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ABSTRACT

Context. Solutions of the magnetohydrostatic (MHS) equations ang wmeportant for modelling
astrophysical plasmas, for example the coronae of maguksitars. Realistic models should be
three-dimensional, i.e. should not have any spatial symiesetbut finding three-dimensional so-
lutions of the MHS equations is a formidable task. Only veny finalytic solutions are know and
even calculating solutions with numerical methods is Ugdat from easy.

Aims. We present a general theoretical framework for calculatimge-dimensional MHS solu-
tions outside massive rigidly rotating central bodiesetbgr with example solutions. A possible
future application is to model the closed field region of tbeonae of fast rotating stars.
Methods. As afirst step, we present in this paper the theory and sokufr the case of a massive
rigidly rotating magnetized cylinder, but the theory casilyabe extended to other geometries,
We assume that the solutions are stationary in the co-ngtdtame of reference. To simplify
the MHS equations, we use a special form for the current dewsiich leads to a single linear
partial diferential equation for a pseudo-potentihl The magnetic field can be derived frdh
by differentiation. The plasma density, pressure and temperater@so part of the solution.
Results. We derive the fundamental equation for the pseudo-potdmbih in coordinate inde-
pendent form and in cylindrical coordinates. We presentenical example solutions for the case
of cylindrical coordinates.

Key words. Magnetic fields - Magnetohydrodynamics (MHD) - Stars: maigrigelds - Stars:

coronae - Stars: activity

1. Introduction

Finding three-dimensional (3D) solutions of the magnetivhgtatic (MHS) equations, i.e. solu-
tions with no spatial symmetry, is a formidable task. OnlyMew analytical solutions are known
and even using numerical methods for calculating 3D MHSt&wis is usually far from straight-
forward (e.g Wiegelmann & Neukirch 2006; Wiegelmann et 8D?2).
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Analytic solutions have been found for a number dfatient casebIf external forces like the
gravitational force or the centrifugal force can be negldcforce balance between the Lorentz
force and the pressure gradient has to be achieved. A smab&wuof analytical solutions in
Cartesian and cylindrical coordinates have been found/feglley 1976, 1977; Shivamoggi 1986;
Kaiser et al. 1995; Salat & Kaiser 1995; Kaiser & Salat 19987) and some of them have been
generalized to include field-aligned incompressible floRestfie & Neukirch 1999).

The case where external forces cannot be neglected is bftendre relevant for astrophysical
applications. In particular, three-dimensional solusiofithe MHS equations in the presence of an
external gravitational field have been found for this casth In Cartesian (e.g. Low 1982, 1984,
1985, 1992, 1993a,b; Neukirch 1997; Neukirch & Rastaté®9} Petrie & Neukirch 2000) and in
spherical coordinates (e.g. Osherovich 1985a,b; Bogdanw 1986; Neukirch 1995).

For the case of the presence of external forces, a systemattwod for calculating a special
class of 3D MHS equilibria has been developed in a series pénsaby Low (1985), Bogdan &
Low (1986), Low (1991), Low (1992), Low (1993a), Low (19931)d Low (2005). The method
is applicable to all external forces derived from a potdrdiad assumes a special form for the
electric current density to allow analytical progress.Ha simplest possible case, the MHS equa-
tions reduce to a linear partialftérential equation for the magnetic field. It has been shoatith
Cartesian and spherical geometry, the fundamental equiatieery similar to a Schrodinger equa-
tion (Neukirch 1995; Neukirch & Rastatter 1999). Therefetandard methods such as expansion
in terms of orthogonal function systems (e.g. Rudenko 2@008reen’s functions (e.g. Petrie &
Neukirch 2000) can be used for finding solutions, and thishogtas been used to model, for
example, the solar corona (e.g. Zhao & Hoeksema 1993, 19®4p& & Bagenal 1995; Gibson
et al. 1996; Zhao et al. 2000; Ruan et al. 2008) and stellama® (e.g. Lanza 2008).

While the method has been mainly used to find 3D MHS solutionghie case of an external
gravitational potential, Low (1991) has also developechtie¢hod for rigidly rotating systems sub-
ject to centrifugal forces. For those cases the system ti@istaty only in the frame of reference
rotating with the same angular velocity as the system it§atently, Neukirch (2009) has pre-
sented a couple of 3D MHS solutions for rigidly rotating matgrspheres in cylindrical geometry,
again using the simplest case leading to a linefiedintial equation for the magnetic field.

In the present contribution we extend the theory to the cdssrevboth gravitational and cen-
trifugal force are taken into account. This case is, for gxanrelevant for the coronal structure
of fast rotating stars (e.g. Jardine & Unruh 1999; Jardin@420ardine & van Ballegooijen 2005;
Ryan et al. 2005; Townsend & Owocki 2005; Townsend et al. 2005 oula et al. 2006), in partic-
ular for the closed field line region. Often, however, pognhagnetic fields are used for models
derived from stellar surface data (e.g. Jardine et al. 12001, 2002; Donati et al. 2006, 2008;
Morin et al. 2008), while there is observational evidenadlie non-potentiality of some measured
surface magnetic fields (e.g. Hussain et al. 2002). Recdvilgkay & van Ballegooijen (2006)
and Yeates et al. (2008) developed a numerical techniqu®tiupe sequences of quasi-static non-
linear force-free equilibria from time series of observealgmetograms. While this technique was
so far only applied to the Sun, it could in principle also belaa to other stars if magnetic field
data with a sfficiently high time cadence are obtained. The theory predemtais paper could im-

1 We explicitly exclude force-free fields from this discussio
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prove the potential field models and, in its simplest fornrmas computationally more demanding
than potential field models.

As in Neukirch (2009), we will present the theory in a genévah following Low (1991), but
then investigate the somewhat artificial, but illustratbase of a massive rigidly rotating central
cylinder. This is done merely for mathematical convenieagiéis much easier to impose boundary
conditions on a cylindrical boundary. A full solution of tipeoblem would also include a stellar
wind on open field line regions and the need to solve a free denyproblem to determine the
transition from open to closed field regions. A solution ts firoblem is beyond the scope of the
present paper and we neglect flows altogether. Insteacddaalutions presented in this paper, we
impose boundary conditions on an imaginary outer boundamylar to the source surface used for
potential field models. For this case, we determine solgtiming standard numerical methods. In
future work, one could as a first step towards solving thegdtdblem, assume that the open field
line regions are potential and thus try to determine the Hagnbetween open and closed field line
regions.

The paper is organized as follows. In Sect. 2 we present & dei@vation of the underlying
theory, followed by illustrative example solutions in S&:tWe conclude the paper with a summary
and discussion in Sect. 4.

2. Theory
2.1. Coordinate-Independent Theory

Before moving on to the special case of a massive rigidlytirdacylinder, we briefly outline
the basic theory in a coordinate-independent form. In thag,whe equations derived below are
applicable to other cases as well, such as massive rigithying spheres or ellipsoids (stars), or
even synchronously rotating double stars, using e.g. tth&potential.

We basically follow Low (1991) in our outline and refer thader to his paper for more details
(see also Neukirch 2009). The MHS equations in the co-rajdtiame of reference are given by
(see e.g. Mestel 1999))

jxB-Vp-pVV = 0, (1)
VXB = o, 2)
V-B =0, 3)

whereB is the magnetic field, is the current density is the pressurgy is the plasma density and
V is the combined centrifugal and gravitational potentiaséming

poj = VF X VV, 4)

with F a free function one finds from the force balance equationh@i) t

p(@, ¢,2) = p(F,V), (5)
and
op\ _ 14,
(ﬁ)v = T8V (6)
__(9p) 1.
o = ((9V)F+ﬂo(B VF). (7)
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Further progress can be made by making an appropriate cloittee free functior-. Choosing
F(w,¢,2 =«(V)B-VV, (8)

with «(V) a free function, as suggested by Low (1991), leads to adiretation between magnetic
field and current density. In this case, we have the follovexgression

b= polV) - ik(vxs VY (9)

for the pressure. Hergy(V) is an arbitrary function which represents a hydrostatickigaound
atmosphere. For the density we find
dp() 1 dk 2 1
=——+— — (B-VV)°+ — «(V)B-V(B-VV). 10
e VR AR ULRMCEY (10)
An expression for the plasma temperature can be obtained dsgume that the plasma satisfies

the equation of state of an ideal gas,

Hp
ToHP (11)
Ro
where R is the universal gas constant aris the mean molecular weight.
By integrating Ampere’s law (2) one finds the magnetic fieldhée
B=vu+— M gy vy (12)

1-K(V)(WV)2
where the free functiobd appears due to the integration. The pseudo-potddtialdetermined by
substituting (12) int&/ -B =0:

(V)
1 - «(V)(VV)?2

Equation (13) is a single partialféiérential equation for the pseudo-potentiabind is the funda-

V. (vu + (VU - VV)VV| = 0. (13)

mental equation for the linear case of the theory presergesl An alternative form of this equation
is

V-(M-VU) =0, (14)

with the 3x 3 matrixM defined as

k(V)
1 - k(V)(VV)2

Herel is the 3x 3 unit matrix. Equation (14) is particularly useful¥V has more than one non-

M=1+ VV WV (15)

vanishing component. This would, for example, be the cas¢him combined gravitational and
centrifugal potential outside a massive rigidly rotatipipere. In such a case, Eq. (13) is usually
not separable.

2.2. Cylindrical Geometry

To illustrate how the theory presented above can be usedewatn the present paper the somewhat
artificial, but mathematically simpler case of a cylinderafliusR, infinite length and uniform
mass per unit lengti, rotating rigidly with angular velocit{2 about its symmetry axis. We use a
co-rotating cylindrical coordinate systein ¢, zwith the z-axis aligned with the rotation axis. The
external gravitational potential (normalized to Gsat= R) of such a cylinder is given by

¥ = 2GM In(w/R), (16)
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Fig. 1. The combined potentidl (w) for a co-rotation radiugr, = 4.0.

and the combined potentigl by

QZ
V= —7w2 + 2GM In(@/R).

Using Eq. (12), the componentsBfin cylindrical coordinates are

B 1 ou
T 1-k(V)(V)2 0w’
10U
By = ——
¢ " wop’
ou
BZ - E,
with
, av
V' = o
Defining

&@) = k(V)(V'),
one can rewrite Equation (13) as

10 (@ ) 1PU P
1-&w)dw) @22 02

which is the fundamental equation to be solved.

@ dw

The pressure and density are given by

1 2R2
= po(V) - —«(V)V'“B
P = po(V) 20() -
and
dpo 1 dk 20 1 > 1
=———+ ——V"“B: + —x(V) V'B2 + —«(V) V' B - VB,.
dv 2(10 av @ Mo ( ) @ Mo ( )

(17)

(18)
(19)

(20)

(21)

(22)

(23)

(24)

(25)

While formally, Egs. (18) to (25) are identical to the cdde— 0 (only centrifugal forces)

investigated by Neukirch (2009), an importanffelience is that the combined potential (17) does
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not have a one-to-one mapping to the radial coordiratas the gravitational potential or the
centrifugal potential on their own have. Inste&fw) has a maximum (see Figure 1) at the co-
rotation radius given by
V2GM

Q-

A test particle in a circular and planar orbit around the rayéir would have an orbital angular

Weo =

(26)

velocity which is equal t@2 so that it would co-rotate with the cylinder. More importgnthough,
for a rigidly rotating plasma on the cylindrical surfacewitidius equalling the co-rotation radius,
the outward centrifugal force is exactly balancing the irthgravitational force, as the expression

—-pVV = —pV'e,

for the combination of the two forces shows. Sinevanishes ats,, the combined force is zero
for w = w,. For distances from the cylinder larger than the co-rotataalius the centrifugal force
will be bigger than the gravitational forc&( < 0) and thus the combined force will be point-
ing outward. Obviously, overall force balance will have thalude the Lorentz force and pressure
gradient. The Lorentz force is crucial to be able to obtairtdédbalance beyond the co-rotation
radius.

In Neukirch (2009) the expressiaV)V’2 was generally replaced by a functigfw). Due to
the one-to-one mapping between the centrifugal potemitiae radial variable, it was possible
to choose the functiof(w) instead ok(V). This is not generally possible for the combined poten-
tial discussed here. Although defining a functigfe) = «(V)V’? is of course possible, choosing
&(w) instead ofk(V) will generally lead to problems, for example to possiblegsilarities ofk(V)
at the co-rotation radius, because

(@)

V(@)

Obviously the denominator vanishesat, andx(V) will only be non-singular i#(w) goes to zero

k(V(w)) = (27)

with the same or a higher power af — w, at the co-rotation radius. This excludes any simple
choice such ag(w) = & =constant, which was one of the examples used in Neukirch9(200

Singularities ink(V) in turn lead to singularities of density and temperaturevali. If we
express the density in terms&{fw) instead ofk(V) we first obtain

- _% + ig_\’;vﬂag + #iOK(V) VB2 + #iOK(V) V' B-VB,. (28)
Using
% = %(K(V)V/Z)
- S—CV'S + 2c(V)V' V",

we can rewrite Equation (28) in the form

Cdpp 11k, 11
= Vo G Bt v E@)B VB, (29)

which makes the possible singularity@at= @ (V' = 0) obvious. The pressure is always non-

singular since
1

2u0

P = po(V) — ——k(V)V'2BZ, = po(V) - if(w)si. (30)
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Fig. 2. The critical point&vé (blue) andw? (red) for a co-rotation radiusre, = 2.0.

But even if a singularity ok(V) andp could be avoided for a suitable choicedgts) (going
through O quadratically atr,), the inverse mapping fronx to V would not be well-defined across
e, and therefore a given functiaitw)/V’2(w) cannot generally be expressed as a functiovi.of
This has to borne in mind when we considering Eq. (23) in wii{et) should merely be regarded
as an abbreviation fai(V)V’?, but not as an independent free function as, for exampleeirkiich
(2009).

As already stated above, Eq. (23) is the fundamental equidié has to be solved. Itis straight-
forward to see that for

1-k(V)V'? = 1-&w) 2 0, (31)

Eq. (23) is either elliptic or hyperbolic, respectively, Mehhaving singularities at any radiuss
wherex(V)V’2 = 1. Obviously, none of the singularities coincides with tieerotation radius (at
@ = we We have 1- «(V)V’? = 1). The singularities, i.e. the transition from an elliptica
hyperbolic equation or vice versa can only occur V) positive. For example, assuming for
simplicity thats > 0 is constant, the critical points occur at

@, @, g
((ZGM)ZK ' 2) =\ Bz 2) -

The critical point defined byfi is beyond the co-rotation radius, whereas the one givendys

2
@,
ol = -2

=22 (32)

within the co-rotation radius (see Fig. (2). The inner siagty lies inside the central cylinder, if

opdl 3
(2GM)%k < (ngC+R2)2,
where of coursd&® < w2,. One should note, however, that Eq. (32) only applies #constant.
If x depends otV (and thus onw), even the possibility of more than two critical points éim
principle.

The case«(V) positive generally corresponds to a stretching of magrfietid compared to a
potential field ¢ = 0), as can be seen from Eq. (18). A thought experiment whezestamts with
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k = 0 (potential field) and then slowly increaseshows that the radial component of the magnetic
field will increase due to the decrease of kV'?, if one assumes that to lowest ordg¢rdoes not
change too rapidly with changingFurthermore it is relatively straightforward to see tliet tadial
component of the Lorentz force will be directed inwards fagnetic fields which have the same
general behaviour as a dipole field close to the equater(). This is exactly what is expected of
stretched magnetic fields acting to confine plasma pulle¢ &wan the cylinder by the centrifugal
force.

In this paper we will only consider Eq. (23) for cases whers illiptic. We shall follow a
common approach used in solar and stellar applications rmmddition to the inner cylindrical
boundary define an artificial outer boundary. This is simitathe source surface used in many
global potential magnetic field models of the solar corom& @o-called potential field source
surface or PFSS models). It should be noted, however, tltatlise the magnetic fields calculated
in the present paper are non-potential, we impose slightiigrént boundary conditions from those
usually imposed on a source surface when potential fieldssae.

3. Solution Methods and Example Solutions

In this section we discuss possible solution methods and dllfestrative example solutions. We

first nondimensionalise all quantities and equations uSing RV, @ = 2, B = o VA
j p

= ~ — o . . o : )
| = @mm P = Rire’ andp = POk whereBy is a typical magnetic field value. The dimen

sionless combined centrifugal and gravitational potérgigiven by

1
V= _ﬁ(wz - @2, In(@?)), (33)
where, e, = Y2282 s the dimensionless co-rotation radius and the cylindédiusain these

dimensionless coordinatesis 1 .

3.1. Separation of Variables

In the case when itis elliptic, Eq. (23) is very similar to lage’s equation and admits separable
solutions (see also Neukirch 2009) of the form

U(@. ¢.2) = Fri(@) exp(img) exp(kz). (34)
If we substitute (34) into (23) we find that the radial funatie(w) satisfies the equation
——————|- (= +k|Fk=0. 35
wdw(l—f(w) dw) (w2+ K (35)
This ordinary second order firential equation will have two linearly independent solus,
Ffjlz(w) and Ffjﬂ(w), say. Since the partial fierential equation folJ is linear, the solutions for

differentm andk may be superposed to generate other solutions, and the emstad form of a
solution of (23) is

U@.¢.2) = . exp(imy) f " A AKF (@) + Br()F ()] exp(ia). (36)

m=—oco
Here theAn(K) andBn(k) are complex coéicients, which are determined by the boundary condi-
tions, e.g. Dirichlet or von Neumann conditions in the ¢itijzase.



Al-Salti et al.: 3D MHS Solutions of Rotating Magnetized Goae 9

6F

§\w g

z
o o £ w N - o - N w e o
o
&
i | |t
i ‘!Hb
o
LN
IS
o
L& A N IS
o o (=]
o o
P o N S o

‘ ] 1l Y 4 1

.
qﬂ*
3\\u

7

Fig. 3. Field line plots for the example solution. The left panelwba side view, the right panel a view along
thez-axis. The colours on the boundary represent the radial etagfield componentB,, on that boundary.

As already discussed above, we are not allowed to choosartleddné(w) in the present case,
if the domain includes the co-rotation radius. Howeverlltsirate the method and for use as a test
case for the numerical method used later, we show a few moesTanalytical solution which can
be obtained foé(w) = & =constant (see e.g. Neukirch 2009). In this case the ger@taians to
Eq. (35) are given by
Fri(@) = An(K) 1,(ky1 = & @) + Bu(K) K\(kv/1 - o @), (37)
wherel, (x) andK, (x) are modified Bessel functions (Abramowitz & Stegun 1965),m+/1 — &.
Am(K) andBn (k) are constants which would usually be determined by the thaynconditions.

For this illustrative example we have chosen the paramataes, = 3/4,m= 2 andk = =/5,.
This choice of parameters leads {g‘i —& = 1/2andv = m4/1-& = 1, and we sefAy(k) =
Bm(k) = 0, except foB.2(k) which we choose so that the pseudo-potential is given by
U = BoK1(m w/10) sin(2) sin(r z/5). (38)
The magnetic field components are then given by
B, = —%Bo[Ko(ﬂ' w/10)+ EK1(7T w/10)] sin(2p) sin(r z/5),

nTw

%Kl(n w@/10) cos(d) sin(r z/5), (39)

&
I

B, = %B()Kl(n @/10) sin(2) cos(r z/5).

The reason we choosg instead ofl, is thatK, decreases with increasing argument, which means
that the magnetic field strength decreases with increassignte from thez-axis. In Fig. 3 we
show a three-dimensional plot of magnetic field lines frono tifferent viewing angles. The
boundary colours represent the radial magnetic field compB,. The non-symmetric nature
of the magnetic field is obvious from the plot. The pressugiisn by

p=po(V) - 282 = po(v) - 282, (40)
which as discussed above is non-singular at the co-rotadidins. The density, however, is given
by

dpo | %o dpo  3wg@

:—dV+VB-VBw=—dV+WB'VBw, (41)
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and here the singularity at the co-rotation raditg is obvious. We therefore consider this solution
only for w < we. It should be noted that wheifw) is chosen directly, the value of the co-rotation
radius dfects the solution only through the presenc®oih the density. As the co-rotation radius is
the only parameter in which the angular velo&typpears, choosinfw) instead ok(V) basically
eliminates the rotation rate from the problem. Again thia feature of the solutions which is not
necessarily wanted if one wants to study tlieet of increasing2 on the solutions. Plots of the
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pressure and density contours and isosurfaces are shovigsidrand 5. Note that in the plots we
only show the deviations from the cylindrically symmettibackground pressure and density.

3.1.1. Numerical Solutions of Eq. (23)

In general, finding analytical solutions of Egs. (23) or (38) be impossible even for simple
choices of the functior(V). Thus, numerical methods will have to be used to find sahgtiGince
Eq. (23) is a simple linear partialftierential equation, standard numerical methods can be ased t
solve it. In the present paper we used an adaptive mesh flaiteeat method from the COMSOL
Multiphysics 3.4 package with MATLAB to solve Eq. (23).

To check the accuracy of our numerical method, we have filgeddEq. (23) for the constant
& case presented in Sect. 3.1, using the same parameter vatue®ll as boundary conditions
that are consistent with the analytical solution. We solge 3) forU on a numerical domain,
which is bounded by an inner cylinder of radius 1, an outeindgr of radiusw, = 6, and which
extends from-5 to 5 in thezdirection. The outer boundagy, is assumed to be smaller than the
co-rotation radius in this case to avoid singularities i density.

The exact boundary conditions used for this case are

— Bo(L ¢, 2) = By anayiical (1, ¢, 2) on the inner boundary, wheB, anayiica (@, ¢, 2) is the expres-
sion given in (39),

— U(6,¢,2) = Uanayica (6, ¢, 2) on the outer boundary, whetéanayica (@, ¢, 2) is given by Eq.
(38) and

- n-B=0atz= +5.

The mesh size used for this calculation consists of 261 6Gahts.

A magnetic field line plot for the numerical solution obtadrie shown in Fig. (6), which shows
good agreement with the analytical solution. The only reztide diference is the structure of the
field lines towardsz = +5 which is due to theféect of the boundary condition at= +5 for the

numerical solution.
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Having thus convinced ourselves that the numerical tootgisatisfactory results, we have
considered the simplest possible choic&(®f), which is

(V) = ko = constant (42)

as an example for a case whers chosen directly. We have calculated numerical solutiori=g.
(23) using as boundary conditions on the surface of the akeptinder @ = 1) a magnetic dipole
field (Baip) for the three cases of the

(a) magnetic dipole moment at the origin and aligned withrdtation axis (aligned rotator),

(b) magnetic dipole moment at the origin, but inclined wigspect to the rotation axis (oblique
rotator) and

(c) magnetic dipole moment not located at the origin andried with respect to the rotation axis
(displaced dipole).

These three cases are similar to the cases discussed by &e{#009).

We use the same domain and mesh size as in the previous exavithl¢he outer boundary
conditions given byJ (6, ¢, 2) = Uo(6, ¢, 2), whereU(w, ¢, 2) satisfiesVU, = Bgip andn - B = 0 at
z=+5.

By choosingk(V), the density remains non-singular at the co-rotationumdHence, we can
now calculate solutions in a domain including and extenthiegpnd the co-rotation radius.

Numerical solutions for the case of= % andw = 3.5 are illustrated in Figures (7) - (10),
where the letters (a), (b) and (c) above each plot indicadhhee diferent boundary conditions
mentioned above. For the oblique rotator case the magnipiidedmoment is in thex-z-plane at
an angle ofy with the x-axis. For the displaced dipole case the magnetic momeigas an the
x-z-plane, but now ak = 0.3, making an angle o with the x-axis. In the plots showing pressure
and density, we only show the three-dimensional deviatiomfbackground pressure and density.
It turns out that both the three-dimensional pressure tiemiand the three-dimensional density
deviation are negative, which means that these terms wdliade any background pressure and
density to lower values.

Figure (7) shows magnetic field line plots, with the colountowrs on the central cylinder in-
dicating the strength of the radial magnetic field componBgt for the three dierent boundary
conditions. As is to be expected, the change of boundaryittons has a clearftect on the struc-
ture of the magnetic field, which is clearly symmetric for @d@ned rotator case, but becomes
non-symmetric for the other two cases.

This is also visible in Fig. (8), where we show isosurfacethefthree-dimensional deviation
of the pressure from the background pressure. One can demnthéias smaller isosurfaces close
to the inner boundary where the magnetic field (and thus thespre deviation) is strong, whereas
the isosurfaces become more extended as one moves awayh&aylinder and the magnetic field
becomes weaker.

It can be clearly seen that for the case of aligned rotatqr fznels in Fig. 8), the pressure
isosurfaces are symmetric, whereas this symmetry is briukethe other two cases. In particular,
the symmetry with respect to theaxis and the-axis is broken, but for the oblique rotator case
(middle panels in Fig. 8) a notion of symmetry about the di@otis remains. The least symmetric
case, at least in terms of pressure isosurfaces, is thedexptipole case (lower panels in Fig. 8).
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Fig. 7. Magnetic field lines plots for the three cases of (a) aligradtor, (b) oblique rotator and (c) displaced
dipole.

Figures (9) and (10) show cross section plots of the vanatiothe 3 pressure and density
deviations from the background pressure and density ireglparallel to thez-plane for diferent
y-values. These plots show that there is some symmetry of ib&spre and density deviations
about they-axis for all three cases, but clearly show symmetry aboaitxtnd z-axes only for
the aligned rotator case. The intersection between theeplainown in Fig. (9) and the cylindrical
surface with radius equal to the co-rotation radius coiesidith the dark vertical features in the



14 Al-Salti et al.: 3D MHS Solutions of Rotating MagnetizedrGnae

x10° x10°

(a)

0.0075

g H0.175 =

o) x10° x10°

® k0.007 e {1 1 7-1

Fig. 8. Pressure isosurface plots for the aligned rotator casepaoels), the oblique rotator case (middle
panels) and the displaced dipole case (bottom panels)rahsition from rotational symmetric isosurfaces in
the aligned rotator case to asymmetric isosurfaces in tigr 6ivo case can be seen very clearly.

plots. In the rightmost panels, the plane basically touttheso-rotation cylinder and thus one only
sees a single broad vertical feature. It can be easily segrfiem Eq. (24)) that the total pressure
is equal to the background pressure at the co-rotationsadap = po(V) atw = we. The dark
vertical features in Fig. (9) thus correspond to a vanishimge-dimensional pressure deviation,
whereas no corresponding feature exists for the threerdioeal density deviation (Fig. 10). The
pressure and density cross-section plots confirm the isitrga@egree of asymmetry when going
from the aligned rotator case over the oblique rotator cagieet displace dipole moment case.

4. Summary and Discussion

We have presented a relatively simple (semi-)analyticpr@gch which allows the modeling of
three-dimensional rigidly rotating magnetized coronasagnetospheres around massive central
objects. In the present paper we have restricted our asdtysilustrative purposes to the simpler,
but less realistic case of cylindrical geometry. The palisitof extending the theory to other
geometries will be discussed below.

The theory contains free functior$V) and po(V), where, in the case presented in this pa-
per,V is the combined gravitational and centrifugal potentighia co-rotating frame of reference.
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Fig. 9. Variation of the pressure deviation from the backgroundguee in thex-z-plane aty = 0 (through the
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central cylinders)y = 2, andy = 3.5 (touching the co-rotation cylinder), respectively. Shasthe logarithm
of the pressure. The increasing asymmetry from top to boisasbvious.
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Fig. 10.Variation of the density deviation from the background ptes in thex-z-plane aty = 0 (through the
central),y = 2, andy = 3.5 (touching the co-rotation cylinder), respectively. Shaw the logarithm of the
density. The density deviation is largest close to the dgin
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Whereas the functior(V) implicitly determines the current density in the coropgV) is an inde-
pendent background pressure. Alternatively the derigatps/dV = —po(V) can be chosen, where
po(V) is a background density. The background pressure can tndetbrmined by integration, if
an equation of state afat a temperature profile is assumed.

The functionk(V) appears in the theory in the combinatiefV)V’? and, in the cylindrical
geometry used in the present paper, a new functiohthe radial coordinater, can be defined
asé(w) = «k(V)V'2. As has been shown before (Neukirch 2009) for the casé béing just the
centrifugal potential (no gravitational force), analglisolutions of the theory can in principle be
found if ¢(w) is chosen to have a convenient form. However, for the caaecombined centrifugal
and gravitational potential as presented in this papeditleet choice of a functiofi(z) instead of
deriving it from a chosen functiof(V) generally leads to singularities, in particular of the sign
at the co-rotation radius.

One can avoid these problems by choosifld) instead ofé(w). In this case, however, the
fundamental equation is usually too complicated to allonaiealytical solutions to be found, but
the equation is still sticiently simple that standard numerical methods can be wssdlve it.
We have presented an example of an analytical solution tdleeta test our numerical method,
and the numerical solution shows good agreement with thiytige solution on its domain of
validity inside the co-rotation radius. We have then présgmumerical solutions for the case
k(V) = ko = constant for three dierent types of boundary conditions on the surface of therakent
cylinder: a magnetic dipole field generated by a dipole mdrwarated at the origin, aligned with
the rotation axis (aligned rotator), a magnetic dipole fggderated by a dipole moment located at
the origin, but at an angle with the rotation axis (obliqueator) and a magnetic dipole moment
displaced from the origin, with the dipole moment not alidmwgth the rotation axis. These three
cases were used to illustrate the transition from a rotatigisymmetric corona to an asymmetric
corona for the simple geometry of a magnetic dipole field.

A similar theory can also be developed for rotating sphérntassive bodies. The combined
gravitational and centrifugal potential for a body of maéswhose rotation axis is aligned with
thez-axis has the form (using spherical coordinatesandg)

V(r,6) = —%erz Sinf g — %. (43)
Due to the dependence ®f on two of the coordinates in this case, Eq. (13) has a much more
complicated form since

V2 |ou  faVav (10U
f OV 6V oU f (oV\?][16U
"= Tar a0 or [1 ﬁ(%)](?%)' (45)
where
f V) (46)

T 1=KV
Both B, andBy depend o@U/dr anddU/d6 for this case and this leads to mixed second derivatives
in Eq. (13). Itis highly unlikely that the resulting Eq. (18 this case has any analytical solutions,
although this still has to be investigated in detail. Howgdespite its more complicated form,
solving Eqg. (13) for the spherical case using standard nicalemethods as, for example, the
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ones we have used in this paper, is not generically mdfiewdt than solving the cylindrical case
presented above. The main reason for this is that, despge@mingly more complicated form, the
type of Eq. (13) is again determined completely by the sigihefexpression 4 «<(V)(VV)?2. If this
term is positive Eq. (13) is elliptic, otherwise it is hypelis. This can be seen relatively easily by
writing Eq. (13) in the form (14) with

1+f(ﬂr) ;(')_V_V 0
f
r2

_| fave 2
M=l TEE Lea(3) o) )

0 0 1

The nature of Eqg. (13) is determined by the signs of the eiglerg of the real and symmetric
matrix M. If all eigenvalues have the same sign, Eq. (13) is elligtberwise it is hyperbolic. A
straightforward calculation shows tht, as given in (47), has a double eigenvalue 1 and that the
third eigenvalue is given by/I1 — x(V)(VV)?], which corroborates our statement from above. We
can thus conclude that it should be possible to use standemémcal methods for linear elliptic
second order partial fierential equations to solve Eq. (13) for the spherical cBseliminary
results obtained for the spherical case with the same naaleriethods used for the cylindrical
case so far confirm this conclusion and it is planned thatlaéalount of the spherical case will be
given in a future publication.
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