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Abstract

This paper applies the concept of FA-presentable structures to semigroups. We
give a complete classification of the finitely generated FA-presentable cancellative
semigroups: namely, a finitely generated cancellative semigroup is FA-presentable if
and only if it is a subsemigroup of a virtually abelian group. We prove that all finitely
generated commutative semigroups are FA-presentable. We give a complete list of
FA-presentable one-relation semigroups and compare the classes of FA-presentable
semigroups and automatic semigroups.
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1 Introduction

Automatic presentations were introduced by Khoussainov and Nerode [23] to
fulfill a need to extend finite model theory to infinite structures in such a way
that interesting decision problems remain soluble; the present paper applies
this concept to semigroups. We give definitions and examples, survey some
previously published results, and establish some new ones, most importantly
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a complete characterization of the finitely generated cancellative semigroups
admitting automatic presentations.

Recall that a structure A is a tuple (A,R1, . . . , Rn) where:

• A is a set called the domain of A;
• for each i with 1 6 i 6 n, there is an integer ri > 1 such that Ri is a subset

of Ari ; ri is called the arity of Ri.

An obvious instance of a structure is a relational database. However, there are
many other natural examples; for instance, a semigroup is a structure (S, ◦),
where ◦ has arity 3, and a group is a structure (G, ◦, e, −1), where ◦ has arity
3, e has arity 1, and −1 has arity 2.

Informally, an automatic presentation for the structure (A,R1, . . . , Rn) con-
sists of a regular language of abstract representatives for the elements of A
such that the relations Ri are all recognizable by synchronous finite automata;
see Definition 2.3. A structure that admits an automatic presentation is said
to be FA-presentable.

One important field of research has been the attempt to classify FA-presentable
structures with specific classes of structures. As any finite structure is FA-
presentable, we are really only interested in infinite structures here. In some
cases this means that we have no real examples (for example, any FA-presentable
integral domain is finite [24]). Essentially the only cases where we have a com-
plete classification are those of:

• Boolean algebras [24];
• ordinals [9];
• finitely generated groups [28].

(For a number of partial results for FA-presentable groups, see [27]; for some
necessary conditions for trees and linear orders to be FA-presentable, see [25].)

As far as groups are concerned, we also have the notion of an ‘automatic
group’ in the sense of [13]. This has been generalized to semigroups (as in
[7,29,21]). The considerable success of the theory of automatic groups was
another motivation to have a general notion of FA-presentable structures; see
also [30,32]. We note that a structure admitting an automatic presentation is
often called an ‘automatic structure’; although we will avoid that term, the
reader should be aware of the terminological clash with the different notion of
an automatic structure for a group or semigroup in the sense of [13,7].

In this paper we will be particularly concerned with FA-presentable semi-
groups. When one moves from groups to semigroups, it appears that the prob-
lem becomes significantly more difficult. For example, if one has an undirected
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graph Γ with vertices V and edges E, then we have a semigroup with elements
S = V ∪ {e, 0}, where we have the following products:

uv =

e if u, v ∈ V and {u, v} ∈ E;

0 if u, v ∈ V and {u, v} 6∈ E;

ue = eu = u0 = 0u = 0 for u ∈ V ∪ {e, 0}.

Moreover, if we form the semigroup S from the graph Γ in this way, then S
is FA-presentable if and only if Γ is FA-presentable. It is known [24] that the
isomorphism problem for FA-presentable graphs is Σ1

1-complete (and hence
undecidable); hence the isomorphism problem for FA-presentable semigroups
is also Σ1

1-complete.

Given this, it seems sensible to restrict oneself to some naturally occurring
classes of semigroups. Given the classification of the FA-presentable finitely
generated groups referred to above, a natural class to consider is that of the
FA-presentable finitely generated cancellative semigroups. In this paper we
give a complete classification of these structures: a finitely generated can-
cellative semigroup is FA-presentable if and only if it embeds into a virtually
abelian group (Theorem 10.1).

We remark that there are many examples of non-cancellative finitely gener-
ated FA-presentable semigroups. It is easy to see that adjoining a zero to a
semigroup always preserves FA-presentability and destroys cancellativity. All
finite semigroups, whether cancellative or not, are FA-presentable. Another
example is the bicyclic monoid; see Example 3.2.

In Section 6, we prove that all finitely generated commutative semigroups
are FA-presentable (Theorem 6.1). We also classify the FA-presentable one-
relation semigroups (Proposition 9.1).

Finally, in Section 11, we consider the relationship between the classes of FA-
presentable semigroups and automatic semigroups.

2 Automatic presentations

A semigroup is a set equipped with an associative binary operation ◦, although
the operation symbol is often suppressed, so that s ◦ t is denoted st. We recall
the idea of a “convolution mapping” which we will need throughout this paper:

Definition 2.1 Let L be a regular language over a finite alphabet A. Define,
for n ∈ N,

Ln = {(w1, . . . , wn) : wi ∈ L for i = 1, . . . , n}.
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Let $ be a new symbol not in A. The mapping conv : (A∗)n → ((A ∪ {$})n)∗

is defined as follows. Suppose

w1 = w1,1w1,2 · · ·w1,m1 , w2 = w2,1w2,2 · · ·w2,m2 , . . . , wn = wn,1wn,2 · · ·wn,mn ,

where wi,j ∈ A. Then conv(w1, . . . , wn) is defined to be

(w1,1, w2,1, . . . , wn,1)(w1,2, w2,2, . . . , wn,2) · · · (w1,m, w2,m, . . . , wn,m),

where m = max{mi : i = 1, . . . , n} and with wi,j = $ whenever j > mi.

Observe that the map conv sends an n-tuple of words to a word of n-tuples.
We then have:

Definition 2.2 Let A be a finite alphabet, and let R ⊆ (A∗)n be a relation on
A∗. Then R is said to be regular if

{conv(w1, . . . , wn) : (w1, . . . , wn) ∈ R}

is a regular language over (A ∪ {$})n.

Having done this, we can now define the concept of an ‘automatic presentation’
for a structure:

Definition 2.3 Let S = (S,R1, . . . , Rn) be a relational structure. Let L be a
regular language over a finite alphabet A, and let φ : L → S be a surjective
mapping. Then (L, φ) is an automatic presentation for S if:

(1) the relation L= = {(w1, w2) ∈ L2 : φ(w1) = φ(w2)} is regular, and
(2) for each relation Ri of arity ri, the relation

LRi
= {(w1, w2, . . . , wri) ∈ Lri : (φ(w1), . . . , φ(wri)) ∈ Ri}

is regular.

A structure with an automatic presentation is said to be FA-presentable.

As noted in Section 1, a semigroup can be viewed as a relational structure
in which the binary operation ◦ becomes a ternary relation. The following
definition simply restates the preceding one in the special case where the
structure is a semigroup:

Definition 2.4 Let S be a semigroup. Let L be a regular language over a
finite alphabet A, and let φ : L → S be a surjective mapping. Then (L, φ) is
an automatic presentation for S if the relations

L= = {(w1, w2) ∈ L2 : φ(w1) = φ(w2)},

L◦ = {(w1, w2, w3) ∈ L3 : φ(w1)φ(w2) = φ(w3) in S}
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are both regular.

3 Examples

In this section, we give some examples of FA-presentable semigroups. We first
exhibit a well-known example:

Example 3.1 The natural numbers under addition are FA-presentable: let
L = {0, 1}∗{1} ∪ {0} and define φ : L → N by letting φ(w) be the natural
number expressed by w in reverse binary notation. The equality relation L=

is the diagonal relation {(w,w) : w ∈ L}, for every natural number has a
unique representative of L. A finite automaton can recognize the relation L+ =
{(u, v, w) : φ(u) + φ(v) = φ(w)} because it can add u to v digit by digit and
compare the result with w, storing the carry in its internal state. So (L, φ) is
an automatic presentation for (N,+).

Example 3.2 The bicyclic monoid B, which is presented by 〈b, c | bc = 1〉, is
FA-presentable. Notice that every element of the bicyclic monoid has a normal
form cibj and that

cibj ◦ ckbl =

cibl+(j−k) if j > k

ci+(k−j)bl if j < k
.

Retain the language L and the mapping φ from the previous example. Let
K = {conv(x, y) : x, y ∈ L}, where ψ : K → B is given by

conv(x, y) 7→ cφ(x)bφ(y).

Then (K,ψ) is an automatic presentation for B: the equality relation K= is
the diagonal relation, and the multiplication relation K◦ is easily seen to be
automatic, since addition of natural numbers (in reverse binary notation) can
be carried out by an automaton, as can subtraction and comparison.

4 Basic results

The following notions and proposition will be useful in what follows:

Definition 4.1 Let (L, φ) be an automatic presentation for a structure. Then
(L, φ) is a binary automatic presentation if the language L is over a two-letter
alphabet; it is an injective automatic presentation if the mapping φ is injective
(so that every element of the structure has exactly one representative in L).
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Proposition 4.2 ([23, Corollary 4.3] & [2, Lemma 3.3]) Any structure
that admits an automatic presentation admits an injective binary automatic
presentation.

An interpretation of one structure inside another is, loosely speaking, a copy
of the former inside the latter. The following definition is restricted to an
interpretation of one semigroup inside another.

Definition 4.3 Let S and T be semigroups. Let n ∈ N. An (n-dimensional)
interpretation of T in S consists of the following:

• a first-order formula ψ(x1, . . . , xn), called the domain formula, which spec-
ifies those n-tuples of elements of S used in the interpretation;

• a surjective map f : ψ(Sn) → T , called the co-ordinate map (where ψ(Sn)
denotes the set of n-tuples of elements of S satisfying the formula ψ);

• a first-order formula θ=(x1, . . . , xn; y1, . . . , yn) that is satisfied by

(a1, . . . , an; b1, . . . , bn)

in the semigroup S if and only if f(a1, . . . , an) = f(b1, . . . , bn) in the semi-
group T ;

• a first-order formula θ◦(x1, . . . , xn; y1, . . . , yn; z1, . . . , zn) that is satisfied by

(a1, . . . , an; b1, . . . , bn; c1, . . . , cn)

in the semigroup S if and only if f(a1, . . . , an)f(b1, . . . , bn) = f(c1, . . . , cn)
in the semigroup T .

The following result, although here stated only for semigroups, is true for
structures generally:

Proposition 4.4 ([2, Proposition 3.13]) Let S and T be semigroups. If S
has an automatic presentation and there is an interpretation of T in S, then
T has an automatic presentation.

The fact that a tuple of elements (a1, . . . , an) of a structure S satisfies a first-
order formula θ(x1, . . . , xn) is denoted S |= θ(a1, . . . , an). We then have:

Proposition 4.5 ([23]) Let S be a structure with an automatic presentation.
For every first-order formula θ(x1, . . . , xn) over the structure there is an au-
tomaton which accepts conv(w1, . . . , wn) if and only if S |= θ(φ(w1), . . . , φ(wn)).
Moreover, there is an algorithm which effectively constructs such an automaton
from such a formula.

(Proposition 4.4 is actually a consequence of Proposition 4.5.)
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As a consequence of Proposition 4.5, FA-presentable structures have decid-
able first-order theories. In the context of semigroups, this means that any
first-order definable property or relation of semigroups is decidable. For exam-
ple, Green’s relations and cancellativity are both decidable for FA-presentable
semigroups. This contrasts the situation for automatic semigroups, where
Green’s relation R [22] and cancellativity [5] are undecidable.

5 Finitely generated FA-presentable groups

As mentioned in Section 1, a classification of the finitely generated groups
with an automatic presentation was given in [28]. For convenience, we state
the result here (along with some extra details from [28] that we will need
later). Recall that a group G is said to be virtually abelian if it has an abelian
subgroup A of finite index. If G is finitely generated, then the subgroup A is
finitely generated as well. Using the fact that any finitely generated abelian
group is the direct sum of finitely many cyclic groups, we may assume that A
is of the form Zn for some n > 0.

Theorem 5.1 ([28]) A finitely generated group admits an automatic presen-
tation if and only if it is virtually abelian. In particular, a group G with a
subgroup Zn of index ` admits an automatic presentation (L, φ), where L is
the language of words

giconv(ε1z1, . . . , εnzn),

where εi ∈ {+,−}, zi is a natural number in reverse binary notation, g1, . . . , g`
are representatives of the cosets of Zn in G, with φ : L → G being defined in
the natural way:

φ(giconv(ε1z1, . . . , εnzn)) = gi(ε1z1, . . . , εnzn).

6 Commutative semigroups

Commutative semigroups often have pleasant properties with regard to finite
‘descriptions’. For example, Rédei’s Theorem shows that all finitely gener-
ated commuative semigroups are finitely presented [31], and finitely generated
commutative monoids are presented by finite confluent Noetherian rewriting
systems [10]. The following result is thus perhaps unsurprising:

Theorem 6.1 Every finitely generated commutative semigroup admits an au-
tomatic presentation.

To prove this result, we will need the following lemma:
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Lemma 6.2 ([2, Corollary 3.14]) The class of FA-presentable structures
is closed under forming quotients by first-order definable congruences, un-
der forming finitary direct products, and under passing to first-order definable
substructures. Moreover, in each case an automatic presentation is effectively
constructable.

We now proceed with the proof of Theorem 6.1:

PROOF. Finitely generated free commutative semigroups are isomorphic to
(N,+)n−{(0, . . . , 0)} for some n and are thus FA-presentable, since the class
of FA-presentable structure is closed under direct products, the exclusion of a
single element gives a first-order definable substructure.

Every commutative semigroup is a quotient of a free commutative semigroup
and, by [33], the corresponding congruence is first-order definable; the result
then follows from Lemma 6.2.

We observe that not all countable commutative semigroups are FA-presentable:
for example, any monoid which contains (N,×) is not FA-presentable [24, The-
orem 3.6].

7 Growth

In the proof of Theorem 5.1 above, given in [28], one essential ingredient was
the notion of growth. Before defining the growth of a semigroup, we first estab-
lish notation for and state a basic property of lengths of the words representing
the elements of the domain of the structure.

Definition 7.1 Let S be a semigroup with an injective automatic presentation
(L, φ). For any s ∈ S, denote by l(s) the length of the unique word in L
representing s.

Proposition 7.2 ([2, Proposition 5.1]) Let S be a semigroup with an in-
jective automatic presentation; then there is a constant N ∈ N such that, for
all s, t ∈ S,

l(st) 6 max{l(s), l(t)}+N.

We now turn to the concept of growth:

Definition 7.3 Let S be a semigroup generated by a finite set X. Define δ(s)
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to be the length of the shortest product of elements of X that equals s, i.e.

δ(s) = min{n ∈ N : s = x1 · · ·xn for some xi ∈ X}.

The growth function γ : N→ N of S is given by

γ(n) = |{s ∈ S : δ(s) 6 n}|.

If the function γ is bounded above by a polynomial function (that is, if there
exists a polynomial function β and some N ∈ N such that β(n) > γ(n) for
n > N), then S is said to have polynomial growth.

Note that whether a semigroup has polynomial growth or not is independent
of the choice of finite generating set [17]. We now have the following result:

Theorem 7.4 Any finitely generated subsemigroup of a semigroup admitting
an automatic presentation has polynomial growth.

Before embarking on a proof of this result, we pause to emphasize that poly-
nomial growth is dependent on the structures in question being semigroups:
general algebras admitting automatic presentations are only guaranteed to
have at most exponential growth [23, Lemma 4.5].

PROOF. Let S be a semigroup, finitely generated by X, that admits an
automatic presentation. By Proposition 4.2, assume without loss of generality
that this automatic presentation is injective and binary. This proof follows
that in [28], which dealt with groups. The main ingredient is provided by the
following lemma:

Lemma 7.5 Let R = max{l(a) : a ∈ X}. There is a constant N such that,
for all m ∈ N,

max{l(a1 · · · am) : ai ∈ X} 6 R + dlog2meN. (1)

PROOF. Let N be the constant of Proposition 7.2. We proceed by induction
on m.

For m = 1, the inequality (1) holds, since

max{l(a1) : a1 ∈ X} = R = R + dlog2 1eN.

Now assume that (1) is true for 1 6 m 6 k. The cases of k being odd or even
must be considered separately:
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(1) Suppose k is odd, with k = 2r − 1. Then, by Proposition 7.2:

max{l(a1 · · · ak+1) : ai ∈ X}
= max{l(a1 · · · a2r) : ai ∈ X}
6 max{l(a1 · · · ar), l(ar+1 · · · a2r) : ai ∈ X}+N

6 max{R + dlog2 reN, R + dlog2 reN}+N

= R + dlog2 reN +N

= R + (dlog2 r + 1e)N
= R + dlog2 2reN
= R + dlog2(k + 1)eN,

as required.
(2) Suppose k is even, say k = 2r. Then:

max{l(a1 · · · ak+1) : ai ∈ X}
= max{l(a1 · · · a2r+1) : ai ∈ X}
6 max{l(a1 · · · ar), l(ar+1 · · · a2r+1) : ai ∈ X}+N

6 max{R + dlog2 reN, R + dlog2(r + 1)eN}+N

= R + dlog2(r + 1)eN +N.

At this point, two subcases are required, depending on whether r is a
power of two:
(a) Suppose that r is not a power of 2. Since the function dlog2 ye on

the set {y ∈ N : y > 0} takes the same value on y and y + 1 except
when y is a power of 2, dlog2(r + 1)e = dlog2 re. Therefore, by the
reasoning in part (1),

R+ dlog2(r+ 1)eN +N = R+ dlog2 reN +N = R+ dlog2(k+ 1)eN,

as required.
(b) Suppose that r = 2x, where x ∈ N. Observe that

dlog2(k + 1)e = dlog2(2r + 1)e = dlog2(2
x+1 + 1)e = x + 2.

Consequently,

R + dlog2(r + 1)eN +N

= R + dlog2(r + 1) + 1eN
= R + dlog2(r + 1) + log2 2eN
= R + dlog2 2(r + 1)eN
= R + dlog2 2(2x + 1)eN
= R + dlog2(2

x+1 + 2)eN
= R + (x+ 2)N

= R + dlog2(k + 1)eN,
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as required.

We now return to the proof of Theorem 7.4. By Lemma 7.5, the number of
possible words in L for elements of the form x1 · · ·xm, where xi ∈ X, is no
greater than

2(R+dlog2meN)+1 = 2R+1(2dlog2me)N 6 2R+1(21+log2m)N = kmN ,

where k = 2R+12N is a constant. So there are at most kmN elements s ∈ S
with δ(s) = m. Consequently,

γ(n) = |{s ∈ S : δ(s) 6 n}| 6 k · 1N + k · 2N + . . .+ k · nN 6 knN+1.

So S has polynomial growth. This establishes Theorem 7.4.

8 Maximum Group Homomorphic Image

Given the classification of FA-presentable finitely generated groups (see Theo-
rem 5.1 above), it makes sense to investigate (finitely generated) groups related
to semigroups. The maximum group homomorphic image of a semigroup S, if
it exists, is the largest group G such that there is a surjective homomorphism
from S onto G, in the sense that there is a homomorphism from this group G
onto any group H that is a homomorphic image of S. The congruence asso-
ciated to this homomorphic image is called the minimum group congruence.
(For futher background information, see [20, Section 5.3].)

Definition 8.1 Let S be a semigroup. A subset K of S is:

• unitary if for all s ∈ S and k ∈ K, we have (sk ∈ K∨ks ∈ K) =⇒ s ∈ K;
• dense if for all s ∈ S there exists x, y ∈ S such that sx ∈ K and ys ∈ K;
• reflexive if for all a, b ∈ S, we have ab ∈ K =⇒ ba ∈ K.

The subsemigroup generated by K is denoted 〈K〉.

Definition 8.2 Let S be a semigroup, with E its set of idempotents. Then S
is:

• regular if for every s ∈ S there exists s′ ∈ S such that ss′s = s;
• π-regular if for every s ∈ S, there exists n ∈ N and s′ ∈ S such that
sns′sn = sn;

• strongly π-inverse if it is π-regular and E is commutative;
• a unitary dense E-semigroup if E is a subsemigroup, and E is unitary and

dense;
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• a strongly 〈E〉-unitary dense monoid if it is a monoid and 〈E〉 is reflexive,
unitary and dense.

Using a variety of results from the literature, we obtain the following result:

Proposition 8.3 If S is FA-presentable and either

• a regular semigroup,
• a strongly π-inverse semigroup,
• a unitary dense E-semigroup, or
• a strongly 〈E〉 unitary dense monoid,

then the maximum group homomorphic image of S exists and is FA-presentable.

PROOF. For each of the given species of semigroup, the minimum group con-
gruence exists and is first-order definable [14,35]. So the maximum group ho-
momorphic image of any such semigroup will be FA-presentable by Lemma 6.2.

Corollary 8.4 Let S be the free inverse monoid on the set A; then, S has an
automatic presentation if and only if |A| = 1.

PROOF. The monoid S is regular and its maximum group homomorphic
image is the free group on A. Thus if S is FA-presentable, then so is the free
group with on A, whence |A| = 1 since otherwise it contains a free subsemi-
group on two generators, which does not have polynomial growth, which would
contradict Theorem 7.4.

Conversely, if |A| = 1, then free inverse monoid on A is isomorphic to the
semigroup formed by the set

{(r, s, t) ∈ Z3 : r > 0, s > 0,−s 6 t 6 r}

under the operation

(r, s, t)(r′, s′, t′) = (max{r, r′ + t},max{s, s′ − t}, s+ s′);

see [20, p.219]. Since a finite automaton can add, subtract, and compare
integers in reverse binary notation, it is clear that this semigroup is FA-
presentable.
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9 One-relation semigroups

In this section, we characterize those one-relation semigroup presentations
that define FA-presentable semigroups.

Proposition 9.1 A semigroup S with one defining relation has an automatic
presentation if and only if either S is monogenic, or S is generated by two
elements, say a and b, and the defining relation is one of:

a = bk; ab = ba; ab = bk; ba = bk; ab = aba;

ba = aba; ab = bab2; ba = b2ab; a = bab; a2 = b2.

PROOF. Vazhenin [34] proved that these semigroups are precisely the one-
relation semigroups with decidable first-order theory. The proof involves an
interpretation of each of these semigroups in (N,+)k for some k ∈ N . The
semigroup (N,+)k is FA-presentable by Theorem 6.1; thus each of these semi-
groups is FA-presentable by Proposition 4.4.

10 Characterization of FA-presentable cancellative semigroups

The present section is dedicated to proving the following characterization the-
orem:

Theorem 10.1 A finitely generated cancellative semigroup is FA-presentable
if and only if it embeds into a virtually abelian group.

Recall that a semigroup S has a group of left (respectively, right) quotients G if
S embeds into G and every element of G is of the form t−1s (respectively, st−1)
for s, t ∈ S. If a semigroup S has a group of left (respectively, right) quotients,
then this group is unique up to isomorphism. For further information on groups
of left and right quotients, see [8, Section 1.10].

The following result, due to Grigorchuk, generalizes the result of Gromov [18]
that a finitely generated group of polynomial growth is virtually nilpotent (i.e.
it has a nilpotent subgroup of finite index):

Theorem 10.2 ([16]) A finitely generated cancellative semigroup has poly-
nomial growth if and only if it has a virtually nilpotent group of left quotients.

We then have the following immediate consequence of Theorems 10.2 and 7.4:
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Corollary 10.3 Let S be a finitely generated cancellative semigroup that ad-
mits an automatic presentation. Then the group of left quotients of S exists
and is virtually nilpotent.

Note that the groups of left and right quotients of subsemigroups of virtually
nilpotent groups coincide (see [26] or [4, Sections 5.2–5.3]). We now have:

Proposition 10.4 Let S be a finitely generated cancellative semigroup that
admits an automatic presentation. Then the [necessarily virtually nilpotent ]
group of left (and right) quotients of S admits an automatic presentation.

PROOF. Let G be the group of left (and right) quotients of S. The strategy
is to show that G has a 2-dimensional interpretation in S.

• The domain formula is tautological: φ(x1, x2) := x1 = x1. Thus all pairs of
elements of S are used.
• The co-ordinate map is f(x1, x2) = x−1

1 x2. Since G is the group of left
quotients of S, the mapping f is surjective as required.
• The formula θ= is given by

θ=(x1, x2; y1, y2) := (∃a, b)(x1a = x2b ∧ y1a = y2b),

since

f(x1, x2) = f(y1, y2)

⇐⇒ (∃a, b)(f(x1, x2) = ab−1 ∧ f(y1, y2) = ab−1)

⇐⇒ (∃a, b)(x−1
1 x2 = ab−1 ∧ y−1

1 y2 = ab−1)

⇐⇒ (∃a, b)(x1a = x2b ∧ y1a = y2b).

• The formula θ◦ is given by

θ◦(x1, x2; y1, y2; z1, z2) :=

(∃a, b, c, d)(cx1a = dy2b ∧ cx2 = dy1 ∧ z2b = z1a),

since

f(x1, x2)f(y1, y2) = f(z1, z2)

⇐⇒ (∃a, b)(f(x1, x2)f(y1, y2) = ab−1 ∧ f(z1, z2) = ab−1)

⇐⇒ (∃a, b)(x−1
1 x2y

−1
1 y2 = ab−1 ∧ z−1

1 z2 = ab−1)

⇐⇒ (∃a, b, c, d)(c−1d = x2y
−1
1 ∧ x−1

1 c−1dy2 = ab−1 ∧ z−1
1 z2 = ab−1)

⇐⇒ (∃a, b, c, d)(cx2 = dy1 ∧ dy2b = cx1a ∧ z2b = z1a). 2

We are now in a position to prove one direction of Theorem 10.1:
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Proposition 10.5 A finitely generated cancellative semigroup admitting an
automatic presentation embeds into a finitely generated virtually abelian group.

PROOF. Let S be a finitely generated cancellative semigroup with an auto-
matic presentation. By Proposition 10.4, its group of left quotients G has an
automatic presentation. Since S is finitely generated, G is also. Theorem 5.1
then shows that G is virtually abelian.

The other direction is provided by:

Proposition 10.6 Every finitely generated subsemigroup of a virtually abelian
group admits an automatic presentation.

PROOF. Let G be a virtually abelian group. Let Zn be a finite-index abelian
subgroup of G. By replacing Zn by its core (the maximal normal subgroup of
G contained in Zn) if necessary, we may assume that Zn is normal in G. Let k
be the index of Zn in G. Let A be a finite alphabet representing a subset of G,
and let S be the semigroup generated by this subset. Throughout this proof,
denote by w the element of S represented by the word w over an alphabet
representing a generating set. This notational distinction is necessary to avoid
confusion when there are several representatives for the same element.

Let B = {a ∈ A : a ∈ Zn} and let C = A − B. So B consists of all letters in
A representing elements of the abelian subgroup Zn and C consists of letters
representing elements of other cosets of Zn.

Introduce a new alphabet D representing the set

{w : w ∈ C6k, w ∈ Zn},

where C6k denotes the set of words over C of length at most k. Notice that
since the set C6k is finite, so is D. Furthermore, the semigroup S is generated
by B ∪ C ∪D. We next observe the following lemma:

Lemma 10.7 Every element of the semigroup S is represented by a word over
B ∪ C ∪D that contains at most k2 − 1 letters from C.

PROOF. Let s ∈ S, and let w ∈ (B ∪C ∪D)+ with w = s. Then w is of the
form

u0c1u1c2 · · ·um−1cmum, (2)

where each ui lies in (B ∪D)∗ and each ci in C. The aim is to show that such
a word w can be transformed into one that still represents s ∈ S but contains
at most k2 − 1 letters from C

15



First stage. For any word w of the form (2) and for i = 0, . . . ,m− 1, let ψw(i)
be maximal such that ci+1ui+1 · · · cmum and cψw(i)+1uψw(i)+1 · · · cmum lie in the
same coset of Zn in G. It is clear that ψw(i) is always defined and is not less
than i. Notice that since there are k distinct cosets of Zn in G, ψw(i) can take
at most k distinct values as i ranges from 0 to m − 1. Furthermore, for each
i, ci+1ui+1 · · · cψw(i)uψw(i) lies in Zn and so commutes with ui.

Define a mapping β′ : (B ∪ C ∪D)+ → (B ∪ C ∪D)+ as follows: for w of the
form (2), β′(w) is defined to be

u0c1u1c2 · · · cici+1ui+1 · · · cψw(i)uψw(i)uicψw(i)+1 · · ·um−1cmum,

where i is minimal with ψw(i) 6= i, and β′(w) = w if ψw(i) = i for all i. By
the remark at the end of the last paragraph, w = β′(w).

The mapping β : (B∪C∪D)+ → (B∪C∪D)+ is defined by β(w) = (β′)p(w),
where p is minimal with (β′)p(w) = (β′)p+1(w). Again, w = β(w).

So β(w) is the word obtained from w by shifting each ui rightwards to one of
at most k distinct positions between the various letters cj. Thus β(w) has the
form (2) with at most k of the words ui being non-empty.

Second stage. Define a mapping γ′ : (B ∪C ∪D)+ → (B ∪C ∪D)+ as follows:
if w ∈ (B ∪ C ∪ D)+ has a subword v ∈ C6k with v ∈ Zn, then choose the
leftmost, shortest such subword and replace it with the letter of D representing
the same element of S. (Such a letter exists by the definition of D.)

The mapping γ : (B∪C∪D)+ → (B∪C∪D)+ is defined by γ(w) = (γ′)p(w),
where p is minimal with (γ′)p(w) = (γ′)p+1(w). Since each application of γ′

that results in a different word decreases the number of letters from C present,
such a p must exist. Observe that w = γ(w) and that γ(w) cannot contain
a subword of k letters from C, for such a string must contain a subword
representing an element of Zn.

Third stage. The final mapping δ : (B ∪C ∪D)+ → (B ∪C ∪D)+ is given by
δ(w) = (γβ)p(w), where p is minimal with (γβ)p(w) = (γβ)p+1(w). Observe
that w = δ(w). Now, δ(w) is of the form (2) with at most k words ui being
nonempty and does not contain k consecutive letters from C. So separated by
the k nonempty words ui are strings of at most k − 1 letters from C. So the
total number of letters from C in δ(w) is at most (k − 1)× (k + 1) = k2 − 1.

We now return to the proof of Proposition 10.6. Choose a set of representatives
g1, . . . , gk for the cosets of Zn in G. Suppose B ∪D = {b1, . . . , bq}.
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For c1, . . . , cm ∈ C with 0 6 m 6 k2 − 1, define

Pc1···cm = {u0c1u1c2 · · ·um−1cmum : ui = b
αi,1

1 · · · bαi,q
q , αi,j ∈ N ∪ {0}}.

By Lemma 10.7 and the fact that the elements bj commute, every element of
S is represented by an element in at least one of the sets Pc1···cm . That is,

S =
⋃

c1,...,cm∈C
06m6k2−1

Pc1···cm . (3)

By Theorem 5.1, the virtually abelian group G has an automatic presentation
(L, φ), where L is the language of words

ghconv(ε1z1, . . . , εnzn), (4)

where εi ∈ {+,−} and zi is a natural number in reverse binary notation. (In
L, the coset representative gh functions simply as a symbol.) The aim is now
to show that the subset of L representing elements of S is regular. To do so,
it suffices to show that the set of words in L representing elements of Pc1···cm
is regular, since (3) is a finite union.

To this end, fix c1, . . . , cm and write P for Pc1···cm . Let zi,j ∈ Zn be such that
bjci+1 · · · cm = ci+1 · · · cmzi,j. Let u0c1u1 · · · cmum ∈ P with ui = b

αi,1

1 · · · bαi,q
q .

Then

u0c1u1 · · · cmum = c1 · · · cm
m∏
i=0

q∏
j=1

z
αi,j

i,j ,

or, switching to additive notation and supposing c1 · · · cm = gh(z
′
1, . . . , z

′
n) and

zi,j = (zi,j,1, . . . , zi,j,n) for all i, j:

u0c1u1 · · · cmum = gh(z
′
1, . . . , z

′
n)

m∑
i=0

q∑
j=1

αi,j(zi,j,1, . . . , zi,j,n).

Therefore define θ(z1, . . . , zn) to be

(∃α0,1, . . . , αm,q)
(

(α0,1 > 0) ∧ . . . ∧ (αm,q > 0)

∧
(
z1 = z′1 +

m∑
i=0

m∑
j=1

αi,jzi,j,1
)

∧
(
z2 = z′2 +

m∑
i=0

m∑
j=1

αi,jzi,j,2
)

...

∧
(
zn = z′n +

m∑
i=0

m∑
j=1

αi,jzi,j,n
))
,
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where αi,jzi,j,k is understood to be shorthand for

αi,j + . . .+ αi,j︸ ︷︷ ︸
zi,j,k times

.

By a special case of Theorem 5.1, the structure (Z,+) admits an automatic
presentation (M,ψ), where M is the set of words εz, where ε ∈ {+,−} and z is
in reverse binary notation. Furthermore, it is clear that, in this presentation,
the relation > is regular. That is, (M,ψ) is an automatic presentation for
(Z,+,>).

The set of words in L representing elements of P is then

{ghconv(z1, . . . , zn) : (Z,+,>) |= θ(ψ(z1), . . . , ψ(zn))}.

(Recall that gh is the representative of the coset in which c1 · · · cm lies.) By
Proposition 4.5, this set is a regular subset of L.

Union together the [finitely many] regular subsets of L obtained for the various
c1, . . . , cm to see that the set LS consisting of those words in L representing
elements of S is regular. So S admits the automatic presentation (LS, φ|LS

).

Propositions 10.6 and 10.5 together yield Theorem 10.1.

11 FA-presentability, automaticity, and Cayley graphs

We recall the definition of an automatic semigroup; see [7] for further back-
ground information:

Definition 11.1 A semigroup S is automatic if there exists a finite generat-
ing set A for S and a regular language L over A such that every element of
S is represented by at least one element of L, and, for all a ∈ A ∪ {ε}, the
relation

La = {(u, v) : ua = v in S}
is regular.

If S is an automatic semigroup, then the Cayley graph of S (viewed as a
labelled graph) is FA-presentable: the language L (as in the definition of ‘au-
tomatic’) is a regular language of representatives for the vertices of the Cayley
graph (the elements of S), and the adjacency relations (the relations La for
a ∈ A) and the equality relation (the relation Lε) are all regular.
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The converse of this does not hold: let H be the discrete Heisenberg group —
that is, the multiplicative group of matrices of the form

1 x z

0 1 y

0 0 1

 , where x, y, z ∈ Z.

The Cayley graph of H is FA-presentable, but H is not automatic [3, p. 651].

Observe that whether the Cayley graph of a semigroup is FA-presentable is
not dependent on the choice of generating set:

Proposition 11.2 Let S be a semigroup and suppose the Cayley graph of S
with respect to some finite generating set X is FA-presentable. Let Y be any
finite generating set for S. Then the Cayley graph of S with respect to Y is
also FA-presentable.

PROOF. Let (L, φ) be an automatic presentation for the Cayley graph of
S with respect to X. Let y ∈ Y . Since X generates S, there exists a word
w = w1 · · ·wk with wi ∈ X with y = w in S. Then the adjacency relation Ly
is given by

Ly = Lw1 ◦ Lw2 ◦ · · · ◦ Lwk

= {(u, v) : (∃t1, . . . tk−1)

((u, t1) ∈ Lw1 ∧ (t2, t3) ∈ Lw2 ∧ . . . ∧ (tk−1, v) ∈ Lwk
)}.

So the relations Ly are first-order definable and thus regular. So (L, φ) is also
an automatic presentation for the Cayley graph of S with respect to Y .

Let S, C, and G be respectively the classes of finitely generated semigroups,
finitely generated cancellative semigroups, and finitely generated groups. Let
F be the class of FA-presentable semigroups, A the class of automatic semi-
groups, and T the class of semigroups whose Cayley graphs are FA-presentable.

With this notation, the discussion above can be summarized by the following
result:

Proposition 11.3 S ∩ A ( S ∩ T and C ∩ A ( C ∩ T .

Within the class of finitely generated groups G, we can say more:

Proposition 11.4 G ∩ F ( G ∩ A ( G ∩ T .
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PROOF. By Theorem 5.1, the finitely generated FA-presentable groups are
precisely the virtually abelian groups, which are known to be automatic [13,
Section 4.1]. Free groups are automatic but not FA-presentable. This estab-
lishes the first proper inclusion. For the second proper inclusion, recall that
every automatic group has an FA-presentable Cayley graph, but that the non-
automatic group H defined above has an FA-presentable Cayley graph.

However, this does not generalize to semigroups:

Proposition 11.5 The classes C ∩ F and C ∩ A are incomparable; thus the
classes S ∩ F and S ∩ A are also.

PROOF. The non-inclusion of C∩A in C∩F follows from the non-inclusion of
G∩A in G∩F . The first author has previously exhibited an example of a non-
automatic finitely generated subsemigroup S of a virtually abelian group [6].
This semigroup S must admit an automatic presentation by Theorem 10.1.
This establishes the non-inclusion of C ∩ A in C ∩ F .

12 Unary automatic presentations & Word problems

An automatic presentation (L, φ) is unary if the language L consists of words
over a one-letter alphabet. This section considers unary automatic presenta-
tions and connections to word problems for semigroups and groups.

Theorem 12.1 Let S be a cancellative semigroup that admits a unary auto-
matic presentation. Then S is finite.

PROOF. The proof of [2, Theorem 7.19], which asserts that groups admitting
unary automatic presentations are finite, holds in the more general setting of
cancellative semigroups.

However, there do exist infinite non-cancellative semigroups admitting unary
automatic presentations: for example, a countable semigroup of right zeros
Z = {zi : i ∈ N} (with zizj = zj for all i, j ∈ N) admits the automatic
presentation (L, φ), where L = a∗ and φ : L → Z is defined by ak 7→ zk. The
multiplication relation is then

{(ai, aj, aj) : i, j ∈ N},
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which is clearly regular. Note that Z is left-cancellative, so even one-sided
cancellative unary FA-presentable semigroups can be infinite.

Recall that the word problem of a group G with respect to a [semigroup]
generating set X is the set of words over X that are equal to 1G. The word
problem for a group is said to be one-counter if it is accepted by a one-counter
automaton. (See [1] for background information on one-counter automata.)
The word problem for a semigroup S with respect to a generating set X, as
defined by Duncan and Gilman [11], is the set {u#vr : u, v ∈ X∗, u = v in S},
where vr denotes the reverse of the word v and # is a new symbol not in X.

Blumensath [2, Proposition 7.22] proved that the Cayley graph of a finitely
generated groupG is virtually cyclic if and only if the Cayley graph ofG admits
a unary automatic presentation. This, together with Herbst’s [19] result that
finitely generated groups with one-counter word problem are precisely the
virtually cyclic groups, yields the following corollary:

Corollary 12.2 A finitely generated group has a one-counter word problem
if and only if its Cayley graph has a unary automatic presentation.

Finitely generated virtually abelian groups — which are precisely the finitely
generated FA-presentable groups — are characterized by having word prob-
lems recognizable by blind one-counter automata [12, Theorem 1]. This fact,
together with the preceding corollary, suggests the following question:

Problem 12.3 Are finitely generated FA-presentable semigroups classifiable
by having word problems recognizable by some ‘natural’ class of automata?
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