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Abstract

For axisymmetric models for coronal loops the relationship between the bifur-
cation points of magnetohydrodynamic (MHD) equilibrium sequences and the
points of linear ideal MHD instability is investigated imposing line-tied boundary
conditions. Using a well-studied example based on the Gold-Hoyle equilibrium,
it is demonstrated that if the equilibrium sequence is calculated using the Grad-
Shafranov equation, the instability corresponds to the second bifurcation point
and not the first bifurcation point because the equilibrium boundary conditions
allow for modes which are excluded from the linear ideal stability analysis. This
is shown by calculating the bifurcating equilibrium branches and comparing the
spatial structure of the solutions close to the bifurcation point with the spatial
structure of the unstable mode. If the equilibrium sequence is calculated using
Euler potentials the first bifurcation point of the Grad-Shafranov case is not
found, and the first bifurcation point of the Euler potential description coincides
with the ideal instability threshold. An explanation of this results in terms
of linear bifurcation theory is given and the implications for the use of MHD
equilibrium bifurcations to explain eruptive phenomena is briefly discussed.

Keywords: Magnetohydrodynamics; Instabilities; Corona, Structures; Flares,
Relation to Magnetic Field

1. Introduction

Magnetohydrodynamic instabilities of coronal loops are since a long time dis-
cussed as one of the main theoretical explanations for solar flares, in particular
compact loop flares (e.g. Priest, 1982). Traditionally, investigations of MHD
instabilities of coronal loops model these loops as straight cylindrical flux tubes
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of finite length with line tied boundary conditions at the ‘photospheric’ ends

of the flux tubes (e.g. Raadu, 1972; Hood and Priest, 1979, 1981; Einaudi and

Van Hoven, 1983; Velli et al., 1990). Such a set-up allows for a wide variety of

relatively simple equilibrium configurations, hence explaining its popularity.

The stability of equilibrium configurations of the above mentioned type has

been studied for several decades using the methods of linear MHD stability

analysis (e.g. Raadu, 1972; Hood and Priest, 1979, 1981; Einaudi and Van Hoven,

1983; Velli et al., 1990; De Bruyne and Hood, 1989, 1992; Mikić et al., 1990;

Hood et al., 1994; van der Linden and Hood, 1998, 1999). In recent years the

investigations have been extended into the nonlinear regime using large-scale

MHD simulations (e.g. Longbottom et al., 1996; Baty and Heyvaerts, 1996; Baty,

1997a, 1997b, 2000a, 2000b; Lionello et al., 1998; Arber et al., 1999; Gerrard et

al., 2001; Browning and Van der Linden, 2003; Browning et al., 2008; Hood et

al., 2009).

In the present contribution we want to investigate the stability of line-tied

coronal loop models from a different point of view. The flux tube equilibria

used to model coronal loops all depend on one or more parameters representing

quantities like the magnetic twist or the plasma beta. Many investigations study

how the linear stability of the loops changes as one (or more) of these equilibrium

parameters vary.

The systematic variation of one or several parameters of an equilibrium defines

an equilibrium sequence, and a point of linear instability should correspond to a

bifurcation point of the equilibrium sequence and vice versa. It has to be kept in

mind, however, that magnetostatic equilibria are usually calculated by solving

a mathematically reduced set of equations. It is not at all clear whether there

is really a one-to-one correspondence between points of linear instability and

bifurcation points, in particular if line-tied boundary conditions are imposed as

in models of coronal loops.

In the present paper we shall investigate the question whether the points of

linear instability of rotationally symmetric straight line-tied flux tubes have a

one-to-one correspondence with the bifurcation points of equilibrium sequences.

We shall use two different ways of calculating the equilibrium sequences,

namely Grad-Shafranov theory and Euler potentials, and we shall, for simplicity,

investigate only axisymmetric instabilities and bifurcations. A particularly well-

studied equilibrium class (Gold and Hoyle, 1960) will be used to carry out this

investigation, mainly because results of linear stability investigations for this

equilibrium class are readiliy available in the literature (e.g. Hood and Priest,

1979, 1981; Mikić et al., 1990; De Bruyne and Hood, 1992).

In Section 2 the basic equilibrium theory and those parts of the theory of

linear MHD stability needed in this paper are discussed. The following Section 3

presents a brief outline of the numerical method used to calculate the equilibrium

sequences and to determine their bifurcation points and bifurcating branches.

The results of these calculations are given in Section 4 and discussed in Section

5. The paper closes with a summary in Section 6.
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2. Basic Theory

2.1. The Gold-Hoyle Equilibrium

We start our investigation from static equilibrium solutions of the MHD equa-
tions, i.e. solutions of

j× B −∇p = 0 (1)

∇× B = µ0j (2)

∇ · B = 0. (3)

We are looking for solutions in cylindrical coordinates r, φ, z, and restrict the
spatial domain to 0 ≤ z ≤ L. The solutions will be considered as straight
flux tube approximations of coronal loops, in the sense of a large aspect ratio
expansion. In this case L is the loop length and the boundaries z = 0 and z = L
have to be identified with the photospheric end points of the loop. The centre of
the loop is given by r = 0. In the present paper we will only consider solutions
which do not depend on φ, i.e. axisymmetric solutions.

We normalise the magnetic field to the value of Bz in the centre of the loop
(r = 0), B0, the coordinates and the loop length by a typical radial length scale,
b, and the pressure by B2

0/µ0. In this normalisation, the Gold-Hoyle equilibrium
(Gold and Hoyle, 1960) is given by the magnetic field components (see e.g.

Longbottom et al., 1996)

Br = 0, (4)

Bφ =
r

1 + r2
, (5)

Bz =
λ

1 + r2
, (6)

and the plasma pressure

p =
1

2

1 − λ2

(1 + r2)2
. (7)

The parameter λ controls both the field line twist Φ between z = 0 and z = L,

Φ =
L

λ
(8)

and the plasma beta. For λ = 1, the equilibrium is force-free, i.e. the current
density is parallel to the magnetic field lines, whereas for λ = 0 the current
density is everywhere perpendicular to the magnetic field lines. For values of
λ between 0 and 1 we have a combination of field-aligned and perpendicular
current density. The equilibrium class is not defined for λ > 1 because the
pressure would become negative in this case.

The Gold-Hoyle equilibrium class depends only on the variable r and is
therefore a one-dimensional MHD equilibrium. One-dimensional equilibria of
this type can be easily calculated (see e.g. Priest, 1982, chapter 3.3) We use it
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here as a kind of prototype flux tube equilibrium, because linear stability results
are readily available for the Gold-Hoyle equilibrium class (De Bruyne and Hood,
1992). To obtain genuinely two-dimensional equilibria depending on r and z we
have to resort to one of the more general theories described in the next sections.

2.2. Grad-Shafranov Theory

To satisfy the solenoidal condition (3), we write the magnetic field in the form

B =
1

r
∇A × eφ + Bφeφ. (9)

Here the flux function A and the φ-component of the magnetic field depend only
on r and z. Taking the scalar product of Equation (1) with B and using the fact
that under the condition of axisymmetry the pressure also depends only on r
and z, we find that the pressure is a function of A :

p(r, z) = F (A(r, z)). (10)

An investigation of the φ-component of (1) shows that

bφ(r, z) = rBφ(r, z, ) = G(A(r, z)) (11)

is also a function of A only.
The force balance equation can then be reduced to a single partial differential

equation for A (e.g. Bateman, 1978) :

−r∇ ·

(

1

r2
∇A

)

= r
dp

dA
+

1

r
bφ

dbφ

dA
. (12)

The dependence of the pressure and the φ-component of the magnetic field
on the flux function A have to be specified for a solution of this equation. For
the Gold-Hoyle solution the flux function A is given by

AGH(r, z) =
λ

2
ln(1 + r2). (13)

Using equation (13) to determine r as a function of A, and substituting this
expression into Equations (5) and (6) we find that

p =
1

2
(1 − λ2) exp

(

−
4

λ
A

)

, (14)

bφ = 1 − exp

(

−
2

λ
A

)

. (15)

For each value of λ, the Gold-Hoyle equilibrium is therefore a solution of the
Grad-Shafranov equation

−
∂

∂r

(

1

r

∂A

∂r

)

−
1

r

∂2A

∂z2
= −2r

1 − λ2

λ
exp

(

−
4

λ
A

)

+
2

λ r

[

1 − exp

(

−
2

λ
A

)]

exp

(

−
2

λ
A

)

, (16)
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if the boundary conditions at z = 0 and z = L are given by A = λ/2 ln(1 + r2)
as well. As the Gold-Hoyle solutions depend on the parameter λ they define
a solution branch of the Grad-Shafranov Equation (16). As this equation is
nonlinear it is to be expected that it can also have other solution branches for
the same boundary conditions. Points where the Gold-Hoyle solution branch
and any other solution branches meet are called bifurcation points. Standard
bifurcation theory (e.g. Iooss and Joseph, 1980) tells us that at bifurcation points
the stability of the solution branches can change. We will discuss this possibility
in more detail in Section 2.4.

2.3. Euler Potentials

The Grad-Shafranov theory is very useful for symmetric plasma systems, but a
Grad-Shafranov type equation can only be derived for translational, rotational
and helical symmetry (Solovev, 1967; Edenstrasser, 1980a, 1980b). Without such
a symmetry, we have to use a different way to calculate MHD equilibria. The
approach coming closest to the use of a flux function for symmetric systems is to
use Euler potentials (sometimes also called Clebsch coordinates) to describe the
magnetic field. The Euler potential approach has the advantage that it can be
used to describe three dimensional magnetic fields without symmetry, although
there are some restrictions concerning the existence of Euler potentials for given
magnetic fields (e.g. Hesse, 1988; Rosner et al., 1989). For the flux tube like
equilibria considered in the present paper these constraints do not apply.

Another reason for using Euler potentials even for symmetric cases is that
certain types of constraints are a lot easier to impose with Euler potentials then
with a Grad-Shafranov description. A typical example from solar physics is the
quasi-static shearing of magnetic arcades. In this case the footpoint displacement
of the fieldlines is the physical parameter which is determined by the boundary
conditions. In this case the use of Euler potentials is very useful (e.g. Barnes
and Sturrock, 1972; Zwingmann, 1987; Platt and Neukirch, 1994; Antiochos et

al., 1999).
With the Euler potentials α and β a general magnetic field can be written as

B = ∇α ×∇β. (17)

Any vector field of this form is automatically solenoidal. In the present paper we
restrict our analysis to axisymmetric fields. In this case the Euler potential α is a
function of r and z only, the Euler potential β is chosen as β(r, φ, z) = β̃(r, z)+φ
and Equation (17) reduces to

B =
1

r
∇α × eφ + ∇α ×∇β̃. (18)

By comparison with Equation (9), we see that now the Euler potential α corre-
sponds to the flux function A, whereas Bφ has been replaced by the ∇α ×∇β̃.
Substitution of Equation (18) into Equation (1) and (2) gives the two equations

SOLA: tnromeou_revised.tex; 29 October 2009; 18:19; p. 5



Neukirch and Romeou

for α and β̃ (e.g. Zwingmann, 1987; Platt and Neukirch, 1994) :

∇β̃ · ∇ × (∇α ×∇β̃) −∇ ·

(

1

r2
∇α

)

=
dp

dα
, (19)

∇α · ∇ × (∇β̃ ×∇α) = 0. (20)

For the Gold-Hoyle solution αGH is identical with the flux function AGH given
in Equation (13). The pressure function p(α) has the same form as p(A) in
Equation (14), only with α replacing A. We can use Bφ to work out that for the
Gold-Hoyle solution

β̃GH = −
1

λ
z. (21)

The function β̃ represents the fieldline twist for the Gold-Hoyle solution since

β̃GH(r, 0) − β̃GH(r, L) =
L

λ
= Φ (22)

We impose boundary conditions for both Euler potentials. The boundary
conditions for α are the same as for A in the Grad-Shafranov case. For β̃ we
use Equation (21) on the boundaries. This fixes the footpoint displacement of
fieldlines crossing the boundaries z = 0 and z = L. In the same way as in
the Grad-Shafranov case the Gold-Hoyle solutions are a solution branch for the
Equations (19) and (20). The same statements about bifurcations and stability
apply as in the Grad-Shafranov case.

2.4. Linear Stability

The theory of linear MHD stability is a vast area and we only summarise some
results which are important for the following discussion. Defining the Lagrangian
displacement ξ the linearized ideal MHD equations can be written as

ρ0
∂2ξ

∂t2
= F(ξ) (23)

where

F(ξ) =
1

µ0
[(∇×B1)×B0] +

1

µ0
[(∇×B0)×B1] +∇(ξ · ∇p0 + γp0∇ · ξ). (24)

The components of the magnetic field perturbation B1 are given by

B1 = ∇× (ξ × B0). (25)

For the problem we are discussing in the present paper Equation (23) has to
be solved on a tube-like domain with line-tying boundary conditions at z = 0
and z = L, with B0 and p0 given by the Gold-Hoyle solution. The line-tying
condition corresponds to

ξ = 0 (26)
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on the boundaries. Assuming an exponential time-dependence for the pertur-
bation ξ, one obtains a self-adjoined eigenvalue problem. Instabilities occur
when one of the eigenvalues of the equation changes sign. The corresponding
perturbations ξ can be classified according to their different spatial structure.
In general we speak of different modes when refering to the spatial structure of
the instabilities. For each mode it is usually sufficient to investigate the largest
eigenvalue corresponding to this mode, as it is this eigenvalue which determines
whether a mode is stable or unstable.

It can be shown that the Gold-Hoyle solution is always stable for λ = 1,
i.e. in the force-free case. When decreasing λ the value of λ where the Gold-
Hoyle solutions become unstable to the different possible modes under line-tying
boundary conditions depends on the length of the flux tube L. A thorough
investigation of this problem has been carried out by De Bruyne and Hood
(1992) and we will make use of their results in the later parts of this paper.
Since we investigate only axisymmetric equilibria and bifurcations we will also
restrict our attention to the axisymmetric modes (sometimes called “sausage
modes”).

3. Numerical Method

The numerical calculations have been carried out with a code based on a con-
tinuation method (e.g. Allgower and Georg, 1990). The code used here is based
on a method proposed by Keller (1977) and has been successfully applied to a
variety of problems in plasma physics, solar physics, magnetospheric physics and
astrophysics (e.g. Zwingmann, 1983, 1987; Neukirch, 1993a, 1993b; Neukirch and
Hesse, 1993; Platt and Neukirch, 1994; Schröer et al., 1994; Becker et al., 1996,
2001; Romeou and Neukirch, 1999, 2001, 2002a, 2002b; Kiessling and Neukirch,
2003). The method has the advantage that it can calculate sequences of equilibria
depending on an external parameter (like λ for the Gold-Hoyle solutions), and
detect bifurcation points. It is also possible to calculate bifurcating equilibrium
sequences. The code uses a finite element discretization allowing for a flexible
grid structure. Further details can be found in Neukirch (1993a) and Neukirch
(1993b) .

We have solved both the Grad-Shafranov Equation (16) and the Euler po-
tential Equations (19) and (20) on a numerical domain extending from r = 0 to
r = 8 and from z = 0 to z = L, where L is varied between 3 and 8. The radial
extent of the domain is chosen along the same lines as done by Longbottom et

al. (1996) in their MHD simulations of the sausage instability.
For the Grad-Shafranov equilibrium sequences we have used

Ab = AGH (27)

as boundary condition on all boundaries. In the Euler potential case the bound-
ary conditions are given by

αb = AGH, (28)

β̃b = β̃GH. (29)
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Note that in both cases both the differential equation and the boundary condi-
tions depend on the parameter λ. Due to the boundary conditions the Gold-Hoyle
solutions are one solution branch of the equations. This can be used to check the
accuracy of the numerical code and to adjust the resolution. In all runs presented
in Section 4 we have used a numerical grid with 1800 triangular finite elements
corresponding to a resolution of 61 by 61 grid points in each spatial direction.
The grid is equidistant in the z-direction but non-equidistant in the r-direction
with a higher resolution towards the axis of the tube.

4. Results

For both the Grad-Shafranov and the Euler potential case we have carried out a
numerical investigation of the bifurcation properties of the Gold-Hoyle solution
branch using the numerical method described in Section 3. For a series of values
of the loop length L, we have first calculated the Gold-Hoyle branch with our
code, starting with the force-free solution (λ = 1) and then following the branch
for decreasing λ into the non-force-free regime. Although we know the Gold-
Hoyle branch analytically this procedure allows us to check the accuracy of our
numerical calculations and to use the capability of the code to detect bifurcation
points. At such points other solution branches cross the Gold-Hoyle branch,
and we expect that those points correspond to the instability threshold of the
m = 0-instability under line-tying conditions as, for example, calculated by De
Bruyne and Hood (1992) . For the detected bifurcation points we have then also
calculated the bifurcating branches for a range of λ values. This is important to
check whether the spatial structure of the bifurcating solution branch coincides
with the predictions made by linear stability theory on the basis of the structure
of the unstable mode.

An important point to emphasize here is that because we calculate the Gold-
Hoyle branch in the direction of decreasing λ, we will also number the bifurcation
points in this direction, i.e. when we speak of first and second bifurcation the
λ value of the first bifurcation will be bigger than the λ value of the second
bifurcation. Although this is opposite to the terminology normally used in bifur-
cation theory, we have decided to keep the parametrization used by De Bruyne
and Hood (1992) to make a comparison with their results easier.

4.1. The Grad-Shafranov Case

We have carried out calculations of the Gold-Hoyle branch for loop lenghts L =
3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 and 10.0. In all cases, we have calculated the
Gold-Hoyle branch until we had found at least two bifurcation points. The λ
values of the two first bifurcation points found by code for the different L values
are listed in Table 1. A graphical representation of these values is shown in
Figure 1. In this figure we plot the values for the first and second bifurcation
points in the L-λ-plane. Also shown in Figure 1 is the stability threshold for the
m = 0-instability (dashed line) derived by De Bruyne and Hood (1992) using
linear MHD theory. The figure clearly shows that the linear stability threshold
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Table 1. The first and second bifurcation points for the Grad-Shafranov
case.

L 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

λ1 0.598 0.629 0.652 0.663 0.675 0.684 0.684 0.690

λ2 0.472 0.528 0.566 0.593 0.612 0.627 0.639 0.648

Figure 1. The dependence of the λ values of the first (♦) and the second (×) bifurcation point
on the loop length L for the Grad-Shafranov case. The dashed line is the instability threshold
of the m = 0 mode derived by De Bruyne and Hood (1992) using linear MHD stability theory
under line-tying conditions. Solutions with λ values below the dashed line are unstable with
respect to the sausage mode. It is obvious that the second and not the first bifurcation point
for a given loop length corresponds to the m = 0 instability.

corresponds to the second bifurcation along the Gold-Hoyle branch. This raises

the question what the first bifurcation point corresponds to.

To answer this question, we have calculated the bifurcating branches for the

first and second bifurcation points for loop lengths of L = 3.0, 5.0 and 7.0. The

structure of the bifurcation diagrams is very similar for all three cases and we

therefore only show the case L = 7.0 (Figure 2). The four quantities shown in

Figure 2 are the polodial magnetic energy

Wp =

∫

1

2

(

1

r
∇A

)2

dV, (30)
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Figure 2. Bifurcation diagrams of the Grad-Shafranov case for L = 7.0. Shown are the
poloidal magnetic energy (upper left), the toroidal magnetic energy (upper right), the thermal
energy (lower left), and the free energy as defined by Grad (1964) (lower right). For definitions
of these quantities see the main text. The free energy is only shown for values of λ close to the
second bifurcation point to make the difference between the branches more obvious.

the toroidal magnetic energy

Wt =

∫

1

2

(

1

r
bφ

)2

dV, (31)

the thermal energy

Wth =

∫

p dV, (32)

and the free energy defined by Grad (1964)

Wf = Wp − (Wt + Wth). (33)

At the first bifurcation point another solution branch crosses the Gold-Hoyle
branch. The bifurcating branch exists for values of λ both smaller and larger
than the bifurcation point λ. At the bifurcation point the poloidal and toroidal
magnetic energies of the bifurcating branch go from values smaller than the
energies of the Gold-Hoyle branch to values larger than the Gold-Hoyle branch
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Figure 3. Left: Solution for λ = 0.646457 on first bifurcating branch. Right: Solution for
λ = 0.600544 on second bifurcating branch. Whereas the solutions on the first bifurcating
branch show a sin(πz/L)-dependence superimposed on the Gold-Hoyle solution, the solutions
on the second bifurcating branch have a sin(2πz/L)-dependence.

in the direction of decreasing λ. The thermal energy of the bifurcating branch
is higher than that of the Gold-Hoyle branch for λ larger than the bifurcation λ
and smaller than the Gold-Hoyle branch beyond the bifurcation point.

The second bifurcating solution branch only exists for values of λ which are
smaller than the bifurcation λ. This is to be expected on the basis of standard
bifurcation theory (e.g. Iooss and Joseph, 1980), taking the spatial structure of
the solutions along the branch into account (see below). The mathematical argu-
mentation is given in the Appendix. The poloidal and toroidal magnetic energies
along this branch are larger than those of the Gold-Hoyle branch, whereas the
thermal energy is smaller than the thermal energy of the Gold-Hoyle branch for
the same value of λ.

Also shown in Figure 2 is a plot of the free energy for values of λ close to
the second bifurcation point to enhance the difference between the branches. We
can see that in this range the Gold-Hoyle branch has the biggest free energy.
The first bifurcating branch has lower free energy than the second branch but
both branches have a lower free energy than the Gold-Hoyle branch. This shows
that a transition to the bifurcating branches at fixed λ is indeed energetically
favourable for the system, as the system will always try to settle into a state of
lower free energy.

The spatial structure of the solutions on the bifurcating branches is shown in
Figure 3. The obvious difference between the solutions on the two branches is
their dependence on z. Whereas the solutions on the first bifurcating branch show
a sin(πz/L)-dependence superimposed on the Gold-Hoyle solution, the solutions
on the second bifurcating branch have a sin(2πz/L)-dependence. Both functions
are consistent with the boundary condition A = AGH at z = 0 and z = L. We
will discuss the implications of this finding in the light of linear stability theory
in Section 5.

SOLA: tnromeou_revised.tex; 29 October 2009; 18:19; p. 11



Neukirch and Romeou

Table 2. The first bifurcation point for the Euler potential case.

L 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

λ1 0.472 0.528 0.566 0.593 0.613 0.628 0.639 0.648

Figure 4. The dependence of the λ values on the loop length L for the Euler potential case.
The Euler potential case is different from the Grad-Shafranov case because in this case the
first (♦) bifurcation point corresponds to the point where the m = 0-mode becomes unstable.

4.2. The Euler Potential Case

In the Euler potential case we have carried calculations of the Gold-Hoyle branch
for the same values L as in the Grad-Shafranov case. The calculations were run
for about the same λ range as for the Grad-Shafranov equation, but only one
bifurcation point was detected in this range. The λ values of the bifurcation
point for all loop lengths is given in Table 2. A comparison with Table 1 shows
that the first bifurcation point in the Euler potential case corresponds to the
second bifurcation point of the Grad-Shafranov case.

This is also obvious if we plot the λ values of the bifurcation point for different
L in the L-λ-plane to compare with the results of De Bruyne and Hood (1992)
(see Figure 4). It can clearly be seen that in the Euler potential case it is
obviously the first bifurcation which coincides with the stability threshold of
linear MHD. This difference between the Grad-Shafranov case and the Euler
potential case is surprising and we will discuss the reasons for this in Section 5.
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Figure 5. Bifurcation diagrams of the Euler potential case for L = 7.0. Shown are the poloidal
magnetic energy (upper left), the toroidal magnetic energy (upper right), the thermal energy
(lower left) and free energy (lower right). The major differences to Figure 2 are that the
bifurcation point shown in this diagram corresponds to the second bifurcation point of the
Grad-Shafranov case, and that the bifurcating solution sequence branches off in the direction
of increasing λ. This opposite to the Grad-Shafranov case.

Another major difference between the Grad-Shafranov case and the Euler

potential case is that in the Euler potential case the new solution sequence

branches off towards increasing values of λ, whereas for the Grad-Shafranov

case the bifurcating sequence branching off towards decreasing λ values. This

has implication for the stability of the bifurcating branch.

For the Euler potential case we define the poloidal magnetic energy as

Wp =

∫

1

2

(

1

r
∇α

)2

dV, (34)

the toroidal magnetic energy as

Wt =

∫

1

2

(

∇α ×∇β̃
)2

dV, (35)
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Figure 6. Contour plot of the Euler potentials α (left) and β̃ (right) on the bifurcating
branch for λ = 0.657. The spatial structure of α is similar to the spatial structure of A in the
Grad-Shafranov case.

the thermal energy as

Wth =

∫

p dV, (36)

and the free energy as

Wf = Wp + Wt − Wth. (37)

One should note that the contribution of the toroidal magnetic energy to the
free energy is positive for the Euler potential case, whereas it is negative in the
Grad-Shafranov case. The reason for this are the different constraints on the
system in the two cases (see Grad, 1964). The poloidal magnetic energy of the
bifurcating branch is slightly lower than that of the Gold-Hoyle solution, whereas
the toroidal magnetic energy is higher. The thermal energy is also higher than
the thermal energy of the Gold-Hoyle solution and the free energy is slightly
larger than that of the Gold-Hoyle solution.

The spatial structure of α on the bifurcating branch is similar to the spatial
structure of A in the Grad-Shafranov case (see Figure 6; obviously there is
no analogue for β̃ in the Grad-Shafranov case). In the linear regime α has a
sin(2πz/L) z-dependence, whereas β̃ has a 1 − cos(2πz/L) structure due to
Equation (20).

5. Discussion

The results presented in Section 4 raise the following questions.

• Why does the m = 0-instability correspond to the second and not to the
first bifurcation point in the Grad Shafranove case ?

• Why is the Euler potential case different from the Grad-Shafranov case ?
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To answer these questions we first analyse the connection between the line-
tying condition in linear ideal MHD stability and the boundary conditions in the
Grad-Shafranov and Euler potential cases. Close to the bifurcation points, we
can represent the solutions on the bifurcating branches for the Grad-Shafranov
case by

Abif(r, z, λ) = AGH(r, λ) + ǫA1(r, z) + . . . , (38)

where ǫ ≪ 1. Note that this expansion differs slightly from the expansion used
in the Appendix. To first order in ǫ the function A1 has to satisfy the equation

−∇ ·
1

r2
∇A1 =

(

r
d2p

dA2

∣

∣

∣

AGH

+
1

2r

d2b2
φ

dA2

∣

∣

∣

AGH

)

A1, (39)

where p and bφ are given by Equations (14) and (15). Since the boundary con-
ditions for Abif are already satisfied by AGH, the function A1 must vanish on all
boundaries. Since all coefficients of Equation (39) depend only on r, it is easy
to see that the solutions of Equation (39) must be have the form

A1(r, z) = Fn(r) sin(nπz/L), n = 1, 2, 3, . . . , (40)

with Fn(r) a radial function.
Close to the bifurcation point, a linear stability analysis of the fundamental

Gold-Hoyle branch would give Lagrangian perturbations ξ which are related to
A1 through Equation (25). Since the deviation of the poloidal field from the
Gold-Hoyle branch along the bifurcating branch is given by ∇ × (A1∇φ), one
can easily see that

A1∇φ = −(ξ · ∇AGH)∇φ (41)

so that

A1 = −ξr

∂AGH

∂r
(42)

since AGH depends only on r. Equation (42) shows that the boundary condition
A1 = 0 only implies ξr = 0, but not necessarily ξ = 0. We therefore surmise
that the first bifurcation in the Grad-Shafranov case corresponds to a linear
Lagrangian displacement with non-vanishing ξφ and/or ξz. The solutions on the
first branch would satisfy the boundary condition A1 = 0, but not ξ = 0. The
first bifurcating branch therefore corresponds to solutions which do not satisfy
the line-tying boundary conditions, and, for example, can only be reached from
the Gold-Hoyle branch if flow through the boundary is allowed (ξz 6= 0).

The second bifurcating branch satisfies both A1 = 0 and ξ = 0. This is corrob-
orated by the fact that the z-dependence of the r-component of the Lagrangian
perturbation for the sausage mode is given by sin(2πz/L) (e.g. Longbottom et

al., 1996). This matches exactly the z-dependence of A1 on the second bifurcating
branch. Therefore the bifurcation points and the linear instability thresholds
coincide.

In the Euler potential case, we have boundary conditions for both α and β̃,
thus constraining the system more than in the Grad-Shafranov case. One can
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derive the connection between the Lagrangian perturbation ξ and the linear
perturbations α1 and β̃1 of the Euler potential from the expression for the linear
perturbation of the magnetic field,

B1 = ∇× (ξ × B0) = ∇α1 ×∇φ + ∇α1 ×∇β0 + ∇α0 ×∇β̃1. (43)

With a bit of algebra one can show (e.g. Zwingmann, 1987) that

α1 = −ξ · ∇α0, β̃1 = −ξ · ∇(φ + β̃0), (44)

which for axisymmetric flux tube equilibria like the Gold-Hoyle equilibrium
discussed in this paper leads to

α1 = −ξr

∂α0

∂r
, β̃1 = −

1

r
ξφ − ξz

∂β̃0

∂z
. (45)

As is to be expected the expression connecting α1 and ξr is the same as for A1

and ξr in the Grad-Shafranov case, and α1 = 0 on the boundaries ensures that
ξr = 0 on the boundaries. The boundary condition β1 = 0 imposes an additional
constraint, which links ξφ and ξz on the boundaries, ensuring that ξ

⊥
vanishes

on the boundaries. This is consistent with the line-tying boundary conditions
imposed by De Bruyne and Hood (1992) and explains why the bifurcation
points coincide with the linear stability threshold in the Euler potential case.

We suspect, but cannot prove, that the different structure of the bifurcation
diagrams present in Figures 2 and 5 is also due to the different constraints
imposed upon the system by using different descriptions for the magnetic field.
The different structure of the bifurcation diagrams may have implication for the
stability of the bifurcating equilibrium branch. Usually, when moving along a
stable equilibrium sequence and crossing a bifurcation point so that the equilib-
rium sequence is unstable beyond the bifurcation point, the bifurcating branch
is linearly stable close to the bifurcation point if it bifurcates in the forward
direction and linearly unstable if it bifurcates in the backward direction (see
e.g. Iooss and Joseph, 1980). In the present case this would imply that in the
Grad-Shafranov case the second bifurcating branch is linearly stable, whereas
this branch is unstable in the Euler potential case. This is also supported by the
fact that the second bifurcation branch has a lower free energy than the Gold-
Hoyle branch for the Grad-Shafranov case, whereas it has a higher free-energy in
the Euler potential case. It has to be remarked, however, that this is a conjecture
as we have no rigorous proof.

6. Summary and Conclusion

We have investigated the relationship between MHD bifurcation and linear sta-
bility for a class of axisymmetric straight flux tubes under line-tying boundary
conditions. For simplicity we only considered rotationally symmetric pertur-
bations, allowing only for sausage modes. We have used two different ways
of calculating the equilibrium sequences including bifurcating branches - one
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approach uses the Grad-Shafranov equation, the other approach uses Euler
potentials. It turns out that only the Euler potential case shows a one-to-one
correspondence between the first bifurcation point and the linear instability
threshold for the sausage mode. The Grad-Shafranov case shows an additional bi-
furcation which does not correspond to the instability threshold under line-tying
boundary conditions. This difference can be explained by the different con-
straints imposed on the bifurcating equilibrium branches in the Grad-Shafranov
and the Euler potential cases.

Furthermore, even though the second bifurcation point of the Grad-Shafranov
case coincides with the first bifurcation point of the Euler potential case and
the linear instability threshold, the structure of the bifurcation diagrams differ
considerably between the Grad-Shafranov and the Euler potential case. The
reason for this is not yet clear, but is probably also due to the difference in
boundary conditions. In any case this difference has implications for the stability
of the bifurcating equilibrium branches (see e.g. Iooss and Joseph, 1980) and is
therefore important to decide whether the system is able to find a new equilib-
rium (in the present case a new axisymmetric equilibrium) if one would consider
an imaginary process driving the flux tube across the instability threshold.

The present investigation is a preparation for studying equilibrium sequences
of magnetic flux tubes and other solar magnetic structures together with their
bifurcations in three dimensions. Preliminary steps have already been made (see
e.g. Romeou and Neukirch, 2002a) and more detailed investigations are planned
for the future.
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Appendix

Whereas the first bifurcating branch in the Grad-Shafranov case exists for values
of λ which are both bigger and smaller than the λ at the bifurcation point,
the second bifurcating branch exists only for λ smaller than the bifurcation λ.
This fact can be explained by using standard bifurcation theory to calculate
the structure of the bifurcating branches close to the bifurcation points. The
argument is actually independent of the form of the functions p(A) and bφ(A).
The qualitative structure of the bifurcation diagram will thus be the same even
if p(A) and bφ(A) are changed as long as the fundamental branch consists of
solutions which depend only on the radial coordinate r.

We start by writing the Grad-Shafranov equation in the form

G(A, λ, r) = −r∇ ·

(

1

r2
∇A

)

− N(A, λ, r) = 0, (46)
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where the function N(A, r, λ) summarizes the nonlinear part of the Grad-Shafra-
nov equation given by p(A, λ) and bφ(A, λ). For the present paper p and bφ are
given by Equations (14) and (15). For the following argument, however, the
exact form of N(A, r, λ) is irrelevant, as long as it is analytic in A and λ at the
bifurcation points we want to investigate. We will not give here any details of
the mathematical background which can be found for example in Hesse and
Schindler (1986) and Hesse and Kiessling (1987) . These papers treat slighly
different bifurcation problems, but we will be using the same technique.

Let λ∗ be the value of λ at either of the bifurcation points and let A0 =
A0(λ

∗) be the solution of Equation (46) at the bifurcation point. To calculate
the bifurcating branch we expand λ and A as

λ =
∞
∑

k=0

ǫkλk, (47)

A =

∞
∑

k=0

ǫkAk, (48)

where λ0 = λ∗ and A0 as above. Since G is analytic in both A and λ for λ > 0
we can expand Equation (46) in a power series in ǫ:

0 =
∞
∑

k=0

1

k!

dk

dǫk
G(A(ǫ), λ(ǫ), r)

∣

∣

∣

ǫ=0
ǫk. (49)

As each power of ǫ must satisfy this equation independently we obtain

dk

dǫk
G(A(ǫ), λ(ǫ), r)

∣

∣

∣

ǫ=0
= 0, k = 0, 1, 2, . . . . (50)

Obviously, the lowest order equation

G(A0(λ
∗), λ∗, r) = 0 (51)

is just the Grad-Shafranov equation at the bifurcation point and therefore triv-
ially satisfied.

For the discussion of the higher order equations we first have to look at
the boundary conditions the Ak have to satisfy. The boundary condtion Ab for
A(r, z, λ) is given by the fundamental branch solution Ab(r, z, λ) = A0(r, z, λ)
(the Gold-Hoyle solution in the present paper). Therefore we can extend Ab

into the domain. Using the expansion (47) in Ab(r, z, λ(ǫ)) we can see that the
boundary condition each of the Ak in Equation (48) has to satisfy is given by

A
(k)
b =

1

k!

dk

dǫk
A0(r, z, λ(ǫ))

∣

∣

∣

ǫ=0
. (52)

Note that A
(k)
b satifies the same Equation (50) as Ak.

For O(ǫ) we get from Equation (50)

GA(A0(λ
∗), λ∗, r)A1 + Gλ(A0(λ

∗), λ∗, r)λ1 = 0, (53)

SOLA: tnromeou_revised.tex; 29 October 2009; 18:19; p. 18



MHD bifurcations and instabilities

with

GAA1 = −r∇ ·

(

1

r2
∇A1

)

−
∂N

∂A
(A0, λ

∗, r)A1, (54)

Gλ =
∂N

∂λ
(A0, λ

∗, r). (55)

As mentioned above A
(1)
b satisfies the same equation as A1 and therefore the

function

A′

1 = A1 − A
(1)
b (56)

satisfies GAA′
1 = 0 or explicitely

−r∇ ·

(

1

r2
∇A′

1

)

−
∂N

∂A
(A0, λ

∗, r)A′

1 = 0 (57)

with A′
1 = 0 on the boundaries. Since all coefficients of Equation (57) depend

only on r its solution can be obtained by separation of variables with the general
form of A′

1 being

A′

1(r, z) = Fn(r) sin(nπz/L), n = 1, 2, 3, . . . . (58)

The exact form of Fn(r) is of no importance for the following argument.
If we want to calculate λ1, we have to go to the next order (O(ǫ2)) of the

expansion, giving

−r∇ ·

(

1

r2
∇A2

)

−
∂N

∂A
A2 −

1

2

∂2N

∂A2
A2

1 −
∂2N

∂A∂λ
A1λ1

−
1

2

∂2N

∂λ2
λ2

1 −
∂N

∂λ
λ2 = 0 (59)

where all derivatives of N(A, λ, r) are evaluated at the bifurcation point (ǫ = 0).

Similarly to A
(1)
b at O(ǫ), A

(2)
b satisfies the same equation as A2. We define

A′

2 = A2 − A
(2)
b (60)

which obeys the equation

GAA′

2 =
1

2

∂2N

∂A2
(A′

1
2

+ 2A
(1)
b A′

1) + λ1
∂2N

∂A∂λ
A′

1. (61)

By Fredholm’s alternative the right hand side of Equation (61) has to be orthog-
onal to A′

1, i.e.

∫ L

0

∫ rmax

0

(

1

2

∂2N

∂A2
(A′

1
2
+ 2A

(1)
b A′

1) + λ1
∂2N

∂A∂λ
A′

1

)

A′

1rdrdz = 0. (62)

To proceed we assume in agreement with the Gold-Hoyle solution that the

function A
(1)
b has the form

A
(1)
b = λ1fb(r) (63)
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where fb(r) is left unspecified here. Equation (62) can then be used to calculate
λ1 in the form

λ1

∫ L

0

∫ rmax

0

(

∂2N

∂A2
fb(r) +

∂2N

∂A∂λ

)

A′

1
2
rdrdz =

−

∫ L

0

∫ rmax

0

1

2

∂2N

∂A2
A′

1
3
rdrdz. (64)

The double integral on the right hand side of Equation (64) can be split into
two separate integrations over r and z, since the integrand depends on z only
through A′

1. As A′
1 has the form (58), the integral over z is given by

∫ L

0

sin3(nπz/L)dz = −
L

nπ
(cosnπ − 1) +

L

3nπ
(cos3 nπ − 1), (65)

which vanishes for all even n. As the integral on the left hand side of Equation
(64) is nonzero, this implies that for even n (and in particular for n = 2) λ1

vanishes. The bifurcation at bifurcation points with modes having even n is
therefore quadratic.

This explains the structure of the bifurcation diagram in Figure 2, because
the first bifurcation obviously corresponds to the A′

1 for n = 1, whereas the
second bifurcation corresponds to n = 2. Therefore the structure of the first
branch close to the bifurcation point is given by

λ = λ∗ + ǫλ1 + . . . , (66)

A = A0(r, z, λ∗) + ǫA1(r, z, λ∗) + . . . . (67)

The slope of the bifurcating branch at the bifurcation point is determined by
λ1 6= 0 in this case and it is obvious that the bifurcating branch exists for both
λ > λ∗ (ǫλ1 > 0) and λ < λ∗ (ǫλ1 < 0).

Close to the second bifurcation point we have

λ = λ∗ +
1

2
ǫ2λ2 + . . . , (68)

A = A0(r, z, λ∗) + ǫA1(r, z, λ∗) + . . . , (69)

because here λ1 vanishes. As the correction to λ∗ depends quadratically on ǫ,
positive and negative ǫ give the same value of λ. This implies that the second
bifurcating branch actually consists of two branches, one for positive and one
for negative ǫ. Since a change of sign of ǫ in Equation (69) corresponds to a
simple mirroring of the sin(2πz/L) function at the point z = L/2, the two
branches have exactly the same energies. We remark that since λ1 = 0 in this
case A1 = A′

1 as the boundary contribution to A′
1 vanishes. The numerical

calculations corroborate these results as the same second bifurcation branch is
found by the code starting both with negative and positive ǫ. The only difference
between the calculations is the mirroring of the z-dependence of A along the
bifurcating branch.
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