ime.
If (Aut((U)), <) is dense then there exists t € N such that j = i, and an
extension

@ < U Mjlel> = QA((Xi)i<n),
leSu{t}
of ¢ such that ¢ is an embedding and such for all for allr € N, ((2;,,)¢;,)p =

Lippnr = Ljpppr-

Proof. By assumption, for each | € S, (M;¢;,)¢ = X, p, for some p; € N.
Nowlet A={l€S5: X, <Xp,}andlet B={l€S5:X;, <X, }
If a € Aand b € B, then since X, ,, <X, p, and ¢ is an automorphism,
it follows that M, v;, < M;;,. Furthermore, both A and B are finite
sets. Thus if A, B # () then by an application of Lemma 9.32, there exists
t € N such that j; = 7, and such that M; v, < M;;, < M;;, for all

a € A and for all b € B. If on the other hand A = () or B = () then by
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an application of Corollary 9.33, there exists ¢ € N such that j, = 4, and
such that thl/th < Mjbl/}jb for all a € A or thw]’t < Mjbwjb for all b € B,
respectively. In any case define ¢ : (Uesuqy Mi¥i) = Qu((Xi)i<a) by

~ 2, itles,
(Zjquvbjl)gb = {< ’ v >¢ -
Tjipr if [ =t.

Then ¢ is a well defined function since M;v;, # M; 1, for all I € S.
Furthermore, ¢ is an injective function since ¢ was injective and since by
assumption X; , ¢ im¢. It remains to show that ¢ is an embedding.

Since ¢ was a embedding (|J,cq M;,%j,) — Qa((Xi)i<r), it follows that
if n,l € S then 2,1, < 2z, ¢, if and only if (2;,,¢;,)¢ < (2i,s¢i,)p. Fur-
thermore, Tippiyr < Tinpps if and only if [ € A. Thus Tigpryr < Linpps if
and only if M;1; < M;1;, and hence if and only if z;,v; < z;s¢j,. In
other words z;,¢;,¢ < zj;s¥;¢ it and only if z;,v; < zj,s1¥;. A similar
argument shows that z;10;,¢ < 2,0, ¢ if and only if zj,.v;, < 2.1, .
Finally, since v, is an automorphism for all [ € SU{t}, it follows that for all
e SU{t}, zj,r;, < 2,5, if and only if z;,, < z;,,. But by construction of
lepkz’ Zj,r < 2,5 if and only if g, v < T jypy,s- Thus since j; = iy, it follows
that zj,, < zjs if and only if zj, ,, » < 2, p, s. Hence we can conclude that

Zjﬂ‘wjl < Zjlswjl if and Only if (ij?"wjz)gé < (Zjlswjz)ga'

Furthermore, for all | € SU{t}, ((2,r)¥j,) = @iy py, » for some k; € N such
that i, = j;. Hence it follows that (u,v) € (U5 _q Mithm) X (Upm—g Mitm) if
and only if (ugp,ve) € (U, —y Xin) X (U;—y Xin) . Thus ¢ is an embedding of
(Uiesuy M) into Qx((M;)icx) as required. O

Theorem 9.47. If (Aut((U)), <) is dense then there exists an isomorphism

¢ : <U7 S; (E2)7,<)\) — @A(<Mi>i<)\)7
where (U, <, (E;)i<x) is the A-coloured total order defined on page 150.

Proof. We will define the isomorphism ¢ : U — Vi, (), as follows. Let
m = min{n € N : 4, = jo}. Define fy : M;vj; = Xi.o by (2jort0jo)@ =
Z;0r for all » € N. Then clearly fy is an injective map. Moreover, since
Yj, is an automorphism z;,v;, < zj,s¥j, if and only if z;, < 2, and
hence if and only if x; o < x;,0s. Also since 2, = 7jp it follows that
(Cjo N ((Mjo0j,) % (Mj,1j,))) ¢ € Dj, Thus fy is an embedding (M, ;) —
Q((Mi)icr) and (Mjyihjo )¢ = Xi, 0.
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Now let n € N and let S C N such that |S| =n+ 1. Suppose that f, has
been defined such that f, : (U, Mj,¢05,) — Qi({Xi)i<n) is an embedding
and such that for all [ € N, (M; ;) f, = Xi, p,, for some k € N where
ir, = j1. I niseven let m = min{k € N: X;,,, Z imf,}. By Lemma
9.46, f, can be extended to an embedding f,, 41 such that X, , C imf,
and such that X; , = (M; ¢;,)fns1 for some j, € N. If n is odd let
m = min{k € N : M;v;, € dom f,}. Then by Lemma 9.45 f,, can be
extended to an embedding f,1; such that M; ;& dom f,4; and such that
(Mj,,05,.) fns1 = Xiy, p,,, for some k,, € N. Let

g = U fn-
n=0

Then since each f,, 1 is an extension of f,, it follows that ¢ is a well defined
function. By alternately going back and forth we have ensured that ¢ is
defined on every member of U = |J,cy M;,7;, and that every member of

Voryicy) = Ugeny Xigpe 18 in the image of g. In fact, since f, was an
embedding at each stage and since g is surjective, it follows that g is an
isomorphism of A-coloured total orders. O

The isomorphism from Theorem 9.47, will now allow us to produce a
contradiction to Aut({2) being a countable group.

Theorem 9.48. Let Aut(Q2) be countable. Suppose that f € Aut(Q2) and
that U is an infinite orbital of f. Then Aut((U)) = Z.

Proof. By Lemma 9.25 (Aut((U)), -, <) is an Archimedean group. Thus by
Theorem 2.2, either Aut((U)) = Z or (Aut((U)), <) is dense. But by Theo-
rem 9.47, if Aut((U)) is dense, then Aut((U, <, (E;)i<x)) = Aut(Qa((M;)i<n),
and hence by Lemma 9.44 and Corollary 9.36, there exists an an injective

function from Aut(Q,) into Aut((U)). But by Theorem 9.39, Aut(Q,) has
cardinality 2%, a contradiction to Lemma 9.21 which states that Aut((U))) is
countable. We thus conclude that Aut((U)) = Z and the result follows. [

9.7 Countable Groups which are the Auto-
morphism Group of a Total Order

In this last section, we will finally show that if Aut(2) is countable then it
is isomorphic to Z" for some n € N. We first prove the following theorem.

Theorem 9.49. Let Q) be a total order and let Aut(2) be countable. Then
Aut(Q) is a countable abelian group.
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Proof. Let f,g € Aut(Q2). By Theorem 9.16, we know that for all infinite
orbitals U of f and T of g, either TNU = () or T' = U. Now, by Theorem 9.48
we also know that Aut((U)) = Z for each U. Thus since f|y and g|y are both
automorphisms of U by Corollary 9.8, we find that for any u € U, ufg = ugf.
Thus f and g commute on any mutual orbital. Clearly if v € V, is contained
in no infinite orbital of f nor g then vfg = vg = vgf. Furthermore, if v
is contained in an infinite orbital of f but not of g, then vgf = vf = vfg
and similarly if u is contained in an infinite orbital of g but not of f then
vfg=wvg=wgf. It now it follows that f and g commute at all points u € Vq
and hence Aut(f2) is a countable abelian group. ]

Lemma 9.50. Let Q2 be a total order and let
O ={U : U is an infinite orbital of f for some f € Aut(Q2)}.

If Aut(Q?) is countable then |O| = n for some n € N.

Proof. For each U € O, let gy € Aut(€2) be chosen such that U is an infinite
orbital of gy. Define a map f : Vo — Vy by,

vgy if v € U for some U € O,

vf = .
v otherwise.

By Theorem, 9.16, U N'T = () for all distinct orbitals U and T and so by

Lemma 9.10, f € Aut(©2). Thus f is an automorphism of §2 whose infinite

orbitals are exactly those in O. Now by Lemma 9.15, f has at most a finite
number of distinct infinite orbitals. Thus O must be finite as required. [

We now have the main result.

Theorem 9.51. Let Q) be a countable total order such that Aut(Q)) is count-
able. Then Aut(Q)) = Z™ for some n € N.

Proof. Again let
O ={U : U is an infinite orbital of f for some f € Aut(2)},

and let |O] = n. By Lemma 9.50, n € N and so let O = {Uy,...,U,}.
Since Theorem 9.48 tells us that Aut((Uy)) = Z for all k = 1,...n. So let
hi € Aut((Uy)) be chosen such that (hy) = Z. By Lemma 9.22, we can extend
each hy, to an automorphism g € Aut(€2) such that gi|v,\v, = 1lvg\v,. Now
define a map ¢ : Z" — Aut(Q) by (iy,...,i,)¢ = gi* - g’». Then ¢ is well
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defined and since we know from Theorem 9.16 that Aut(2) is an abelian
group, it follows that,

((ilv o 7Zn) + (jla s ,jn))ﬁb :(11 +j17 s 7in +]n)¢,
:gil—i_jl . e g;”—i_j"’
:gil . g;’"g{l . gZL’”7

= (i1, -y in)¢ + (1, - - Jn)@-

Thus ¢ is a group homomorphism. To see that it is injective suppose that
(11, -+ 0n), (J1,- -, Jn) € Z™ are such that (i1,...,i0,)¢ = (j1, ..., Jn)¢. Then
gt gin = gt - gin. Clearly since each gy, is such that gilvo\v, = 1lv\,
and since UyNU; = () for all k # [, it follows that gi’“ = gi’“ forallk=1,....n.
Hence i, = jj, for all k = 1,...,n and thus (i1,...,7,) = (j1,-.-,Jn). Now
suppose that f € Aut(§2). Then by Corollary 9.8, fly, € Aut((Uy)) for
all k = 1,...,n and f‘VQ\Uzlek = 1. Hence fly, = g,i’“ for some 1, € Z
and f = gi*---g’». Then (i1,...,i,)¢ = f and so ¢ is surjective. Since
we have now shown that ¢ is a bijective group homomorphism, the result is
complete. O

Corollary 9.52. Suppose H is a countable group 7 -class of End(Q). Then
H = 7" for some n € N.

Proof. Let f € End(Q) be the idempotent contained in H. Then, by The-
orem 2.7, H = Aut(im f). Thus if H is countable, Aut(im f) countable.
Hence by Theorem 9.51, Aut(im f) = Z" for some n € N and the result now
follows. O
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Chapter 10

Questions and Open Problems

In this final chapter we will discuss some questions and possible directions
for further research which arise from the results presented in this thesis.

Most obviously, this thesis has dealt with only a handful of the most
common Fraissé limits. Given time, we could also ask the same type of
questions about the maximal subgroups, regular Z-classes and _#-classes of
other Fraissé limits. For example one could consider:

The random poset — the Fraissé limit of the class of all finite partial
orders.

The random n-independence free directed graph — the Fraissé limit of
the class of directed graphs with no independent sets of size n.

The ordered Urysohn space — the Fraissé limit of the class of finite
ordered metric spaces with rational distances.

Focussing on the Fraissé limits that are covered in this thesis, there are
many additional questions we could ask about Green’s relations on End((2)
where Q = R, D, T, B,G,,Q. For example, we produced many results about
the regular Z-classes in each setting, but we might naturally ask the following
questions.

Question 10.1. How many non-regular Z-classes of End(2) are there?
What sizes are they?

Question 10.2. Can we gain any information on the number of J#-classes
contained in non-regular Z-classes of End(2)?

The primary focus on this thesis was on group .#-classes. However might
also want to investigate the .#-classes which do not contain an idempotent
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and are therefore not groups. In a natural way we can associate a group to
such an JZ-class as follows.

Let H be a s -class of a semigroup S and let Ty = {s € S': Hs C H}.
Then for each s € Ty we can define a function f, : H — H, where hf; = hs
for all h € H. It is not hard to see that the set {fs : s € Ty} forms a
group under composition of mappings. In fact this group is known as the
Schutzenberger group of the J7-class H. It can be shown that if K is a
maximal group #-class then the Schutzenberger group of K is isomorphic
to K itself. If we let S = End(2) for some relational structure 2 then it can
be shown that for any Z-class D, all Schutzenberger groups associated to an
F-class of D are isomorphic and are isomorphic to the group -classes in
D (see [Mag75, Theorem 3.1]). Furthermore, if K is any . -class of End(f2)
and k € K, then the Schutzenberger groups associated to K is isomorphic
to a subgroup of Aut(im k), [Mag75, Theorem 3.2]. We might now ask the
following question.

Question 10.3. Which groups arise as Schutzenberger groups associated to
s -classes from non regular Z-classes of End(Q2)?

In Chapter 6, we briefly discussed triangle free graphs which have property
* (recall Definition 6.9). We were able to classify the finite triangle free
graphs with property = which have exactly two maximal independent sets.
As a result we provided a complete description of the groups which occur
as the automorphism group of such finite triangle free graphs. However, as
already mentioned in that chapter, the following is still an open problem.

Question 10.4. Which groups can occur as the automorphism group of a
finite triangle-free graph with property x which has three or more maximal
independent sets?

Similarly, we also showed in Chapter 6 that the automorphism group of
a countably infinite triangle-free graph with property x which has finitely
many vertices of infinite degree has cardinality 2%. A natural open problem
which the arose was the following.

Question 10.5. What is the cardinality of the automorphism group of a
countably infinite triangle-free graph with property » which has infinitely
many vertices of infinite degree?

In Chapter 8 we were able to show that if a total order €2 can be embedded
into Q via an embedding f such that im f was a retract of Q, then Aut(f2)
was isomorphic to 2% maximal subgroups of End(Q). The following still
remains an open question.

158



Question 10.6. Exactly which total orders 2 can be embedded into Q via
an embedding f such that im f is a retract of Q7 Can we find an example
of a total which cannot be embedded into Q via an embedding f such that

im f is a retract of Q7
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