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ABSTRACT

Context. Magnetohydrostatic (MHS) equilibria are often used to model astrophysical plasmas, for example, planetary magnetospheres
or coronae of magnetized stars. However, finding realistic three-dimensional solutions to the MHS equations is difficult, with only a
few known analytical solutions and even finding numerical solution is far from easy.
Aims. We extend the results of a previous paper on three-dimensional solutions of the MHS equations around rigidly rotating massive
cylinders to the much more realistic case of rigidly rotating massive spheres. An obvious application is to model the closed field line
regions of the coronae of rapidly rotating stars.
Methods. We used a number of simplifying assumptions to reduce the MHSequations to a single elliptic partial differential equation
for a pseudo-potentialU, from which all physical quantities, such as the magnetic field, the plasma pressure, and the density, can be
derived by differentiation. The most important assumptions made are stationarity in the co-rotating frame of reference, a particular
form for the current density, and neglect of outflows.
Results. In this paper we demonstrate that standard methods can be used to find numerical solutions to the fundamental equation
of the theory. We present three simple different cases of magnetic field boundary conditions on the surface of the central sphere,
corresponding to an aligned dipole field, a non-aligned dipole field, and a displaced dipole field. Our results show that itshould be
possible in the future to use this method without dramatically increasing the demands on computational resources to improve upon
potential field models of rotating magnetospheres and coronae.
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1. Introduction

Solutions of the magnetohdyrostatic (MHS) equations are often
useful as a starting point for modelling astrophysical plasma sys-
tems. Realistic models obviously have to be three-dimensional
(3D), i.e. without any spatial symmetry. Finding 3D solutions of
the MHS equations is, however, far from easy. This is reflected
by the fact that, compared to the 2D case, only very few 3D
analytical solutions are known and even finding numerical solu-
tions is not straightforward (e.g Wiegelmann & Neukirch 2006;
Wiegelmann et al. 2007). If no external forces such as gravity or
centrifugal forces are included some exact solutions are known
(e.g Woolley 1976, 1977; Shivamoggi 1986; Kaiser et al. 1995;
Salat & Kaiser 1995; Kaiser & Salat 1996, 1997) Some of these
solutions have been generalized to include field-aligned incom-
pressible flows (Petrie & Neukirch 1999).

For many astrophysical application, external forces cannot
be neglected. A systematic method for calculating a specialclass
of 3D MHS equilibria in the presence of external forces such
as gravity has been developed in a series of papers by Low
(1985, 1991, 1992, 1993a,b, 2005) and Bogdan & Low (1986).
The method can be applied to systems for which the external
force is given by the gradient of a potential. One has to assume
that the current density has a special form that makes analytical
progress possible. In the simplest possible case this leadsto a lin-
ear partial differential equation for either one component of the
magnetic field or a magnetic pseudo-potential, although more
complicated nonlinear cases have also been investigated (e.g.
Neukirch 1997). The linear case was investigated in particular

in Cartesian and spherical coordinates, in which the fundamen-
tal equation is very similar to a Schrödinger equation (Neukirch
1995; Neukirch & Rastätter 1999) and standard methods, such as
expansion in terms orthogonal function systems (Rudenko 2001,
e.g.) or Green’s functions (e.g. Petrie & Neukirch 2000) canbe
applied. The 3D MHS solutions found in this way have been
used to model, for example, structures within the solar corona,
such as prominences (e.g. Aulanier et al. 1999), the global solar
corona (e.g. Zhao & Hoeksema 1993, 1994; Gibson & Bagenal
1995; Gibson et al. 1996; Zhao et al. 2000; Ruan et al. 2008) or
stellar coronae (e.g. Lanza 2008, 2009).

While the method (Low 1991) generally includes the pos-
sibility of applying it to rotating systems, the applications
mentioned above only include external gravitational forces.
Recently, Neukirch (2009) has used the method to find 3D solu-
tions to the MHS equations in the frame of reference co-rotating
with a central magnetized cylinder, including only the centrifu-
gal force and neglecting gravity. This was generalized by Al-
Salti et al. (2010) to the case with both centrifugal and grav-
itational forces, but still using a cylindrical central body. The
somewhat unrealistic geometry of the central body was chosen
to simplify the mathematical treatment, e.g. specifying bound-
ary conditions. While Neukirch (2009) was able to find analyti-
cal solutions when only the centrifugal force is present, Al-Salti
et al. (2010) were unable to find proper analytical solutionsfor
the case with both centrifugal and gravitational forces. However,
due to the relatively simple mathematical structure of the funda-
mental equation, they could use a standard numerical package to
calculate numerical solutions.
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In the present paper we aim to extend the work by Al-Salti
et al. (2010) to the more realistic case of a spherical central body.

Including both gravitational and centrifugal force for the
case of a spherical central body is, for example, relevant for mod-
els of the coronal structure of fast-rotating stars (e.g. Jardine &
Unruh 1999; Jardine 2004; Jardine & van Ballegooijen 2005;
Ryan et al. 2005; Townsend & Owocki 2005; Townsend et al.
2005; ud-Doula et al. 2006), in particular to the closed fieldline
region. Often potential magnetic fields are used to extrapolate
stellar surface data (e.g. Jardine et al. 1999, 2001, 2002; Donati
et al. 2006, 2008; Morin et al. 2008), neglecting the influence
of the external forces on the magnetic field structure. Thereis
also observational evidence of some measured surface magnetic
fields being non-potential (e.g. Hussain et al. 2002). The the-
ory presented in this paper improves the potential magneticfield
models by including the effect of gravitational and centrifugal
force in a self-consistent way, and it is not computationally more
demanding than potential field models.

The paper is structured as follows. In Section 2, we demon-
strate that one can use the same standard numerical method as
in the cylindrical case to solve the fundamental equation for the
magnetic pseudo-potential, although it is a bit more complicated
in the spherical case.

For comparison with Al-Salti et al. (2010) we present so-
lutions for the same three cases of boundary conditions as dis-
cussed in their paper (see Section 3). We conclude the paper with
a summary and discussion of possible future applications ofthe
method in Section 4.

2. Theory

We use spherical coordinatesr, θ andφ and consider a spherical
body with radiusr0 and massM0 rotating rigidly with angular
velocityΩ. The rotation axis is assumed to be aligned with the
z-axis.

We present here only an abridged version of the theory de-
rived in Al-Salti et al. (2010) (see also Low 1991; Neukirch
2009). The MHS equations in the co-rotating frame of reference
are given by (see e.g. Mestel 1999)

j × B − ∇p − ρ∇V = 0, (1)

∇ × B = µ0j, (2)

∇ · B = 0, (3)

whereB is the magnetic field,j is the current density,p is the
pressure,ρ is the plasma density andV is the combined centrifu-
gal and gravitational potential given by

V(r, θ) = −
1
2
Ω2r2 sin2 θ −

GM0

r
. (4)

We assume that

µ0j = ∇F × ∇V, (5)

with F a free function in general. As shown by Low (1991),
further progress can be made by making an appropriate choice
for the free functionF. Choosing

F(̟, φ, z) = κ(V) B · ∇V, (6)

with κ(V) a free function ofV, leads to a linear relation between
magnetic field and current density.

Using Ampère’s law (2) one finds the magnetic field to be
given by

B = ∇U + fκ(∇U · ∇V)∇V, (7)

whereU is a pseudo-potential and

fκ =
κ(V)

1− κ(V)(∇V)2
. (8)

The function U is determined by substituting (7) into the
solenoidal condition (3), i.e.

∇ · (∇U + fκ(∇U · ∇V)∇V) = 0. (9)

Equation (9) is a linear partial differential equation for the
pseudo-potentialU and is the fundamental equation of the the-
ory in the linear case. An alternative form of this equation is

∇ · (M · ∇U) = 0, (10)

with the 3× 3 matrixM defined as

M = I + fκ∇V ∇V. (11)

HereI is the 3× 3 unit matrix.
In spherical coordinates we find from Eq. (7) that the mag-

netic fieldB has the components

Br =
∂U
∂r
+ fκ

(

∂U
∂r
∂V
∂r
+

1
r2

∂U
∂θ

∂V
∂θ

)

∂V
∂r
, (12)

Bθ =
1
r

[

∂U
∂θ
+ fκ

(

∂U
∂r
∂V
∂r
+

1
r2

∂U
∂θ

∂V
∂θ

)

∂V
∂θ

]

, (13)

Bφ =
1

r sinθ
∂U
∂φ
, (14)

where,

∂V
∂r
= −Ω2r sin2 θ +

GM0

r2
, (15)

∂V
∂θ
= −Ω2r2 sinθ cosθ, (16)

(∇V)2 =
Ω4

r4













r3 sin2 θ

(

r3 − 2GM0

Ω2

)

+
G2M2

0

Ω4













. (17)

It can be easily seen that the dependence of the combined
gravitational and centrifugal potentialV on r and θ results in
magnetic field components, namelyBr and Bθ, that depend on
both ∂U/∂r and ∂U/∂θ as shown in Eqs. (12) and (13). This
dependence on first-order derivatives gives rise to mixed second-
order derivatives in the fundamental equation (9), which can be
rewritten as

∇ ·
(

∇U + fκ

(

∂U
∂r
∂V
∂r
+

1
r2

∂U
∂θ

∂V
∂θ

)

∇V

)

= 0. (18)

However, despite its apparent complexity, Eq. (18) is an elliptic
partial differential equation as long as 1− κ(V)(∇V)2 > 0 (see
Al-Salti et al. 2010). This can be seen by determining the eigen-
values of the matrixM defined in Eq. (11) at fixedr andθ. A
simple calculation (see appendix A) shows that the eigenvalues
are all positive if 1− κ(V)(∇V)2 is positive. Therefore it should
be possible to use standard numerical methods for elliptic dif-
ferential equations to calculate numerical solutions, andwe will
demonstrate that in Section 3.

It is very unlikely that Eq. (18) allows any meaningful ana-
lytical solutions to be found. The reason for this are not so much
the mixed derivatives, but that the coefficients of the differential
equation depend on bothr andθ making separation of variables
generally more difficult. Furthermore, while the cylindrical case
with just the centrifugal force studied by Neukirch (2009) still
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has a few physically meaningful solutions, the cylindricalcase
with combined centrifugal and gravitational force discussed by
Al-Salti et al. (2010) does not have any physically meaningful
exact solutions, because for the cases for which analyticalso-
lutions could be found, the density has a singularity at a fixed
distance from the rotation axis. This singularity occurs atthe co-
rotation radius, which in cylindrical coordinates was defined by
the distance from the rotation axis where∇V = 0.

Using Eqs. (15) and (16) we see that for spherical coordi-
nates∇V vanishes only in the equatorial plane (θ = π/2) with
the co-rotation radius given by

rco =
3

√

GM0

Ω2
. (19)

A test particle in a circular orbit around the sphere in the equa-
torial plane would have an angular velocity which is equal toΩ,
so that it would co-rotate with the sphere.

The general solution of the MHS problem is completed by
integrating the force balance equation (1) to get the following
expressions for the pressure and density

p = p0(V) −
1

2µ0
κ(V)(B · ∇V)2, (20)

ρ = −dp0

dV
+

1
2µ0

dκ
dV

(B · ∇V)2 +
1
µ0
κ(V)B · ∇(B · ∇V), (21)

where in the spherical case the termB · ∇V is

B · ∇V =
1

1− κ(V)(∇V)2

(

∂U
∂r
∂V
∂r
+

1
r2

∂U
∂θ

∂V
∂θ

)

. (22)

The temperature is determined by the equation of state, for ex-
ample in the case of an ideal gas

T =
µp
Rρ
, (23)

where R is the universal gas constant andµ is the mean molecu-
lar weight.

3. Example Solutions

As for the cylindrical case discussed in Al-Salti et al. (2010),
we solve Eq. (18) forU numerically using the same standard
numerical methods. The method used is an adaptive mesh finite
element method from the COMSOL Multiphysics 3.4 package
with MATLAB. The mesh sizes used are similar to the cylindri-
cal case, i.e. about 260, 000 elements are used in each calcula-
tion.

We look for solutions in the domainr0 ≤ r ≤ rout. On the
inner boundaryr = r0 we impose boundary conditions for the
radial magnetic field, which correspond to three different cases:
(a) a magnetic dipole field with the dipole at the centre of the
sphere with the dipole axis parallel to the rotation axis (aligned
rotator), (b) a magnetic dipole field with the dipole at the cen-
tre of the sphere with the dipole axis at an angleπ/4 with the
rotation axis (oblique rotator), and (c) a magnetic dipole field
with dipole displaced by a distance 0.3r0 from the centre of the
sphere along thex-axis and with the dipole axis making an angle
of π/4 with thex-axis (displaced dipole). These three cases are
analogous to the three cases discussed in Al-Salti et al. (2010)
for a cylindrical central body and also to the analytical solu-
tions derived by Neukirch (2009). On the outer boundary we set
U = Uout(rout, θ, φ), whereUout(r, θ, φ) is the magnetic potential
of the magnetic dipole field for each of the three cases.

In the following, we normalize the radial coordinater by the
radius of the spherer0, the magnetic fieldB by a typical value
B0, the potentialV by GM0/r0, κ by r4

0/(G
2M2

0), the pressurep
by B2

0/µ0 and the density byB2
0r0/(µ0GM0).

We restrict our computational domain to a region where Eq.
(18) is elliptic, which means that we include only regions where
1− κ(V)(∇V)2 is positive. Equation (18) has a singularity when
1 − κ(V)(∇V)2 = 0, but this singularity can only occur when
κ(V) is positive. To avoid the singularity altogether, one might
be tempted to chooseκ(V) negative, but as discussed in Al-Salti
et al. (2010), this usually leads to the Lorentz force havingthe
wrong direction. It is therefore necessary to determine a priori
where singularities might occur. We remark that this singular-
ity is not located at the co-rotation radius, where∇V = 0, be-
cause there clearly 1− κ(V)(∇V)2 = 1. Furthermore, while for
cylindrical geometry (Al-Salti et al. 2010) the singularities oc-
cur on cylindrical surfaces (i.e. isolated values of the cylindrical
radial coordinate), there will be more complicated singularity
surfaces in spherical coordinates. The singularities occur at lo-
cations where

r4 − κ(V)

r6
co

[

r3(r3 − 2r3
co) sin2 θ + r6

co

]

= 0, (24)

and the solutions clearly depend on what choice is made for
κ(V). In the present paper, we will only use the simplest pos-
sible choice,κ = κ0 = constant, but even in this case it is quite
difficult to obtain an explicit expression for the locations of the
singularities. However, solving Eq. (24) for sin2 θ we find

sin2 θ =

r4

κ0
− 1

(

r
rco

)3
[

(

r
rco

)3
− 2

] = F(r). (25)

Obviously, the singularity only exists for radiir for which F(r)
has values between 0 and 1. One branch of solutions of Eq. (25)
can be examined by realizing thatF(r) vanishes only atr = 4

√
κ0.

This is inside the central sphere forκ0 < 1, which is the case
we will consider in this paper. One can also see that all other
values ofr for which Eq. (25) has valid solutions for this singu-
larity branch must be smaller than4

√
κ0, i.e. also inside the central

sphere under the reasonable assumption that the co-rotation ra-
dius is outside the central sphere. Forr > 4

√
κ0, F(r) is negative

as long asr <
3√
2rco, where the function has a singularity. For

r >
3√
2rco, F(r) is positive and, because of the higher power of

r in the denominator, willF(r) eventually decrease from∞ to 1
for increasingr. That is the distance in the equatorial plane at
which the second singularity branch starts to exist. Although no
exact solution can be found, we can find an approximate posi-
tion for the start of this branch by assuming that (r/rco)3 ≫ 2
andr4/κ0 ≫ 1. We then find that the radius at whichF(r) ≈ 1 is
given byr ≈ r3

co/
√
κ0. For the solutions presented in this paper

this is well outside the computational domain. For our choice of
rco = 2.5 andκ0 = 0.25, one finds that the singular branch starts
at r ≈ 31.25, whereas our computational domain has an outer
radius ofrout = 5. For other functionsκ(V) this method will not
work, but one could, for example, easily plot 1− κ(V)(∇V)2 as
a function ofr andθ to identify the regions with zeros, if they
exist, and choose the computational domain accordingly.

As mentioned above we calculate solutions for three differ-
ent boundary conditions on the inner boundary. In the following
figures we indicate the aligned rotator case with (a), the oblique
rotator case with (b) and the displaced dipole case with (c).
Three-dimensional plots of magnetic field lines for the three dif-
ferent boundary conditions are shown in Fig. 1, where the colour
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Fig. 2. Variation of the pressure deviation from the background pressure in thexz-plane aty = ±1 (touching the central sphere),y = ±2 and
y = ±2.5, respectively. Shown is the logarithm of the pressure. Theplots in the top row correspond to the case of the aligned rotator (case (a)), the
plots in the middle row to the case of the oblique rotator (case (b)) and the plots in the bottom row to the case of the displaced dipole (case (c)).
The asymmetry is clearly increasing from top to bottom.

contours on the central sphere represent the strength of theradial
magnetic field componentBr. The structure of the magnetic field
is obviously affected by the change of boundary conditions. One
can clearly see the symmetric magnetic field for the aligned ro-
tator case and non-symmetric magnetic fields for the other two
cases.

An increasing degree of asymmetry due to the change of the
boundary conditions from aligned rotator over oblique rotator to
displace dipole can also be clearly seen in Figs. 2 and 3. Figure
2 shows plots in different planes parallel to thexz-plane of cross
sections of the three-dimensional deviation of the pressure from
the symmetric background pressure. One can clearly see that
the symmetry of the pressure deviation present in the case of
the aligned rotator is broken for the other two cases. However,
these cross section plots show some degree of point symmetry
about they-axis for all three cases. For the case of aligned rotator
(top panels in Fig. 2), one notices the appearance of a horizontal
and two vertical dark features in the left-most panel. Whilethe
horizontal feature remains as one moves further away from the
central sphere, the vertical features first get smaller and more

elliptical in total shape and then vanish altogether. Thesedark
features correspond to positions whereB · ∇V = 0, i.e. the pres-
sure deviation is vanishing. This becomes clear, for example, by
noticing that for the aligned rotator case the magnetic fieldin the
equatorial plane has a vanishing radial component and because
∂V/∂θ = 0 as well in the equatorial plane, the scalar product van-
ishes. In the oblique rotator case the symmetric features ofthe
pressure deviation contours become distorted, with theπ/4 incli-
nation angle of the dipole moment with respect to thex-axis to
some extent discernible. The displaced dipole case shows some
similarities to the oblique rotator case, but the asymmetryof the
contours has clearly increased.

In Fig. 3 we show the density deviation in planes parallel to
the xz-plane for differenty-values. The density deviation shows
a similar transition from symmetric contours to asymmetriccon-
tours as we go from the aligned rotator case to the displace dipole
case.
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Fig. 3. Variation of the density deviation from the background density in the xz-plane aty = ±1 (touching the central sphere),y = ±2 andy = ±2.5,
respectively. Shown is the logarithm of the density. The plots in the top row correspond to the case of the aligned rotator(case (a)), the plots in the
middle row to the case of the oblique rotator (case (b)) and the plots in the bottom row to the case of the displaced dipole (case (c)). The asymmetry
of the density is clearly increasing from top to bottom.

4. Summary and Discussion

In this paper, we have for the first time calculated three-
dimensional solutions of the magnetohydrostatic equations out-
side a massive rigidly rotating spherical body using the theory
first developed by Low (1991). Previously, only solutions out-
side a rigidly rotating cylindrical body had been calculated, ei-
ther neglecting gravity (Neukirch 2009) or including gravity (Al-
Salti et al. 2010).

For the case of massive rigidly-rotating spherical body
treated in this paper, the combined gravitational and centrifugal
potentialV depends on two coordinates (r andθ) if expressed
in spherical coordinates. This leads to a more complicated form
of the fundamental equation of the theory (18) than it is in the
cylindrical case. Hence, the existence of analytical solutions of
the Eq. (18) is highly unlikely. However, Eq. (18) can still be
solved numerically using similar numerical methods to the ones
used for the cylindrical case. So, we have carried this out pre-
senting numerical solutions for the case ofκ(V) = κ0 = constant
as an illustrative example. We have used the same boundary con-
ditions as the ones used in the cylindrical case, i.e. a magnetic

dipole field aligned with rotation axis (aligned rotator case), a
dipole field at an angle ofπ/4 with the rotation axis (oblique
rotator case) and a field dipole displaced from the centre of the
sphere (displaced dipole case).

The obtained numerical solutions for the case of constantκ
using spherical geometry have similar features to the ones ob-
tained for the same case using cylindrical geometry described in
Al-Salti et al. (2010). One of the differences is that the locations
of vanishing pressure deviation are now more complicated than
they are in the cylindrical case. In the cylindrical case thepres-
sure deviation vanishes at the co-rotation radius,̟co, or when
the radial component of the magnetic field,B̟ is zero. At the
co-rotation radius, locations of vanishing pressure deviation rep-
resented by dark vertical features are not affected by the change
of the boundary conditions, which has an effect only at locations
whereB̟ = 0. In the spherical case presented in this paper,
all locations of vanishing pressure deviations are affected by the
change of the boundary conditions.

The method presented in this paper allows us to create mod-
els of, for example, the closed field-line regions of the coronae
of fast-rotating stars taking the force-balance between centrifu-
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Fig. 1. Magnetic field line plots plots for the three cases of alignedrota-
tor (a), oblique rotator (b) and displaced dipole (c). The colours on the
spherical surface represent the radial magnetic field component,Br on
that boundary.

gal force, gravitational force and the Lorentz force into account.
This is a clear advantage over potential field modes, which ig-
nore the effects of external forces upon the magnetic field struc-
ture. The computational effort involved is not much larger than

for potential field models and we showed that standard numeri-
cal methods can be used.

We have in this paper only investigated three different cases
of boundary conditions for the radial magnetic field component
on the stellar surface, namely . These three cases have been cho-
sen to illustrate the method can handle an increasing degreeof
asymmetry in the boundary conditions and what effect that has
on the solutions. In the present paper we have made no attempt
to calculate magnetic fields from any observed boundary con-
ditions, but that is of course an important and interesting task
for future work. Given that the magnetic fields of our method
are intrinsically non-potential, one interesting possibility for fu-
ture work would be to investigate our method’s capability for
modelling stellar magnetic fields for which the observed sur-
face fields have been suggested to be non-potental, implyinga
non-vanishing current density at the stellar surface (e.g.Hussain
et al. 2002). For the method presented here, the current density
is always perpendicular to the gradient of the potentialV and
proportional to the free functionκ(V). It should therefore be in
principle possible to obtain solutions with non-potentialsurface
fields by a combination of imposing appropriate boundary con-
ditions on the stellar surface and choosing a convenient function
κ(V). In the present paper, we have chosen as boundary condi-
tions to prescribe the radial component of the magnetic fieldfor
reasons of simplicity. However, the elliptic nature of equation
for the pseudo-potentialU would allow different boundary con-
ditions which could be more appropriate for modelling purposes.
Similarly, we have in the present paper only presented solutions
for κ being constant, but other choices forκ could prove to be
more appropriate. For example, one could try to achieve a larger
current density closer to the stellar surface by increasingκ for
the values thatV takes close to the surface.

The major shortcoming of the presented method is that it
cannot properly describe open field line regions with flow (stel-
lar winds). There is not much hope that flows can be included in
an extended theory. Including, for example, field-aligned flows
would lead not only to additional forces in the force-balance
equation (e.g. a Coriolis force term because the theory has been
formulated in a rotating frame of reference), but the set of basic
equations would have to be extended to include at least the mass
continuity equation. We have not investigated the mathematical
nature of the resulting set of equations, but experience from the
two-dimensional theory of magnetohydrodynamic winds leads
us to expect that these equations will have transitions between
elliptic and hyperbolic regions at critical points/surfaces (e.g
Heinemann & Olbert 1978), which would make finding solu-
tions much more difficult. However, the method presented in
this paper could in principle be extended to more general cases
such as central bodies of different shape (e.g. ellipsoids instead
of spheres) or binary systems in synchronous rotation.
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Appendix A: Classification of equation (18)

According to the standard theory of partial differential equations
(PDEs) (e.g. Courant & Hilbert 1968, pp. 135), the class of a
second order PDE is determined by the signs of the coefficients
of the second derivatives after applying alocal coordinate trans-
formation (i.e. at fixed position) which leads to the coefficients
of the mixed derivatives being zero.

Using the fundamental equation in the form (10) and rewrit-
ing it as

(M · ∇) · ∇U + (∇ ·M) · ∇U = 0 (A.1)

one can immediately see that only the first term matters for clas-
sification, because the second term contains only first deriva-
tives. It is clear that the required transformation amountsto diag-
onalizing the matrixM. This is always possible becauseM is a
real and symmetric matrix. The resulting coefficients of the sec-
ond derivatives ofU are the eigenvalues ofM, which will be real
due to the properties of the matrix. This implies that, at a given
position, the PDE will either be elliptic, if all eigenvalues have

the same sign, or hyperbolic, if one eigenvalue has the opposite
sign to the other two eigenvalues. Defining

fκ =
κ(V)

1− κ(V)(∇V)2
. (A.2)

the matrixM takes the form

M =






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


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


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(

∂V
∂r

)2 fκ
r
∂V
∂r
∂V
∂θ

0
fκ
r
∂V
∂r
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∂θ

1+ fκ
r2

(
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0

0 0 1
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
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






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. (A.3)

Obviously, one eigenvalue isλ = 1, whereas the other two eigen-
values are determined by the zeros of














1+ fκ

(
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)2

− λ
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























1+
fκ
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(

∂V
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− λ














−
(

fκ
r
∂V
∂r
∂V
∂θ

)2

= 0.(A.4)

The solutions of this quadratic equation areλ = 1 andλ = (1−
κ(V)(∇V)2)−1, so all three eigenvalues have the same sign if 1−
κ(V)(∇V)2 is positive.


