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SUMMARY
We have carried out a cell-based screen aimed at discovering small molecules that activate p53 and have the
potential to decrease tumor growth. Here, we describe one of our hit compounds, tenovin-1, along with
a more water-soluble analog, tenovin-6. Via a yeast genetic screen, biochemical assays, and target validation
studies in mammalian cells, we show that tenovins act through inhibition of the protein-deacetylating activ-
ities of SirT1 and SirT2, two important members of the sirtuin family. Tenovins are active on mammalian cells
at one-digit micromolar concentrations and decrease tumor growth in vivo as single agents. This un-
derscores the utility of these compounds as biological tools for the study of sirtuin function as well as their
potential therapeutic interest.
INTRODUCTION

The forward chemical genetic (FCG) approach to drug discovery

(Peterson and Mitchison, 2002; Schreiber, 2003) has a series of

advantages over more classical methods based on biochemical

screens but also involves important challenges. In the case of

small-molecule screens carried out using a mammalian cell-

based assay, the main advantage is that hit compounds show

activity in cultured cells at concentrations that are acceptable

for further experiments in organisms. The use of cell-based

assays that require the expression of a reporter protein has the

added advantage that the hit compounds are not general cyto-

toxics, as they are selected for their ability to increase a synthetic

event. p53’s tumor suppressor function depends on its ability to

function as a transcription factor, and p53 is exquisitely sensitive

to various stresses (Vousden and Lane, 2007). With all of this in
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mind, we set out to discover compounds that activate p53 in

mammalian cells through the detection of an increase in expres-

sion of a reporter construct under the control of a p53-dependent

promoter.

The major challenge in FCG is the elucidation of the precise

mechanism of action of a hit compound (Peterson and Mitchi-

son, 2002; Schreiber, 2003; Zheng et al., 2004). Searching for

small-molecules that activate the transcriptional activity of p53

would be expected to lead to the discovery of both DNA-damag-

ing agents and compounds that are specific for the p53 pathway,

including agents that interact directly with p53 (Issaeva et al.,

2004) or that inhibit mdm2 (Vassilev et al., 2004). The physiolog-

ical role of mdm2 is to inhibit and destabilize p53 (Vousden and

Lane, 2007). In addition, this approach was expected to identify

compounds that interact with factors upstream of p53 and,

therefore, also have effects on a variety of cellular networks.
e identification of compounds that are bioactive at low con-
cells as a primary screening assay leads to the discovery of
wn that two hit compounds from this screen are active in an-
This work expands current views in the drug discovery field
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Figure 1. Effect of Tenovin-1 on Cultured Tumor Cell Lines

(A) Tenovin-1 structure.

(B) MCF-7 cells (expressing wild-type p53) were treated with 10 mM tenovin-1

for the indicated times. p53 levels and p21 levels were detected using DO1

(Bartkova et al., 1993) and 118 (Fredersdorf et al., 1996) mouse monoclonal an-

tibodies, respectively. An antibody against a-tubulin (Cat. No. T9026, Sigma)

was used to monitor loading efficiency.

(C) MCF-7 cells were treated with 10 mM tenovin-1 for the indicated times, and

p53 and p21 mRNA levels were analyzed by Taqman-PCR as described (Sa-

ville et al., 2004). Error bars correspond to standard deviation values (n = 3).

(D) Toxicity of tenovin-1 on cultured tumor cells. Tumor cell lines were treated

with DMSO (control) or with 10 mM tenovin-1 for 48 hr. Cell death (necrosis and

apoptosis) was measured by annexin-V/propidium iodide labeling and FACS.

Values correspond to the average of two independent experiments (±SD). p53

status in each cell line is indicated (DN, coexpressing the dominant-negative

form of p53).
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Since the p53 tumor suppressor is activated in response to alter-

ations in a wide variety of cellular events, identifying the protein

target of a given p53-inducing compound can be viewed as a se-

rious challenge. At the same time, given that many aspects of

p53 regulation have been studied, we envisaged that identifying

testable hypotheses relating to the mechanism of action of hit

compounds in cells was achievable. Here, we describe the dis-

covery and characterization of a bioactive small-molecule acti-

vator of p53 that we have named tenovin-1 and an analog with

improved physical properties (tenovin-6). The antitumor activity

these two compounds demonstrates that they are active in or-

ganisms and encouraged us to carry out experiments aimed at

elucidating their precise mechanism of action. We show that te-

novins inhibit the activities of human SirT1 and SirT2, two mem-

bers of the NAD+-dependent class III histone deacetylases that

also belong to the sirtuin family.

Sir2p, one of the sirtuin homologs in yeast, helps connect me-

tabolism to gene expression, and elevated Sir2p (or Sir2p-like) ex-

pression correlates with lifespan extension in several organisms.

Mammals have seven sirtuin homologs (sirtuins, SirT1-7) with di-

verse NAD+-dependent enzymatic activities (protein deacetylase

and/or ADP-ribosyl transferase), cellular locations, and substrates

(Haigis and Guarente, 2006; Michan and Sinclair, 2007). SirT1,

SirtT2, and SirtT3 are highly homologous in sequence (Frye,

2000), show NAD+-dependent protein deacetylase activity, and

differ in their subcellular localization. SirT1 is nuclear and targets

a variety of acetylated substrates (including p53) involved in

gene expression, cell survival, differentiation, and metabolism.

SirT2 is primarily cytoplasmic, targeting a-tubulin, but can also de-

acetylate histone H4. Finally, SirT3 is predominantly mitochondrial

where it is proposed to regulate the function of acetyl-CoA synthe-

tase 2. This study shows that using p53 as a sensor for compound

activity in cells and exploiting the vast amount of available informa-

tionon the regulationof p53 function can rapidly lead to the discov-

ery of small-molecule tools with potential as therapeutics.

RESULTS

Discovery and Characterization of Tenovin-1
Following a pilot study with 4,000 compounds (Berkson et al.,

2005), we screened 30,000 drug-like small molecules from the

Chembridge DIVERSet for their ability to activate p53 in a robust,

simple, and cheap primary cell-based screening assay. For de-

tails on the primary assay, secondary assays, and criteria used

for prioritizing compounds, see the Supplemental Data available

online. Here we describe the characterization of one hit com-

pound from this screen, tenovin-1 (see Figure 1A for structure).

As shown in Figure 1B, tenovin-1 elevates the amount of p53

protein within 2 hr of treatment. This compound also increases

the levels of the p53-downstream target p21CIP/WAF1 protein

(Figure 1B) and mRNA (Figure 1C), confirming that tenovin-1

can induce expression from an endogenous p53-dependent

promoter. Tenovin-1 treatment does not alter p53 mRNA levels

(Figure 1C), but increases p53 levels when p53 is coexpressed

with mdm2 (see below and Figures 6A and 6F). This suggests

that tenovin-1 protects p53 from mdm2-mediated degradation

with little effect on p53 synthesis.

We observed that long-term treatment (4 days) with tenovin-1

decreases growth in all tumor cell lines tested. In order to identify
CCELL 884
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those that are particularly sensitive to tenovin-1 for further in vivo

studies, we compared the effects of a 48 hr treatment with teno-

vin-1 on the viability of a variety of tumor cell lines (Figure 1D).

Treatment of BL2 Burkitt’s lymphoma cells expressing wild-

type p53 with 10 mM tenovin-1 for 48 hr leads to more than

75% cell death (Figure 1D). p53 levels in BL2 cells are increased

by tenovin-1 (Figure 2A), and a 2 hr single treatment with tenovin-

1 followed by 4 days of incubation in the absence of compound is

sufficient to decrease growth and kill the majority of these cells in

culture (Figure 2B). Initial in vivo experiments indicated that teno-

vin-1 impairs the growth of BL2-derived tumor xenografts

(Figure S2). However, BL2-derived tumors grew slowly and at

very different rates; hence, it was decided that this cell line

was not ideal for further in vivo experiments. Among the cell lines

studied in Figure 1D, ARN8 melanoma cells (p53 wild-type)

showed the highest ratio between the percentage of dead cells

in tenovin-1-treated and untreated cultures. ARN8 cells derive

from the highly aggressive melanoma cell line A375, contain a

p53-reporter gene that is induced by incubation with tenovin-1

(data not shown), and their p53 levels are responsive to teno-

vin-1 (Figure 2C). Furthermore, ARN8 cells give rise to fast grow-

ing tumors in SCID mice. Hence, these cells were chosen for

in vivo studies (see below).



Figure 2. Effect of Tenovin-1 on BL2 and ARN8 Tumor Cell Lines and

on Normal Human Dermal Fibroblasts

(A) BL2 Burkitt lymphoma cells were treated with 10 mM tenovin-1 for the

indicated times, and p53 and actin were detected with DO1 or antibody

CP01 (Calbiochem), respectively.

(B) BL2 cells were treated with increasing concentrations of tenovin-1 for 2 hr,

after which tenovin-1 was removed and cells were cultured for 4 days in fresh

medium. Cells were stained with trypan blue and counted. White bars repre-

sent the total number of cells in each sample (viable and nonviable) expressed

as a percentage of the average number of cells in the untreated control sam-

ples. Black bars represent the percentage of dead cells in each sample (trypan

blue-stained cells). Values correspond to the average of four independent

experiments ± SD.

(C) ARN8 cells were treated with 10 mM tenovin-1 for the indicated times. p53

and actin were detected.

(D) Subconfluent ARN8 tumor cells or normal human dermal fibroblasts

(NHDF) were treated with the indicated amounts of mitomycin C or tenovin-1

for 48 hr. Cell growth was determined by MTT assay (Smart et al., 1999). Values

correspond to the average of three independent experiments ± SD.

(E) ARN8 tumor cells or normal human dermal fibroblasts (NHDF) were left un-

treated or treated with 10 mM tenovin-1 for the indicated times. Cell-cycle dis-

tribution was analyzed by BrdU labeling and FACS. S* indicates cells that do

not incorporate BrdU and have a DNA content between 2N and 4N. Note

that the proportion of cells with a sub-G1/G0 DNA content dramatically

increases in the tenovin-1-treated ARN8 tumor cells. Instead, the effect of

tenovin-1 on NHDFs is primarily cytostatic with little increase in the proportion

of dead cells.
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It is worth noting here that tenovin-1 is as potent at decreasing

ARN8 cell growth as the DNA-damaging agent mitomycin C

(Figure 2D) but shows no indication of activation of the DNA

damage response (see below and Figure S4). Also, normal hu-

man dermal fibroblasts are significantly more resistant to high

concentrations of tenovin-1 than ARN8 cells (Figure 2D). In this

normal cell type, the effect of tenovin-1 treatment is primarily cy-

tostatic (Figure 2E) and reversible after removal of the compound

from the medium (S. Chowdry, M.A., and S.L., unpublished

data).

The experiments summarized in Figure 1D can also be used to

evaluate the role played by p53 on the sensitivity of tumor cells to

tenovin-1. Confirming the results obtained in our secondary as-

says (see Supplemental Experimental Procedures and Fig-

ure S1), a 48 hr treatment with tenovin-1 kills NTera2D cells

(wild-type p53) more effectively than NTera2D-DNp53 cells (con-
CCELL
taining p53 together with a dominant negative p53 fragment).

Furthermore, HCT116 cells expressing wild-type p53 are more

susceptible to tenovin-1-induced cell death than the HCT116

p53�/� isogenic cells after a 48 hr treatment (Figure 1D and Fig-

ure S1). These experiments clearly show that wild-type p53 con-

tributes to the cytotoxic effect of tenovins. We then asked

whether wild-type p53 is essential for tenovin-induced cell death.

On the one hand, we observed that two breast cancer cell lines

with mutant p53 (MDA-MB231 and MDA-MB468) were among

the most sensitive to this compound in Figure 1D. On the other,

long-term treatment (4 days) with tenovin-1 inhibits growth of

p53 null cells (Figure S1B). Hence, it is likely that functional p53

contributes to increase the rate of cell killing but is not essential

for the long-term killing effect of tenovin-1. This suggests that

tenovin-1 targets a factor(s) upstream of p53 that not only

modulates p53 function but also other cellular pathways.

Increasing Tenovin-1 Water Solubility and Tumor
Growth Inhibitory Effect
In preliminary experiments, daily administration of tenovin-1

(92 mg/kg) showed indications of reducing growth of tumors

derived from BL2 cells or ARN8 cells (Figure S2). However, teno-

vin-1’s poor water solubility in the highly concentrated stock so-

lutions needed for these experiments limited its use in vivo. Struc-

ture activity relationship (SAR) studies were used to guide the

synthesis of an analog of tenovin-1 with increased water solubility

(Table 1; Table S1). Tenovin-2 and -3, which differ from tenovin-1

in the R2 substituent only, both retain the desired biological activ-

ity. As no other changes to the structure of tenovin-1 are appar-

ently tolerated, it was decided to attach a water solubilizing group

at the R2 position resulting in the synthesis of tenovin-6 (Table 1).

Tenovin-6, which is seven times more water soluble than teno-

vin-1, is slightly more effective than tenovin-1 at increasing p53

levels in cells (Figure 3A). As observed with tenovin-1, functional

p53 contributes to tenovin-6 cytotoxicity (Figure 3D and

Figure S1A), but p53 is not essential for its long-term killing effect

(Figure S1B). As expected, tenovin-6 is more toxic to ARN8 mel-

anoma cells than tenovin-1 (Figure 3B), decreases their growth

after a single short exposure (Figure 3C), and delays growth of

ARN8-derived xenograft tumors at 50 mg/kg (Figure 3E). Teno-

vin-6’s better water solubility also allowed improving the quality

of its pharmacokinetic valuation (Table S2). The in vivo antitumor

activity of tenovin-6 prompted us to elucidate its precise mech-

anism of action as required for further optimization studies.

Target Identification Studies
Compound-induced haploinsufficiency profiling utilizes the find-

ing that yeast strains heterozygous for gene knockouts affecting

the target of a compound frequently confer compound hyper-

sensitivity by reducing the level of the target protein that is pres-

ent in the cell (Giaever et al., 1999), and screening a genome-

wide collection of such heterozygous strains is a powerful way

to determine candidate targets for inhibitors that are active

against yeast (Lum et al., 2004). To identify candidate targets

for tenovins, we carried out a genetic screen using the Euroscarf

collection of diploid S. cerevisiae strains that are each heterozy-

gous for a specific gene deletion, covering over 94% of protein-

coding genes between them. For a detailed description of the

genetic screening procedure, see the Supplemental Data.
884
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Table 1. Tenovin SAR Studies Aimed at Increasing Water Solubility

ID p53 Increasea K40Ac Tubulin Increaseb SirT2 InhibitioncR1 R2

Tenovin-1 tBu NHCOCH3 + + +

Tenovin-2 tBu NHCOCH(CH3)2 + + +

Tenovin-3 tBu NH2 + + +

Tenovin-4 N3 NHCOCH3 � � �
Tenovin-5 tBu NHCOPh + + +

Tenovin-6 tBu NHCO(CH2)4NMe2.HCl + + +
a Ability to increase p53 levels was determined in MCF-7 cells treated for 6 hr at 10 mM as described in Figure 1B.
b Ability to increase K40 Ac-tubulin levels was determined in H1299 cells treated as described in Figure 7B.
c SirT2 inhibition assessed as described in Figure 5B using a compound concentrations of 10 or 30 mM depending on the compounds solubility in the

assay buffer.
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Tenovin-6 inhibits the growth of S. cerevisiae cultures with an

IC50 of 30 mM and is more toxic to yeast than the less water-sol-

uble tenovin-1. We therefore screened 6,261 yeast strains for hy-

persensitivity to tenovin-6 and identified a strain heterozygous for

a partial deletion of SIR2 among the most hypersensitive strains

(Figure 4). This suggested that Sir2p homologs could be targets

for tenovin-6 in mammalian cells. Two genes encoding proteins

that directly or indirectly interact with Sir2p were also in the list

of 16 hit candidate genes (see Discussion and Table S3).
Activity of Tenovins on Purified Human Sirtuins
Consistent with our findings from the yeast genetic screen, teno-

vin-6 decreases purified human SirT1 peptide deacetylase activ-

ity in vitro with an IC50 of 21 mM and human SirT2 activity with an

IC50 of 10 mM (Figures 5A and 5B). Tenovin-1 is not sufficiently

water soluble to carry out a complete titration in the sirtuin bio-

chemical assays. Nevertheless, it is possible to observe that at

a concentration of 10 mM, tenovin-1 inhibits SirT2 deacetylase

activity to the same extent as tenovin-6 (data not shown). Inhibi-

tion of SirT3 by tenovin-6 in this assay was significantly lower

with an IC50 of 67 mM (Figure 5C). As a control, the activity of

HDAC8 (a class I histone deacetylase) (Holbert and Marmorstein,

2005) is poorly inhibited by tenovin-6 with an IC50 above the high-

est concentration tested (90 mM; Figure 5D). Furthermore, unlike

trichostatin A (an inhibitor of class I and II HDACs), tenovins did

not inhibit deacetylation of a cell permeable substrate for all clas-

ses of HDACs (Biomol Cat. No. KI-104) (data not shown),

supporting the view that tenovins are not general inhibitors of

HDAC activity. Accordingly, there are no class I or II HDAC-re-

lated genes in the hit list from the tenovin-6 yeast genetic screen

(Table S3). Tenovin-6 does not inhibit enzymatic assays in gen-

eral as the activity of a panel of 51 purified kinases was not sig-

nificantly affected (data not shown). Other assays in which teno-

vins showed no effect included a DNA replication assay in

Xenopus oocyte extracts (A.J. Score and J.J. Blow, personal

communication) and an in vitro RNA polymerase I transcription

assay using human cell extracts (K. Panov and J. Zomerdijk,

personal communication).
CCELL 884
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Figures 5E and 5F are Lineweaver-Burke plots for tenovin-6

against the two substrates of SirT1 in the biochemical assay.

These experiments suggest that tenovin-6 inhibition of sirtuin

activity is not due to a competition with the substrates.
Validation of SirT1 as a Target for Tenovins
in Mammalian Cells
Specific inhibition of SirT1 expression through siRNAs leads to

increased tumor cell death with no toxic effect on normal cells

in culture (Ford et al., 2005). Although p53 is not essential for tu-

mor cell killing by SirT1 depletion (Ford et al., 2005), p53 function

may contribute as it has been shown that SirT1 destabilizes p53

through its ability to catalyze deacetylation of p53 at lysine 382

(Langley et al., 2002; Luo et al., 2001; Vaziri et al., 2001) and

that acetylation of p53 augments its DNA binding ability (Luo

et al., 2004). Accordingly, cells derived from SirT1 deficient

mice and cells treated with siRNAs against SirT1 show high

levels of hyperacetylated p53 (Cheng et al., 2003; Ford et al.,

2005), and as shown here (Figure 6A), a dominant-negative

SirT1 (Luo et al., 2001) mutant increases p53-dependent tran-

scriptional activity. Since tenovins activate p53 but do not nec-

essarily require intact p53 to kill cells and also inhibit SirT1 func-

tion in vitro, it was reasonable to test whether these compounds

increase p53 acetylation in cells and whether SirT1 influences

the effects of tenovins on p53. In Figure 6B, we show that teno-

vin-1 protects p53 from mdm2-mediated degradation but has

a significantly reduced effect on p53 levels in cells overexpress-

ing SirT1. Furthermore, tenovin-1 (and tenovin-6, data not

shown) rapidly increases the levels of endogenous K382-Ac

p53 in cells (Figure 6C). Although the increase in acetylated en-

dogenous p53 by tenovins is fast and dramatic, we could not

rule out that at least a proportion of this increase was a conse-

quence of the elevation of total p53 levels. In order to overcome

this problem, H1299 (p53 null) cells were transfected with a p53

expression vector (in the absence of ectopic mdm2) and treated

with compound. Under these conditions, tenovin-6 and tenovin-1

increase the levels of p53 acetylated at lysine 382 even when

total p53 levels remain constant (Figures 6D and 6E). In the



Figure 4. Yeast Genetic Screen to Identify Tenovin-6 Hypersensitive

Yeast Strains from within a Genome-wide Heterozygous Gene

Deletion Collection

(A) Plot of % control growth at 16.7 mM tenovin-6 versus growth in the absence

of compound (OD600) for 6261 heterozygous gene deletion strains showing the

positive correlation between growth in the presence of compound and overall

growth in its absence. Outlier strains (511) showing potential hypersensitivity

were identified as shown.

(B) Examples of data from a secondary screen in which growth of a range of

initial cell concentrations plus and minus compound were plotted. YDL010W

is an example of a nonhypersensitive strain while YDL041W is the hypersensi-

tive strain heterozygous for a SIR2 truncation. Graphs show the coefficient of

linear correlation (R2) and best-fit equations giving the slope parameter used to

generate the hypersensitivity index.

(C) Histogram showing the distribution of hypersensitivity index values for 408

strains giving reproducible data and indicating the position of the YDL041W

heterozygote (SIR2).

Figure 3. Tenovin-6 Delays Tumor Growth In Vivo

(A) MCF-7 cells were treated with the indicated concentrations of tenovin-1 or

tenovin-6 for 6 hr. p53 levels were analyzed and PCNA was detected as a load-

ing control using the monoclonal antibody PC10 (Woods et al., 1991).

(B) ARN8 cells were treated with the indicated concentrations of tenovin-1 or

tenovin-6 for 72 hr. Surviving cells were fixed and stained with Giemsa.

(C) ARN8 cells were treated with the indicated concentrations of tenovin-6 for

2 hr, after which the medium was substituted by fresh medium. Four days after,

surviving cells were fixed and stained with Giemsa.

(D) SKNSH-pCMV cells (active p53) or SKNSH-DNp53 cells (inactive p53) were

treated with 5 mM tenovin-6 for 48 hr. Cells were pulse-labeled with BrdU. DNA

synthesis and DNA content were monitored by measuring BrdU incorporation

and propidium iodide staining followed by FACS.

(E) ARN8 melanoma cells were injected into the flank of SCID mice and allowed

to develop into tumors. Tenovin-6 (in 20% cyclodextrin) was administered

daily by intraperitoneal injection at 50 mg/kg, and tumor growth was measured

over a period of 15 days (n = 9). Control animals (n = 9) were treated with 20%

cyclodextrin. Growth measurements were averaged between groups and plot-

ted. Error bars correspond to 95% confidence intervals. Outliers were not

excluded. Mice receiving tenovin-6 had significantly reduced tumor growth

as analyzed by a Mann Whitney U-test (day 6, p = 0.045; day 11, p = 0.0179;

days 13 and 15, p = 0.0247).
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presence of overexpressed SirT1, the levels of K382-Ac p53

cannot be increased by tenovins (Figure 6E).

Interestingly, when we used a transcriptionally inactive p53

mutant with a normal protein conformation but impaired DNA

binding ability (p53R273H), we observed different behavior.

First, tenovin-1 does not increase the levels of mutant p53

K382 acetylation (Figure 6E, lower panels, and Figure 6F). Sec-

ond, SirT1 overexpression slightly diminishes wild-type p53

levels as expected, but has the opposite effect on p53R273H

levels (Figure 6E). Furthermore, the proportion of mutant

p53R273H acetylated at K382 is significantly higher than the pro-

portion of acetylated wild-type p53 (Figure 6F). This difference in

the relative amounts of K382-Ac p53 can also be observed

among cell lines with different p53 status (Figure S3). Finally,

tenovin-1 does not protect mutant p53 effectively from mdm2-

mediated degradation (Figure 6G). This correlation between

strength of effects of tenovins and SirT1 on wild-type and mutant

p53 further supports the view that tenovins work through the

inhibition of SirT1 activity in cells.

DNA-damaging agents are known to increase p53 activity and

promote acetylation of p53 (Appella and Anderson, 2001).

Hence, it could be argued that the effect of tenovins could be
CCELL
at least partially mediated by DNA injury. However, unlike etopo-

side and other DNA-damaging compounds, tenovin-1 does not

score in comet assays (Figure S4A). Furthermore, tenovin-1

does not increase the levels of p53 phosphorylated at serine

15 or the levels of phosphorylated histone H2AX (Figure S4B),

both of which are established indicators of the activation of the

DNA damage response (Meek, 1994; Sedelnikova et al., 2003).

This, together with the mild and reversible effects on normal

fibroblasts, suggests that tenovins are potentially safer than

many of the currently used highly genotoxic cancer therapeutics.

Thebase line levelsofp19ARFtumorsuppressoraresignificantly

lowered in mouse embryonic fibroblasts from SirT1-deficient mice,

and this is reversed upon reintroduction of SirT1 expression (Chua

et al., 2005). Consistent with this interesting observation, overex-

pression of a dominant-negative form of SirT1 correlates with de-

creased human ARF protein (p14ARF) levels in nucleoli (data not

shown). Showing that tenovin treatment and SirT1 depletion have

similar effects and therefore strengthening that tenovins act

through inhibition of SirT1 incells, endogenous p14ARF expression

is lowered after tenovin-1 treatment (Figure 6H). It should be noted

that p14ARF is a potent inhibitor of mdm2’s activity leading to in-

creased levels of active p53 (Sherr, 2006). Hence, the negative ef-

fect of tenovins on p14ARF could buffer the p53 response to teno-

vins in normal cells (as these have functional p53 and p14ARF) but

is irrelevant in the p53-wild-type tumor cells, including BL2, ARN8

(A375-derived), and MCF7, which are known to be p14ARF

deficient (Lindstrom et al., 2001; Stott et al., 1998).
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Figure 5. Tenovin-6 Inhibits the Protein Deacetylase Activities of

Purified Sirtuins SirT1 and SirT2

(A–D) Increasing concentrations of tenovin-6 were added to purified human

SirT1 (A), SirT2 (B), SirT3 (C), or HDAC8 (D) reaction mixtures. Values corre-

spond to the average enzyme activity of three independent experiments ±

SD. Estimated IC50 values for SirT1, SirT2, and SirT3 in the assay conditions

are 21, 10, and 67 mM, respectively.

(E) Analysis of tenovin-6’s ability to compete for binding sites with the SirT1

FdL acetylated peptide substrate. In vitro SirT1 inhibition assay was carried

out with tenovin-6 at 0, 50, and 75 mM with varying FdL concentrations and

a constant NAD+ concentration of 1 mM. All assays contained the same

amount of DMSO (0.25%). The data is presented as a Lineweaver-Burke

plot (where the x axis intercept is �1/Km and the y axis intercept is 1/Vmax).

Trend lines were then added to create a straight line. The trend lines

for 0 mM (triangles), 50 mM (asterisks), and 75 mM (circles) tenovin-6 all

have an R2 values above 0.99. Data points are the average of triplicate exper-

iments.

(F) Analysis of tenovin-6’s ability to compete for binding sites with SirT1 cosub-

strate NAD+. In vitro SirT1 inhibition assay was carried out with tenovin-6 at 0,

25, and 50 mM with varying NAD+ concentrations and a constant FdL acety-

lated peptide concentration of 200 mM. All assays contained the same amount

of DMSO (0.25%). The data are presented as a Lineweaver-Burke plot. The

trendlines for 0 mM (diamonds), 25 mM (squares), and 50 mM (triangles) teno-

vin-6 all have an R2 value above 0.99. Data points are the average of triplicate

experiments.

Figure 6. SirT1-Related Effects of Tenovins in Mammalian Cells

(A) MCF7 cells were transfected with the RGC-DFos-LacZ p53-dependent re-

porter construct as well as a control vector or an expression vector for the

SirT1-363Y dominant negative mutant. All samples were also transfected

with a control plasmid expressing luciferase under the control of the SV pro-

moter. b-galactosidase activity was measured 32 hr after transfection and

values were normalized using the luciferase readings. Values correspond to

three independent experiments ± SD.

(B) H1299 cells (p53 null) were transfected with vectors expressing p53 and

mdm2 in the absence or presence of a vector expressing SirT1 (pCMV-

SirT1). Cells were treated with increasing concentrations of tenovin-1 for

6 hr, and the levels of p53 and SirT1 were analyzed by western blot using

DO1 and antibody 2G1-F7 (Cat. No. 05-707, Upstate), respectively. Note

that pCMV-SirT1 encodes SirT1 isoform-1. Endogenous SirT1 isoform-1 was

also detected in lanes 1 through 5 upon longer exposure of the blots. The

band below ectopic SirT1 could correspond to a SirT1 isoform.

(C) MCF-7 cells were treated with 10 mM tenovin-1 for the indicated times and

analyzed by western blotting using an antibody against K382-acetylated p53

(Cat. No. 614202, BioLegend) or the DO1 antibody against the N terminus of

p53. PCNA was detected as a loading control.

(D) H1299 cells transfected with a vector for p53 were treated for 6 hr with the

indicated concentrations of tenovin-6. K382-acetylated p53 and total p53

were detected as above.

(E) H1299 cells were transfected with a vector for p53 expression (upper

panels) or p53R273H (lower panels) in the absence or presence of pCMV-

SirT1. Cells were treated for 6 hr with the indicated concentrations of teno-

vin-1. K382-acetylated p53 and total p53 were detected.

(F) H1299 cells were transfected with a vector for wild-type p53 expression

(lanes 1, 2, and 3) or p53R273H (lanes 4, 5, and 6). Cells were left untreated

(lanes 3 and 4) or treated with 10 mM (lanes 2 and 5) or 20 mM (lanes 1 and 6)

tenovin-6 for 6 hr. K382-acetylated p53 and total p53 were detected, and

the ratio between the amount of K382-acetylated p53 and the total amount

of p53 in each lane was calculated. Note that these ratios are relative and

do not correspond to the actual fraction of acetylated p53 in cells. Lanes 7,

8, and 9 correspond to loading 1/10 of the amount of protein in samples in

lanes 4, 5, and 6, respectively.

(G) H1299cellswere transfected witha vector for wild-type p53expression (lanes

1 through 3) or p53R273H (lanes 4 through 6) in the absence (lanes 1 and 4) or

presence (lanes 2, 3, 5, and 6) of ectopic mdm2. In lanes 3 and 6, cells were

treated for 6 hr with 10 mM tenovin-1. Total p53 was detected with DO1 antibody.

b-gal expression was used as a transfection efficiency and loading control.

(H) H1299 cells were treated with 10 mM tenovin-1 for the indicated times. Endog-

enous p14ARF was detected using a mouse monoclonal antibody (Ab-3 14P03,

Neomarkers). PCNA was detected as a loading control.
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Validation of SirT2 as a Target for Tenovins
in Mammalian Cells
We have also observed that tenovin-1 (and tenovin-6, data not

shown) increases acetylation levels of histone H4 at lysine 16

(Figure 7A), an established substrate for SirT1 and SirT2 (Va-

quero et al., 2004, 2006). The observation that tenovins induce

a global increase in K16-Ac H4 (Vaquero et al., 2006) indicated

that tenovins could also influence SirT2 activity in cells.

SirT2 also promotes deacetylation of a-tubulin at lysine 40

(North et al., 2003). Strong evidence that SirT2 is a target for

tenovins in mammalian cells comes from the observation that

tenovins-1 and -6 clearly increase acetylated a-tubulin levels

(Figure 7B and 7C). Furthermore, SirT2 overexpression signifi-

cantly weakens the effect of tenovins on a-tubulin acetylation

(Figure 7C).

The results presented in Figure 7 together with the correlation

between the activities of different tenovin derivatives in the SirT2

biochemical assay and their ability to increase acetylated

a-tubulin in cells (Table 1; Table S1) strongly support that teno-

vins inhibit SirT2 protein deacetylase activity in cells.
CCELL 884
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DISCUSSION

This work describes an effective approach for the discovery of

small molecules with potential therapeutic relevance consisting

of the following steps: (1) identification of bioactive compounds



Figure 7. SirT2-Related Effects of Tenovins in Mammalian Cells

(A) H1299 cells were treated with 40 nM trichostatin A (TSA) (Cat. No. T8552,

Sigma) to deplete nonsirtuin histone deacetylase activities. Where indicated,

tenovin-1 was also added. After 16 hr, samples were analyzed using anti-

bodies against K16 acetylated histone H4 (Cat. No. 07-329, Upstate) and total

H4 (Cat. No. 07-108, Upstate).

(B) H1299 cells were treated for 16 hr as indicated. Samples were analyzed

with antibodies to K40 acetylated a-tubulin (Cat. No. T6793, Sigma) or total

a-tubulin (Cat. No. T9026, Sigma).

(C) H1299 cells were permanently transfected with a control vector (pcDNA3-

Neo) (lanes 1–6) or a vector for SirT2 overexpression (pcDNA3Neo-SirT2)

(lanes 7–12) and treated for 16 hr with 40 nM trichostatin A in the absence or

presence of 1, 3, 7, or 10 mM tenovin-6. Samples were analyzed using anti-

bodies against K40-acetylated a-tubulin, total a -tubulin, and SirT2 (Cat. No.

2313, Cell Signaling). Note that pcDNA3-SirT2 encodes SirT2 isoform-1, which

is slightly larger than isoform-2. Endogenous SirT2 isoform-1 could also be

detected in lanes 1 through 6 upon longer exposure of the blots. The band

below the ectopic SirT2 may correspond to SirT2 isoform-2, but this was not

confirmed.
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that are not general cytotoxics by screening a library of com-

pounds for their ability to increase the synthesis of a p53-depen-

dent reporter in mammalian cells; (2) prioritization of the hits

through an ordered series of secondary assays, including testing

their effect on the cell cycle and their ability to increase p53 levels

early after treatment; (3) improvement of the water solubility

properties of the selected hit compound following the generation

of the required SAR data; (4) examination of the hit’s activity in

vivo; (5) identification of its putative cellular target through a ge-

netic screen; (6) testing the activity of the compound in biochem-

ical assays; and (7) validation of the compound’s mechanism of

action in cultured cells. Our results also highlight a major advan-

tage of suitable mammalian cell-based screens over biochemi-

cal screens, which is the up-front identification of selective

compounds that are bioactive at low concentrations.

Here, we describe our first attempt to characterize a hit com-

pound from the primary screen. The ability of tenovins-1 and -6

to delay growth of tumors derived from a highly aggressive mel-

anoma cell line without significant general toxicity showed that

these compounds are active in vivo as single agents and sug-

gested their potential value as lead compounds for further me-

dicinal chemistry studies. It was clear, however, that such opti-

mization studies would be significantly aided by the elucidation

of the molecular targets for tenovins. Using a yeast-based ge-

netic assay, we identified the NAD+-dependent deacetylase

Sir2p as a possible target for tenovin-6. The observation that

the yeast heterozygous knockouts for ESC2 and ISW1 were
CCELL
also hypersensitive to tenovin-6 (Table S3) strengthened this

possibility. Esc2p is a SUMO-like protein that interacts with

Sir2p (Cuperus and Shore, 2002; Novatchkova et al., 2005),

and Isw1p is an ATP-dependent chromatin remodeller that inter-

acts with Esc8p, another Sir2p-interacting factor (Cuperus and

Shore, 2002). It is possible that the list of 16 yeast genes ob-

tained from the genetic target identification screen (Table S3)

may help to identify novel sirtuin interacting proteins.

Consistent with a central role for the sirtuins as targets for te-

novins, these compounds decrease the protein deacetylase ac-

tivities of purified human SirT1 and SirT2. We have also shown

that tenovins affect acetylation of SirT1 and SirT2 substrates in

cells and are the only sirtuin inhibitors for which overexpression

of SirT1 or SirT2 has been shown to impair their effects. This, to-

gether with the correlation between the inhibitory activities of dif-

ferent tenovin derivatives in biochemical assays and cellular as-

says (Table 1; Table S1), supports the conclusion that SirT1 and

SirT2 are important targets for the tenovins in mammalian cells.

Whether discovered through biochemical screens or through

cell-based screens, testing a hit compound in other assays is

necessary to assess its level of selectivity. In this regard, teno-

vin-6 does not have an effect on a broad variety of biochemical

reactions. We have also observed a degree of selectivity with

regards to the effect of tenovins on different sirtuins. Tenovin-6

is less effective as a SirT3 inhibitor in vitro than for SirT1 and

SirT2, despite the high level of sequence similarity between

these three class-I sirtuins (Michan and Sinclair, 2007). Whether

high concentrations of tenovins could also affect this SirT3 in

cells will require developing reagents that enable detection of

the acetylation status of SirT3 substrates. An advance in this

regard is the recent identification of acetyl-CoA synthetase 2

as being susceptible to deacetylation by SirT3 at a specific lysine

(Hallows et al., 2006; Schwer et al., 2006).

SirT5 belongs to class-III sirtuins (Michan and Sinclair, 2007).

Although it shows some protein deacetylase activity in vitro,

this activity is very low (Haigis and Guarente, 2006; Michan

and Sinclair, 2007). SirT5 substrates remain unknown, and ac-

cording to published work, SirT5 has no effect on p53 (Luo

et al., 2001). The other human sirtuins (SirT4, SirT6, and SirT7)

are less related in sequence and do not show protein deacety-

lase activities. SirT4 and SirT6 instead act as ADP-ribosyl-trans-

ferases. However, none of the hits from the yeast genetic screen

are known to exhibit or be related to this type of enzymatic activ-

ity. There is no enzymatic activity described for SirT7. Neverthe-

less, once the exact binding site for tenovins in SirT1 and/or

SirT2 has been defined and if this site involves residues con-

served among sirtuins, it will be interesting to test the effect of

tenovins on other members of the family.

SirT1 and SirT2 catalyze the reaction between an acetylated

lysine with NAD+ leading to the production of deacetylated ly-

sine, 20-O-acetyl-ADP-ribose and nicotinamide (Jackson and

Denu, 2002). One possibility is that tenovins mimic the effect of

the byproduct of the sirtuin reaction, nicotinamide, which acts

as a physiological noncompetitive inhibitor of sirtuin function

(Borra et al., 2004; Grubisha et al., 2005). In fact, the Linewea-

ver-Burke plots for inhibition of SirT1 by tenovin-6 also indicate

a noncompetitive mode of inhibition. Hence, it could be argued

that tenovins also alter the activity of other enzymes modulated

by nicotinamide. Although none of the deletions in yeast that
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confer hypersensitivity to tenovin-6 involve proteins known to be

modulated by NAD+ or nicotinamide (Table S3), this possibility

cannot be excluded.

Compounds identified through primary biochemical screens

are in general significantly more potent in the relevant in vitro pri-

mary assay than when added to cells. This is reasonable, consid-

ering that these compounds have not been selected for their sol-

ubility, stability (in culture medium or in cells), permeability,

localization to a particular cellular compartment, or accumulation

to high concentrations inside the cell. However, the same situa-

tion is not necessarily expected for compounds selected via

a cell-based assay. An important aspect of this work is that our

mammalian cell-based screen has led to the identification of sir-

tuin inhibitors that are active in the one digit micromolar range in

mammalian cells. Below we summarize the published studies on

other sirtuin inhibitors that have been tested in cells focusing on

the relevance to cancer research. Several inhibitors of sirtuin de-

acetylase activity described in the literature are nonspecific (e.g.,

nicotinamide, suramin, dihydrocoumarin), are of low potency in

mammalian cells, have poor water solubility (Grubisha et al.,

2005), or have not been characterized in detail for sirtuin-related

effects in cells. Other compounds like sirtinol, which was discov-

ered using a yeast phenotypic assay (Grozinger et al., 2001),

have been shown to be valuable in cell biology experiments. In

this way, sirtinol affects the acetylation status of p53 and his-

tones H3 and H4 in cells at concentrations above 30 mM after in-

cubation times of 24 hr and above (Ota et al., 2007). Splitomycin

(Bedalov et al., 2001) undergoes rapid hydrolysis at neutral pH,

limiting its use in cell culture conditions. A splitomycin-related

compound, cambinol (Heltweg et al., 2006), inhibits SirT1 and

SirT2 deacetylase activities in vitro with IC50 values in the

55–60 mM range. p53 levels or K382 acetylation of p53 are not in-

creased by cambinol as a single agent (Heltweg et al., 2006). We

have confirmed this observation using concentrations of cambi-

nol up to 200 mM (data not shown). The effect of cambinol on p53

requires concentrations of 50 and 100 mM and the addition of

a DNA damaging compound (Heltweg et al., 2006). Cambinol

also increases acetylated a-tubulin levels but again at concen-

trations in the 100 mM range. One remarkable feature of cambinol

is that it is tolerated as a single agent by epithelial cancer cells,

whereas it is highly toxic to Burkitt lymphoma cells in a way

that is dependent on Bcl-6 expression (Heltweg et al., 2006). Fur-

thermore, cambinol (100 mg/kg) decreases growth of xenograft

tumors derived from a Bcl-6 expressing Burkitt lymphoma cell

line (Heltweg et al., 2006). It will be interesting to test whether

this Bcl-6-related-enhanced cytotoxicity also occurs with teno-

vins. Another compound, EX-527, is a very potent SirT1 inhibitor

in biochemical assays (Solomon et al., 2006), and a series of

compounds structurally similar to EX-527 lead to reduced

TNF-a and stimulated adipocyte differentiation (Nayagam

et al., 2006). EX-527 clearly increases p53 levels and K382 acet-

ylated p53 at a concentration of 1 mM, but only when it is com-

bined with DNA-damaging agents. Confirming the lack of effect

on p53 as a single agent, we have not observed an effect of

EX-527 on p53 at concentrations up to 100 mM (data not shown).

A recent paper describes the potential use of a SirT2 inhibitor for

the treatment of Parkinson’s disease (Outeiro et al., 2007). While

this application of a sirtuin inhibitor is remarkably interesting, it is

unlikely that the compound described in this work (AGK2) is of
CCELL 884
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relevance to cancer research. A compelling argument against

AGK2’s utility for the treatment of cancer derives from the dem-

onstration by the authors of this paper that AGK2 is nontoxic to

tumor cells. As expected for a SirT2 inhibitor, AGK2 increases the

levels of acetylated tubulin at concentrations above 10 mM. In

summary, a systematic comparison of all sirtuin inhibitors using

the same experimental conditions is necessary to evaluate their

use in therapy as well as their value as biological tools for the un-

derstanding of the cellular processes regulated by SirT1 and/or

SirT2. In any case, there are obvious advantages of having sev-

eral sirtuin inhibitors available. Observing similar effects with sev-

eral of these compounds may be an effective way to support the

involvement of SirT1 and/or SirT2 in a given process. Further-

more, it is possible that different sirtuin inhibitors synergize with

certain combinations showing improved therapeutic value.

We are now in the process of analyzing whether any of the

other p53 activators discovered through our primary screen

are also sirtuin inhibitors. Like tenovins, these compounds could

be used for the elucidation of cellular processes modulated by

this important group of enzymes (reverse chemical genetics) (Pe-

terson and Mitchison, 2002; Schreiber, 2003) and as lead com-

pounds for the development of treatments for cancer and other

hyperproliferative diseases. Inhibition of sirtuins may also be of

interest in the study of the aging processes (Longo and Kennedy,

2006). A remarkable finding in this regard is that mouse embry-

onic fibroblasts derived from SirT1 knockout mice have an ex-

tended lifespan (Chua et al., 2005). Exemplifying the utility of

small molecules to understand cellular events, our findings

with tenovins have led us to complete previous experiments by

showing that SirT1 inhibition by transient transfection of

a SirT1 mutant with dominant-negative activity leads to in-

creased p53 transcriptional activity. This had not been ad-

dressed directly in the literature. Published experiments in this

regard involved introducing the expression of the SirT1-363Y

dominant negative mutant in cells and selecting surviving and

proliferating cells (Luo et al., 2001; Vaziri et al., 2001). Cells where

p53 activity has been increased are not likely to constitute a sig-

nificant proportion of the selected cells. Additionally, we present

evidence suggesting that unlike wild-type p53, mutant p53 is

highly acetylated at lysine 382. This finding may be crucial in un-

derstanding the underlying causes for mutant p53 accumulation

in tumors.

Aside from tenovins, so far we have only tested one other

optimized hit compound from our screen in animal models.

The in vivo activity of this second compound, which is unrelated

in structure and target to the tenovins (N.J.W. and S.L., unpub-

lished data), further highlights the efficacy of our general drug

discovery approach.

EXPERIMENTAL PROCEDURES

Reagents

A 30,000 compound DiverSet was purchased from Chembridge. Stock solu-

tions were at 2 mM in DMSO. Tenovin synthesis will be described elsewhere

(A.M. and N.J.W., unpublished data). Antibody sources are specified in the

figure legends.

Cell-Based Compound Screen

p53-reporter assay (primary screen): T22-DFos-RGC lacZ murine cells were

seeded in 96-well plates and incubated for 18 hr in the presence of each
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compound at 10 mM. Cells were lyzed and b-galactosidase activity measured

in a colorimetric assay as described (Berkson et al., 2005). The robustness of

the assay was measured by calculating the average reading of 720 wells

treated with 5 ng/ml actinomycin D (1.355) and the corresponding 95% confi-

dence interval (1.332–1.378). For a detailed description on the primary screen-

ing and hit selection procedures, see the Supplemental Data.

Cell Lines and Cell Viability Assays

HCT116 and HCT116 p53�/� cells were a gift from B. Vogelstein. EW36 and

BL2 were provided by K. Wiman (Lindstrom et al., 2001). NTera2D and

NTera2D-DNp53 cells were obtained from M. Saville (Stevenson et al.,

2007). ARN8 cells derive from the A375 cells (Blaydes and Hupp, 1998).

NHDF fibroblasts were bought from Promocell. SKNH-pCMV and SKNSH-

DNp53 were previously described (Smart et al., 1999). All other cell lines

were obtained from the ATCC. Cell viability was determined by trypan blue ex-

clusion, Giemsa staining, or MTT assays as described (Smart et al., 1999). An-

nexin-V/propidium iodide labeling was performed following recommendations

by manufacturers (Biovision, K101-25) and quantified by Flow Cytometry. Cell-

cycle distribution was carried out by BrdU labeling and FACS as described

(Smart et al., 1999).

Tumor Xenograft Studies

Female SCID mice (Harlan) were injected subcutaneously with 1 3 106 ARN8

cells suspended in matrigel (BD Biosiences). Tumors were allowed to reach a

size of approximately 10 mm3. Tenovin-6 was administered daily at 50 mg/kg

by intraperitoneal injection. Control animals were treated with vehicle solu-

tion containing cyclodextrin 20% (w/v) (Cat. No. C0926 Sigma) and DMSO

10% (v/v). Tumor diameters were measured using calipers, and volumes

were calculated using the equation V = p4/3[(d1 + d2)/4]3. Median values of tu-

mor size were calculated for each time point as well as the corresponding 95%

confidence intervals. Comparison of control and drug-treated tumor size dis-

tributions were made by Mann-Whitney U-test. An alpha-level of 0.05 was con-

sidered appropriate for determination of statistical significance. All animal

experiments were preformed under Project License number 60/3045 and in

accordance with the United Kingdom Coordinating Committee on Cancer

Research guidelines and regulations.

Target Identification by a Yeast Genetic Screen

A collection of 6261 yeast strains, each heterozygous for the deletion of a single

open reading frame (ORF), was obtained from Euroscarf (http://web.uni-

frankfurt.de/fb15/mikro/euroscarf/) and screened in a two-step assay. For

a description on the methodology used and the criteria followed for hit selec-

tion, see the Supplemental Data.

In Vitro Deacetylation Assays

Assays were carried out using purified components in the Fluor de Lys Fluores-

cent Assay Systems (Biomol kits AK555, AK556, AK557, and AK518). Relevant

FdL substrates were used at 7 mM and NAD+ at 1 mM. Tenovins were solubi-

lized in DMSO with the final DSMO concentration in the reaction being less

than 0.25%. For SirT1 and HDAC8, one unit of enzyme was used per reaction,

and for SirT2 and SirT3, we used five units per reaction. Reactions were carried

out at 37�C for 1 hr. Conditions for the acquisition of data for the Lineweaver-

Burke plots are specified in the legend for Figure 5.

Transfections

Human wild-type p53, p53R273H, and mdm2 expression vectors are de-

scribed (Xirodimas et al., 2001). pCMV-SirT1 vector for SirT1 isoform 1 was ob-

tained from Origene (Cat. No. SC127917). SirT1-363Y was expressed using

pBabe SirT1-363Y, a kind gift from W. Gu (Luo et al., 2001). pcDNA3-SirT2

was obtained by inserting the human SirT2 isoform 1 coding sequence (aa

1–389) from pCMV-SirT2 (Cat. No. SC127915, Origene) into pcDNA3. H1299

cells were transfected with pcDNA3 or pcDNA3-SirT2, and neomycin resistant

cells were selected with G418 (1 mg/ml). Transient transfections for western

blotting were performed using the calcium phosphate precipitation protocol

as described (Xirodimas et al., 2001). Transfections for the analysis of p53 tran-

scription factor activity were performed using Fugene-6 as recommended

(Roche).
CCELL
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The Supplemental Data include Supplemental Experimental Procedures, four

supplemental figures, and three supplemental tables and can be found with

this article online at http://www.cancercell.org/cgi/content/full/13/5/---/
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