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ABSTRACT

Context. Magnetohydrostatic (MHS) equilibria are often used to niagd&ophysical plasmas, for example, planetary magnbersg

or coronae of magnetized stars. However, finding realibtied-dimensional solutions to the MHS equations fBalilt, with only a
few known analytical solutions and even finding numericlitson is far from easy.

Aims. We extend the results of a previous paper on three-dimealssofutions of the MHS equations around rigidly rotatingssiae
cylinders to the much more realistic case of rigidly rotgtinassive spheres. An obvious application is to model theeddield line
regions of the coronae of rapidly rotating stars.

Methods. We used a number of simplifying assumptions to reduce the Mél&tions to a single elliptic partialftérential equation
for a pseudo-potentidll, from which all physical quantities, such as the magnetid fidne plasma pressure, and the density, can be
derived by diferentiation. The most important assumptions made ar@statty in the co-rotating frame of reference, a particular
form for the current density, and neglect of outflows.

Results. In this paper we demonstrate that standard methods can Hea$i@d numerical solutions to the fundamental equation
of the theory. We present three simpléfelient cases of magnetic field boundary conditions on theseirbf the central sphere,
corresponding to an aligned dipole field, a non-aligned léifield, and a displaced dipole field. Our results show thahduld be
possible in the future to use this method without dramdtigatreasing the demands on computational resources tmiwapipon
potential field models of rotating magnetospheres and e@ron

Key words. Magnetic fields - Magnetohydrodynamics (MHD) - Stars: maigrfeelds - Stars: coronae - Stars: activity

1. Introduction in Cartesian and spherical coordinates, in which the fuream
) ) _ tal equation is very similar to a Schrodinger equation (kiein

Solutions of the magnetohdyrostatic (MHS) equations atenof 1995: Neukirch & Rastatter 1999) and standard methodh, asic
useful as a starting point for modelling astrophysicalplasys- expansion in terms orthogonal function systems (Rudenka 20
tems. Realistic models obviously have to be three-dimes$ioe.g.) or Green’s functions (e.g. Petrie & Neukirch 2000) ban
(3D), i.e. without any spatial symmetry. Finding 3D solusof  applied. The 3D MHS solutions found in this way have been
the MHS equations is, however, far from easy. This is reftectgsed to model, for example, structures within the solar maro
by the fact that, compared to the 2D case, only very few 3&ch as prominences (e.g. Aulanier et al. 1999), the glattal s
analytical solutions are known and even finding numericki-so corona (e.g. Zhao & Hoeksema 1993, 1994; Gibson & Bagenal
tions is not straightforward (e.g Wiegelmann & Neukirch 800 1995; Gibson et al. 1996; Zhao et al. 2000; Ruan et al. 2008) or
Wiegelmann et al. 2007). If no external forces such as gravit stellar coronae (e.g. Lanza 2008, 2009).
centrifugal forces are includgd some exact solqtions aosvkin While the method (Low 1991) generally includes the pos-
(e.g Woolley 1976, 1977; Shivamoggi 1986; Kaiser et al. 1998ipjlity of applying it to rotating systems, the applicat®
Salat & Kaiser 1995; Kaiser & Salat 1996, 1997) Some of theggentioned above only include external gravitational ferce
solutions have been generalized to include field-alignedmm  Recently, Neukirch (2009) has used the method to find 3D solu-
pressible flows (Petrie & Neukirch 1999). tions to the MHS equations in the frame of reference co-ruat

For many astrophysical application, external forces cannwith a central magnetized cylinder, including only the ciéut
be neglected. A systematic method for calculating a speleiat  gal force and neglecting gravity. This was generalized by Al
of 3D MHS equilibria in the presence of external forces suc®alti et al. (2010) to the case with both centrifugal and grav
as gravity has been developed in a series of papers by Liational forces, but still using a cylindrical central hod'he
(1985, 1991, 1992, 1993a,b, 2005) and Bogdan & Low (198&pmewhat unrealistic geometry of the central body was e¢hose
The method can be applied to systems for which the extermalsimplify the mathematical treatment, e.g. specifyingia
force is given by the gradient of a potential. One has to assumry conditions. While Neukirch (2009) was able to find analyt
that the current density has a special form that makes acallyt cal solutions when only the centrifugal force is presentSAlti
progress possible. In the simplest possible case thisteads- et al. (2010) were unable to find proper analytical solutifmms
ear partial diferential equation for either one component of théhe case with both centrifugal and gravitational forcesweler,
magnetic field or a magnetic pseudo-potential, althoughematue to the relatively simple mathematical structure of tivedf-
complicated nonlinear cases have also been investigatgd (eental equation, they could use a standard numerical patkag
Neukirch 1997). The linear case was investigated in pdaticucalculate numerical solutions.
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In the present paper we aim to extend the work by Al-SalivhereU is a pseudo-potential and
et al. (2010) to the more realistic case of a spherical cEmbidy.

Including both gravitational and centrifugal force for the — &
case of a spherical central body is, for example, relevambfid- 1 - «(V)(VV)?
els of the coronal structure of fast-rotating stars (e.gdide & : . : - :
Unruh 1999; Jardine 2004; Jardine & van Ballegooijen 200%3;233'22%it'iznd(%;erirgmed by substituting (7) into the
Ryan et al. 2005; Townsend & Owocki 2005; Townsend et al. .
2005; ud-Doula et al. 2006), in particular to the closed figld v . (VU + f(VU - VV)VV) = 0. (9)
region. Often potential magnetic fields are used to extapol
stellar surface data (e.g. Jardine et al. 1999, 2001, 2008afd Equation (9) is a linear partial fierential equation for the
et al. 2006, 2008; Morin et al. 2008), neglecting the infleeng@seudo-potentidl and is the fundamental equation of the the-
of the external forces on the magnetic field structure. Thereory in the linear case. An alternative form of this equat®n i
also observational evidence of some measured surface tagne
fields being non-potential (e.g. Hussain et al. 2002). Thee thV - (M- VU) =0, (10)
ory presented in this paper improves the potential magfietit
models by including thefkect of gravitational and centrifugal
force in a self-consistent way, and it is not computationaore M =1 + f.VV VV. (11)
demanding than potential field models. ) ) )

The paper is structured as follows. In Section 2, we demokierel is the 3x 3 unit matrix.
strate that one can use the same standard numerical method a¥1 spherical coordinates we find from Eq. (7) that the mag-
in the cylindrical case to solve the fundamental equationtfe netic fieldB has the components
magnetic pseudo-potential, although it is a bit more coocaypdid

(8)

with the 3x 3 matrixM defined as

in the spherical case. B, = N « (@ N + i ﬂ) ﬂ (12)
For comparison with Al-Salti et al. (2010) we present so- or ar or 1296 06 ) or

lutions for the same three cases of boundary conditionssas di 16U UV 16U sV oV

cussed in their paper (see Section 3). We conclude the peid;herv@e el Ryl VS eyl i Ry Ny AZY & (13)

) . . L r|oo ar ar  r2.00 96 ) 90
a summary and discussion of possible future applicatioriseof 18U
method in Section 4. By = ———, (14)
rsing d¢

2. Theory where,

We use spherical coordinate®) and¢ and consider a spherical 9V — _0?rsir? o+ GMp (15)

body with radiusrg and masaMy rotating rigidly with angular or rz ’

velocity Q. The rotation axis is assumed to be aligned with the gv 20

Z-axis. 50 - —Q°rsinf coso, (16)
We present here only an abridged version of the theory de- Q4 2GM G2M2

rived in Al-Salti et al. (2010) (see also Low 1991; Neukirclivy)? = — [r3 sinza(rs - > 0) 40]. (17)

2009). The MHS equations in the co-rotating frame of refeeen r Q Q

are given by (see e.g. Mestel 1999) It can be easily seen that the dependence of the combined
jxB-Vp-pVV =0, (1) gravitational and centrifugal potenti®l on r andé results in
VXB = o] ) magnetic field components, namey and By, that depend on
’ both gU/or and dU /96 as shown in Egs. (12) and (13). This
V-B =0, (3) dependence on first-order derivatives gives rise to mixeors®
whereB is the magnetic fieldj is the current densityp is the order derivatives in the fundamental equation (9), whiah loe
pressurey is the plasma density andis the combined centrifu- "ewritten as
gal and gravitational potential given by

V(r,6) = —:—ZLQZrZSinZG - % (4)

aror T2 90 a0 (18)

V- (VU + fK(au oV, 1o aV)VV) =0.
However, despite its apparent complexity, Eq. (18) is aptetl
We assume that partial diferential equation as long as-1«(V)(VV)? > 0 (see
{_VE x WV 5 Al-Salti et al. 2010). This can be seen by determining therig
Hol = X VW ) values of the matrixM defined in Eq. (11) at fixed and6. A
with F a free function in general. As shown by Low (1991)simple calculation (see appendix A) shows that the eigeresal
further progress can be made by making an appropriate choie all positive if 1- «(V)(VV)? is positive. Therefore it should

for the free functiorF. Choosing be possible to use standard numerical methods for elligtic d
ferential equations to calculate numerical solutions,\@aadvill
F(w.¢.2 =«(V)B-VV, (6) demonstrate that in Section 3.

It is very unlikely that Eq. (18) allows any meaningful ana-
r]ytical solutions to be found. The reason for this are not sim
the mixed derivatives, but that the dbeients of the dierential
equation depend on bothand® making separation of variables
generally more diicult. Furthermore, while the cylindrical case
B =VU + f (VU - VV)VV, (7) with just the centrifugal force studied by Neukirch (2008} s

with (V) a free function ol/, leads to a linear relation betwee
magnetic field and current density.

Using Ampere’s law (2) one finds the magnetic field to b
given by
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has a few physically meaningful solutions, the cylindricate In the following, we normalize the radial coordinatby the
with combined centrifugal and gravitational force dis@dsdy radius of the spherg), the magnetic field by a typical value
Al-Salti et al. (2010) does not have any physically meanihgfBy, the potentiaV by GMy/ro, k by rg/(GzMg), the pressur®
exact solutions, because for the cases for which analydmal py Bé/,uo and the density bB(Z)rO/(,UOGMO)-
lutions could be found, the density has a singularity at adfixe = We restrict our computational domain to a region where Eq.
distance from the rotation axis. This singularity occurthatco- (18) s elliptic, which means that we include only regionsenen
rotation radius, which in cylindrical coordinates was defiby 1 — «(V)(VV)? is positive. Equation (18) has a singularity when
the distance from the rotation axis whér¥ = 0. 1 - «(V)(VV)? = 0, but this singularity can only occur when
Using Egs. (15) and (16) we see that for spherical coordi¢v) is positive. To avoid the singularity altogether, one ntigh
natesVV vanishes only in the equatorial plane £ 7/2) with  be tempted to choos€V) negative, but as discussed in Al-Sali

the co-rotation radius given by et al. (2010), this usually leads to the Lorentz force having

wrong direction. It is therefore necessary to determineiaripr

Feo = 3/GM0. (19) where singularities might occur. We remark that this siagul
Q ity is not located at the co-rotation radius, whé& = 0, be-

cause there clearly 1 «(V)(VV)? = 1. Furthermore, while for

cylindrical geometry (Al-Salti et al. 2010) the singul&# oc-

cur on cylindrical surfaces (i.e. isolated values of thengjiical
dial coordinate), there will be more complicated singtja
urfaces in spherical coordinates. The singularities oatio-

A test particle in a circular orbit around the sphere in theaeq
torial plane would have an angular velocity which is equdbto
so that it would co-rotate with the sphere.

The general solution of the MHS problem is completed
integrating the force balance equation (1) to get the fahow

expressions for the pressure and density cations where
s KM 33 53y 6] _
o = po(V) ZLK(V)(B'VV)Z, co) " TE [r3(r% - 2r3) sir? 0 + 1§, = 0, (24)
Ho

1 and the solutions clearly depend on what choice is made for
(B-VV)>+ = «(V)B-V(B-VV), (21) «(V). In the present paper, we will only use the simplest pos-
Ho sible choicex = kg = constant, but even in this case it is quite

_ _Gpo 1 d
P=7av " 20 av

where in the spherical case the teBmVV is difficult to obtain an explicit expression for the locations & th
singularities. However, solving Eq. (24) for ifwe find
B9V = e (W0, 100 0Y) @) )
_ 2 2 : o
1—«(V)(VV)2\ or or 1206 96 Sirf g - 3@_3 _F(). (25)
The temperature is determined by the equation of state xfor e (%) [(rL) - 2]
ample in the case of an ideal gas “ °
up Obviously, the singularity only exists for radiifor which F(r)
T="—, (23) has values between 0 and 1. One branch of solutions of Eq. (25)
Ro can be examined by realizing thfar) vanishes only at = +/ko.
where R is the universal gas constant arid the mean molecu- This is inside the central sphere fay < 1, which is the case
lar weight. we will consider in this paper. One can also see that all other

values ofr for which Eq. (25) has valid solutions for this singu-
) larity branch must be smaller th&jxo, i.e. also inside the central
3. Example Solutions sphere under the reasonable assumption that the co-rotatio

As for the cylindrical case discussed in Al-Salti et al. (@p1 dius is outside 3the central sphere. For {/ko, F(r) is negative
we solve Eq. (18) folJ numerically using the same standar@s long as < V2re, where the function has a singularity. For
numerical methods. The method used is an adaptive mesh fimite ¥2r., F(r) is positive and, because of the higher power of
element method from the COMSOL Multiphysics 3.4 packagein the denominator, wilF(r) eventually decrease from to 1
with MATLAB. The mesh sizes used are similar to the cylindrifor increasingr. That is the distance in the equatorial plane at
cal case, i.e. about 26000 elements are used in each calculavhich the second singularity branch starts to exist. Alftono
tion. exact solution can be found, we can find an approximate posi-
We look for solutions in the domainy < r < roy. On the tion for the start of this branch by assuming thatr )3 > 2
inner boundary = ro we impose boundary conditions for theandr?/«p > 1. We then find that the radius at whiélfr) ~ 1 is
radial magnetic field, which correspond to threfetient cases: given byr ~ r3/ y/ko. For the solutions presented in this paper
(a) a magnetic dipole field with the dipole at the centre of thais is well outside the computational domain. For our ch@t
sphere with the dipole axis parallel to the rotation axigfe@d r = 2.5 andkg = 0.25, one finds that the singular branch starts
rotator), (b) a magnetic dipole field with the dipole at thece atr ~ 3125, whereas our computational domain has an outer
tre of the sphere with the dipole axis at an angld with the radius ofroy = 5. For other functiong(V) this method will not
rotation axis (oblique rotator), and (c) a magnetic dipoéddfi work, but one could, for example, easily plot-I(V)(VV)? as
with dipole displaced by a distance3@, from the centre of the a function ofr andé to identify the regions with zeros, if they
sphere along the-axis and with the dipole axis making an anglexist, and choose the computational domain accordingly.
of n/4 with the x-axis (displaced dipole). These three cases are As mentioned above we calculate solutions for thretedi
analogous to the three cases discussed in Al-Salti et al0j20ent boundary conditions on the inner boundary. In the falhgw
for a cylindrical central body and also to the analyticalusol figures we indicate the aligned rotator case with (a), thegabl
tions derived by Neukirch (2009). On the outer boundary vte s@tator case with (b) and the displaced dipole case with (c).
U = Ugu(rouw 0, ¢), whereUqy(r, 6, ¢) is the magnetic potential Three-dimensional plots of magnetic field lines for the ¢hd-
of the magnetic dipole field for each of the three cases. ferent boundary conditions are shown in Fig. 1, where theuwol



4 N. Al-Salti and T. Neukirch: 3D MHS Solutions of Rotating Wtsetized Coronae

-14.5 B

(a)
- -15

5

2.8

-2.5

2.5

z
o

-2.5

2.5

25 20

-21

-15
-16
-17
-18
-19

-5 - -5 -5
-5 -2.5 0 2.5 5 -5 -2.5 0 2.5 5 -5 -2.5 0
X X X

Fig. 2. Variation of the pressure deviation from the backgroundsguee in thexz-plane aty = +1 (touching the central spherg),= +2 and
y = +2.5, respectively. Shown is the logarithm of the pressure.plbts in the top row correspond to the case of the alignedoofease (a)), the
plots in the middle row to the case of the oblique rotatoréd@g) and the plots in the bottom row to the case of the digplatipole (case (c)).
The asymmetry is clearly increasing from top to bottom.

contours on the central sphere represent the strength cddired  elliptical in total shape and then vanish altogether. T hozsd

magnetic field componem;. The structure of the magnetic fieldfeatures correspond to positions wh&reVV = 0, i.e. the pres-

is obviously d@fected by the change of boundary conditions. Orsure deviation is vanishing. This becomes clear, for exanipl

can clearly see the symmetric magnetic field for the aligied moticing that for the aligned rotator case the magnetic fiettie

tator case and non-symmetric magnetic fields for the other twquatorial plane has a vanishing radial component and becau

cases. 0V/96 = 0 as well in the equatorial plane, the scalar product van-

ishes. In the oblique rotator case the symmetric featureiseof

An increasing degree of asymmetry due to the change of theessure deviation contours become distorted, withrfdencli-

boundary conditions from aligned rotator over obliquet@t#o nation angle of the dipole moment with respect to xkexis to

displace dipole can also be clearly seen in Figs. 2 and 3r&iggome extent discernible. The displaced dipole case shaws so

2 shows plots in dferent planes parallel to the-plane of cross similarities to the oblique rotator case, but the asymmetithe

sections of the three-dimensional deviation of the pr&sBom  contours has clearly increased.

the symmetric background pressure. One can clearly see that

the symmetry of the pressure deviation present in the case of

the aligned rotator is broken for the other two cases. Howeve

these cross section plots show some degree of point symmetry

about they-axis for all three cases. For the case of aligned rotator In Fig. 3 we show the density deviation in planes parallel to

(top panels in Fig. 2), one notices the appearance of a hdeko the xz-plane for diferenty-values. The density deviation shows

and two vertical dark features in the left-most panel. Wiike a similar transition from symmetric contours to asymmetdn-

horizontal feature remains as one moves further away fram ttours as we go from the aligned rotator case to the displaaeeli

central sphere, the vertical features first get smaller ancem case.
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Fig. 3. Variation of the density deviation from the background digris the xz-plane aty = +1 (touching the central spherg)= +2 andy = +2.5,
respectively. Shown is the logarithm of the density. Thesiio the top row correspond to the case of the aligned rotatse (a)), the plots in the
middle row to the case of the oblique rotator (case (b)) aagtbts in the bottom row to the case of the displaced dipasg¢c)). The asymmetry
of the density is clearly increasing from top to bottom.

4. Summary and Discussion dipole field aligned with rotation axis (aligned rotator €gsa
dipole field at an angle at/4 with the rotation axis (oblique
In this paper, we have for the first time calculated thregotator case) and a field dipole displaced from the centraef t
dimensional solutions of the magnetohydrostatic equatan- sphere (displaced dipole case).
side a massive rigidly rotating spherical body using th@the  The obtained numerical solutions for the case of constant
first developed by Low (1991). Previously, only solutions-ouysing spherical geometry have similar features to the obes o
side a rigidly rotating cylindrical body had been calcutbtei- tained for the same case using cylindrical geometry desiiity
ther neglecting gravity (Neukirch 2009) or including gtsniAl-  Al-Salti et al. (2010). One of the flierences is that the locations
Salti et al. 2010). of vanishing pressure deviation are now more complicated th
For the case of massive rigidly-rotating spherical bodyney are in the cylindrical case. In the cylindrical case hes-
treated in this paper, the combined gravitational and dfagal sure deviation vanishes at the co-rotation raditig,, or when
potential V depends on two coordinates ndé) if expressed the radial component of the magnetic fieRl, is zero. At the
in spherical coordinates. This leads to a more complicated f co-rotation radius, locations of vanishing pressure dnaep-
of the fundamental equation of the theory (18) than it is ia thresented by dark vertical features are nt¢eted by the change
cylindrical case. Hence, the existence of analytical smhstof of the boundary conditions, which has dfeet only at locations
the Eq. (18) is highly unlikely. However, Eq. (18) can sti# b whereB, = 0. In the spherical case presented in this paper,
solved numerically using similar numerical methods to thes all locations of vanishing pressure deviations dfeced by the
used for the cylindrical case. So, we have carried this oeit pchange of the boundary conditions.
senting numerical solutions for the case(¥) = ko = constant The method presented in this paper allows us to create mod-
as an illustrative example. We have used the same boundary agls of, for example, the closed field-line regions of the cam
ditions as the ones used in the cylindrical case, i.e. a mmgnef fast-rotating stars taking the force-balance betweaentrife-
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Fig. 1. Magnetic field line plots plots for the three cases of aligrege-
tor (a), oblique rotator (b) and displaced dipole (c). Thimas on the
spherical surface represent the radial magnetic field coenoB, on
that boundary.

gal force, gravitational force and the Lorentz force intoamt.

This is a clear advantage over potential field modes, whieh @

for potential field models and we showed that standard numeri
cal methods can be used.

We have in this paper only investigated thre@etent cases
of boundary conditions for the radial magnetic field comptine
on the stellar surface, namely . These three cases have lheen c
sen to illustrate the method can handle an increasing dedree
asymmetry in the boundary conditions and whidiéet that has
on the solutions. In the present paper we have made no attempt
to calculate magnetic fields from any observed boundary con-
ditions, but that is of course an important and interestask t
for future work. Given that the magnetic fields of our method
are intrinsically non-potential, one interesting podgipfor fu-
ture work would be to investigate our method’s capability fo
modelling stellar magnetic fields for which the observed sur
face fields have been suggested to be non-potental, impéying
non-vanishing current density at the stellar surface {dugsain
et al. 2002). For the method presented here, the currenitgens
is always perpendicular to the gradient of the potentisdnd
proportional to the free function(V). It should therefore be in
principle possible to obtain solutions with non-potensiafface
fields by a combination of imposing appropriate boundary-con
ditions on the stellar surface and choosing a convenieratium
«(V). In the present paper, we have chosen as boundary condi-
tions to prescribe the radial component of the magnetic faald
reasons of simplicity. However, the elliptic nature of et
for the pseudo-potential would allow diferent boundary con-
ditions which could be more appropriate for modelling puegs
Similarly, we have in the present paper only presentedisoisit
for k being constant, but other choices focould prove to be
more appropriate. For example, one could try to achievegetar
current density closer to the stellar surface by increasifay
the values thaV¥ takes close to the surface.

The major shortcoming of the presented method is that it
cannot properly describe open field line regions with flowel¢st
lar winds). There is not much hope that flows can be included in
an extended theory. Including, for example, field-aligned§
would lead not only to additional forces in the force-baknc
equation (e.g. a Coriolis force term because the theory éas b
formulated in a rotating frame of reference), but the setasfibd
equations would have to be extended to include at least tiss ma
continuity equation. We have not investigated the mathialat
nature of the resulting set of equations, but experienaa tre
two-dimensional theory of magnetohydrodynamic winds ¢ead
us to expect that these equations will have transitions detw
elliptic and hyperbolic regions at critical poiygsirfaces (e.g
Heinemann & Olbert 1978), which would make finding solu-
tions much more diicult. However, the method presented in
this paper could in principle be extended to more generasas
such as central bodies offtrent shape (e.g. ellipsoids instead
of spheres) or binary systems in synchronous rotation.
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Appendix A: Classification of equation (18)

According to the standard theory of partiaffdrential equations
(PDESs) (e.g. Courant & Hilbert 1968, pp. 135), the class of a
second order PDE is determined by the signs of théhiodents
of the second derivatives after applyintpaal coordinate trans-
formation (i.e. at fixed position) which leads to the fimgents
of the mixed derivatives being zero.

Using the fundamental equation in the form (10) and rewrit-
ing itas

(M-V)-VU +(V-M)-VU =0 (A1)

one can immediately see that only the first term matters &s-cl
sification, because the second term contains only first aeriv
tives. Itis clear that the required transformation amotmtiag-
onalizing the matriXM. This is always possible becauskis a
real and symmetric matrix. The resulting é@eents of the sec-
ond derivatives ob) are the eigenvalues &f, which will be real
due to the properties of the matrix. This implies that, atvei
position, the PDE will either be elliptic, if all eigenvalsidave



