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Automatic presentations, also called FA-presentations, were introduced to extend finite
model theory to infinite structures whilst retaining the solubility of interesting decision
problems. A particular focus of research has been the classification of those structures

of some species that admit automatic presentations. Whilst some successes have been
obtained, this appears to be a difficult problem in general. A restricted problem, also
of significant interest, is to ask this question for unary automatic presentations: auto-
matic presentations over a one-letter alphabet. This paper studies unary FA-presentable

semigroups.
We prove the following: Every unary FA-presentable structure admits an injective

unary automatic presentation where the language of representatives consists of every

word over a one-letter alphabet. Unary FA-presentable semigroups are locally finite, but
non-finitely generated unary FA-presentable semigroups may be infinite. Every unary FA-
presentable semigroup satisfies some Burnside identity. We describe the Green’s relations
in unary FA-presentable semigroups. We investigate the relationship between the class of

unary FA-presentable semigroups and various semigroup constructions. A classification
is given of the unary FA-presentable completely simple semigroups.
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1. Introduction

Automatic presentations, also known as FA-presentations, were introduced by

Khoussainov & Nerode [10] to fulfill a need to extend finite model theory to in-

finite structures while retaining the solubility of interesting decision problems, and

have recently been applied to algebraic structures such as groups [14], rings [13],

and semigroups [2,3].

One main avenue of research has been the classification of those structures of

some species that admit automatic presentations. Classifications are known for

finitely generated groups [14, Theorem 8] and cancellative semigroups [3, Theo-

rem 13], for integral domains (and more generally for possibly non-commutative

rings with identity and no zero divisors) [13, Corollary 17], for Boolean algebras

[11, Theorem 3.4], and for ordinals [7].

In several areas where general classifications remain elusive, it has been possi-

ble to classify those structures that admit unary automatic presentations (that is,

automatic presentations over a one-letter alphabet), including, for example, bijec-

tive functions [1, Theorem 7.12], equivalence relations [1, Theorem 7.13] (see also

Theorem 8 below), linear orders [1, Theorem 7.15], graphs [1, Theorem 7.16], and

groups [1, Theorem 7.19]. (Notice that a classification result in the non-unary case

is only known for finitely generated groups.) Furthermore, the isomorphism problem

is decidable for certain unary FA-presentable structures [12].

This motivates the study of semigroups admitting unary automatic presenta-

tions, which forms the subject of this paper. Whilst we do not give a complete clas-

sification of such semigroups, we do describe a number of their properties, which

lead to classifications in some special cases.

First, we prove a useful preliminary result that applies to all unary FA-presenta-

ble structures, not just to semigroups (Theorem 9). Example 11 shows that infinite

unary FA-presentable semigroups exist, contrasting the fact that unary FA-present-

able groups are finite. However, the first main result of the paper, that unary FA-pre-

sentable semigroups are locally finite (Theorem 13), yields the immediate corollary

that finitely generated unary FA-presentable semigroups are finite (Corollary 14).

Another consequence is that for any unary FA-presentable semigroup S, there exists

some n ∈ N such that Sn+1 = Sn.

Next, every unary FA-presentable semigroup is shown to satisfy some Burnside

identity xk = xk+m (Theorem 21), and therefore to be periodic. Consequently, the

Green’s relations D and J coincide in such semigroups. In Section 8, which focusses

on the study of Green’s relations for unary FA-presentable semigroups, it is proven

that in such semigroups, D-classes cannot contain both infinitely many L-classes

and infinitely many R-classes. Furthermore, in a unary FA-presentable semigroup,

there is a bound on the order of its H-classes (Proposition 27).

Finally, Section 9 examines the interaction of the class of unary FA-presenta-

ble semigroups with extensions and subsemigroups, the Rees matrix construction,

direct products, and free products. In particular, the results on Rees matrix semi-
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groups yield a classification of unary FA-presentable completely simple semigroups

(Theorem 38).

2. Preliminaries

This section gathers the definitions and basic results needed elsewhere in the paper.

First of all, a terminological convention: throughout the paper, ‘countable’ means

‘countably infinite’.

The reader is assumed to be familiar with the theory of finite automata and

regular languages; see [8, Chs 2–3] for background reading. The empty word (over

any alphabet) is denoted ε.

Definition 1. Let L be a regular language over a finite alphabet A. Define, for

n ∈ N,

Ln = {(w1, . . . , wn) : wi ∈ L for i = 1, . . . , n}.

Let $ be a new symbol not in A. The mapping conv : (A∗)n → ((A ∪ {$})n)∗ is

defined as follows. Suppose

w1 = w1,1w1,2 · · ·w1,m1
,

w2 = w2,1w2,2 · · ·w2,m2
,

...

wn = wn,1wn,2 · · ·wn,mn
,

where wi,j ∈ A. Then conv(w1, . . . , wn) is defined to be

(w1,1, w2,1, . . . , wn,1)(w1,2, w2,2, . . . , wn,2) · · · (w1,m, w2,m, . . . , wn,m),

where m = max{mi : i = 1, . . . , n} and with wi,j = $ whenever j > mi.

Observe that the mapping conv maps an n-tuple of words to a word of n-tuples.

Definition 2. Let A be a finite alphabet, and let R ⊆ (A∗)n be a relation on A∗.

Then the relation R is said to be regular if

convR = {conv(w1, . . . , wn) : (w1, . . . , wn) ∈ R}

is a regular language over (A ∪ {$})n.

Definition 3. Let S = (S,R1, . . . , Rn) be a relational structure. Let L be a regular

language over a finite alphabet A, and let φ : L→ S be a surjective mapping. Then

(L, φ) is an automatic presentation or an FA-presentation for S if:

(1) the relation Λ(=, φ) = {(w1, w2) ∈ L2 : w1φ = w2φ} is regular, and

(2) for each relation Ri of arity ri, the relation

Λ(Ri, φ) = {(w1, w2, . . . , wri) ∈ Lri : R(w1φ, . . . , wriφ)}

is regular.
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If S admits an automatic presentation, it is said to be FA-presentable.

If (L, φ) is an automatic presentation for S and the mapping φ is injective (so

that every element of the structure has exactly one representative in L), then (L, φ)

is said to be injective.

If (L, φ) is an automatic presentation for S and L is a language over a one-letter

alphabet, then (L, φ) is a unary automatic presentation for S, and S is said to be

unary FA-presentable.

A semigroup can be viewed as a relational structure where the binary operation ◦

is interpreted as a ternary relation. The following definition simply restates that of a

unary automatic presentation in the special case when the structure is a semigroup:

Definition 4. Let S be a semigroup. Let L be a regular language over the alphabet

{a}, and let φ : L → S be a surjective mapping. Then (L, φ) is a unary automatic

presentation for S if the relations

Λ(=, φ) = {(w1, w2) ∈ L2 : w1φ = w2φ}

and

Λ(◦, φ) = {(w1, w2, w3) ∈ L3 : (w1φ) ◦ (w2φ) = w3φ}

are regular.

Often, the semigroup operation ◦ will be denoted simply by concatenation.

Proposition 5 ([10, Corollary 4.3]). Any structure that admits an automatic

presentation (L, φ) admits an injective automatic presentation (K,φ|K), where K ⊆

L.

Definition 6. If (L, φ), where L ⊆ a∗, is an injective unary automatic presentation

for a structure S, and s is an element of S, then ℓ(s) is the length of the unique

word w ∈ L with wφ = s. [Notice that aℓ(s) = sφ−1 for all elements s of S.]

The fact that a tuple of elements (s1, . . . , sn) of a structure S satisfies a first-

order formula θ(x1, . . . , xn) is denoted S |= θ(s1, . . . , sn).

Proposition 7 ([10]). Let S be a structure with an automatic presentation (L, φ).

For every first-order formula θ(x1, . . . , xn) over the structure, the relation

Λ(θ, φ) =
{

(w1, . . . , wn) ∈ Ln : S |= θ(w1φ, . . . , wnφ)
}

is regular.

Proposition 7 is fundamental to the theory of automatic presentations and will

be used without explicit reference throughout the paper.

The following characterization of unary FA-presentable equivalence relations will

be needed later:

Theorem 8 ([1, Theorem 7.13]). An equivalence relation ∼ is unary FA-pre-

sentable if and only if
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(1) the cardinality of the finite ∼-classes is bounded, and

(2) there are only finitely many countable ∼-classes.

For any subset X of a semigroup S, denote by Xn the set of all elements of S

that can be expressed as products of elements of X of length exactly n: that is,

Xn = {x1x2 · · ·xn : xi ∈ X}. Notice that in general Xn * Xn+1.

3. General unary FA-presentable structures

The following result shows that a unary FA-presentable structure admits an injective

unary FA-presentation where the language of representatives is the language of all

words over a one-letter alphabet. Observe that this result holds for all unary FA-

presentable structures, not just for semigroups.

Theorem 9. Let S be an infinite relational structure that admits a unary automatic

presentation. Then S has an injective unary automatic presentation (a∗, ψ).

Proof. By Proposition 5, assume without loss of generality, that (L, φ) is an injec-

tive unary automatic presentation for S, where L ⊆ b∗.

Let B be a deterministic complete finite automaton recognizing L. Suppose B

has state set Q, set of accept states Y , initial state q0, and transition function

δ : Q × {b} → Q. Since the input alphabet has only one letter, each state has

exactly one edge leaving it. Let y1, y2, . . . ∈ Y be the accept states in the order in

which they are encountered when B reads an arbitrarily long word over {b}. (The

sequence of states yi is infinite because the language L is infinite.) Let β0 be the

smallest non-negative integer such that (q0, b
β0)δ ∈ Y , and for each i ∈ N, let βi be

the smallest positive integer such that (yi, b
βi)δ ∈ Y . Notice that (q0, b

β0)δ = y1 and

that (yi, b
βi)δ = yi+1. For k ∈ N ∪ {0}, let Bk =

∑k
i=0 βi; notice that since βi > 0

for every i ∈ N, the map k 7→ Bk is injective. Note that (q0, b
Bk)δ = yk+1. Therefore

the map ψ from a∗ to the domain of S defined by akψ = bBkφ is a bijection

Let R be some relation of S of arity n. (Possibly, R is the equality relation.) Let

A be an n-tape synchronous automaton recognizing conv(Λ(R, φ)). Suppose that A

has state set P , initial state p0, transition function ζ : P × {b, $}n → P , and set of

accept states Z.

Construct an n-tape synchronous automaton A
′ as follows. The state set is P×Y ,

the inital state is (p0, y0), the set of accept states is Z × Y . The transition function

κ : (P × Y )× {a, $}n → (P × Y ) is defined as follows:
(

(p, yi), (a1, . . . , an)
)

κ =
(

(p, (v1, . . . , vn))ζ, yi+1

)

,

where

vj =

{

bβi if aj = a,

$βi if aj = $.

By construction, the new automaton A
′ accepts conv(ak1 , . . . , akn) if and only if

the original automaton A accepts conv(bBk1 , . . . , bBkn ). [In particular, note that A
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can only accept conv(bh1 , . . . , bhn) if every hi is Bji for some ji, since b
hi must be

accepted by B.] Thus, since L(A) = conv(Λ(R, φ)), it follows from the definition of

ψ that L(A′) = conv(Λ(R, ψ)).

SinceR was an arbitrary relation of S, it follows that (a∗, ψ) is a unary automatic

presentation for S.

4. Finite groups and infinite semigroups

The following result was first observed for groups Blumensath [1, Theorem 7.19].

Blumensath’s proof generalizes immediately to cancellative semigroups [3, Theo-

rem 12.1], although Theorem 9 could be used to give a more conceptually econom-

ical proof. In particular, Theorem 9 makes Blumensath’s notion of ‘loop constants’

[1, Section 7.1] unnecessary for the proof.

Proposition 10. Unary FA-presentable cancellative semigroups are finite. In par-

ticular, unary FA-presentable groups are finite.

The following example shows that Proposition 10 does not extend to general

semigroups, because infinite unary FA-presentable semigroups exist:

Example 11. Any countable right zero semigroup or left zero semigroup is unary

FA-presentable. To see this, let S = {zi : i ∈ N ∪ {0}} be a countable right zero

semigroup. (The reasoning for left zero semigroups is similar.)

Define φ : a∗ → S by an 7→ zn for all n ∈ N ∪ {0}. Then

Λ(=, φ) = {(ap, ap) : p ∈ N ∪ {0}}

and

Λ(◦, φ) = {(ap, aq, ar) : apφ ◦ aqφ = arφ, p, q, r ∈ N ∪ {0}}

= {(ap, aq, ar) : zp ◦ zq = zr, p, q, r ∈ N ∪ {0}}

= {(ap, aq, ar) : zq = zr, p, q, r ∈ N ∪ {0}}

= {(ap, aq, aq) : p, q ∈ N ∪ {0}},

and so Λ(=, φ) and Λ(◦, φ) are regular. Thus (a∗, φ) is a unary automatic presen-

tation for S.

Note in passing that any finite semigroup — indeed, any finite structure —

admits a unary automatic presentation.

5. Adjoining an identity

Although the natural place for the following result would be in the discussion of

semigroup constructions in Section 9, it is required in Section 6 and so is proved

here instead:

Proposition 12. Let S be a semigroup. Then S is unary FA-presentable if and

only if S1 is unary FA-presentable.
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Proof. Suppose that S admits an injective unary FA-presentation (a∗, φ). Define

a new map ψ : a∗ → S1 by εψ = 1 and (aw)ψ = wφ. [The idea is to lengthen

all representatives by a single letter a and use the empty word ε to represent the

adjoined identity.] Then ψ is injective and

Λ(◦, ψ) = {(u, v, w) : u, v, w ∈ a∗, (uψ)(vψ) = wψ}

= {(u, v, w) : u, v, w ∈ a+, (uψ)(vψ) = wψ}

∪ {(u, ε, u), (ε, u, u) : u ∈ a∗}

= {(au′, av′, aw′) : u′, v′, w′ ∈ a+, (u′φ)(v′φ) = w′φ}

∪ {(u, ε, u), (ε, u, u) : u ∈ a∗}

= (a, a, a)Λ(◦, φ)

∪ {(u, ε, u), (ε, u, u) : u ∈ a∗},

which is regular. So (a∗, ψ) is an injective unary FA-presentation for S1.

Suppose now that (a∗, φ) is an injective unary FA-presentation for S1. Let u ∈

a∗ be the unique word representing the adjoined identity. Then a∗ − {u} maps

injectively onto S and

Λ(◦, φ|a∗−{u}) = Λ(◦, φ) ∩
(

(a∗ − {u})× (a∗ − {u})× (a∗ − {u})
)

is regular; hence (a∗ − {u}, φ|a∗−{u}) is a unary FA-presentation for S.

6. Finitely generated unary FA-presentable semigroups

While unary FA-presentable groups are finite by Proposition 10, Example 11 shows

that unary FA-presentable semigroups may be infinite. However, with the extra

condition of finite generation, finitude is guaranteed:

Theorem 13. Unary FA-presentable semigroups are locally finite.

Proof. Let S be a unary FA-presentable semigroup. Let Y be a finite subset of S.

The aim is to show that the subsemigroup T generated by Y is finite.

By Proposition 12 and Theorem 9, S1 admits an injective unary FA-presenta-

tion (a∗, φ). Let X = Y ∪ {1}. Then X generates the subsemigroup T 1 of S1. Let

R = max{l(a) : a ∈ X}. By [4, Lemma 7.5], there is a constant N such that, for all

m ∈ N,

max{ℓ(a1 · · · am) : ai ∈ X} ≤ R+ ⌈log2m⌉N. (12)

In a language over a one-letter alphabet, words are uniquely determined by their

lengths. It thus follows from (12) that for all m ∈ N,
∣

∣Xm
∣

∣ ≤ R+ ⌈log2m⌉N. (13)

Since X contains the identity 1, it follows that Xm ⊆ Xm+1. So |Xm| ≤ |Xm+1|.

Suppose that |Xm| < |Xm+1| for allm ∈ N. Then since |Xm|must be an integer,

|Xm| ≥ m for all m ∈ N. Hence m ≤ R+ ⌈log2m⌉N for all m ∈ N by (13), which is
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a contradiction, for this inequality is false for sufficiently large m. Therefore there

is some m ∈ N such that |Xm| = |Xm+1|.

So Xm = Xm+1. Hence Xm contains all the elements of X and is closed under

right- and left-multiplication by elements of X. So Xm must be the subsemigroup

generated by X, which is T 1. Hence T 1 is finite and thus so is T .

Since X was an arbitrary finite subset of the unary FA-presentable semigroup

S, it follows that S is locally finite.

Corollary 14. A finitely generated semigroup is unary FA-presentable if and only

if it is finite.

Proof. In one direction, the result is obvious: if a semigroup is finite it admits a

unary automatic presentation. In the other, it is a consequence of Theorem 13.

Notice that Corollary 14 gives a classification of those finitely generated semi-

groups that admit unary automatic presentations. Finite generation seems to be a

useful tool for proving classification results for general (not just unary) FA-presenta-

ble structures; witness the classifications of finitely generated FA-presentable groups

[14, Theorem 8] and finitely generated FA-presentable cancellative semigroups [3,

Theorem 13].

Theorem 15. Let S be a unary FA-presentable semigroup. Then there exists n ∈ N
such that Sn+1 = Sn.

Proof. First of all, notice that if S is finite, the result holds trivially. Therefore

assume without loss of generality that S is infinite. Let (a∗, φ) be an injective unary

FA-presentation for S.

Let ≤ be the R partial order, where

x ≤ y ⇐⇒ x = y ∨ (∃p)(x = yp);

that is, x ≤ y if x is a right-multiple of y. Since≤ is first-order definable, convΛ(≤, φ)

is recognized by a deterministic finite automaton A.

Consider the structure of the automaton A. The path of edges labelled by (a, a)

starting at its initial state eventually enters a loop. (This loop is unique since A is

deterministic.) From any one of the states along this path, paths of edges labelled

by (a, $) or by ($, a) may begin, each also leading into a uniquely determined loop.

Let t be a multiple of the lengths of each of these loops in A and also greater

than the number of states in A. Consider a word conv(ai, aj) ∈ L(A). If i and j

are greater than t, then in reading the prefix of this word consisting of symbols

(a, a), the automaton enters the first loop. Since t is a multiple of the length of this

loop, the word can be pumped so as to give words of the form conv(ai+ht, aj+ht).

Similarly, if the difference between i and j is greater than t, the automaton enters

a loop after the end of the prefix consisting of symbols (a, a). Thus, since t is a

multiple of the length of this loop, the word can be pumped so as to give words of
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the form conv(ai, aj+ht) (in the case where i+ t ≤ j) or conv(ai+ht, aj) (in the case

where j + t ≤ i). Therefore the following conditions hold:

(1) (aiφ ≤ ajφ) ∧ (i, j ≥ t) =⇒ (∀h ∈ N)(ai+htφ ≤ aj+htφ);

(2) (aiφ ≤ ajφ) ∧ (i+ t ≤ j) =⇒ (∀h ∈ N)(aiφ ≤ aj+htφ);

(3) (aiφ ≤ ajφ) ∧ (j + t ≤ i) =⇒ (∀h ∈ N)(ai+htφ ≤ ajφ).

For m ∈ {0, . . . , t− 1}, let Am = {am+ht : h ∈ N}.
For each k ∈ N, let Dk = Sk−Sk+1. Then each set Dk consists of those elements

of S that can be written as a product of length k but not of length k + 1.

Notice that if x, y ∈ Dk and x 6= y then x and y are ≤-incomparable, for

otherwise x is a right multiple of y or vice versa. Thus x could be expressed as a

longer product than y or vice versa, contradicting the definition of Dk.

The following technical lemma concerns the relationship between subproducts

and the various Dk:

Lemma 16. If s1s2 · · · sk ∈ Dk, then every subproduct sisi+1 · · · sj belongs to

Dj−i+1.

Proof. If the product si+1 · · · sj is equal to a longer product t1 · · · th (where h >

i− j + 1), then

s1s2 · · · sk = s1 · · · si−1t1 · · · thsj+1 · · · sk,

which is a product of more than k elements of S and so cannot lie in Dk. Hence

si+1 · · · sj is not equal to any product of more than j− i+1 elements and so belongs

to Dj−i+1.

We return to the proof of Theorem 15.

Let x ∈ Dk. As a consequence of Lemma 16, there is some y ∈ Dk−1 such that

x is a right multiple of y and so x < y. Conversely, if z ∈ S is such that x < z, then

x is a right-multiple of z and so z ∈ Dk′ for some k′ < k (since otherwise x could

be expressed as a product of more than k elements).

Suppose, with the aim of obtaining a contradiction, that infinitely many of the

sets Dk are infinite. Then since there are only finitely many sets Am, there is some

m ∈ {0, . . . , t−1} and such that Amφ∩Dk is infinite for some k ∈ N. Call any such

set Am good.

The following two lemmata concern the interaction between good sets and the

relation ≤:

Lemma 17. If Am is good, ai ∈ Am, aj ∈ Am′ , i, j ≥ t, and aiφ ≤ ajφ, then Am′

is good.

Proof. Suppose the opposite, that Am′ is not good. Then m 6= m′ and thus i 6≡ j

mod t. Let k be such that Amφ ∩Dk is infinite. Notice that ai+ht ∈ Am for every

h ∈ N by the definition of Am. Since Amφ∩Dk is infinite, there are infinitely many
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h ∈ N such that ai+htφ ∈ Dk. By condition (1) above, for all such h, the inequality

ai+htφ < aj+ht holds. Notice that aj+ht ∈ Am′ for all such h. Furthermore, for

each such h, the element aj+htφ is in Dk′ for some k′ < k since ai+htφ < aj+htφ.

However, since Am′ is not good, Am′φ∩Dk′ is finite. So there are only finitely many

h such that aj+ht ∈ Am′ and aj+htφ ∈ Dk′ for k′ < k. This is a contradiction and

so Am′ is good.

Lemma 18. There are arbitrarily long ascending chains of elements represented by

words that have length greater than t and that lie in good sets.

Proof. Let h ∈ N. We will prove that there exists such an ascending chain of

length h. Since infinitely many of the Dk are infinite, there is some infinite Dk with

k > h+ t+ 1. Since there are only t distinct Am, there is some m ∈ {0, . . . , t− 1}

such that Amφ∩Dk is infinite, so that Am is good. Choose ai0 ∈ Am with ai0φ ∈ Dk

and |ai0 | > t.

Now proceed iteratively: Suppose that for j ∈ {0, . . . , k − 1}, we have a word

aij with aijφ ∈ Dk−j . Then there is some aij+1 with aij+1φ ∈ Dk−j−1 and aij+1φ >

aijφ.

This yields an ascending chain ai0φ < . . . < aikφ. Since all these elements are

distinct, at most t + 1 of the words aij have length at most t. Removing these

elements gives an ascending chain of at least h elements, all represented by words of

length greater than t. Notice that the first element ai0φ is not removed, since it was

chosen so that ai0 has length greater than t. Since ai0 lies in a good set, Lemma 17

now applies iteratively to show that all of the aij lie in good sets.

Again we return to the proof of Theorem 15.

By Lemma 18, and since there are only t distinct sets Am, it is possible to

choose ai and aj in some good set Am with |i − j| > t, both i and j greater than

t, and aiφ < ajφ. Let k be such that Amφ ∩Dk is infinite. Assume that i < j; the

case i > j is similar. Choose h with ai+htφ ∈ Amφ ∩ Dk. By condition (1) above,

ai+htφ < aj+htφ. Choose h′ with aj+ht+h′t ∈ Amφ ∩ Dk. By condition (2) above,

ai+htφ < aj+ht+h′tφ. This is a contradiction since ai+htφ, aj+ht+h′tφ ∈ Dk. Thus

only finitely many of the Dk are infinite.

So suppose Dk is finite for every k ≥ r. Every element of the set Dr ∪Dr+1∪ . . .

can be written as a product of elements from Dr ∪Dr+1 ∪ . . .∪D2r−1: just bracket

the products in groups of r, each of which lies in Dr by Lemma 16, except for the

last one which has length between r and 2r−1, which lies in Dr∪Dr+1∪ . . .∪D2r−1

by Lemma 16.

So the set Dr∪Dr+1∪. . . lies in the subsemigroup generated by Dr∪Dr+1∪. . .∪

D2r−1. But Dr ∪Dr+1 ∪ . . .∪D2r−1 is finite, and S is locally finite by Theorem 13,

so the set Dr ∪ Dr+1 ∪ . . . is finite as well. Hence there exists n ∈ N such that

Dn = ∅, and so Sn+1 = Sn.
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7. Burnside identities

The present section is dedicated to proving that any unary FA-presentable semi-

group satisfies some Burnside identity; that is, some semigroup identity xk = xk+m.

(The constants k,m ∈ N are dependent on the semigroup in question.) In particular,

any such semigroup is periodic and has bounded period.

First, two technical results are needed. The first restricts the length of the word

representing a product of two elements in terms of the lengths of the words rep-

resenting those elements themselves. In the language a∗, of course, the length of a

word uniquely determines that word, so this restriction is very useful.

Lemma 19. Let S be an infinite semigroup admitting an injective unary automatic

presentation (a∗, φ) (by Theorem 9). Then there is a constant n ∈ N such that, for

any x, y ∈ S, one of the following conditions holds:

(1) ℓ(x)− n ≤ ℓ(xy) ≤ ℓ(x) + n,

(2) ℓ(y)− n ≤ ℓ(xy) ≤ ℓ(y) + n,

(3) ℓ(xy) ≤ n.

Proof. Let A be an automaton recognizing convΛ(◦, φ) and let n be the number

of states in A.

Let x, y ∈ S. If ℓ(xy) ≤ n, then condition 3 holds and there is nothing to prove.

So suppose ℓ(xy) > n. Assume that ℓ(x) ≤ ℓ(y); the other case is similar. Suppose,

with the aim of obtaining a contradiction, that neither condition 1 nor condition 2

holds. Then one of the following conditions holds:

n < ℓ(xy) < ℓ(x)− n, or ℓ(x) + n < ℓ(xy) < ℓ(y)− n, or ℓ(xy) > ℓ(y) + n.

Each of the possible ranges for ℓ(xy) leads to a contradiction:

(1) n < ℓ(xy) < ℓ(x)− n. Then the following diagram describes the situation:

a
ℓ(x)

a
ℓ(y)

a
ℓ(xy)

> n > n

So the word conv(aℓ(x), aℓ(y), aℓ(xy)) can be pumped before the end of aℓ(xy)

and between the end of aℓ(xy) and the end of aℓ(x). That is, there exist p, q ∈ N
with 0 < p, q < n such that

(

aℓ(x)+ip+jq, aℓ(y)+ip+jq, aℓ(xy)+ip
)

∈ Λ(◦, φ)

for all i, j ∈ N ∪ {0}. Setting i = q and j = 0 and then i = 0 and j = p shows

that
(

aℓ(x)+qp, aℓ(y)+qp, aℓ(xy)+qp
)

,
(

aℓ(x)+pq, aℓ(y)+pq, aℓ(xy)
)

∈ Λ(◦, φ),

which implies that aℓ(xy)+qpφ = aℓ(xy)φ, contradicting the injectivity of φ.
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(2) ℓ(x)+n < ℓ(xy) < ℓ(y)−n. Then the following diagram describes the situation:

a
ℓ(x)

a
ℓ(y)

a
ℓ(xy)

> n > n

So the word conv(aℓ(x), aℓ(y), aℓ(xy)) can be pumped between the end of aℓ(x)

and the end of aℓ(xy) and between the end of aℓ(xy) and the end of aℓ(y). That

is, there exist p, q ∈ N with 0 < p, q < n such that
(

aℓ(x), aℓ(y)+ip+jq, aℓ(xy)+ip
)

∈ Λ(◦, φ)

for all i, j ∈ N ∪ {0}. Setting i = q and j = 0 and then i = 0 and j = p shows

that
(

aℓ(x), aℓ(y)+qp, aℓ(xy)+qp
)

,
(

aℓ(x), aℓ(y)+pq, aℓ(xy)
)

∈ Λ(◦, φ),

which implies that aℓ(xy)+qpφ = aℓ(xy)φ, contradicting the injectivity of φ.

(3) ℓ(y) + n < ℓ(xy). Then the following diagram describes the situation:

a
ℓ(x)

a
ℓ(y)

a
ℓ(xy)

> n

So the word conv(aℓ(x), aℓ(y), aℓ(xy)) can be pumped between the end of aℓ(y)

and the end of aℓ(xy). That is, there exists p ∈ N with 0 < p < n such that
(

aℓ(x), aℓ(y), aℓ(xy)+ip
)

∈ Λ(◦, φ)

for all i ∈ N ∪ {0}. Setting i = 0 and then i = 1 shows that
(

aℓ(x), aℓ(y), aℓ(xy)
)

,
(

aℓ(x), aℓ(y), aℓ(xy)+p
)

∈ Λ(◦, φ),

which implies that aℓ(xy)φ = aℓ(xy)+pφ, contradicting the injectivity of φ.

Each case leads to a contradiction; this completes the proof.

The second technical result relates the lengths of representatives for an element

and for powers of that element:

Lemma 20. Let S be a semigroup admitting an injective unary automatic presen-

tation (a∗, φ). For all x ∈ S and k ∈ N, one of the following conditions holds:

(1) ℓ(xk) ≤ n⌈log2 k⌉,

(2) |ℓ(xk)− ℓ(x)| ≤ n⌈log2 k⌉,

where n is the constant of Lemma 19.

Proof. Proceed by strong induction on k. For k = 1, the values of |ℓ(xk) − ℓ(x)|

and log2 k are both 0, so condition (2) holds for k = 1.
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For the induction step, suppose that k > 1 and that for every h < k one of the

following conditions holds:

(1) ℓ(xh) ≤ n⌈log2 h⌉,

(2) |ℓ(xh)− ℓ(x)| ≤ n⌈log2 h⌉.

The aim is to show that one of these two conditions holds for h = k. Now, xk =

x⌊k/2⌋x⌈k/2⌉ and both ⌊k/2⌋ and ⌈k/2⌉ are strictly less than k since k > 1. Thus,

by Lemma 19, one of the following holds:

ℓ(xk) ≤ n, (23)
∣

∣ℓ(xk)− ℓ(x⌊k/2⌋)
∣

∣ ≤ n, (24)
∣

∣ℓ(xk)− l(x⌈k/2⌉)
∣

∣ ≤ n. (25)

Consider each case in turn:

(1) Suppose that (23) holds: ℓ(xk) ≤ n. Then ⌈log2 k⌉ ≥ 1 since k ≥ 2, and so

ℓ(xk) ≤ n⌈log2 k⌉. Thus condition (1) holds.

(2) Suppose that (24) holds: |ℓ(xk) − ℓ(x⌊k/2⌋)| ≤ n. By the induction hypothesis

with h = ⌊k/2⌋, one of the following holds:

ℓ(x⌊k/2⌋) ≤ n⌈log2⌊k/2⌋⌉, (26)
∣

∣ℓ(x⌊k/2⌋)− ℓ(x)
∣

∣ ≤ n⌈log2⌊k/2⌋⌉. (27)

So there are two sub-cases:

(a) Suppose (26) holds. Then:

ℓ(xk)

=
∣

∣ℓ(xk)− ℓ(x⌊k/2⌋) + ℓ(x⌊k/2⌋)
∣

∣

≤
∣

∣ℓ(xk)− ℓ(x⌊k/2⌋)
∣

∣+ ℓ(x⌊k/2⌋) (by the triangle inequality)

≤ n+ n⌈log2⌊k/2⌋⌉ (by (24) and (26))

= n⌈log2⌊k/2⌋+ 1⌉

≤ n⌈log2 k⌉,

and so condition (1) holds.

(b) Suppose (27) holds. Then:
∣

∣ℓ(xk)− ℓ(x)
∣

∣

=
∣

∣ℓ(xk)− ℓ(x⌊k/2⌋) + ℓ(x⌊k/2⌋)− ℓ(x)
∣

∣

≤
∣

∣ℓ(xk)− ℓ(x⌊k/2⌋)|+ |ℓ(x⌊k/2⌋)− ℓ(x)
∣

∣ (by the triangle inequality)

≤ n+ n⌈log2⌊k/2⌋⌉ (by (24) and (27))

= n⌈log2⌊k/2⌋+ 1⌉

≤ n⌈log2 k⌉,

and so condition (2) holds.
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(3) Suppose that (25) holds, that |ℓ(xk)− l(x⌈k/2⌉)| ≤ n. By the induction hypoth-

esis with h = ⌈k/2⌉, one of the following holds

ℓ(x⌈k/2⌉) ≤ n⌈log2⌈k/2⌉⌉, (28)

|ℓ(x⌈k/2⌉)− ℓ(x)| ≤ n⌈log2⌈k/2⌉⌉. (29)

Again there are two sub-cases: if (28) holds, then reasoning parallel to sub-case

(2)(a) above shows that

ℓ(xk) ≤ n⌈log2⌈k/2⌉+ 1⌉. (30)

If (29) holds, then reasoning parallel to sub-case 2(b) above shows that
∣

∣ℓ(xk)− ℓ(x)
∣

∣ ≤ n⌈log2⌈k/2⌉+ 1⌉. (31)

If k is even, then log2⌈k/2⌉ + 1 = log2 k. If k is odd, then log2⌈k/2⌉ + 1 =

log2(k + 1) and ⌈log2(k + 1)⌉ = ⌈log2 k⌉, and so ⌈log2⌈k/2⌉ + 1⌉ = ⌈log2 k⌉.

Therefore, if (28) holds, then, regardless of whether k is even or odd, it follows

from (30) that

ℓ(xk) ≤ n⌈log2 k⌉,

and so condition (1) holds. On the other hand, if (29) holds, then similarly it

follows from (31) that
∣

∣ℓ(xk)− ℓ(x)
∣

∣ ≤ n⌈log2 k⌉,

and so condition (2) holds.

Theorem 21. Any unary FA-presentable semigroup satisfies a Burnside identity.

Proof. Let S be a unary FA-presentable semigroup. By Theorem 9, let (a∗, φ) be

an injective unary automatic presentation for S.

Let s ∈ S. Then, by Lemma 20, for any k ∈ N, one of the following holds:

ℓ(sk) ≤ n⌈log2 k⌉

|ℓ(sk)− ℓ(s)| ≤ n⌈log2 k⌉,

where n is the constant of Lemma 19.

Choose h such that h > 3n⌈log2 h⌉. Then for each k < h, there are only

3n⌈log2 h⌉ possible values for ℓ(sk), since ℓ(sk) is either within n⌈log2 h⌉ of ℓ(s)

or at most n⌈log2 h⌉. Since h exceeds 3n⌈log2 h⌉, by the pigeon-hole principle there

exist ks and k′s, with ks < k′s < h, such that ℓ(sks) = ℓ(sk
′

s). Let ms = k′s − ks;

then 0 < ms < h and ℓ(sks) = ℓ(sks+ms). So sks = sks+ms , and it follows that

the index and period of s are less than h, which is dependent only on (L, φ). Let

k = max{ks : s ∈ S} and m = lcm{ms : s ∈ S}. Since there are only finitely many

possibilities for ks and ms, both k and m exist. Then sk = sk+m for any element

of s, and so S satisfies the Burnside identity xk = xk+m.
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Margolis [Personal communication] posed the following question:

Question 22. Do all FA-presentable semigroups satisfy some non-trivial semigroup

identity?

All known classes of FA-presentable semigroup satisfy some semigroup identity;

see the various examples in [3]. Additionally, those semigroup constructions under

which the class of FA-presentable semigroups is known to be closed [4] are also

constructions under which the class of semigroups satisfying non-trivial identities is

closed. Theorem 21 is further, albeit limited, evidence in favour of a positive answer

to this question.

8. Green’s relations & Schützenberger groups

This section is devoted to describing the Green’s relations H, R, L, D, and J for

unary FA-presentable semigroups. The reader is assumed to be familiar with the

definitions and basic theory of Green’s relations; for background information, see

[9, Ch. 2].

The following result is immediate:

Corollary 23. In a unary FA-presentable semigroup, Green’s relations D and J

coincide.

Proof. A unary FA-presentable semigroup is periodic by Theorem 21, and D = J

in periodic semgroups by [9, Proposition 2.1.4].

Since all the Green’s relations are first-order definable equivalence relations, the

following result is an immediate consequence of Theorem 8:

Proposition 24. In a unary FA-presentable semigroup, there are only finitely

many infinite J -, D-, R-, L-, and H-classes, and the finite ones are of bounded

size.

The next result says, essentially, that the eggbox diagram for a D-class (see [9,

Section 2.2]) cannot have both infinitely many rows and infinitely many columns:

Proposition 25. In a unary FA-presentable semigroup, a D-class cannot contain

both infinitely many R-classes and infinitely many L-classes.

Proof. Suppose a unary FA-presentable semigroup S has some D-class D that

contains infinitely many R-classes and infinitely many L-classes. Then since there

are infinitely many L-classes in D and every H-class contains at least one element,

every R-class of D is infinite. So there are infinitely many infinite R-classes in S.

Since R is an equivalence relation, this contradicts Theorem 8. So no such D-class

can exist.
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In order to strengthen Proposition 24 to show that the H-classes of a unary FA-

presentable semigroup are always finite, and in fact of bounded size, ideas from the

theory of Schützenberger groups are required. The necessary definitions are recalled

here; see [6, Section 2.4] for further background.

Definition 26. Let S be a semigroup. Let H be an H-class of S and let h0 be an

arbitrary element of H. The semigroup S acts by right multiplication on the set of

H-classes in the R-class containing H with a sink adjoined. The right stabilizer of

H is denoted Stab(H):

Stab(H) = {s ∈ S : Hs = H} = {s ∈ S : h0sH h0}. (34)

Define a relation σ(H) on Stab(H) by

(s, t) ∈ σ(H) ⇐⇒ (∀h ∈ H)(hs = ht).

This relation is a congruence, and its definition is equivalent to

(s, t) ∈ σ(H) ⇐⇒ (h0s = h0t). (36)

The factor semigroup Γ(H) = Stab(H)/σ(H) is actually a group, called the

Schützenberger group of H. The group Γ(H) acts regularly on H; thus |H| = |Γ(H)|,

and if H is a group then H ≃ Γ(H).

Proposition 27. Any unary FA-presentable semigroup has a bound on the size of

its H-classes.

Proof. Let (L, φ) be a unary automatic presentation for S. Choose w ∈ L. Let

h0 = wφ; the aim is to show that Hh0
is finite.

The set Stab(Hh0
) is first-order definable by (34); thus the set of words

K = {w ∈ L : wφ ∈ Stab(Hh0
)} is regular. Thus (K,φ|K) is a unary automatic

presentation for the subsemigroup Stab(Hh0
).

The congruence σ(Hh0
) is first-order definable by (36). Thus the Schützenberger

group Γ(Hh0
) = Stab(Hh0

)/σ(Hh0
) admits a unary automatic presentation

(K,φ|Kσ
#), where σ# is the natural map from Stab(Hh0

) to Stab(Hh0
)/σ(Hh0

).

Thus, by Proposition 10, the group Γ(Hh0
) is finite.

Since w ∈ L (and thus h0 ∈ S) was arbitrary, every Schützenberger group of an

H-class of S is finite. Thus every H-class of S is finite. Since H is an equivalence

relation on S, there is a bound on the size of the H-classes of S by Theorem 8.

Proposition 28. The principal factor arising from any J -class of a unary FA-

presentable semigroup is either completely 0-simple or a null semigroup.

Proof. Let T be some principal factor of a unary FA-presentable semigroup S.

By [9, Theorem 3.1.6(2)], T is either 0-simple or null. If it is null, there is nothing

more to prove. So suppose T is 0-simple. Since S is periodic by Theorem 21, so is

T . In particular, T is group-bound. Thus, by [9, Theorem 3.2.11], T is completely

0-simple.
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The following example shows that there do exist unary FA-presentable semi-

groups with an arbitrary finite number of infinite D-classes and an infinite number

of finite ones.

Example 29. Let S be a countable right zero semigroup, which is unary FA-pre-

sentable by Example 11.

Let T be the countable chain {t0, t1, . . .} with ordering ti ≤ tj if and only if

i ≤ j. Let ψ : a∗ → T be defined by anψ = tn. Then

Λ(=, ψ) = {(ap, ap) : p ∈ N ∪ {0}}

and

Λ(◦, ψ) = {(ap, aq, ar) : apψ ◦ aqψ = arψ p, q, r ∈ N ∪ {0}}

= {(ap, aq, ar) : tp ◦ tq = tr, p, q, r ∈ N ∪ {0}}

= {(ap, aq, ar) : tq = tr, tq ≤ tp, p, q, r ∈ N ∪ {0}}

∪ {(ap, aq, ar) : tp = tr, tp ≤ tq, p, q, r ∈ N ∪ {0}}

= {(ap, aq, aq) : p, q ∈ N ∪ {0}, q ≤ p}

∪ {(ap, aq, ap) : p, q ∈ N ∪ {0}, p ≤ q}

and so Λ(=, ψ) and Λ(◦, ψ) are regular. Thus (a∗, ψ) is a unary automatic presen-

tation for T .

Let k ∈ N ∪ {0}. Let U0 = T . For each i = 1, . . . , k, let Si be a copy of S and

let Ui be the ordinal sum of Si and Ui−1 with respect to the ordering S > Ui.

(See Section 9.1 for the definition of ordinal sums.) Then by iterated applicaton of

Proposition 30, Uk is unary FA-presentable.

Now, in Uk, products in each subsemigroup Ui are as before, and if x ∈ Ui and

y ∈ Uj with i < j, then xy = yx = x. So in Uk, the R-class, and thus the D-class

of any element of Si is the whole of Si, and the D-class of any element t ∈ T is the

singleton set {t}. So Uk contains countably many finite (singleton) D-classes inside

T , and k countable D-classes, namely the Si.

Although the results in this section describe the possible J -, D-, R-, L-, and H-

classes and principal factors of a unary FA-presentable semigroup, what is lacking is

a description of how these interact. In particular, no characterization is yet known

of unary FA-presentable semilattices (where all Green’s relations are simply the

equality relation). This seems to be the major obstacle on the way to a complete

characterization of unary FA-presentable semigroups.

9. Constructions

This section examines the interaction of the class of unary FA-presentable semi-

groups and four semigroup constructions: extensions and subsemigroups, Rees ma-

trix semigroups, direct products, and free products.
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9.1. Extensions and subsemigroups

The ordinal sum of two semigroup S and T with respect to the ordering S > T ,

is the disjoint union of S and T with the multiplication of two elements of S or

two elements of T as before and the product of s ∈ S and t ∈ T defined to be t:

that is, st = ts = t for all s ∈ S and t ∈ T . So this ordinal sum is a particular

ideal extension of T by S. (The notion of an ordinal sum is due to Clifford [5], who

defined it for an arbitrary collection of semigroups indexed by a totally ordered

semigroup, and with each semigroup admitting a particular type of total order.)

Proposition 30. The ordinal sum of two unary FA-presentable semigroups is itself

unary FA-presentable.

Proof. Let S and T be semigroups admitting unary automatic presentations (K,φ)

(where K ⊆ a∗) and (L,ψ) (where L ⊆ b∗) respectively. (Note that Theorem 9

cannot be applied here because one or both of S and T may be finite.) Let U be

the ordinal sum of S and T with respect to the ordering S > T .

Define the following homomorphisms:

η : a∗ → c∗, a 7→ c2,

ϑ : b∗ → c∗, b 7→ c2.

Since regularity is preserved under homomorphism, K ′ = Kη and L′ = Lϑ are

regular. Notice that K ′, L′ ⊆ {c2}∗, so K ′ and cL′ are disjoint. Let M = K ′ ∪ cL′.

Now define a map

χ :M → U,

{

c2k 7→ akφ

c2k+1 7→ bkψ.

By the definition of M , this map is well-defined.

Let A recognize conv(Λ(◦, φ)) and B recognize conv(Λ(◦, ψ)). In A, each edge is

labelled by a triple whose components are either a or $. On every edge, replace each

component a with c2 and each component $ with $2. Call the resulting automaton

A
′. Similarly, on every edge of B, replace each component b with c2 and each

component $ with $2 to obtain an automaton B
′. It is easy to see that

conv
(

Λ(◦, χ|Sχ−1)
)

= L(A′) and conv
(

Λ(◦, χ|Tχ−1)
)

= (c, c, c)L(B′).

So Λ(◦, χ|Sχ−1) and Λ(◦, χ|Tχ−1) are both regular. Now,

Λ(◦, χ)

= {(u, v, w) : u, v, w ∈ c∗ : (uχ) ◦ (vχ) = wχ}

= Λ(◦, χ|Sχ−1) ∪ Λ(◦, χ|Tχ−1)

∪ {(c2k, c2m+1, c2m+1), (c2m+1, c2k, c2m+1) : k,m ∈ N ∪ {0}},

so Λ(◦, χ) is regular. Thus (c∗, χ) is a unary automatic presentation for U .
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Recall that a subsemigroup T of a semigroup S has finite Rees index if the set

S − T is finite.

Proposition 31. The class of unary FA-presentable semigroups is closed under

passing to subsemigroups of finite Rees index.

Proof. Let S be a unary FA-presentable semigroup and let T be a subsemigroup

of S of finite Rees index. Let (a∗, φ) be an injective unary automatic presentation

for S. Let K = (S − T )φ−1. Since S − T is finite and φ is injective, K is a finite

subset of a∗ and therefore regular. So L = a∗−K is regular, and Lφ|L = T . Finally,

Λ(=, φ|L) = Λ(=, φ) ∩ (L× L),

Λ(◦, φ|L) = Λ(◦, φ) ∩ (L× L× L),

and so (L, φ|L) is a unary automatic presentation for T .

Corollary 32. Let S be a semigroup. Then S is unary FA-presentable if and only

if S0 is unary FA-presentable.

Proof. For any semigroup S, the semigroup S0 is the ordinal sum of S and the

trivial semigroup {0} with respect to the ordering S > {0}. Thus, by Proposition 30,

S0 is unary FA-presentable if S is. In the other direction, S is a finite Rees index

subsemigroup of S0 and so S is unary FA-presentable if S0 is by Proposition 31.

[Proposition 12 could also be deduced from Proposition 31 and Proposition 30

(since S1 is the ordinal sum of the semigroup S and trivial semigroup {1} with

respect to the ordering {1} > S) in a manner similar to Corollary 32.]

The converse of Proposition 31 does not hold: the following example gives an

example of a semigroup S with a subsemigroup T of finite Rees index (indeed,

|S−T | = 1) with T admitting a unary automatic presentation and S not admitting

any automatic presentation, unary or otherwise.

Example 33. Define a semilattice S as follows. The set of elements is {si, ti : i ∈

N ∪ {0}}, and the order ≤ is defined on S as follows: for all i, j ∈ N,

ti ≤ tj ⇐⇒ i ≤ j

ti ≤ sj ⇐⇒ i ≤ j

si ≤ sj ⇐⇒ i = j

si 6≤ tj .

The Hasse diagram for (S,≤) is as illustrated in Fig. 1.

Let Y ⊆ N ∪ {0} be non-recursively enumerable. Let U = S ∪ {e} and extend

the relation ≤ to S as follows: for i ∈ N, by defining

ti ≤ e

si ≤ e ⇐⇒ i ∈ Y.
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t0

s0

t1

s1

t2

s2

t3

s3

t4

s4

t5

s5

t6

s6

t7

s7

Fig. 1. Hasse diagram for (S,≤).

t0

s0
t1

s1
t2

s2
t3

s3
t4

s4
t5

s5
t6

s6
t7

s7

e

Fig. 2. Hasse diagram for (U,≤), assuming for the sake of illustration that 1, 4, 5 lie in Y .

The Hasse diagram for (S,≤) is as illustrated in Fig. 2.

Define a mapping

φ : a∗ → S,

{

a2i 7→ si

a2i+1 7→ ti.

First, notice that φ is injective, so Λ(=, φ) = {an, an : n ∈ N∪{0}}. Furthermore,

Λ(≤, φ)

= {(am, an) : m,n ∈ N ∪ {0}, amφ ≤ anφ}
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= {(a2i, a2j) : i, j ∈ N ∪ {0}, a2iφ ≤ a2jφ}

∪ {(a2i, a2j+1) : i, j ∈ N ∪ {0}, a2iφ ≤ a2j+1φ}

∪ {(a2i+1, a2j+1) : i, j ∈ N ∪ {0}, a2i+1φ ≤ a2j+1φ}

∪ {(a2i+1, a2j) : i, j ∈ N ∪ {0}, a2i+1φ ≤ a2jφ}

= {(a2i, a2j) : i, j ∈ N ∪ {0}, si ≤ sj}

∪ {(a2i, a2j+1) : i, j ∈ N ∪ {0}, si ≤ tj}

∪ {(a2i+1, a2j+1) : i, j ∈ N ∪ {0}, ti ≤ tj}

∪ {(a2i+1, a2j) : i, j ∈ N ∪ {0}, ti ≤ sj}

= {(a2i, a2j) : i, j ∈ N ∪ {0}, i = j}

∪ ∅ (since si 6≤ tj)

∪ {(a2i+1, a2j+1) : i, j ∈ N ∪ {0}, i ≤ j}

∪ {(a2i+1, a2j) : i, j ∈ N ∪ {0}, i ≤ j},

which is regular. Thus (a∗, φ) is a unary automatic presentation for (S,≤).

Suppose for reductio ad absurdum that (U,≤) admits an automatic presentation

(K,φ). The aim is obtain a contradiction by showing that the set Y is effectively

enumerable. Without loss of generality, assume by Proposition 5 that φ is injective.

Let

σ(x, y) = (x < y) ∧ (∀z ∈ U)(x < z =⇒ y ≤ z).

For any x ∈ U , let Σ(x) be the set of elements y ∈ U such that σ(x, y). Then Σ(x)

consists of the set of minimal elements lying above x in the semilattice. That is,

Σ(si) =

{

{e} if i ∈ Y

∅ if i /∈ Y

Σ(ti) = {ti+1, si}

Σ(e) = ∅.

Since σ is a first-order formula, given a word representing some element x, a set of at

most two words representing the elements of the set Σ(x) can be found effectively.

First, let u0 ∈ K and v ∈ K be the unique words with u0φ = t0 and vφ = e. The

procedure enumerating Y stores a word ui and the subscript i between iterations.

Each iteration of the procedure is as follows: For a word ui representing ti,

find the set of words representing Σ(ti). This set consists of two words w1, w2, one

representing ti+1 and one representing si. Find words representing the elements of

the sets Σ(w1φ) and Σ(w2φ); whichever word wj has Σ(wjφ) consisting of exactly

two words must represent ti+1. Set ui+1 = wj . The other word represents si and

so the set of words representing Σ(si) can be effectively calculated. This set is non-

empty if and only if i ∈ Y : in this case, output the subscript i. This completes the

iteration and the procedure continues from the start of this paragraph.



January 28, 2012 11:14 WSPC/INSTRUCTION FILE crt˙unaryfa

22 Cain, Ruškuc, Thomas

t0

t1

t2

t3

t4

t5

t6

t7

s1

s4

s5

Fig. 3. Hasse diagram for (T,≤), assuming for the sake of illustration that 1, 4, 5 lie in Y .

This procedure enumerates the elements of Y . This is a contradiction since Y is

not recursively enumerable, and so (U,≤) cannot admit an automatic presentation.

The following example shows that Proposition 31 does not generalize to arbitrary

subsemigroups.

Example 34. Let (S,≤) be the semilattice from Example 33. Let Y ⊆ N∪ {0} be

non-recursively enumerable and let T = {ti : i ∈ N ∪ {0}} ∪ {si : i ∈ Y }. Then T is

a subsemilattice of S, and the Hasse diagram of (T,≤) is as illustrated in Fig. 3.

Suppose for reductio ad absurdum that (T,≤) admits an automatic presentation

(K,φ). The aim is obtain a contradiction by showing that the set Y is effectively

enumerable. Without loss of generality, assume that φ is injective. Let

σ(x, y) = (x < y) ∧ (∀z ∈ U)(x < z =⇒ y ≤ z).

For any x ∈ U , let Σ(x) be the set of elements y ∈ U such that σ(x, y). Then Σ(x)

consists of the set of minimal elements lying above x in the semilattice. That is

Σ(si) = ∅

Σ(ti) =

{

{ti+1, si} if i ∈ Y .

{ti+1} if i /∈ Y

Since σ is a first-order formula, given a word representing some element x, a set of at

most two words representing the elements of the set Σ(x) can be found effectively.

First, let u0 ∈ K be the unique word with u0φ = t0. The procedure enumerating

Y stores a word ui and the subscript i between iterations.

Each iteration of the procedure is as follows: For a word ui representing ti,

find the set of words representing Σ(ti). If this set consists of a single word w, set

ui+1 = w and continue from the start of this paragraph. If the set consists of two

words w1, w2, then one of these words represents ti+1 and one represents si. Find

words representing the elements of the sets Σ(w1φ) and Σ(w2φ); whichever word

wj has Σ(wjφ) non-empty must represent ti+1. Set ui+1 = wj . Output the index i,
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since in this case i ∈ Y . This completes the iteration and the procedure continues

from the start of this paragraph.

This procedure enumerates the elements of Y . This is a contradiction since Y is

not recursively enumerable, and so (T,≤) cannot admit an automatic presentation.

9.2. Rees matrix semigroups

The next two results show, respectively, that the class of unary FA-presentable

semigroups is closed under forming finite-by-finite Rees matrix semigroups, and that

it includes all finite-by-countable Rees matrix semigroups over finite semigroups.

Recall that a Rees matrix semigroup M[T ; I, J ;P ], where T is a semigroup, I and

J are abstract (possibly infinite) index sets, and P is a J × I matrix with entries

from T , is a semigroup with underlying set I × T × J and multiplication given by

(i, t, j)(k, u, ℓ) = (i, tpj,ku, ℓ).

(See [6, Section 3.1] or [9, Section 3.2] for further information on Rees matrix semi-

groups.)

Proposition 35. Any finite-by-finite Rees matrix semigroup over a unary FA-pre-

sentable semigroup is unary FA-presentable. More precisely, if S = M[T ; I, J ;P ],

where I and J are finite, T is unary FA-presentable, and P is a J × I matrix over

T , then S is unary FA-presentable.

Proof. If T is finite, so is S and so S is unary FA-presentable. So assume T is

infinite. Then by Theorem 9, T admits a unary automatic presentation (a∗, φ).

Suppose that I = {0, . . . , ni − 1} and J = {0, . . . , nj − 1}.

Let k = ninj . Define a map

ψ : b∗ → S, bαψ =
(

(α mod k) mod nj , a
⌊α/k⌋φ, ⌊(α mod k)/nj⌋

)

,

where α mod k is interpreted as the unique h ∈ N with 0 ≤ h < k and h ≡ α

(mod k). Since nj | k,

bαψ =
(

α mod nj , a
⌊α/k⌋φ, ⌊(α mod k)/nj⌋

)

.

The idea of the map ψ is that bmk, bmk+1, . . . , bmk+(k−1) represent all elements of

S of the form (i, amφ, j), with the exponent taken modulo k determining i and j.

For all i ∈ I, j ∈ J , let pj,i ∈ G be the (j, i)-th element of P . The relation

R′
j,i =

{

(aβ1 , aβ2 , aβ3) : βi ∈ N ∪ {0}, (aβ1φ)pj,i(a
β2φ) = aβ3φ

}

is first-order definable in terms of φ and so is regular. From an automaton recog-

nizing convR′
j,i it is easy to construct one recognizing convRj,i, where

Rj,i =
{

(bkβ1+β′

1 , bkβ2+β′

2 , bkβ3+β′

3) : βi ∈ N ∪ {0}, β′
i < k, (aβ1φ)pj,i(a

β2φ) = aβ3φ
}

=
{

(bα1 , bα2 , bα3) : αi ∈ N ∪ {0}, (a⌊α1/k⌋φ)pj,i(a
⌊α2/k⌋φ) = a⌊α3/k⌋φ

}

.
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24 Cain, Ruškuc, Thomas

Then

Λ(◦, ψ)

=
{

(bα, bβ , bγ) : α, β, γ ∈ N ∪ {0}, (bαψ)(bβψ) = (bγψ)
}

=
{

(bα, bβ , bγ) : α, β, γ ∈ N ∪ {0},
(

α mod nj , a
⌊α/k⌋φ, ⌊(α mod k)/nj⌋

)

◦
(

β mod nj , a
⌊β/k⌋φ, ⌊(β mod k)/nj⌋

)

=
(

γ mod nj , a
⌊γ/k⌋φ, ⌊(γ mod k)/nj⌋

)

}

=
{

(bα, bβ , bγ) : α, β, γ ∈ N ∪ {0},
(

α mod nj , (a
⌊α/k⌋φ)p⌊(α mod k)/nj⌋,β mod nj

(a⌊β/k⌋φ), ⌊(β mod k)/nj⌋
)

=
(

γ mod nj , a
⌊γ/k⌋φ, ⌊(γ mod k)/nj⌋

)

}

=
{

(bα, bβ , bγ) : α, β, γ ∈ N ∪ {0},

α mod nj = γ mod nj ∧ ⌊(β mod k)/nj⌋ = ⌊(γ mod k)/nj⌋

∧ (a⌊α/k⌋φ)p⌊(α mod k)/nj⌋,β mod nj
(a⌊β/k⌋φ) = a⌊γ/k⌋φ

}

=
{

(bα, bβ , bγ) : α, β, γ ∈ N ∪ {0},

α mod nj = γ mod nj ∧ ⌊(β mod k)/nj⌋ = ⌊(γ mod k)/nj⌋

∧ (a⌊α/k⌋, a⌊β/k⌋, a⌊γ/k⌋) ∈ R⌊(α mod k)/nj⌋,β mod nj

}

.

Since the relations Rj,i are all regular, and since a finite automaton can track

integers modulo nj and modulo k, it follows that Λ(◦, ψ) is regular, and hence

(b∗, ψ) is an automatic presentation for S.

The following example, which is a modified version of a discussion in [4, Sec-

tion 8], shows that the converse of Proposition 35 does not hold:

Example 36. Let F be the free semigroup with basis {x}. Form the Rees matrix

semigroup S = M[F 0; I, J ;P ], where I = J = {1} and let P is the J × I matrix

whose single entry is 0. So the underlying set of S is {1}×({0}∪{xα : α ∈ N})×{1},

and every product in T is (1, 0, 1) because the single entry of P is 0.

Define a map

φ : a∗ → S, aα 7→

{

(1, 0, 1) if α = 0

(1, xα, 1) if α 6= 0.
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Then φ is injective, so Λ(=, φ) = {(aα, aα) : α ∈ N ∪ {0}}, which is regular.

Furthermore,

Λ(◦, φ) = {(aα, aβ , aγ) : α, β, γ ∈ N ∪ {0}, (aαφ)(aβφ) = aγφ}

= {(aα, aβ , aγ) : α, β, γ ∈ N ∪ {0}, aγφ = (1, 0, 1)}

= {(aα, aβ , ε) : α, β ∈ N ∪ {0}},

so that Λ(◦, φ) is regular. Hence (a∗, φ) is a unary automatic presentation for S.

However, the base semigroup F 0 is finitely generated and infinite, and therefore

cannot be unary FA-presentable by Corollary 14.

Proposition 37. Any finite-by-countable Rees matrix semigroup over a finite semi-

group is unary FA-presentable. More precisely, if S = M[T, I, J, P ], where one of

I and J is finite and the other countable, T is finite, and P is a J × I matrix over

T , then S is unary FA-presentable.

Proof. Let S = M[T, I, J, P ]. Assume that I is finite and J is countable, with

I = {0, . . . , ni − 1} and J = N ∪ {0}. There are only finitely many distinct rows of

the J × I matrix P . So some rows will appear only finitely many times, some will

appear infinitely many times. Permute the rows as follows. The p rows that appear

only finitely many times are placed first, in rows 0 up to p − 1. The q rows that

appear infinitely many times are arranged periodically from p onwards, so that for

any j ≥ p, row j is identical to row ((j − p) mod q) + p. Permuting the rows thus

yields a semigroup isomorphic to the original Rees matrix semigroup, so assume

without loss of generality that P has already been arranged in this way.

Let the elements of the finite semigroup T be t0, . . . , tr−1. Let k = nir. Define

a map

φ : a∗ → S, aα 7→
(

⌊(α mod k)/r⌋, tα mod r, ⌊α/k⌋
)

It is easy to see that φ is injective and so Λ(=, φ) = {(aα, aα) : α ∈ N∪{0}}, which

is regular.

For all i ∈ I, j ∈ N, let pj,i ∈ T be the (j, i)-th element of P . The relation

Rj,i =
{

(aα, aβ , aγ) : α, β, γ ∈ N ∪ {0}, tα mod rpj,itβ mod r = tγ mod r

}

is regular since a finite automaton can track the α, β, and γ modulo r. Notice

further that for any i ∈ I, j ∈ N with j ≥ p, the relations Rj,i and R((j−p) mod q)+p,i

are equal. For convenience later in the proof, define

π : N → N, j 7→

{

j if j < p

((j − p) mod q) + p if j ≥ p,

so that Rj,i and Rjπ,i are equal for all i ∈ I and j ∈ N.
The relation

Fk =
{

(aβ , aγ) : β, γ ∈ N ∪ {0}, ⌊β/k⌋ = ⌊γ/k⌋
}

=
{

(akη, akη) : η ∈ N ∪ {0}
}{

(aµ, aν) : µ, ν ∈ {0, . . . , k − 1}
}
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is also regular.

Furthermore,

Λ(◦, φ)

= {(aα, aβ , aγ) : α, β, γ ∈ N ∪ {0}, (aαφ)(aβφ) = (aγφ)}

=
{

(aα, aβ , aγ) : α, β, γ ∈ N ∪ {0},
(

⌊(α mod k)/r⌋, tα mod r, ⌊α/k⌋
)(

⌊(β mod k)/r⌋, tβ mod r, ⌊β/k⌋
)

=
(

⌊(γ mod k)/r⌋, tγ mod r, ⌊γ/k⌋
)}

=
{

(aα, aβ , aγ) : α, β, γ ∈ N ∪ {0},
(

⌊(α mod k)/r⌋, tα mod rp⌊α/k⌋,⌊(β mod k)/r⌋tβ mod r, ⌊β/k⌋
)

=
(

⌊(γ mod k)/r⌋, tγ mod r, ⌊γ/k⌋
)}

=
{

(aα, aβ , aγ) : α, β, γ ∈ N ∪ {0},

⌊(α mod k)/r⌋ = ⌊(γ mod k)/r⌋ ∧ ⌊β/k⌋ = ⌊γ/k⌋

∧ tα mod rp⌊α/k⌋,⌊(β mod k)/r⌋tβ mod r = tγ mod r

}

=
{

(aα, aβ , aγ) : α, β, γ ∈ N ∪ {0},

⌊(α mod k)/r⌋ = ⌊(γ mod k)/r⌋ ∧ ⌊β/k⌋ = ⌊γ/k⌋

∧ (aα, aβ , aγ) ∈ R⌊α/k⌋,⌊(β mod k)/r⌋

}

=
{

(aα, aβ , aγ) : α, β, γ ∈ N ∪ {0},

⌊(α mod k)/r⌋ = ⌊(γ mod k)/r⌋ ∧ (aβ , aγ) ∈ Fk

∧ (aα, aβ , aγ) ∈ R⌊α/k⌋π,⌊(β mod k)/r⌋

}

.

The relations Rj,i and Fk are regular and an automaton can track integers modulo

k and modulo p (the second being required by the definition of π). Thus the relation

Λ(◦, φ) is regular. Thus (a∗, φ) is a unary automatic presentation for S.

Proposition 37 does not extend to countable-by-countable Rees matrix semi-

groups as a consequence of Proposition 25, since if G is a group, M[G; I, J ;P ]

consists of a single D-class, and the R- and L-classes are respectively subsets of the

form {i} ×G× J and I ×G× {j}, for i ∈ I and j ∈ J (see [9, Sections 3.1–2]).

Since every completely simple semigroup is isomorphic to a Rees matrix semi-

group over a group by the Rees–Suschkewitsch theorem [9, Theorem 3.3.1], Propo-

sition 37 and the results of Section 8 yield a complete classification of unary FA-

presentable completely simple semigroups:

Theorem 38. A completely simple semigroup is unary FA-presentable if and only

if it is either a finite semigroup or a finite-by-countable Rees matrix semigroup over

a finite group.

Proof. First of all, let S be a unary FA-presentable completely simple semigroup;

the aim is to show that S is of one of the two species given. Then S = M[G; I, J ;P ],

where G is a group and P is a J × I matrix over G. By Proposition 27, the group
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G, being isomorphic to any H-class of S, is finite. By Proposition 25, at least one

of I and J is finite. Since S, like all FA-presentable structures, is either finite or

countable, if one of I or J is infinite, it must be countable and so S is a finite-by-

countable Rees matrix semigroup over the finite group G. If both I and J are finite,

then S is finite.

Any finite semigroup is unary FA-presentable, and a finite-by-countable Rees

matrix semigroup over a finite group is unary FA-presentable by Proposition 37.

9.3. Direct products

If G is the trivial group and I and J are countable, the Rees matrix semigroup

M[G; I, J ;P ] is the countable-by-countable rectangular band, which is isomorphic

to the direct product of a countable left zero semigroup and a countable right zero

semigroup. Since countable left zero and right zero semigroups are unary FA-pre-

sentable Example 11, it follows that the class of unary FA-presentable semigroups

is not closed under forming direct products. This contrasts the classes of general

FA-presentable semigroups and general FA-presentable structures, both of which

are closed under finite direct products [1, Corollary 5.2.6(i)]. However, the class

of unary FA-presentable semigroups is closed under forming direct products with

finite semigroups:

Proposition 39. A direct product of a unary FA-presentable semigroup and a finite

semigroup is itself unary FA-presentable.

Proof. Suppose S is a unary FA-presentable semigroup and T is finite. If S is finite,

so is S × T and there is nothing to prove. So suppose S admits an injective unary

automatic presentation (a∗, φ). Suppose the elements of T are t0, . . . , tr−1.

Define a map

ψ : b∗ → S × T, bα 7→
(

a⌊α/r⌋φ, α mod r
)

.

Then ψ is injective, so Λ(=, ψ) = {(bα, bα) : α ∈ N ∪ {0}} is regular. Reasoning

similar to the proof of Proposition 35 shows that Λ(◦, ψ) is regular. So (b∗, ψ) is a

unary automatic presentation for S × T .

However, a direct product of two unary FA-presentable semigroups may be

unary FA-presentable. For example, the direct product of two countable right zero

semigroups is again a countable right zero semigroup.

Question 40. Given unary automatic presentations for two semigroups, is it de-

cidable whether their direct product is unary FA-presentable?

9.4. Free products

The semigroup free product of two semigroups never satisfies a non-trivial semigroup

identity, so by Theorem 21, no semigroup free product is unary FA-presentable. A
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28 Cain, Ruškuc, Thomas

monoid free product of two monoids only satisfies a non-trivial semigroup identity

if and only if one of the monoids is trivial and the other monoid satisfies a non-

trivial semigroup identity. In this case, the free product is isomorphic to the second

monoid. Therefore, no non-trivial free products are unary FA-presentable, which is

perhaps unsurprising given how restricted is the class of semigroup or monoid free

products that admit general FA-presentations [4, Section 4].
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