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ABSTRACT

Context. Solutions of the magnetohydrostatic (MHS) equations are very important for modelling

astrophysical plasmas, for example the coronae of magnetized stars. Realistic models should be

three-dimensional, i.e. should not have any spatial symmetries, but finding three-dimensional so-

lutions of the MHS equations is a formidable task. Only very few analytic solutions are know and

even calculating solutions with numerical methods is usually far from easy.

Aims. We present a general theoretical framework for calculatingthree-dimensional MHS solu-

tions outside massive rigidly rotating central bodies, together with example solutions. A possible

future application is to model the closed field region of the coronae of fast rotating stars.

Methods. As a first step, we present in this paper the theory and solutions for the case of a massive

rigidly rotating magnetized cylinder, but the theory can easily be extended to other geometries,

We assume that the solutions are stationary in the co-rotating frame of reference. To simplify

the MHS equations, we use a special form for the current density which leads to a single linear

partial differential equation for a pseudo-potentialU. The magnetic field can be derived fromU

by differentiation. The plasma density, pressure and temperatureare also part of the solution.

Results. We derive the fundamental equation for the pseudo-potential both in coordinate inde-

pendent form and in cylindrical coordinates. We present numerical example solutions for the case

of cylindrical coordinates.

Key words. Magnetic fields - Magnetohydrodynamics (MHD) - Stars: magnetic fields - Stars:

coronae - Stars: activity

1. Introduction

Finding three-dimensional (3D) solutions of the magnetohydrostatic (MHS) equations, i.e. solu-

tions with no spatial symmetry, is a formidable task. Only very few analytical solutions are known

and even using numerical methods for calculating 3D MHS solutions is usually far from straight-

forward (e.g Wiegelmann & Neukirch 2006; Wiegelmann et al. 2007).
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Analytic solutions have been found for a number of different cases.1 If external forces like the

gravitational force or the centrifugal force can be neglected, force balance between the Lorentz

force and the pressure gradient has to be achieved. A small number of analytical solutions in

Cartesian and cylindrical coordinates have been found (e.gWoolley 1976, 1977; Shivamoggi 1986;

Kaiser et al. 1995; Salat & Kaiser 1995; Kaiser & Salat 1996, 1997) and some of them have been

generalized to include field-aligned incompressible flows (Petrie & Neukirch 1999).

The case where external forces cannot be neglected is often the more relevant for astrophysical

applications. In particular, three-dimensional solutions of the MHS equations in the presence of an

external gravitational field have been found for this case, both in Cartesian (e.g. Low 1982, 1984,

1985, 1992, 1993a,b; Neukirch 1997; Neukirch & Rastätter 1999; Petrie & Neukirch 2000) and in

spherical coordinates (e.g. Osherovich 1985a,b; Bogdan & Low 1986; Neukirch 1995).

For the case of the presence of external forces, a systematicmethod for calculating a special

class of 3D MHS equilibria has been developed in a series of papers by Low (1985), Bogdan &

Low (1986), Low (1991), Low (1992), Low (1993a), Low (1993b)and Low (2005). The method

is applicable to all external forces derived from a potential and assumes a special form for the

electric current density to allow analytical progress. In the simplest possible case, the MHS equa-

tions reduce to a linear partial differential equation for the magnetic field. It has been shown that in

Cartesian and spherical geometry, the fundamental equation is very similar to a Schrödinger equa-

tion (Neukirch 1995; Neukirch & Rastätter 1999). Therefore standard methods such as expansion

in terms of orthogonal function systems (e.g. Rudenko 2001)or Green’s functions (e.g. Petrie &

Neukirch 2000) can be used for finding solutions, and this method has been used to model, for

example, the solar corona (e.g. Zhao & Hoeksema 1993, 1994; Gibson & Bagenal 1995; Gibson

et al. 1996; Zhao et al. 2000; Ruan et al. 2008) and stellar coronae (e.g. Lanza 2008).

While the method has been mainly used to find 3D MHS solutions for the case of an external

gravitational potential, Low (1991) has also developed themethod for rigidly rotating systems sub-

ject to centrifugal forces. For those cases the system is stationary only in the frame of reference

rotating with the same angular velocity as the system itself. Recently, Neukirch (2009) has pre-

sented a couple of 3D MHS solutions for rigidly rotating magnetospheres in cylindrical geometry,

again using the simplest case leading to a linear differential equation for the magnetic field.

In the present contribution we extend the theory to the case where both gravitational and cen-

trifugal force are taken into account. This case is, for example, relevant for the coronal structure

of fast rotating stars (e.g. Jardine & Unruh 1999; Jardine 2004; Jardine & van Ballegooijen 2005;

Ryan et al. 2005; Townsend & Owocki 2005; Townsend et al. 2005; ud-Doula et al. 2006), in partic-

ular for the closed field line region. Often, however, potential magnetic fields are used for models

derived from stellar surface data (e.g. Jardine et al. 1999,2001, 2002; Donati et al. 2006, 2008;

Morin et al. 2008), while there is observational evidence for the non-potentiality of some measured

surface magnetic fields (e.g. Hussain et al. 2002). Recently, Mackay & van Ballegooijen (2006)

and Yeates et al. (2008) developed a numerical technique to produce sequences of quasi-static non-

linear force-free equilibria from time series of observed magnetograms. While this technique was

so far only applied to the Sun, it could in principle also be applied to other stars if magnetic field

data with a sufficiently high time cadence are obtained. The theory presented in this paper could im-

1 We explicitly exclude force-free fields from this discussion.
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prove the potential field models and, in its simplest form, isnot computationally more demanding

than potential field models.

As in Neukirch (2009), we will present the theory in a generalform following Low (1991), but

then investigate the somewhat artificial, but illustrativecase of a massive rigidly rotating central

cylinder. This is done merely for mathematical convenienceas it is much easier to impose boundary

conditions on a cylindrical boundary. A full solution of theproblem would also include a stellar

wind on open field line regions and the need to solve a free boundary problem to determine the

transition from open to closed field regions. A solution to this problem is beyond the scope of the

present paper and we neglect flows altogether. Instead, for the solutions presented in this paper, we

impose boundary conditions on an imaginary outer boundary,similar to the source surface used for

potential field models. For this case, we determine solutions using standard numerical methods. In

future work, one could as a first step towards solving the fullproblem, assume that the open field

line regions are potential and thus try to determine the boundary between open and closed field line

regions.

The paper is organized as follows. In Sect. 2 we present a brief derivation of the underlying

theory, followed by illustrative example solutions in Sect. 3. We conclude the paper with a summary

and discussion in Sect. 4.

2. Theory

2.1. Coordinate-Independent Theory

Before moving on to the special case of a massive rigidly rotating cylinder, we briefly outline

the basic theory in a coordinate-independent form. In this way, the equations derived below are

applicable to other cases as well, such as massive rigidly rotating spheres or ellipsoids (stars), or

even synchronously rotating double stars, using e.g. the Roche potential.

We basically follow Low (1991) in our outline and refer the reader to his paper for more details

(see also Neukirch 2009). The MHS equations in the co-rotating frame of reference are given by

(see e.g. Mestel 1999))

j × B − ∇p − ρ∇V = 0, (1)

∇ × B = µ0j , (2)

∇ · B = 0, (3)

whereB is the magnetic field,j is the current density,p is the pressure,ρ is the plasma density and

V is the combined centrifugal and gravitational potential. Assuming

µ0j = ∇F × ∇V, (4)

with F a free function one finds from the force balance equation (1) that

p(̟, φ, z) = p(F,V), (5)

and
(
∂p
∂F

)

V

= − 1
µ0

(B · ∇V), (6)

ρ = −
(
∂p
∂V

)

F

+
1
µ0

(B · ∇F). (7)
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Further progress can be made by making an appropriate choicefor the free functionF. Choosing

F(̟, φ, z) = κ(V)B · ∇V, (8)

with κ(V) a free function, as suggested by Low (1991), leads to a linear relation between magnetic

field and current density. In this case, we have the followingexpression

p = p0(V) − 1
2µ0
κ(V)(B · ∇V)2 (9)

for the pressure. Here,p0(V) is an arbitrary function which represents a hydrostatic background

atmosphere. For the density we find

ρ = −dp0

dV
+

1
2µ0

dκ
dV

(B · ∇V)2 +
1
µ0
κ(V)B · ∇(B · ∇V). (10)

An expression for the plasma temperature can be obtained if we assume that the plasma satisfies

the equation of state of an ideal gas,

T =
µp
Rρ
, (11)

where R is the universal gas constant andµ is the mean molecular weight.

By integrating Ampère’s law (2) one finds the magnetic field to be

B = ∇U +
κ(V)

1− κ(V)(∇V)2
(∇U · ∇V)∇V. (12)

where the free functionU appears due to the integration. The pseudo-potentialU is determined by

substituting (12) into∇ · B = 0 :

∇ ·
(
∇U +

κ(V)
1− κ(V)(∇V)2

(∇U · ∇V)∇V

)
= 0. (13)

Equation (13) is a single partial differential equation for the pseudo-potentialU and is the funda-

mental equation for the linear case of the theory presented here. An alternative form of this equation

is

∇ · (M · ∇U) = 0, (14)

with the 3× 3 matrixM defined as

M = I +
κ(V)

1− κ(V)(∇V)2
∇V ∇V. (15)

HereI is the 3× 3 unit matrix. Equation (14) is particularly useful if∇V has more than one non-

vanishing component. This would, for example, be the case for the combined gravitational and

centrifugal potential outside a massive rigidly rotating sphere. In such a case, Eq. (13) is usually

not separable.

2.2. Cylindrical Geometry

To illustrate how the theory presented above can be used, we treat in the present paper the somewhat

artificial, but mathematically simpler case of a cylinder ofradiusR, infinite length and uniform

mass per unit lengthM, rotating rigidly with angular velocityΩ about its symmetry axis. We use a

co-rotating cylindrical coordinate system̟, φ, z with thez-axis aligned with the rotation axis. The

external gravitational potential (normalized to 0 at̟ = R) of such a cylinder is given by

Ψ = 2GM ln(̟/R), (16)
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Fig. 1.The combined potentialV(̟) for a co-rotation radius̟ co = 4.0.

and the combined potentialV by

V = −Ω
2

2
̟2 + 2GM ln(̟/R). (17)

Using Eq. (12), the components ofB in cylindrical coordinates are

B̟ =
1

1− κ(V)(V ′)2

∂U
∂̟
, (18)

Bφ =
1
̟

∂U
∂φ
, (19)

Bz =
∂U
∂z
, (20)

with

V ′ =
dV
d̟
. (21)

Defining

ξ(̟) = κ(V)(V ′)2, (22)

one can rewrite Equation (13) as

1
̟

∂

∂̟

(
̟

1− ξ(̟)
∂U
∂̟

)
+

1
̟2

∂2U
∂φ2
+
∂2U
∂z2
= 0, (23)

which is the fundamental equation to be solved.

The pressure and density are given by

p = p0(V) − 1
2µ0
κ(V)V ′2B2

̟ (24)

and

ρ = −dp0

dV
+

1
2µ0

dκ
dV

V ′2B2
̟ +

1
µ0
κ(V) V ′′B2

̟ +
1
µ0
κ(V) V ′ B · ∇B̟. (25)

While formally, Eqs. (18) to (25) are identical to the caseM → 0 (only centrifugal forces)

investigated by Neukirch (2009), an important difference is that the combined potential (17) does
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not have a one-to-one mapping to the radial coordinate̟ as the gravitational potential or the

centrifugal potential on their own have. Instead,V(̟) has a maximum (see Figure 1) at the co-

rotation radius given by

̟co =

√
2GM
|Ω|

. (26)

A test particle in a circular and planar orbit around the cylinder would have an orbital angular

velocity which is equal toΩ so that it would co-rotate with the cylinder. More importantly, though,

for a rigidly rotating plasma on the cylindrical surface with radius equalling the co-rotation radius,

the outward centrifugal force is exactly balancing the inward gravitational force, as the expression

−ρ∇V = −ρV ′e̟

for the combination of the two forces shows. SinceV ′ vanishes at̟ co, the combined force is zero

for̟ = ̟co. For distances from the cylinder larger than the co-rotation radius the centrifugal force

will be bigger than the gravitational force (V ′ < 0) and thus the combined force will be point-

ing outward. Obviously, overall force balance will have to include the Lorentz force and pressure

gradient. The Lorentz force is crucial to be able to obtain force balance beyond the co-rotation

radius.

In Neukirch (2009) the expressionκ(V)V ′2 was generally replaced by a functionξ(̟). Due to

the one-to-one mapping between the centrifugal potential and the radial variable̟ , it was possible

to choose the functionξ(̟) instead ofκ(V). This is not generally possible for the combined poten-

tial discussed here. Although defining a functionξ(̟) = κ(V)V ′2 is of course possible, choosing

ξ(̟) instead ofκ(V) will generally lead to problems, for example to possible singularities ofκ(V)

at the co-rotation radius, because

κ(V(̟)) =
ξ(̟)

V ′2(̟)
. (27)

Obviously the denominator vanishes at̟co andκ(V) will only be non-singular ifξ(̟) goes to zero

with the same or a higher power of̟ − ̟co at the co-rotation radius. This excludes any simple

choice such asξ(̟) = ξ0 =constant, which was one of the examples used in Neukirch (2009).

Singularities inκ(V) in turn lead to singularities of density and temperature aswell. If we

express the density in terms ofξ(̟) instead ofκ(V) we first obtain

ρ = −dp0

dV
+

1
2µ0

dκ
dV

V ′2B2
̟ +

1
µ0
κ(V) V ′′B2

̟ +
1
µ0
κ(V) V ′ B · ∇B̟. (28)

Using

dξ
d̟
=

d
d̟

(
κ(V)V ′2

)

=
dκ
dV

V ′3 + 2κ(V)V ′ V ′′,

we can rewrite Equation (28) in the form

ρ = −dp0

dV
+

1
V ′

1
2µ0

dξ
d̟

B2
̟ +

1
V ′

1
µ0
ξ(̟)(B · ∇B̟), (29)

which makes the possible singularity at̟ = ̟co (V ′ = 0) obvious. The pressure is always non-

singular since

p = p0(V) −
1

2µ0
κ(V)V ′2B2

̟ = p0(V) −
1

2µ0
ξ(̟)B2

̟. (30)
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Fig. 2.The critical points̟ 2
s+ (blue) and̟ 2

s− (red) for a co-rotation radius̟ co = 2.0.

But even if a singularity ofκ(V) andρ could be avoided for a suitable choice ofξ(̟) (going

through 0 quadratically at̟ co), the inverse mapping from̟ to V would not be well-defined across

̟co, and therefore a given functionξ(̟)/V ′2(̟) cannot generally be expressed as a function ofV.

This has to borne in mind when we considering Eq. (23) in whichξ(̟) should merely be regarded

as an abbreviation forκ(V)V ′2, but not as an independent free function as, for example, in Neukirch

(2009).

As already stated above, Eq. (23) is the fundamental equation that has to be solved. It is straight-

forward to see that for

1− κ(V)V ′2 = 1− ξ(̟) ≷ 0, (31)

Eq. (23) is either elliptic or hyperbolic, respectively, while having singularities at any radius̟s

whereκ(V)V ′2 = 1. Obviously, none of the singularities coincides with the co-rotation radius (at

̟ = ̟co we have 1− κ(V)V ′2 = 1). The singularities, i.e. the transition from an ellipticto a

hyperbolic equation or vice versa can only occur forκ(V) positive. For example, assuming for

simplicity thatκ > 0 is constant, the critical points occur at

̟2
s± =
̟2

co

2



(
̟2

co

(2GM)2κ
+ 2

)
±

√(
̟2

co

(2GM)2κ
+ 2

)2

− 4

 . (32)

The critical point defined by̟ 2
s+ is beyond the co-rotation radius, whereas the one given by̟2

s− is

within the co-rotation radius (see Fig. (2). The inner singularity lies inside the central cylinder, if

(2GM)2κ <
̟4

coR2

(̟2
co − R2)2

,

where of courseR2 < ̟2
co. One should note, however, that Eq. (32) only applies ifκ =constant.

If κ depends onV (and thus on̟ ), even the possibility of more than two critical points exists in

principle.

The caseκ(V) positive generally corresponds to a stretching of magnetic field compared to a

potential field (κ = 0), as can be seen from Eq. (18). A thought experiment where one starts with
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κ = 0 (potential field) and then slowly increasesκ shows that the radial component of the magnetic

field will increase due to the decrease of 1− κV ′2, if one assumes that to lowest orderU does not

change too rapidly with changingκ. Furthermore it is relatively straightforward to see that the radial

component of the Lorentz force will be directed inwards for magnetic fields which have the same

general behaviour as a dipole field close to the equator (z = 0). This is exactly what is expected of

stretched magnetic fields acting to confine plasma pulled away from the cylinder by the centrifugal

force.

In this paper we will only consider Eq. (23) for cases where itis elliptic. We shall follow a

common approach used in solar and stellar applications and in addition to the inner cylindrical

boundary define an artificial outer boundary. This is similarto the source surface used in many

global potential magnetic field models of the solar corona (the so-called potential field source

surface or PFSS models). It should be noted, however, that because the magnetic fields calculated

in the present paper are non-potential, we impose slightly different boundary conditions from those

usually imposed on a source surface when potential fields areused.

3. Solution Methods and Example Solutions

In this section we discuss possible solution methods and a few illustrative example solutions. We

first nondimensionalise all quantities and equations using∇̃ = R∇, ˜̟ = ̟
R , B̃ = B

B0
, Ṽ = V

2GM ,

j̃ = j
(B0/µ0R) , p̃ = p

B2
0/µ0

, andρ̃ = ρ

B2
0/(2µ0GM)

, whereB0 is a typical magnetic field value. The dimen-

sionless combined centrifugal and gravitational potential is given by

V = −
1

2̟2
co

(̟2 −̟2
co ln(̟2)), (33)

where,̟co =
√

2GM/|Ω|
R is the dimensionless co-rotation radius and the cylinder radius in these

dimensionless coordinates is 1 .

3.1. Separation of Variables

In the case when it is elliptic, Eq. (23) is very similar to Laplace’s equation and admits separable

solutions (see also Neukirch 2009) of the form

U(̟, φ, z) = Fmk(̟) exp(imφ) exp(ikz). (34)

If we substitute (34) into (23) we find that the radial function Fmk(̟) satisfies the equation

1
̟

d
d̟

(
̟

1− ξ(̟)
dFmk

d̟

)
−

(
m2

̟2
+ k2

)
Fmk = 0. (35)

This ordinary second order differential equation will have two linearly independent solutions,

F(1)
mk(̟) andF(2)

mk(̟), say. Since the partial differential equation forU is linear, the solutions for

differentm andk may be superposed to generate other solutions, and the most general form of a

solution of (23) is

U(̟, φ, z) =
∞∑

m=−∞
exp(imφ)

∫ ∞

−∞
dk[Am(k)F(1)

mk(̟) + Bm(k)F(2)
mk(̟)] exp(ikz). (36)

Here theAm(k) andBm(k) are complex coefficients, which are determined by the boundary condi-

tions, e.g. Dirichlet or von Neumann conditions in the elliptic case.
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Fig. 3.Field line plots for the example solution. The left panel shows a side view, the right panel a view along

thez-axis. The colours on the boundary represent the radial magnetic field component,B̟ on that boundary.

As already discussed above, we are not allowed to choose the functionξ(̟) in the present case,

if the domain includes the co-rotation radius. However, to illustrate the method and for use as a test

case for the numerical method used later, we show a few plots for an analytical solution which can

be obtained forξ(̟) = ξ0 =constant (see e.g. Neukirch 2009). In this case the general solutions to

Eq. (35) are given by

Fmk(̟) = Am(k) Iν(k
√

1− ξ0 ̟) + Bm(k) Kν(k
√

1− ξ0 ̟), (37)

whereIν(x) andKν(x) are modified Bessel functions (Abramowitz & Stegun 1965),ν = m
√

1− ξ0.

Am(k) andBm(k) are constants which would usually be determined by the boundary conditions.

For this illustrative example we have chosen the parameter valuesξ0 = 3/4,m = 2 andk = π/5,.

This choice of parameters leads to
√

1− ξ0 = 1/2 andν = m
√

1− ξ0 = 1, and we setAm(k) =

Bm(k) = 0, except forB±2(k) which we choose so that the pseudo-potential is given by

U = B0K1(π ̟/10) sin(2φ) sin(π z/5). (38)

The magnetic field components are then given by

B̟ = −
2π
5

B0[K0(π ̟/10)+
10
π ̟

K1(π ̟/10)] sin(2φ) sin(π z/5),

Bφ =
2 B0

̟
K1(π ̟/10) cos(2φ) sin(π z/5), (39)

Bz =
π B0

5
K1(π ̟/10) sin(2φ) cos(π z/5).

The reason we chooseKν instead ofIν is thatKν decreases with increasing argument, which means

that the magnetic field strength decreases with increasing distance from thez-axis. In Fig. 3 we

show a three-dimensional plot of magnetic field lines from two different viewing angles. The

boundary colours represent the radial magnetic field component, B̟. The non-symmetric nature

of the magnetic field is obvious from the plot. The pressure isgiven by

p = p0(V) − ξ0
2

B2
̟ = p0(V) − 3

4
B2
̟, (40)

which as discussed above is non-singular at the co-rotationradius. The density, however, is given

by

ρ = −dp0

dV
+
ξ0

V ′
B · ∇B̟ = −

dp0

dV
+

3̟2
co̟

4(̟ 2
co −̟2)

B · ∇B̟, (41)
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Fig. 4. Cross section plots of the pressure (top panels) and density(bottom panels) variations in thexz−plane

at y = 0.5, y = 1, andy = 2.5, respectively.

Fig. 5.Examples of pressure (top panels) and density isosurfaces (bottom panels).

and here the singularity at the co-rotation radius̟co is obvious. We therefore consider this solution

only for̟ < ̟co. It should be noted that whenξ(̟) is chosen directly, the value of the co-rotation

radius affects the solution only through the presence ofV ′ in the density. As the co-rotation radius is

the only parameter in which the angular velocityΩ appears, choosingξ(̟) instead ofκ(V) basically

eliminates the rotation rate from the problem. Again this isa feature of the solutions which is not

necessarily wanted if one wants to study the effect of increasingΩ on the solutions. Plots of the
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Fig. 6. 3D file line plot (left panel) and a view along thez-axis (right) for the numerical solution of the

ξ(̟) = ξ0 = 3/4 case. The similarity of the plots with Fig. 3 is obvious.

pressure and density contours and isosurfaces are shown in Figs. 4 and 5. Note that in the plots we

only show the deviations from the cylindrically symmetrical background pressure and density.

3.1.1. Numerical Solutions of Eq. (23)

In general, finding analytical solutions of Eqs. (23) or (35)will be impossible even for simple

choices of the functionκ(V). Thus, numerical methods will have to be used to find solutions. Since

Eq. (23) is a simple linear partial differential equation, standard numerical methods can be used to

solve it. In the present paper we used an adaptive mesh finite element method from the COMSOL

Multiphysics 3.4 package with MATLAB to solve Eq. (23).

To check the accuracy of our numerical method, we have first solved Eq. (23) for the constant

ξ case presented in Sect. 3.1, using the same parameter values, as well as boundary conditions

that are consistent with the analytical solution. We solve Eq. (23) forU on a numerical domain,

which is bounded by an inner cylinder of radius 1, an outer cylinder of radius̟ o = 6, and which

extends from−5 to 5 in thez-direction. The outer boundary̟o is assumed to be smaller than the

co-rotation radius in this case to avoid singularities in the density.

The exact boundary conditions used for this case are

– B̟(1, φ, z) = B̟,analytical(1, φ, z) on the inner boundary, whereB̟,analytical(̟, φ, z) is the expres-

sion given in (39),

– U(6, φ, z) = Uanalytical(6, φ, z) on the outer boundary, whereUanalytical(̟, φ, z) is given by Eq.

(38) and

– n · B = 0 atz = ±5.

The mesh size used for this calculation consists of 261996 elements.

A magnetic field line plot for the numerical solution obtained is shown in Fig. (6), which shows

good agreement with the analytical solution. The only noticeable difference is the structure of the

field lines towardsz = ±5 which is due to the effect of the boundary condition atz = ±5 for the

numerical solution.
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Having thus convinced ourselves that the numerical tool gives satisfactory results, we have

considered the simplest possible choice ofκ(V), which is

κ(V) = κ0 = constant (42)

as an example for a case whereκ is chosen directly. We have calculated numerical solutionsto Eq.

(23) using as boundary conditions on the surface of the central cylinder (̟ = 1) a magnetic dipole

field (Bdip) for the three cases of the

(a) magnetic dipole moment at the origin and aligned with therotation axis (aligned rotator),

(b) magnetic dipole moment at the origin, but inclined with respect to the rotation axis (oblique

rotator) and

(c) magnetic dipole moment not located at the origin and inclined with respect to the rotation axis

(displaced dipole).

These three cases are similar to the cases discussed by Neukirch (2009).

We use the same domain and mesh size as in the previous example, with the outer boundary

conditions given byU(6, φ, z) = Uo(6, φ, z), whereU(̟, φ, z) satisfies∇Uo = Bdip andn · B = 0 at

z = ±5.

By choosingκ(V), the density remains non-singular at the co-rotation radius. Hence, we can

now calculate solutions in a domain including and extendingbeyond the co-rotation radius.

Numerical solutions for the case ofκ = 3
4 and̟co = 3.5 are illustrated in Figures (7) - (10),

where the letters (a), (b) and (c) above each plot indicate the three different boundary conditions

mentioned above. For the oblique rotator case the magnetic dipole moment is in thex-z-plane at

an angle ofπ4 with the x-axis. For the displaced dipole case the magnetic moment is again in the

x-z-plane, but now atx = 0.3, making an angle ofπ4 with the x-axis. In the plots showing pressure

and density, we only show the three-dimensional deviation from background pressure and density.

It turns out that both the three-dimensional pressure deviation and the three-dimensional density

deviation are negative, which means that these terms will reduce any background pressure and

density to lower values.

Figure (7) shows magnetic field line plots, with the colour contours on the central cylinder in-

dicating the strength of the radial magnetic field component, B̟, for the three different boundary

conditions. As is to be expected, the change of boundary conditions has a clear effect on the struc-

ture of the magnetic field, which is clearly symmetric for thealigned rotator case, but becomes

non-symmetric for the other two cases.

This is also visible in Fig. (8), where we show isosurfaces ofthe three-dimensional deviation

of the pressure from the background pressure. One can see that one has smaller isosurfaces close

to the inner boundary where the magnetic field (and thus the pressure deviation) is strong, whereas

the isosurfaces become more extended as one moves away from the cylinder and the magnetic field

becomes weaker.

It can be clearly seen that for the case of aligned rotator (top panels in Fig. 8), the pressure

isosurfaces are symmetric, whereas this symmetry is brokenfor the other two cases. In particular,

the symmetry with respect to thex-axis and thez-axis is broken, but for the oblique rotator case

(middle panels in Fig. 8) a notion of symmetry about the dipole axis remains. The least symmetric

case, at least in terms of pressure isosurfaces, is the displaced dipole case (lower panels in Fig. 8).
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Fig. 7.Magnetic field lines plots for the three cases of (a) aligned rotator, (b) oblique rotator and (c) displaced

dipole.

Figures (9) and (10) show cross section plots of the variation of the 3D pressure and density

deviations from the background pressure and density in planes parallel to thexz-plane for different

y-values. These plots show that there is some symmetry of the pressure and density deviations

about they-axis for all three cases, but clearly show symmetry about the x and z-axes only for

the aligned rotator case. The intersection between the planes shown in Fig. (9) and the cylindrical

surface with radius equal to the co-rotation radius coincides with the dark vertical features in the
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Fig. 8. Pressure isosurface plots for the aligned rotator case (toppanels), the oblique rotator case (middle

panels) and the displaced dipole case (bottom panels). The transition from rotational symmetric isosurfaces in

the aligned rotator case to asymmetric isosurfaces in the other two case can be seen very clearly.

plots. In the rightmost panels, the plane basically touchesthe co-rotation cylinder and thus one only

sees a single broad vertical feature. It can be easily seen (e.g. from Eq. (24)) that the total pressure

is equal to the background pressure at the co-rotation radius, i.ep = p0(V) at̟ = ̟co. The dark

vertical features in Fig. (9) thus correspond to a vanishingthree-dimensional pressure deviation,

whereas no corresponding feature exists for the three-dimensional density deviation (Fig. 10). The

pressure and density cross-section plots confirm the increasing degree of asymmetry when going

from the aligned rotator case over the oblique rotator case to the displace dipole moment case.

4. Summary and Discussion

We have presented a relatively simple (semi-)analytical approach which allows the modeling of

three-dimensional rigidly rotating magnetized coronae ormagnetospheres around massive central

objects. In the present paper we have restricted our analysis for illustrative purposes to the simpler,

but less realistic case of cylindrical geometry. The possibility of extending the theory to other

geometries will be discussed below.

The theory contains free functionsκ(V) and p0(V), where, in the case presented in this pa-

per,V is the combined gravitational and centrifugal potential inthe co-rotating frame of reference.
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Fig. 9.Variation of the pressure deviation from the background pressure in thex-z-plane aty = 0 (through the

central cylinders),y = 2, andy = 3.5 (touching the co-rotation cylinder), respectively. Shown is the logarithm

of the pressure. The increasing asymmetry from top to bottomis obvious.

Fig. 10.Variation of the density deviation from the background pressure in thex-z-plane aty = 0 (through the

central),y = 2, andy = 3.5 (touching the co-rotation cylinder), respectively. Shown is the logarithm of the

density. The density deviation is largest close to the cylinder.
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Whereas the functionκ(V) implicitly determines the current density in the corona,p0(V) is an inde-

pendent background pressure. Alternatively the derivative dp0/dV = −ρ0(V) can be chosen, where

ρ0(V) is a background density. The background pressure can then be determined by integration, if

an equation of state and/or a temperature profile is assumed.

The functionκ(V) appears in the theory in the combinationκ(V)V ′2 and, in the cylindrical

geometry used in the present paper, a new functionξ of the radial coordinate,̟ , can be defined

asξ(̟) = κ(V)V ′2. As has been shown before (Neukirch 2009) for the case ofV being just the

centrifugal potential (no gravitational force), analytical solutions of the theory can in principle be

found if ξ(̟) is chosen to have a convenient form. However, for the case ofa combined centrifugal

and gravitational potential as presented in this paper, thedirect choice of a functionξ(̟) instead of

deriving it from a chosen functionκ(V) generally leads to singularities, in particular of the density,

at the co-rotation radius.

One can avoid these problems by choosingκ(V) instead ofξ(̟). In this case, however, the

fundamental equation is usually too complicated to allow for analytical solutions to be found, but

the equation is still sufficiently simple that standard numerical methods can be used to solve it.

We have presented an example of an analytical solution to be able to test our numerical method,

and the numerical solution shows good agreement with the analytical solution on its domain of

validity inside the co-rotation radius. We have then presented numerical solutions for the case

κ(V) = κ0 = constant for three different types of boundary conditions on the surface of the central

cylinder: a magnetic dipole field generated by a dipole moment located at the origin, aligned with

the rotation axis (aligned rotator), a magnetic dipole fieldgenerated by a dipole moment located at

the origin, but at an angle with the rotation axis (oblique rotator) and a magnetic dipole moment

displaced from the origin, with the dipole moment not aligned with the rotation axis. These three

cases were used to illustrate the transition from a rotationally symmetric corona to an asymmetric

corona for the simple geometry of a magnetic dipole field.

A similar theory can also be developed for rotating spherical massive bodies. The combined

gravitational and centrifugal potential for a body of massM0 whose rotation axis is aligned with

thez-axis has the form (using spherical coordinatesr, θ andφ)

V(r, θ) = −
1
2
Ω2r2 sin2 θ −

GM0

r
. (43)

Due to the dependence ofV on two of the coordinates in this case, Eq. (13) has a much more

complicated form since

Br =

1+ f

(
∂V
∂r

)2
∂U
∂r
+

f
r
∂V
∂r
∂V
∂θ

(
1
r
∂U
∂θ

)
(44)

Bθ =
f
r
∂V
∂r
∂V
∂θ

∂U
∂r
+

1+
f

r2

(
∂V
∂θ

)2
(
1
r
∂U
∂θ

)
. (45)

where

f =
κ(V)

1− κ(V)(∇V)2
. (46)

BothBr andBθ depend on∂U/∂r and∂U/∂θ for this case and this leads to mixed second derivatives

in Eq. (13). It is highly unlikely that the resulting Eq. (13)for this case has any analytical solutions,

although this still has to be investigated in detail. However, despite its more complicated form,

solving Eq. (13) for the spherical case using standard numerical methods as, for example, the
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ones we have used in this paper, is not generically more difficult than solving the cylindrical case

presented above. The main reason for this is that, despite its seemingly more complicated form, the

type of Eq. (13) is again determined completely by the sign ofthe expression 1− κ(V)(∇V)2. If this

term is positive Eq. (13) is elliptic, otherwise it is hyperbolic. This can be seen relatively easily by

writing Eq. (13) in the form (14) with

M =



1+ f
(
∂V
∂r

)2 f
r
∂V
∂r
∂V
∂θ

0
f
r
∂V
∂r
∂V
∂θ

1+ f
r2

(
∂V
∂θ

)2
0

0 0 1


, (47)

The nature of Eq. (13) is determined by the signs of the eigenvalues of the real and symmetric

matrix M . If all eigenvalues have the same sign, Eq. (13) is elliptic,otherwise it is hyperbolic. A

straightforward calculation shows thatM , as given in (47), has a double eigenvalue 1 and that the

third eigenvalue is given by 1/[1 − κ(V)(∇V)2], which corroborates our statement from above. We

can thus conclude that it should be possible to use standard numerical methods for linear elliptic

second order partial differential equations to solve Eq. (13) for the spherical case.Preliminary

results obtained for the spherical case with the same numerical methods used for the cylindrical

case so far confirm this conclusion and it is planned that a full account of the spherical case will be

given in a future publication.
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