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Abstract

It is known that, for semigroups, the property of admitting a finite presentation is preserved on passing
to subsemigroups and extensions of finite Rees index. The present paper shows that the same holds true
for Malcev, cancellative, left-cancellative and right-cancellative presentations. (A Malcev (respectively,
cancellative, left-cancellative, right-cancellative) presentation is a presentation of a special type that can
be used to define any group-embeddable (respectively, cancellative, left-cancellative, right-cancellative)
semigroup.)
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1. Introduction

Many properties of groups are preserved under passing to finite extensions or to
subgroups of finite index. Examples include the concepts of finite generation and
finite presentability, as asserted by the celebrated Reidemeister–Schreier theorem (see,
for example, [18, Section II.4]). There have been various efforts to find an analogous
concept of index for semigroups whose finiteness also preserves such properties.

The earliest such semigroup index to be defined was the Rees index, introduced by
Jura [17]. The Rees index of a subsemigroup T in a semigroup S is the cardinality
of S − T , and therefore is clearly not a generalization of the group index. If T is a
subsemigroup of S of finite Rees index, then S is called a small extension of T and T
a large subsemigroup of S. Passing to large subsemigroups and small extensions does,
however, preserve the properties of finite generation and finite presentability.

THEOREM 1.1 [10]. Let S be a semigroup and let T be a subsemigroup of S of finite
Rees index. Then S is finitely generated if and only if T is finitely generated.
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THEOREM 1.2 [21]. Let S be a semigroup and let T be a subsemigroup of S of finite
Rees index. Then S is finitely presented if and only if T is finitely presented.

The purpose of this paper is to prove that passing to large subsemigroups or small
extensions preserves the property of admitting a finite Malcev, cancellative, left-
cancellative, or right-cancellative presentation. (A Malcev presentation is a special
type of semigroup presentation that can be used to define any group-embeddable
semigroup. Similarly, a cancellative (respectively, left-cancellative, right-cancellative)
presentation can be used to defined any cancellative (respectively, left-cancellative,
right-cancellative) semigroup.) More formally, the following theorems are the
principal results of the paper.

THEOREM 1. Let S be a semigroup that embeds into a group. Let T be a
subsemigroup of S of finite Rees index. Then S has a finite Malcev presentation if
and only if T has a finite Malcev presentation.

THEOREM 2. Let S be a cancellative semigroup and let T be a subsemigroup of S
of finite Rees index. Then S admits a finite cancellative presentation if and only if T
admits a finite cancellative presentation.

THEOREM 3. Let S be a left-cancellative (respectively, right-cancellative) semigroup
and let T be a subsemigroup of S of finite Rees index. Then S admits a finite left-
cancellative (respectively, right-cancellative) presentation if and only if T admits a
finite left-cancellative (respectively, right-cancellative) presentation.

2. Species of presentations

2.1. Informal discussion An ‘ordinary’ semigroup presentation defines the
semigroup by means of generators and defining relations. Informally, a Malcev
presentation defines a semigroup by means of generators, defining relations, and a
rule of group-embeddability. Similarly, a cancellative (respectively, left-cancellative,
right-cancellative) presentation defines a semigroup by means of generators,
defining relations, and a rule of cancellativity (respectively, left-cancellativity, right-
cancellativity). (These loose definitions will be formalized later in this section, but
will suffice for the present discussion.)

Spehner [22] introduced Malcev presentations, although they are based on Malcev’s
necessary and sufficient condition for the embeddability of a semigroup in a
group [19]. The concept of a cancellative presentation first appears in a paper by
Croisot [13]. Left-cancellative and right-cancellative presentations were introduced
by Adjan [1].

Adjan [1] was the first to compare cancellative, left-cancellative, right-cancellative,
and ‘ordinary’ semigroup presentations. Spehner [22] made similar comparisons of
these types of presentations and also of Malcev presentations. Spehner and Adjan
showed that a rule of group-embeddability, cancellativity, left-cancellativity, or right-
cancellativity is worth an infinite number of defining relations. More formally, a
finitely generated semigroup may admit:
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• a finite Malcev presentation, but no finite cancellative presentation (see
[22, Theorem 3.4]);

• a finite cancellative presentation, but no finite left- or right-cancellative
presentation (see [22, Theorem 3.1(ii)] and [1, Theorem I.4]);

• a finite left-cancellative presentation, but no finite ‘ordinary’ or right-cancellative
presentation (see [22, Theorem 3.1(i)] and [1, Theorem I.2]);

• a finite right-cancellative presentation, but no finite ‘ordinary’ or left-cancellative
presentation (see [22, Theorem 3.1(i)] and [1, Theorem I.2]).

After Spehner’s work comparing the various species of presentations, very little
work was carried out on Malcev, cancellative, left-cancellative, and right-cancellative
presentations, whilst the theory of ‘ordinary’ semigroup presentations flourished.
Except for one additional paper by Spehner [23], proving that every finitely generated
submonoid of a free monoid admits a finite Malcev presentation, the study of the other
types of presentations remained in abeyance until the recent work of Cain et al. [8, 9]
and Cain [4–6] on Malcev presentations. This recent work has shown that the theory of
Malcev presentations is an interesting and worthwhile research area that has perhaps
been unfairly neglected. For a survey of the theory of Malcev presentations, see [7].

The present paper continues the authors’ earlier work on Malcev presentations
and expands it to encompass cancellative, left-cancellative, and right-cancellative
presentations.

2.2. Formal definitions Following [14], the notation used in this paper distinguishes
a word from the element of the semigroup it represents. Let A be an alphabet
representing a set of generators for a semigroup S. For any word w ∈ A+, denote
by w the element of S represented by w. (The symbol A+ denotes the free semigroup
over A; similarly A∗ denotes the free monoid over A. The empty word is denoted by
ε.) For any set of words W , let W be the set of all elements of S represented by words
in W .

This section contains the definitions and results about Malcev, cancellative, left-
cancellative, and right-cancellative presentations required for the rest of the paper.
However, the reader is assumed to be familiar with the basic theory of (ordinary)
semigroup presentations. (Refer to [15] or [20] for background information on the
theory of semigroup presentations. For a fuller exposition of the foundations of the
theory of Malcev presentations, see [4, Ch. 1].)

DEFINITION 2.1. Let S be any semigroup. A congruence σ on S is:
• a Malcev congruence if S/σ is embeddable in a group;
• a cancellative congruence if S/σ is a cancellative semigroup;
• a left-cancellative congruence if S/σ is a left-cancellative semigroup;
• a right-cancellative congruence if S/σ is a right-cancellative semigroup.

If {σi : i ∈ I } is a set of Malcev congruences on S, then σ =
⋂

i∈I σi is also
a Malcev congruence on S. This is true because S/σi embeds in a group Gi
for each i ∈ I , so S/σ embeds in

∏
i∈I S/σi , which in turn embeds in

∏
i∈I Gi .
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Similarly, if {σi : i ∈ I } is a set of cancellative (respectively, left-cancellative, right-
cancellative) congruences on S, then σ =

⋂
i∈I σi is also a cancellative (respectively,

left-cancellative, right-cancellative) congruence on S [12, Lemma 9.49].

DEFINITION 2.2. Let A+ be a free semigroup; let ρ ⊆ A+
× A+ be any binary

relation on A+. Make the following definitions.
(1) ρM denotes the smallest Malcev congruence containing ρ—namely,

ρM
=

⋂
{σ : σ ⊇ ρ, σ is a Malcev congruence on A+

}.

Then SgM〈A | ρ〉 is a Malcev presentation for (any semigroup isomorphic to)
A+/ρM;

(2) ρC denotes the smallest cancellative congruence containing ρ—namely,

ρC
=

⋂
{σ : σ ⊇ ρ, σ is a cancellative congruence on A+

}.

Then SgC〈A | ρ〉 is a cancellative presentation for (any semigroup isomorphic
to) A+/ρC;

(3) ρLC denotes the smallest left-cancellative congruence containing ρ—namely,

ρLC
=

⋂
{σ : σ ⊇ ρ, σ is a left-cancellative congruence on A+

}.

Then SgLC〈A | ρ〉 is a left-cancellative presentation for (any semigroup
isomorphic to) A+/ρLC;

(4) ρRC denotes the smallest right-cancellative congruence containing ρ—namely,

ρRC
=

⋂
{σ : σ ⊇ ρ, σ is a right-cancellative congruence on A+

}.

Then SgRC〈A | ρ〉 is a right-cancellative presentation for (any semigroup
isomorphic to) A+/ρRC.

If A and ρ are both finite, then the presentations SgM〈A | ρ〉, SgC〈A | ρ〉,
SgLC〈A | ρ〉, and SgRC〈A | ρ〉 are said to be finite.

REMARK 2.3. Definition 2.2 could be rephrased in terms of universal algebra as
follows.

Let Q be a prevariety (a nonempty class of semigroups closed under isomorphism,
direct product, and subsemigroups). Then, for any binary relation ρ on A+, there is a
smallest congruence ρQ containing ρ with A+/ρQ. (This follows from the fact that at
least one such congruence exists, namely the universal relation ρ = A+

× A+, and the
intersection ρ′ of a family {ρi : i ∈ I } of such congruences is also such a congruence,
since A+/ρ′ embeds into

∏
i∈I A+/ρ′.) A Q-presentation SgQ〈A | ρ〉 presents the

semigroup A+/ρ.
The four semigroups defined in Definition 2.2 are the special cases whenQ is taken

to be in turn the class of group-embeddable, cancellative, left-cancellative, and right-
cancellative semigroups.
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The notation in Definition 2.2 distinguishes Malcev, cancellative, left-cancellative,
and right-cancellative presentations with generators A and defining relations ρ from
the ordinary semigroup presentation Sg〈A | ρ〉, which defines A+/ρ#. (Recall that ρ#

denotes the smallest congruence containing ρ.) Similarly, Gp〈A | ρ〉 denotes the group
presentation with the same set of generators and defining relations.

Let X be a subset of a particular semigroup. Denote by Sg〈X〉 the subsemigroup
generated by X .

2.3. Universal groups and Malcev presentations This section contains the few
necessary facts about universal groups of semigroups and their connection to Malcev
presentations. For further background on universal groups, refer to [12, Ch. 12]; for
their interaction with Malcev presentations, see [4, Section 1.3].

DEFINITION 2.4. Let S be a group-embeddable semigroup. The universal group U
of S is the largest group into which S embeds and which S generates, in the sense that
all other such groups are homomorphic images of U .

The concept of a universal group can be defined for all semigroups, not just those
that are group-embeddable. However, the definition above will suffice for the purposes
of this paper. The universal group of a (not necessarily group-embeddable) semigroup
is unique up to isomorphism.

PROPOSITION 2.5 [12, Construction 12.6]. Let S be a semigroup. Suppose that S is
presented by Sg〈A | ρ〉 for some alphabet A and set of defining relations ρ. Then
Gp〈A | ρ〉 is (isomorphic to) the universal group of S.

The following two results show the connection between universal groups and
Malcev presentations. The proof of the first result is long and technical; the second is
a corollary of the first.

PROPOSITION 2.6 [4, Proposition 1.3.1]. Let S be a semigroup that embeds into a
group. If SgM〈A | ρ〉 is a Malcev presentation for S, then the universal group of S
is presented by Gp〈A | ρ〉. Conversely, if Gp〈A | ρ〉 is a presentation for the universal
group of S, where A represents a generating set for S and ρ ⊆ A+

× A+, then
SgM〈A | ρ〉 is a Malcev presentation for S.

PROPOSITION 2.7 [4, Corollary 1.3.2]. If a group-embeddable semigroup S has a
finite Malcev presentation, then its universal group G is finitely presented. Conversely,
if the universal group of S is finitely presented and S itself is finitely generated, then S
admits a finite Malcev presentation.

PROOF. Any finite Malcev presentation for S is a finite presentation for G by
Proposition 2.6.

To prove the second statement, let Sg〈A | ρ〉 be any presentation for S with A being
finite. Then the universal group G of S is presented by Gp〈A | ρ〉, by Proposition 2.6.
Since G is finitely presented, there is a finite subset σ of ρ such that Gp〈A | σ 〉 is
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a presentation for G. Using Proposition 2.6 again, SgM〈A | σ 〉 is a finite Malcev
presentation for S. 2

Example 0.9.3 of [4] exhibits a group-embeddable semigroup that is not itself
finitely generated but whose universal group is finitely presented. The finite generation
condition in the second part of Proposition 2.7 is therefore not superfluous.

2.4. Syntactic rules for cancellative presentations The purpose of this subsection
and the next is to describe syntactic rules that govern when two words over an
alphabet A are related by a cancellative or left- or right-cancellative congruence on
A+ generated by a set of pairs of words over A. Similar syntactic rules exist for
Malcev congruences, but these are not needed. (For a description of the omitted rules,
see any of [4, 7–9].)

Let S be the semigroup defined by the presentation Sg〈A | P〉. Two words
u, v ∈ A+ represent the same element of S—that is, are P#-related— if and only if
there is a sequence

u = u0 → u1 → · · · → ul = v,

where, for each i = 0, . . . , n − 1, there exists pi , qi , q ′

i , ri ∈ A∗ with ui = pi qiri ,
ui+1 = pi q ′

iri and either (qi , q ′

i ) ∈ P or (q ′

i , qi ) ∈ P . Thus two words represent the
same element of S if and only if it is possible to transform one word to the other by a
finite number of replacements of a subword that forms one side of a pair in P by the
word forming the other side of that pair.

Now let S be defined by the cancellative presentation SgC〈A | P〉. The syntactic
rules that govern when two words u, v ∈ A+ represent the same element of S, that is,
are PC-related, are necessarily more complex than those for ordinary presentations.

Let AL, AR be two sets in bijection with A under the mappings a 7→ aL, a 7→ aR,
respectively, with A, AL, AR being pairwise disjoint.

Extend the mappings a 7→ aL and a 7→ aR to anti-isomorphisms from A∗ to (AL)∗

and (AR)∗ in the obvious way: for w = a1a2 . . . an ∈ A∗, with ai ∈ A, define

wL
= (a1 . . . an)

L
= aL

n aL
n−1 . . . aL

1 and wR
= (a1 . . . an)

R
= aR

n aR
n−1 . . . aR

1 .

Two words u, v ∈ A+ are PC-related if and only if there is a cancellative P-chain
from u to v. A cancellative P-chain from u to v is a sequence

u = u0 → u1 → · · · → ul = v,

with each ui ∈ (A ∪ AL
∪ AR)+ satisfying the following properties.

(1) For each i , ui = pi qiri and ui+1 = pi q ′

iri , where pi ∈ (A ∪ AL)∗, ri ∈ (A ∪

AR)∗, and one of the following statements holds:
(a) either (qi , q ′

i ) ∈ P or (q ′

i , qi ) ∈ P ;
(b) qi = ε and q ′

i = aaR for some a ∈ A+;
(c) qi = aaR and q ′

i = ε for some a ∈ A+;
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(d) qi = ε and q ′

i = aLa for some a ∈ A+; or
(e) qi = aLa and q ′

i = ε for some a ∈ A+.
A step in the sequence of type (a) above is a P-step. Steps of types (b) and (d) are
respectively right and left insertions; those of types (c) and (e) are respectively right
and left deletions. Notice that, since relations in P only include letters from A, each
insertion u j → u j+1 must have an associated deletion u jδ → u jδ+1 (with jδ > j)
where the letter aL or aR just introduced is removed.

(The restriction on the letters that can appear in pi and ri simply means that no
change is made to the left of a letter aL or to the right of a letter aR.)

(2) If ui → ui+1 and u j → u j+1 are both insertions, with i < j , then jδ < iδ. That
is, the letter aL or aR most recently inserted must be deleted before any of the earlier
such letters introduced can be removed. (Thus one can imagine the insertions being
‘pushed’ onto a stack and the associated deletions being ‘popped’ off.)

For the purposes of this paper, a slightly more flexible form of the cancellative P-
chain is needed. An extended cancellative P-chain allows the insertion and deletion
of words wwR and wLw for any word w ∈ A+, with the insistence that each insertion
ui → ui+1 of wwR (respectively wLw) has a dual deletion uiδ → uiδ+1. That is, if a
word wR is introduced in a single step of an extended cancellative P-chain, it must be
removed in a single step. (This definition is simply a terminological tool to simplify
the statements of certain upcoming technical results.)

2.5. Syntactic rules for left-/right-cancellative presentations Let S =

SgLC〈A | P〉 be a semigroup. Two words u, v ∈ A+ represent the same element of
S, that is, are PLC-related, if and only if there is a left-cancellative P-chain from u
to v. A left-cancellative P-chain is a cancellative P-chain that does not involve any
letters from AR.

Similarly, if S = SgRC〈A | P〉 is a semigroup, then two words u, v ∈ A+ represent
the same element of S, that is, are PRC-related, if and only if there is a right-
cancellative P-chain from u to v. A right-cancellative P-chain is a cancellative
P-chain that does not involve any letters from AL.

3. Malcev presentations—extensions and subsemigroups

The first of the main results to be proven is the preservation under passing to
large subsemigroups or small extensions of the property of admitting a finite Malcev
presentation. The proof technique for this result is fundamentally different from
that used for cancellative, left-cancellative, and right-cancellative presentations. The
latter results are proven using rewriting techniques. The present section avoids such
syntactical arguments.

THEOREM 3.1. Let S be a semigroup that embeds in a group. Let T be a
subsemigroup of S. Suppose that |T |> |S − T |. (This includes the possibility that
T is infinite and S − T finite.) Then the universal groups of S and T are isomorphic.
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PROOF. Let Sg〈T | τ 〉 and Sg〈S | σ 〉 be the Cayley table presentations for T and S,
respectively. Let G be the universal group of S, and view S and T as subsemigroups
of G. By Proposition 2.5, G is presented by Gp〈S | σ 〉. Use the sets S and T as
both symbols in presentations and as elements of G, and suspend (for the duration of
this proof) the notational distinction between a symbol and the element it represents.
The key to the proof is the following lemma.

LEMMA 3.2. For each s ∈ S − T , there exist elements us , vs , ws , and xs of T such
that s = usv

−1
s and s = w−1

s xs in G.

PROOF. Let k = |S − T |. Let k < l ≤ |T |. Pick distinct elements t1, t2, . . . , tl of T .
Suppose that the elements st1, st2, . . . , stl are not all distinct. Then for some i, j with
i 6= j , sti = st j , which means that ti = t j , contradicting the choice of t1, t2, . . . , tl .
Therefore, the elements st1, st2, . . . , stl are all distinct, and so at least one of them
lies in T since l > |S − T |. Let h be such that sth ∈ T . Let us = sth and vs = th . Then
us, vs ∈ T and s = usv

−1
s in G. Similar reasoning yields ws and xs . 2

Lemma 3.2 shows that T generates G as a group, since the subgroup of G generated
by T contains S, and S is certainly a group generating set for G. The strategy of the
remainder of the proof is to show that G has a presentation Gp〈T | ρ〉 such that all
of the defining relations in ρ are between positive words and are valid in T . All the
relations in ρ must then be consequences of those in τ . Therefore, Gp〈T | τ 〉 will
present G and so G will be isomorphic to the universal group of T .

Recall that

τ = {(pq, r) : p, q, r ∈ T, pq = r}.

Let

ω = σ − τ = {(pq, r) : p ∈ S − T or q ∈ S − T, pq = r} ⊆ SS × S,

so that σ is partitioned as τ ∪ ω and let

P = {(svs, us), (wss, xs) : s ∈ S − T },

where us , vs , ws , and xs are as in Lemma 3.2. Notice that P ⊆ ω.
Create a new set of defining relations ω′ as follows. For each relation (pq, r) ∈ ω,

add relations to ω′ in accordance with the appropriate case below.
(1) p ∈ S − T , q ∈ T , r ∈ T . Use P to see that the relation (w−1

p x pq, r) is valid
in G. Therefore, add the relation (x pq, wpr), which is valid in T , to ω′.
Observe that (pq, r) is a consequence (in the group G) of this new relation and
(wp p, x p) ∈ P .

(2) p ∈ T , q ∈ S − T , r ∈ T . The relation (puqv
−1
q , r) is valid in G. Add

(puq , rvq) to ω′ and observe that the original relation is once again a
consequence of the new one and (qvq , uq) ∈ P .
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(3) p ∈ S − T , q ∈ S − T , r ∈ T . The relation (w−1
p x puqv

−1
q , r) is valid; add

(x puq , wprvq) to ω′. Once more the original relation is a consequence of the
new one and (wp p, x p), (qvq , uq) ∈ P .

(4) p ∈ S − T , q ∈ T , r ∈ S − T . The relation (w−1
p x pq, urv

−1
r ) is valid; add

(x pqvr , wpur ) to ω′. The original relation is a consequence of the new one
and (wp p, x p), (rvr , ur ) ∈ P .

(5) p ∈ T , q ∈ S − T , r ∈ S − T . The relation (puqv
−1
q , w−1

r xr ) is valid; add
(wr puq , xrvq) to ω′. The original relation is a consequence of the new one
and (wrr, xr ), (qvq , uq) ∈ P .

(6) p ∈ S − T , q ∈ S − T , r ∈ S − T . Now, pq = r in S, so pq = urv
−1
r in G.

Therefore, pqvr = ur . Now consider two sub-cases.
(a) qvr = s ∈ S − T . Then ps = ur , and so (pq, r) is a consequence in G of

(rvr , ur ), (qvr , s) and (ps, ur ). The set P contains the first of these three
relations. The second and third are in ω and are of types 4 and 3 above.

(b) qvr = t ∈ T . Then pt = ur , and so (pq, r) is a consequence of (rvr , ur ),
(qvr , t) and (pt, ur ). Again, the set P contains the first of these three
relations. The second and third are both in ω and are of type 1 above.

In either sub-case, (pq, r) is a consequence of relations that are either in P or
are in ω, but are of the form (1)–(5) above. Therefore, do not add any relations
to ω′.

Now, G = Gp〈S | σ 〉 = Gp〈S | σ ∪ P〉 = Gp〈S | τ ∪ ω ∪ P〉. Each relation in ω′ is
a consequence of those in P and those in ω. On the other hand, each relation in ω
is a consequence of those in P and those in ω′. So the group G is also presented by
Gp〈S | τ ∪ ω′

∪ P〉.
Partition P as P ′

∪ P ′′, where

P ′
= {(svs, us) : s ∈ S},

P ′′
= {(wss, xs) : s ∈ S}.

Every relation in

Q= {(xsvs, wsus) : s ∈ S}

is a consequence of those in P ; every relation in P ′′ is a consequence of those in
P ′

∪Q. Therefore, the group G is presented by Gp〈S | τ ∪ ω′
∪ P ′

∪Q〉.
Finally, use the relations in P ′ to eliminate the generators contained in S − T . This

gives a presentation Gp〈T | τ ∪ ω′
∪Q〉 for G. Observing that τ ∪ ω′

∪Q consists of
positive relations between elements of T completes the proof. 2

THEOREM 1. Let S be a semigroup that embeds into a group. Let T be a
subsemigroup of S of finite Rees index. Then S has a finite Malcev presentation if
and only if T has a finite Malcev presentation.

PROOF. If T is finite, then S is also finite and therefore S and T trivially both admit
finite Malcev presentations. Therefore, assume that T is infinite, in which case
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|S − T |< |T |. Theorem 3.1 applies to show that the universal groups of S and T
are isomorphic.

By Theorem 1.1, S is finitely generated if and only if T is finitely generated. Let
S admit a finite Malcev presentation. Then S is finitely generated and its universal
group is finitely presented by Proposition 2.7. Therefore, T is finitely generated and
its universal group—isomorphic to that of S—is finitely presented. Proposition 2.7
applies again to show that T admits a finite Malcev presentation. Similar reasoning
shows that S has a finite Malcev presentation if T does. 2

4. Left-/right-/two-sided cancellative presentations—extensions

THEOREM 4.1. Let S be a P semigroup, where P means one of ‘ordinary’, ‘left-
cancellative’, ‘right-cancellative’, or ‘cancellative’. Let T be a subsemigroup of S of
finite Rees index. (So T also has the property P.) If T has a finite P presentation,
then S has a finite P presentation.

PROOF. Let 〈B | T 〉 be a finite P presentation for T . (An abuse of notation allows
〈B | T 〉 to denote an unspecified type of presentation.) Let A = B ∪ C , where C
bijectively represents the elements of S − T . The semigroup S is clearly generated
by A.

Let c ∈ C and a ∈ A. Let uac, uca ∈ B+
∪ C be such that ac = uac and ca = uca .

The aim is now to show that S has the finite P presentation

〈A | T ∪ {(ac, uac), (ca, uca) : c ∈ C, a ∈ A}〉.

Let σ be the P congruence generated by the defining relations in this presentation.
All the additional defining relations certainly hold in S. Let u, v ∈ A+ with u = v.

The intention is to show that (u, v) is in σ . First of all, notice that there exist words
u′, v′

∈ B+
∪ C such that (u, u′) and (v, v′) lie in σ . Now, either u′, v′

∈ C and so
u′

= v′, or u′, v′
∈ B+, in which case (u′, v′) lies in the P congruence generated by

T . In either case, it follows that (u, v) ∈ σ .
Thus the given P presentation defines S. 2

One could also follow the proof of Theorem 4.1 using Malcev presentations and
group-embeddable semigroups to establish anew that the property of admitting a finite
Malcev presentation is preserved under passing to small extensions.

REMARK 4.2. Theorem 4.1 also holds (with the same proof) in the more general
setting of theQ-presentations discussed in Remark 2.3.

5. Rewriting techniques

Before embarking on the proofs of the large subsemigroup results for cancellative
and left- and right-cancellative presentations, it is necessary to review some known
results on rewriting semigroup presentations.
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Let S be a P semigroup, where P means one of ‘ordinary’, ‘left-cancellative’,
‘right-cancellative’, or ‘cancellative’. Let T be a subsemigroup of S of finite Rees
index. Observe that T necessarily inherits the property P.

Suppose that S has a P presentation 〈A | P〉. Without loss of generality, make the
following assumptions:
(1) A = B ∪ C , where Sg〈B〉 = T and C = S − T (this assumption does not affect

whether A is finite);
(2) P contains all valid relations lying in AA × C (this assumption does not affect

whether the presentation under discussion is finite).
Define

L(A, T )= {w ∈ A+
: w ∈ T }.

For any word w ∈ A∗
− L(A, T ), let w ∈ C ∪ {ε} be the unique element of C

representing w, or ε if w = ε.
Suppose that the alphabet D is the set

{dρ,a,σ : ρ, σ ∈ C ∪ {ε}, a ∈ A, ρa, ρaσ ∈ L(A, T )},

and that, for all ρ, a, and σ ,

dρ,a,σ = ρaσ .

Notice that if A is finite, D too must be finite.

THEOREM 5.1 [10]. The subsemigroup T is generated by D.

Define a mapping φ : L(A, T )→ D+ as follows. Let w ∈ L(A, T ) with w′a being
the shortest prefix of w lying in L(A, T ) and w′′ being the remainder of w. Then

wφ =

{
dw′,a,w′′ if w′′ /∈ L(A, T ),

dw′,a,ε(w
′′φ) if w′′

∈ L(A, T ).

This mapping φ rewrites words in L(A, T ) to words over D representing the same
element of T . Define another mapping ψ : D+

→ L(A, T ) by extending the mapping

dρ,a,σ 7→ ρaσ,

to D+ in the natural way. Notice that w = wψ .
In [10], it is proven that if P is ‘ordinary’, then the subsemigroup T has ‘ordinary’

presentation Sg〈D |Q〉, whereQ contains the following infinite collection of defining
relations:

(ρaσ)φ = dρ,a,σ , (1)

(w1w2)φ = (w1φ) (w2φ), (2)

(w3uw4)φ = (w3vw4)φ (3)

(where ρ, σ ∈ C ∪ {ε}, a ∈ A, ρa, ρaσ ∈ L(A, T ), w1, w2 ∈ L(A, T ), w3, w4 ∈ A∗,
(u, v) ∈ P , w3uw4 ∈ L(A, T )).
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THEOREM 5.2 [21]. Suppose that the P presentation 〈A | P〉 for S is finite. Then
there is a finite set of relations S ⊆ D+

× D+—with u = v for all (u, v) ∈ S—such
that the relations (1), (2), and (3) all lie in S#.

Theorem 5.2 is a restatement of [21, Theorem 6.1] in purely syntactic terms. (In the
original result, the subsemigroup T is presented by Sg〈D | S〉.) The use of this result
in syntactic rather than semantic terms is similar to the technique employed in [3].

6. Large subsemigroups

The remainder of the paper is dedicated to proving that large subsemigroups of
semigroups with finite P presentations also admit finite P presentations when P is
‘cancellative’, ‘left-cancellative’, or ‘right-cancellative’.

The proof of this result when P is ‘ordinary’ is long and technical, involving
consideration of a large number of cases. However, when P is cancellative, one can
reduce the proof to the case where the subsemigroup T is an ideal (see Theorem 7.1
and the discussion following its proof). Similarly, when P is ‘left-cancellative’ or
‘right-cancellative’, one can reduce respectively to the cases where T is a left or right
ideal (see Theorem 8.1 et seq.).

7. Cancellative presentations

The first step towards a proof of Theorem 2 is the following result, which reduces
the proof of the general result to the case where the subsemigroup is in fact an ideal.

THEOREM 7.1. Let S be an infinite cancellative semigroup and let T be a
subsemigroup of S of finite Rees index. Then

I = {t ∈ T : S1t S1 ⊆ T }

is an ideal of S contained in T and has finite Rees index in T . Indeed, I is the largest
ideal of S contained in T .

(The symbol S1 denotes the semigroup S with a two-sided identity adjoined.)

PROOF. Since S is infinite and S − T is finite, T too must be infinite.
Suppose, with the aim of obtaining a contradiction, that T − I is infinite. Then there

are infinitely many elements t ∈ T − I such that sts′
∈ S − T for some s, s′

∈ S1.
Since S − T is finite, there exists w ∈ S − T such that the set

Kw = {t ∈ T − I : (∃s, s′
∈ S1) (sts′

= w)}

is infinite. Fix such a w. For each t ∈ Kw, fix st , s′
t ∈ S1 such that st ts′

t = w. Suppose
that st t ∈ S − T . Then st ∈ S − T . So there can be only finitely many distinct t ∈ Kw
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with st t ∈ S − T . (If there were infinitely many, one could find distinct t, u ∈ Kw
with st t = suu and st = su , which would contradict cancellativity.) A similar comment
applies to ts′

t . So the set

K ′
w = {t ∈ Kw : st t, ts′

t ∈ T }

is infinite.
Now, if t ∈ K ′

w, then st and s′
t both lie in S − T , which is a finite set. (If

st ∈ T , then st ts′
t = st (ts′

t ) ∈ T , which is a contradiction since w ∈ S − T . Similar
reasoning applies to s′

t .) So there are distinct t, u ∈ S − T with st = su and s′
t = s′

u .
But st ts′

t = w = suus′
u and cancellativity then gives t = u, which is a contradiction.

Therefore, T − I is finite. In particular, this implies that I is nonempty.
Suppose that t ∈ I and let s, s′

∈ S1. Then sts′
∈ T by the definition of I .

Furthermore, sts′
∈ I since otherwise there would exist r, r ′

∈ S1 such that rsts′r ′ /∈

T , which would contradict t ∈ I . Thus I is an ideal of S. That it is contained in T is
obvious; that I has finite Rees index in T has already been proven.

Suppose that J is another ideal of S contained in T with I ⊆ J . Suppose that
I ⊂ J . Fix t ∈ J − I . Then there exist s, s′

∈ S1 such that sts′ /∈ T . Then sts′ /∈ J ,
contradicting the fact that J is an ideal of S. So I is the largest ideal of S contained
in T . 2

Observe that cancellativity is a necessary hypothesis in Theorem 7.1: if one lets S
be an infinite right zero semigroup and lets T be a large subsemigroup of S, then I is
empty.

In light of Theorem 7.1, to prove Theorem 2 it suffices to prove that if S has a
finite cancellative presentation and T is an ideal, then T too has a finite cancellative
presentation. For, when S is infinite, one then recovers the general result for a
subsemigroup T by first of all showing that the largest ideal I of S contained in T
has a finite cancellative presentation, then applying Theorem 4.1 to show that T itself
has a finite cancellative presentation. When S is finite, so is T , and thus T trivially has
a finite cancellative presentation.

So, for the remainder of this section, adopt the notation from Section 5 with P
being ‘cancellative’. Suppose that SgC〈A | P〉 is a finite cancellative presentation
for S.

Consider an extended cancellative P-chain from u to v, where u, v ∈ A+. Every
word in this chain has a factorization

δ1γ
L
1 δ2γ

L
2 . . . δnγ

L
n wα

R
mβm . . . α

R
2 β2α

R
1 β1, (4)

where each wordw, αi , βi , γi , δi is in A∗ and each αR
i and γ L

i arises from the insertion
of αiα

R
i or γ L

i γi earlier in the chain (and hence αi and γi are nonempty). Call such a
chain T -consistent if it satisfies the following two conditions:
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(1) every word in the chain has a factorization (4) in which eachw, αi , βi , γi , δi lies
in L(A, T ) ∪ {ε};

(2) each right insertion

δ1γ
L
1 δ2γ

L
2 . . . δnγ

L
n wα

R
mβm . . . α

R
2 β2α

R
1 β1

→ δ1γ
L
1 δ2γ

L
2 . . . δnγ

L
n w

′αm+1α
R
m+1w

′′αR
mβm . . . α

R
2 β2α

R
1 β1

has the property that w′ and w′′ lie in L(A, T ), and similarly for left insertions.
(Notice that the two conditions are largely—but not wholly—interdependent.)

LEMMA 7.2. If u, v ∈ L(A, T ) and u = v, then there is a T -consistent extended
cancellative P-chain from u to v.

PROOF. Since u = v, there is an extended P-cancellative chain

u = u0 → u1 → · · · → ul = v.

The aim is to transform this chain into one that is T -consistent.
Observe first of all that the trivial subchain u0 is T -consistent. Now suppose that

the subchain

u0 → u1 → · · · → uk

is T -consistent, where 0 ≤ k < l. Let the decomposition (4) of uk be

uk = δ1γ
L
1 δ2γ

L
2 . . . δnγ

L
n wα

R
mβm . . . α

R
2 β2α

R
1 β1.

If uk → uk+1 is an application of a relation fromP , then the decomposition of uk+1
is

uk+1 = δ1γ
L
1 δ2γ

L
2 . . . δnγ

L
n w

′αR
mβm . . . α

R
2 β2α

R
1 β1,

where w′ differs from w by a single application of P . Now, since w ∈ L(A, T ) and
w = w′, w′ also lies in L(A, T ). So the chain is T -consistent up to uk+1.

Now suppose that uk → uk+1 is the insertion of αm+1α
R
m+1. (The reasoning for left

insertions is symmetric.) Then the decomposition of uk+1 is

uk+1 = δ1γ
L
1 δ2γ

L
2 . . . δnγ

L
n w

′αm+1α
R
m+1w

′′αR
mβm . . . α

R
2 β2α

R
1 β1,

wherew = w′w′′. Suppose that the corresponding deletion is ul → ul+1 (where l > k),
so that

ul = δ1γ
L
1 δ2γ

L
2 . . . δnγ

L
n tαm+1α

R
m+1w

′′αR
mβm . . . α

R
2 β2α

R
1 β1

and

ul+1 = δ1γ
L
1 δ2γ

L
2 . . . δnγ

L
n tw′′αR

mβm . . . α
R
2 β2α

R
1 β1,

and there is a cancellative P-chain from w′αm+1 to tαm+1.
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There are three possible ways in which the T -consistency of the chain u0 → · · · →

uk may not extend to uk+1: w′, αm+1, or w′′ may not lie in L(A, T ).
Suppose that w′ /∈ L(A, T ). Since T is an ideal, w′

∈ C∗. As w′ = t , the word t
also lies in C∗. So, by the fact that P contains all relations involving words of length
2 over C (see assumption 2 in Section 5), there is a chain from w′ to t that involves
no insertions and deletions. Thus one can use this chain to go from uk to ul+1 without
having to insert αm+1α

R
m+1. The new chain thus obtained is T -consistent up to and

including ul+1.
So assume that w′

∈ L(A, T ). Since T is an ideal, w′αm+1 ∈ L(A, T ).
Suppose now that either w′′ /∈ L(A, T ) or αm+1 /∈ L(A, T ). Let b ∈ B. Observe

that w′′b, αm+1b ∈ L(A, T ) since T is an ideal. Modify the subchain uk → · · · →

ul+1 to the following form:

uk = δ1γ
L
1 δ2γ

L
2 . . . δnγ

L
n wα

R
mβm . . . α

R
2 β2α

R
1 β1

→ δ1γ
L
1 δ2γ

L
2 . . . δnγ

L
n wbbRαR

mβm . . . α
R
2 β2α

R
1 β1

→ δ1γ
L
1 δ2γ

L
2 . . . δnγ

L
n w

′αm+1bbRαR
m+1w

′′bbRαR
mβm . . . α

R
2 β2α

R
1 β1

...

→ δ1γ
L
1 δ2γ

L
2 . . . δnγ

L
n tαm+1bbRαR

m+1w
′′bbRαR

mβm . . . α
R
2 β2α

R
1 β1

→ δ1γ
L
1 δ2γ

L
2 . . . δnγ

L
n tw′′bbRαR

mβm . . . α
R
2 β2α

R
1 β1

→ δ1γ
L
1 δ2γ

L
2 . . . δnγ

L
n tw′′αR

mβm . . . α
R
2 β2α

R
1 β1

= ul+1.

This gives a chain that is T -consistent up to and including the point where αm+1 (or
αm+1b) has been inserted, which is certainly after uk . Notice that, although the chain
may have been lengthened, the number of insertions in the part of the chain which may
not be T -consistent has decreased. Notice that the subchain from the deletion of αm+1
(or αm+1b) to ul+1 is T -consistent. (In particular, t ∈ L(A, T ) since w′

∈ L(A, T )
and t = w′.)

This leaves the possibility that w′, αm+1, w
′′ all lie in L(A, T ). In this case, it is

immediate that the chain is T -consistent up to and including uk+1. (Observe that the
corresponding deletion ul → ul+1 forms a T -consistent subchain.)

Finally, suppose that uk → uk+1 is a deletion. Then it arises from a corresponding
earlier insertion, and so, by the observations in the last two paragraphs, the chain is
T -consistent up to and including uk+1.

This process of transforming a chain into a T -consistent one will terminate. This
proves the result. 2

Extend the rewriting mapping φ to words arising in cancellative P-chains as
follows. Define uLφ = (uφ)L and uRφ = (uφ)R, and, for a word u having a
decomposition (4)
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δ1γ
L
1 δ2γ

L
2 . . . δnγ

L
n wα

R
mβm . . . α

R
2 β2α

R
1 β1,

let wφ be

(δ1φ) (γ
L
1 φ) (δ2φ) (γ

L
2 φ) . . . (δnφ) (γ

L
n φ)(wφ) (α

R
n φ) (βnφ)

. . . (αR
2 φ) (β2φ) (α

R
1 φ) (β1φ).

LEMMA 7.3. The semigroup T has cancellative presentation SgC〈D | S〉.

Recall that the finite set of relations S was introduced in the statement of
Theorem 5.2 and is such that S# contains all relations (1), (2), and (3). The alphabet
D was also introduced in Section 5.

PROOF. Notice first of all that every relation in S holds in T by the definition of S
and the mapping φ. It remains to show that every relation that holds in D lies in the
cancellative congruence SC.

Let u and v be words over D representing the same element of T . Let u′
= uψ and

v′
= vψ . The words u′ and v′ lie in L(A, T ), so by Lemma 7.2 there is a T -consistent

extended cancellative P-chain

u′
= u0 → u1 → · · · → ul = v′.

Inductively construct a cancellative S-chain from u′φ to v′φ as follows.
Trivially, such a chain exists from u′φ to u0φ. Suppose that such a chain Ck has

been constructed from u′φ to ukφ, and that the decomposition (4) of uk is

uk = δ1γ
L
1 δ2γ

L
2 . . . δnγ

L
n wα

R
mβm . . . α

R
2 β2α

R
1 β1.

Suppose that uk → uk+1 is an application of a relation from P . Then uk+1 has
decomposition (4)

uk+1 = δ1γ
L
1 δ2γ

L
2 . . . δnγ

L
n ŵα

R
mβm . . . α

R
2 β2α

R
1 β1,

where ŵ differs from w by a single application of a relation from P . So ŵφ differs
from wφ — and so uk+1φ differs from ukφ—by a single application of a relation (3),
which lies in S#. So there is certainly a cancellative S-chain from ukφ to uk+1φ.
Concatenating this with the existing S-chain Ck gives a chain from u′φ to uk+1φ.

Suppose now that uk → uk+1 is an insertion of αm+1α
R
m+1. Then uk+1 has

decomposition

uk+1 = δ1γ
L
1 δ2γ

L
2 . . . δnγ

L
n w

′αm+1α
R
m+1w

′′αR
mβm . . . α

R
2 β2α

R
1 β1,

wherew = w′w′′. To show the existence of a cancellative S-chain from ukφ to uk+1φ,
it suffices to show that one exists from wφ to (w′αm+1)φ(α

R
m+1φ) (w

′′φ). Using
relations of type (2), one obtains the following cancellative S-chain:

wφ = (w′w′′)φ

→ (w′φ) (w′′φ)

→ (w′φ) (αm+1φ) (α
R
m+1φ) (w

′′φ)

→ (w′αm+1)φ(α
R
m+1φ) (w

′′φ).
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Notice thatw′, αm+1,w′′ lie in L(A, T ) by the definition of T -consistency. This shows
the existence of a cancellative chain from u′φ to uk+1φ.

If uk → uk+1 is a deletion, then the reasoning for insertions applies in reverse to
yield a cancellative S-chain from u′φ to uk+1φ.

This process will eventually yield a cancellative S-chain from u′φ to v′φ. Relations
of types (1) and (2) yield chains from u to u′φ and v′φ to v. Thus there is a cancellative
S-chain from u to v, that is, (u, v) lies in the cancellative congruence SC.

Therefore, SgC〈D | S〉 is a cancellative presentation for T . 2

From the discussion following the proof of Theorem 7.1 and from Theorem 4.1,
one obtains the second main result of the paper.

THEOREM 2. Let S be a cancellative semigroup and let T be a subsemigroup of S
of finite Rees index. Then S admits a finite cancellative presentation if and only if T
admits a finite cancellative presentation.

8. Right- and left-cancellative presentations

This section only contains proofs for right-cancellative presentations. The left-
cancellative case is symmetric.

The first result is the analogue of Theorem 7.1.

THEOREM 8.1. Let S be an infinite right-cancellative semigroup and let T be a
subsemigroup of S of finite Rees index. Then

I = {t ∈ T : t S1 ⊆ T }

is a right ideal of S contained in T and has finite Rees index in T . Indeed, I is the
largest right ideal of S contained in T .

PROOF. Since S is infinite and S − T is finite, T too must be infinite. Suppose
that T − I is infinite. Then there are infinitely many elements t ∈ T − I such that
ts ∈ S − T for some s ∈ S. Since S − T is finite, there exists w ∈ S − T such that the
set

Kw = {t ∈ T − I : (∃s ∈ S) (ts = w)}

is infinite. Fix such aw. For each t ∈ Kw, fix st ∈ S with tst = w. Observe that each st
must lie in S − T . So there exist distinct t, u ∈ Kw with st = su , since S − T is finite.
So tst = w = usu , whence t = u by right-cancellativity, which is a contradiction. So
T − I is finite, which implies that I is nonempty.

Suppose that t ∈ I and s ∈ S1. Then ts ∈ T . Furthermore, ts ∈ I , since otherwise
there would exist u ∈ S1 with t (su) /∈ T , contradicting the definition of I . So I is
a right ideal of S. That T contains I is obvious; that T − I is finite has already
been proven.
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Suppose that J is another right ideal of S contained in T with I ⊆ J . Suppose
that I ⊂ J . Fix t ∈ J − I . Then there exists s ∈ S1 with ts /∈ T . So ts /∈ J ,
contradicting the fact that J is a right ideal. So I is the largest right ideal of S contained
in T . 2

In light of Theorem 8.1, to prove Theorem 3 it suffices to prove that if S has a finite
right-cancellative presentation and T is a right ideal, then T too has a finite right-
cancellative presentation. For, when S is infinite, one then recovers the general result
for a subsemigroup T by first of all showing that the largest ideal I of S contained in
T has a finite right-cancellative presentation, then applying Theorem 4.1 to show that
T itself has a finite right-cancellative presentation. When S is finite, so is T , and thus
T trivially has a finite right-cancellative presentation.

LEMMA 8.2. Let S be a right-cancellative semigroup; let T be a proper right ideal
of S of finite Rees index. Then there exists a proper right ideal K of S that contains T
and such that exactly one of the following two cases holds:
(1) S − K is a subgroup and a right ideal of S;
(2) every element of S − K has a right multiple that lies in K .

The proof of this result uses some basic results regarding the Green’s relations H,
R, L, D, and J of a semigroup. For the definition of these relations and their basic
properties, see [16, Ch. 2].

PROOF OF LEMMA 8.2. Choose an R-maximal element x of S that lies outside T .
Let R be its R-class. Since x is R-maximal, K = S − R is a right ideal of S. The
remainder of the proof is dedicated to showing that K has the desired properties.

Notice that, since T is a right ideal, the R-class R must lie wholly within S − T .
Thus K contains T .

Suppose that R is a right ideal. By the right-cancellativity of S, there must be
a unique idempotent e in R. Let x ∈ R. Since R ⊆ S − T is finite, some power
of x is this idempotent e. Then, for any x ∈ S, xe2

= xe, whence xe = x by right-
cancellativity. So e is a right identity for S. So, if x ∈ R, x = xe lies in the same
H-class as e. Thus R consists of a single groupH-class.

On the other hand, suppose that some element x of R has a right multiple xs
(where s ∈ S) that lies in K . Let y ∈ R. Then there exists s′

∈ S1 with ys′
= x . So

yss′
= xs ∈ K . So if some element of R has a right multiple lying in K (that is, if R

is not a right ideal) then every element of R has this property. 2

For the remainder of this section, let S be a right-cancellative semigroup, let T
be a finite Rees index right ideal of S, and adopt the notation of Section 5 with P
being ‘right-cancellative’. Suppose that the presentation SgRC〈A | P〉 for S is finite.
The aim is to show that T too must have a finite right-cancellative presentation. By
Lemma 8.2, it suffices to prove this when S − T is either a group or has the property
that each of its elements has a right multiple lying in T . For one can then pass down
through a descending sequence of finitely many (since |S − T | is finite) right ideals to
any right ideal of S.
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Actually, the case when S − T is a subgroup and a right ideal is very simple, as the
following three results show.

PROPOSITION 8.3. Suppose that G = S − T is a subgroup and a right ideal of S.
Then S is left-simple.

PROOF. Let L ⊆ S be a left ideal of S. The aim is to show that L = S.
Suppose that L ⊆ T . Pick l ∈ L and s ∈ G. Then sl ∈ G ∩ L since G is a right ideal

and L is a left ideal. This contradicts the assumption that T contains L . Thus G ∩ L
is nonempty.

Now, G ∩ L is a left ideal of G, since L is a left ideal of S and G is a subsemigroup.
But G is a group, and thus its only left ideal is G itself. Thus G ∩ L = G, and so
G ⊆ L . In particular, 1G , the identity of G, lies in L .

Now, for x ∈ S, x1G = x1G1G , whence x = x1G . Since L is a left ideal, x = x1G
lies in L . Therefore, L = S as required. 2

THEOREM 8.4 [11, Theorem 1.27]. A semigroup is right-cancellative and left simple
if and only if it is isomorphic to G × Z, where G is a group and Z is a left zero
semigroup.

PROPOSITION 8.5. Suppose that S − T is a subgroup and a right ideal of S. Then
S ' (S − T )× Z, where Z is a left zero semigroup.

PROOF. By Proposition 8.3, S is left simple. Since it is also right-cancellative,
Theorem 8.4 applies to show that S is isomorphic to G × Z , where G is a group and Z
is a left zero semigroup. TheH-classes of S are G × {z} where z ∈ Z ; its idempotents
are (1G, z). So S − T , being an H-class, is isomorphic to G. Thus S ' (S − T )× Z
as required. 2

COROLLARY 8.6. Suppose that S − T is a subgroup and a right ideal of S. Then S is
finite.

PROOF. By Proposition 8.5, S ' (S − T )× Z , where Z is a left zero semigroup. The
finite generating set A for S must project to a generating set for Z . Since Z is a left
zero semigroup, its only generating set is Z itself. So Z is finite. Since S − T is also
finite, the semigroup S is finite. 2

Therefore, by Corollary 8.6, if S − T is a subgroup and a right ideal, then S, and so
also T , is finite, and therefore trivially admits a finite right-cancellative presentation.
This leaves the case where every element of S − T has a right multiple that lies in T .
So assume that S − T has this property. The next lemma strengthens this property to
show that any element of S − T can be right-multiplied by an element of T to give an
element of T .

LEMMA 8.7. For any element s of S − T , there exists an element p of T such that sp
lies in T .
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PROOF. The element s ∈ S − T has a right multiple sp′ lying in T . If p′ is also in T ,
set p = p′. If p′

∈ S − T , then it has a multiple p′x lying in T . Since T is a right
ideal, s(p′x)= (sp′)x ∈ T . Setting p = p′x gives the result. 2

Every word in an extended cancellative chain has a decomposition (4). Similarly,
every word in an extended right-cancellative chain has a factorization

wαR
mβm . . . α

R
2 β2α

R
1 β1, (5)

where each word w, αi , βi is in A∗ and each αR
i arises from the insertion of αiα

R
i

earlier in the chain (and hence αi is nonempty). The concept of T -consistency applies
to right-cancellative chains.

LEMMA 8.8. If u, v ∈ L(A, T ) and u = v, then there is a T -consistent extended
right-cancellative P-chain from u to v.

PROOF. Since u = v, there is an right-cancellative P chain

u = u0 → u1 → · · · → ul = v.

The aim is to transform this chain into a T -consistent one.
Observe firstly that the trivial subchain u0 is T -consistent. Now suppose that the

subchain

u0 → u1 → · · · → uk,

is T -consistent, where 0 ≤ k < l. Let the decomposition (5) of uk be

uk = wαR
mβm . . . α

R
2 β2α

R
1 β1.

If uk → uk+1 is an application of a relation fromP , then the decomposition of uk+1
is

uk+1 = w′αR
mβm . . . α

R
2 β2α

R
1 β1,

where w′ differs from w by a single application of P . Now, since w ∈ L(A, T ) and
w = w′,w′ also lies in L(A, T ). So the chain is T -consistent up to and including uk+1.

Now suppose that uk → uk+1 is the insertion of αm+1α
R
m+1. Then the decomposi-

tion of uk+1 is

uk+1 = w′αm+1α
R
m+1w

′′αR
mβm . . . α

R
2 β2α

R
1 β1,

where w = w′w′′. Suppose that the corresponding deletion is ul → ul+1, so that

ul = tαm+1α
R
m+1w

′′αR
mβm . . . α

R
2 β2α

R
1 β1

and

ul+1 = tw′′αR
mβm . . . α

R
2 β2α

R
1 β1,

and there is a right-cancellative P-chain from w′ to t .
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There are three possible ways in which the T -consistency of the chain u0 → · · · →

uk may not extend to uk+1: w′αm+1, αm+1, or w′′ may not lie in L(A, T ).
Suppose that w′ /∈ L(A, T ). Since T is a right ideal, w′ must lie in C A∗. Similarly,

as w′ = t , the word t also lies in C A∗. Using relations of length two lying in the set
C A × C , one can work from left to right to transform w′ into some c ∈ C . Similarly,
one can transform t into that same c. Thus there is a chain from w′ to t that involves
no insertions and deletions. Thus one can use this chain to go from uk to ul+1 without
having to insert αm+1α

R
m+1. The new chain thus obtained is T -consistent up to and

including ul+1.
So assume that w′

∈ L(A, T ). Then w′αm+1 ∈ L(A, T ) since T is a right ideal.
Suppose now that either w′′ /∈ L(A, T ) or αm+1 /∈ L(A, T ). Applying Lemma 8.7,
let η be a word in L(A, T ) such that w′′η ∈ T and let ζ ∈ L(A, T ) be such that
αm+1ζ ∈ T . Modify the subchain uk → · · · → ul+1 to the following form:

uk = wαR
mβm . . . α

R
2 β2α

R
1 β1

→ wηηRαR
mβm . . . α

R
2 β2α

R
1 β1

→ w′αm+1ζ ζ
RαR

m+1w
′′ηηRαR

mβm . . . α
R
2 β2α

R
1 β1

...

→ tαm+1ζ ζ
RαR

m+1w
′′ηηRαR

mβm . . . α
R
2 β2α

R
1 β1

→ tw′′ηηRαR
mβm . . . α

R
2 β2α

R
1 β1

→ tw′′αR
mβm . . . α

R
2 β2α

R
1 β1

= ul+1.

This gives a chain that is T -consistent up to the point where αm+1 (or αm+1η) has
been inserted, which is certainly after uk . Notice that, although the chain may have
been lengthened, the number of insertions in the part of the chain which may not
be T -consistent has decreased. Notice that the subchain from the deletion of αm+1
(or αm+1b) to ul+1 is T -consistent. (In particular, t ∈ L(A, T ) since w′

∈ L(A, T )
and t = w′.)

This leaves the possibility that w′, αm+1, w
′′ all lie in L(A, T ). In this case, it is

immediate that the chain is T -consistent up to and including uk+1. (Observe that the
corresponding deletion ul → ul+1 forms a T -consistent subchain.)

Finally, suppose that uk → uk+1 is a deletion. Then it arises from a corresponding
earlier insertion, and so the chain is T -consistent up to and including uk+1.

This process of transforming a chain into a T -consistent one will terminate. This
proves the result. 2

LEMMA 8.9. The right ideal T has right-cancellative presentation SgC〈D | S〉.

PROOF. The reasoning for this result exactly parallels that of Lemma 7.3 except that
one invokes Lemma 8.8 rather than Lemma 7.2. 2
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From the discussion following the proof of Theorem 8.1 and from Theorem 4.1,
one obtains the third main result of the paper.

THEOREM 3. Let S be a left-cancellative (respectively, right-cancellative) semigroup
and let T be a subsemigroup of S of finite Rees index. Then S admits a finite left-
cancellative (respectively, right-cancellative) presentation if and only if T admits a
finite left-cancellative (respectively, right-cancellative) presentation.
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