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We consider the coupling into a slow mode that appears near an inflection point in the band structure of a
photonic crystal waveguide. Remarkably, the coupling into this slow mode, which has a group index ng
�1000, can be essentially perfect without any transition region. We show that this efficient coupling occurs
thanks to an evanescent mode in the slow medium, which has appreciable amplitude and helps satisfy the
boundary conditions but does not transport any energy. © 2008 Optical Society of America

OCIS codes: 130.5296, 350.4238.

Slow light has been observed in many geometries, in-
cluding photonic crystals (PCs) [1]. PCs are particu-
larly suited for this, since the dispersion relation of
PC waveguide modes can be controlled and designed
with the high accuracy required to achieve very low
group velocities vg. A key practical challenge with
slow light in PCs is the difficulty of coupling light
into these waveguides, since the field matches poorly
to that of other modes, i.e., modes that are not slow. A
number of strategies to deal with this coupling prob-
lem have been reported. The first is the use of an
adiabatic taper [2], but these tend to be long and lack
a systematic design procedure. The second is the use
of a uniform matching region [3–5]. Though this
works well, it obviously requires the inclusion of an
additional, finite region. Here, we discuss a third ap-
proach that does not require any matching region.
We show that efficient coupling into a slow mode can
be mediated by an evanescent mode that does not
carry energy but helps match the slow mode’s field to
that of other modes. Though evanescent modes have
been identified to play a role in coupling to slow PC
waveguide modes [5], the mechanism was not studied
in detail.
Our geometry is illustrated in Fig. 1; light is inci-

dent through PC1, a silicon PC with a waveguide and
with a /d=0.3, where a is the radius of the air holes
and d is its period. The input waveguide’s properties
have been adjusted by changing the radii of the holes
two rows from the waveguide to a1=0.38d. The slow-
light waveguide in PC2 is identical, except that its
properties have been adjusted by taking a2=0.404d.
At frequency d /�=0.2662, where � is the wave-

length, the waveguides in PC1 and PC2 each support
a single propagating mode with group indices ng
=7.6 and ng=1067, respectively. These calculations,
and all those below, model the PC as two dimensional
by taking the effective index of the silicon back-
ground to be 2.86. Our computational method [6] gen-
erates Fresnel interface coefficients very accurately
from a complete Bloch-mode basis that includes
modes that are propagating and evanescent in the di-

rection of the waveguide. Because of the orthogonal-
ity of the Bloch modes [6], we may solve the interface
field matching problem in a least-squares sense and,
in doing so, identify a minimal set of modes that effi-
ciently solves the problem to given accuracy. Without
precautions, the transmittance from PC1 into PC2 is
found to exceed T=99.4%. This is remarkable, since
coupling into a slow mode tends to be poor. We now
discuss why the transmission might be expected to be
low, and then explain why it is almost perfect in the
structure considered here.
We first consider the relevant part of the band

structures of PC1 and PC2 (solid curves in Fig. 2).
PC2 has been designed to have an inflection point
where the group velocity d� /dk becomes very small.
High transmission into slow modes close to such an
inflection point was earlier noted by Ballato et al. [7]
in a one-dimensional geometry. The dashed curves
show some of the complex bands, i.e., solutions to
Maxwell’s equations with complex k at real frequen-
cies. These solutions, usually ignored, grow or decay
exponentially, with �Im k� indicating the decay rate
[at the frequency of operation Im�k�d=0.047 in PC2].
The figures show only the modes with �Im�k��d
�0.51, i.e., modes that are weakly evanescent. Since
the dielectric function is real, complex bands occur in
complex conjugate pairs, and so each dashed curve
represents a pair of evanescent modes.
A thought experiment shows that the presence of

Fig. 1. Schematic of the PC geometry. The light is coupled
from PC1 into PC2, which supports a slow mode.

2644 OPTICS LETTERS / Vol. 33, No. 22 / November 15, 2008

0146-9592/08/222644-3/$15.00 © 2008 Optical Society of America

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/9821656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the weakly evanescent mode in PC2 is inevitable;
starting from PC2, if we apply a suitable small per-
turbation, for example a change in the hole size or pe-
riod, or the material’s refractive index, then the de-
generacy of the zero can be lifted, changing the band
to have one local minimum (at frequency �min) and
one maximum (at �max��min). There are now thus
frequencies �min����max with three real solutions
for k, whereas in the original structure there is only a
single real k for each frequency. When the perturba-
tion is removed, two of the three real solutions must
become evanescent—since the perturbation is small,
�Im�k�� of these modes must be small too, so they are
weakly evanescent. PC1 has no weakly evanescent
mode at d /�=0.2662, since no mode becomes propa-
gating upon applying a small perturbation.
The reason that coupling into a slow mode tends to

be inefficient can be gleaned from the relation S
=Uvg, where S is the power flow and U is the inte-
grated energy density. It shows that for a given en-
ergy flow S, the energy density for a slow mode is
much larger than for other modes. Since field compo-
nents need to be continuous at an interface, this usu-
ally can occur only when the power in the slow mode
is low. A more detailed argument uses the Bloch
modes and their orthogonality properties. Here, we
consider the one deriving from energy conservation.
In the next paragraphs we demonstrate that though
two modes may be similar, they can nevertheless be
orthogonal. Readers not interested in the detailed ar-
gument can continue at the paragraph starting with
“With this knowledge….”
The Bloch modes are solutions of the eigenvalue

equation Tf̃=�f̃, with T the transfer matrix of a pe-
riod layer in the structure, � associated with the
Bloch factor, and f̃ given by f̃T= �f̃+

T f̃−
T� where f̃± repre-

sent the forward- and backward-propagating plane-
wave components [6]. For a propagating mode, �
=exp�ikd�, where d is the layer period, so � lies on
the unit circle since the mode amplitude is constant.
For evanescent modes, ����1, with ��� indicating the
ratio of mode amplitudes in consecutive periods. For
TE polarization, the case of interest here, the trans-
verse component of the magnetic field on an interface
line can be expressed as Hz= f+�x�+ f−�x�, in which
f±�x�=� f̃±���exp�i�x�d�, while the transverse compo-
nent of electric field is Ex /Z= ��f+��x�− ��f−��x�, where
Z denotes the impedance of the background medium
and the ��f±� are defined in an analogous manner as

��f±�x��=��k2−�2f±���exp�i�x�d��, where �k2−�2 is a
set of direction cosines.
For hexagonal lattices the Bloch modes at fre-

quency � obey the orthogonality relationship

1

Z 	 ẑ · �Et
m 	 Ht

l*�dx

=	 �f+
l �x� + f−

l �x��*���f+
m��x� − ��f−

m��x��dx

= 


 lm

p for propagating states l,m

±i
 lm
e for evanescent states l,m

0 otherwise
� �1�

for all l and m, where t refers to the transverse field
component. In Eq. (1) 
 lm

p =1 if �l=�m and 0 other-
wise, and 
 lm

e =1 if �l=�m
* and 0 otherwise, respec-

tively, for propagating and evanescent modes. Or-
thogonality relations [Eq. (1)] take this form because
energy may be carried both by propagating states
and by evanescent states through tunneling. Though
relations like Eq. (1) are familiar in waveguide
theory [8], they are not often used in PCs, where one
usually exploits the orthogonality at fixed k.
The dots in Fig. 3 show the normalized magnetic

field of the slowly propagating mode in PC2, while
the solid curve shows that of the scaled weakly eva-
nescent mode that decays away from the interface.
Evidently these modes’ magnetic fields are very simi-
lar, even though they are orthogonal. The reason why
two orthogonal modes can nonetheless be very simi-
lar can be gleaned from the observation that whereas
�ẑ · �Et

m	Ht
l*�dx /Z enters the orthogonality relation

(1), �ẑ · ��Et
m	Ht

l*��dx /Z�900 for the slow mode in
PC2. This shows that the field of this mode is large
and that the normalization can come about only from
many sign changes of the integrand. Therefore small
changes in the integrand can change the right-hand
side from 0 to 1 or to i. That two orthogonal modes
can yet be similar is perhaps not surprising, since
they are solutions to the Helmholtz equation with the
same refractive index, the same frequency, and very
similar �. Though Fig. 3 shows magnetic fields, the
same is true for the electric fields.
With this knowledge, we now turn to the coupling

problem outlined in Fig. 1: PC2 has a slow mode and

Fig. 2. Part of the band structure of PC1 and PC2 for TE
polarization. Propagating modes are indicated by solid
curves, evanescent modes with �Im�k��d�0.51 by dashed
curves. The dotted line indicates the inflection point
frequency.

Fig. 3. Normalized magnetic fields of the slow (dots) and
the weakly evanescent (solid curves) modes in PC2 (cross
section at the top interface), showing (a) the real part and
(b) the imaginary part. The slow mode can be scaled to be
real, while the normalized evanescent mode has been di-
vided by 0.706 such that its maximum amplitude is real
and equals that of the slow mode.
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a weakly evanescent mode that decays away from the
interface [9]. Even though these two modes are or-
thogonal, they have very similar field structures. In
contrast PC1 supports no slow mode, and all its non-
propagating modes are strongly evanescent. Since
the slow mode and the evanescent mode have very
similar fields, the superposition fs− fe /0.706, where
fs,e represent the field profiles of the slow and evanes-
cent modes respectively, has a low field strength, and
it therefore can match well to the single propagating
mode in PC1. Away from the interface the evanescent
mode decays and so it cancels the propagating mode’s
field less and less, leading to an increase of the net
field strength. This continues until the evanescent
mode decays completely, at which point the net field
strength saturates, consistent with Fig. 4. The peri-
odicity of the rapidly varying field component indi-
cates that the k of the slow mode and Re�k� of the
evanescent mode have essentially the same value
(c.f., Fig. 2). Note further that the saturation distance
of roughly 40 periods is consistent with the value
���=exp�−0.047�=0.954 of the evanescent mode. The
inset in Fig. 4 shows the transmittance and the group
velocity versus frequency. Remarkably, the transmis-
sion is high over an extended range of low group ve-
locities.
One way to confirm the correctness of the argu-

ment above is by calculating the transmissivity T
into the slow mode using different numbers of modes.
We can do so since we use a least-squares modal
method, which exploits modal orthogonality, for our
numerical calculations. As mentioned, a full calcula-
tion, i.e., a calculation including all relevant modes,
gives T=99.4%. In contrast, including only the propa-
gating mode in PC2 and all modes in PC1 gives T
=4.9%. Thus the evanescent modes in PC2 play a key
role in achieving the high transmission. With again
all modes in PC1 and now both the slow propagating
mode and the weakly evanescent mode in PC2, the
transmission is close to perfect. This confirms that

the high transmission is associated with the inclu-
sion of the weakly evanescent mode in PC2. The in-
clusion of other evanescent modes, for example the
decaying mode with Re�k��0 [9] and no others, leads
to inconsistent results, indicating that not enough
modes are included to represent the fields satisfacto-
rily.
While the result here is a “hero result” in that light

is coupled into a mode with very high group index
�ng�1000�, other calculations, not given here, show
that our result is quite generic. High coupling effi-
ciency is achieved for modest values ng�100 as well
and also essentially in any geometry in which the
slow mode is associated with an inflection point, irre-
spective of how the band structure is engineered. For
lower group indices, the evanescent mode also decays
faster in PC2.
Thus efficient coupling into a slow mode is possible

without transition region or other precaution. The
reason this is possible, and the reason that the usual
argument apparently showing the opposite is incom-
plete, is as follows: though slow modes have strong
associated fields, this leads only to the conclusion
that coupling is weak if evanescent modes are disre-
garded. When such modes are included, almost per-
fect coupling can be achieved. While we considered a
two-dimensional geometry, our arguments were very
general. Indeed, preliminary results from 3D finite-
difference time domain simulations suggest that
similar behavior occurs in realistic membrane PC ge-
ometries.
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Fig. 4. Square modulus of the electric field when the light
efficiently couples into the slow waveguide from the left.
The vertical dashed line indicates the interface between
PC1 and PC2. The inset shows the transmittance (solid
curve) and the group velocity (dashed curve) versus
frequency.
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