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Abstract

We prove the following results: (1) Every group is a maximal sub-
group of some free idempotent generated semigroup. (2) Every finitely
presented group is a maximal subgroup of some free idempotent gen-
erated semigroup arising from a finite semigroup. (3) Every group is a
maximal subgroup of some free regular idempotent generated semi-
group. (4) Every finite group is a maximal subgroup of some free
regular idempotent generated semigroup arising from a finite regu-
lar semigroup. As a technical prerequisite for these results we es-
tablish a general presentation for the maximal subgroups based on
a Reidemeister–Schreier type rewriting.
2000 Mathematics Subject Classification: 20M05, 20F05.

1 Introduction and summary of results

Let S be a semigroup, and let E = E(S) be the set of idempotents of S. The
free idempotent generated semigroup on E is defined by the following presen-
tation:

IG(E) = 〈E | e · f = e f (e, f ∈ E, {e, f } ∩ {e f , f e} 6= ∅)〉. (1)

(It is an easy exercise to show that if, say, f e ∈ {e, f } then e f ∈ E. In the
defining relation e · f = e f the left hand side is a word of length 2, and e f
is the product of e and f in S, i.e. a word of length 1.) These semigroups
arose in [13, 4], where abstract characterisations of the sets of idempotents
of semigroups via structures called biordered sets was undertaken. We will
not need the formal definition of a biordered set here, but an interested
reader may consult [10] for an accessible introduction.

The semigroup IG(E) has the following properties:
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(IG1) There exists a natural homomorphism φ from IG(E) into the subsemi-
group S′ of S generated by E.

(IG2) The restriction of φ to the set of idempotents of IG(E) is a bijection
onto E (and an isomorphism of biordered sets). Thus we may identify
those two sets.

(IG3) φ maps the R-class (respectively L -class) of e ∈ E onto the corre-
sponding class of e in S′; this induces a bijection between the set of
all R-classes (resp. L -classes) in the D-class of e in IG(E) and the
corresponding set in S′.

(IG4) The restriction of φ to the maximal subgroup of IG(E) containing e ∈
E (i.e. to the H -class of e in IG(E)) is a homomorphism onto the
maximal subgroup of S′ containing e.

The assertion (IG1) is obvious; (IG2) is proved in [13] and [4]; (IG3) is
a corollary of [6]; (IG4) follows from (IG2). The basics concerning Green’s
relations and their relationship with maximal subgroups will be reviewed
in Section 2. The maximal subgroup of a semigroup S containing an idem-
potent e will be denoted by H(S, e).

If S is a regular semigroup, one also defines the free regular idempotent
generated semigroup RIG(E) on E as follows. The sandwich set of a pair of
idempotents e, f ∈ E is defined as

S(e, f ) = {h ∈ E : eh f = e f , f he = h}.

The semigroup RIG(E) is then the homomorphic image of IG(E) obtained
by adding the relations

eh f = e f (e, f ∈ E, h ∈ S(e, f ))

to the presentation (1). This semigroup also satisfies the properties (IG1)–
(IG4), and also:

(RIG1) RIG(E) is regular ([13]).

(RIG2) The natural homomorphism IG(E) → RIG(E) induces an isomor-
phism between the maximal subgroups of any e ∈ E in IG(E) and
RIG(E) ([1, Theorem 3.6]).

Maximal subgroups of free idempotent generated semigroups have been
of interest for some time. Several papers [12, 14, 15, 16] established vari-
ous sufficient conditions guaranteeing that all the maximal subgroups are
free. Indeed, it was conjectured in [12] that this was always the case. The
first counterexample to this conjecture was given by Brittenham, Margolis
and Meakin [1], where it was shown that the free abelian group Z⊕Z is
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the maximal subgroup of the free idempotent generated semigroup aris-
ing from a certain 72-element semigroup. The same authors report further
counterexamples to appear in [2], where they show that the multiplicative
group F∗ of a field F arises as a maximal subgroup of IG(E(M3(F))), where
M3(F) is the semigroup of all 3 × 3 matrices over F. Related work con-
cerning periodic elements in free idempotent generated semigroups may
be found in [5].

In this paper we prove:

Theorem 1. Every group is a maximal subgroup of some free idempotent gener-
ated semigroup.

Theorem 2. Every finitely presented group is a maximal subgroup of some free
idempotent generated semigroup arising from a finite semigroup.

Theorem 3. Every group is a maximal subgroup of some free regular idempotent
generated semigroup.

Theorem 4. Every finite group is a maximal subgroup of some free regular idem-
potent generated semigroup arising from a finite regular semigroup.

We remark that Theorem 2 provides a complete characterisation of
groups appearing as maximal subgroups of free idempotent generated
semigroups arising from finite semigroups. (And of course, trivially, Theo-
rems 1 and 3 provide such characterisations with the finiteness assumption
removed.) Indeed, every maximal subgroup in a free idempotent gener-
ated semigroup arising from a finite semigroup must be finitely presented.
To see this, observe that in this case the presentation (1) is finite, and also
that the set of L-classes in the D-class of any e ∈ E is finite by (IG3). The
assertion then follows from Proposition 2.1 below. By way of contrast, The-
orem 4 leaves us with the following unresolved question: Is every finitely
presented group a maximal subgroup of some free regular idempotent generated
semigroup arising from a finite regular semigroup?

Theorems 1–4 will be proved by means of two explicit constructions de-
scribed in Sections 5 and 6. Preceding this, we prove a general presentation
result based on the so called singular squares in Section 3, and introduce
the features common to both constructions in Section 4.

2 Preliminaries

In this section we review some basic definitions and facts concerning Green’s
relations, maximal subgroups, and a Reidemeister–Schreier type rewriting
presentation for the latter. For a more systematic introduction to the basics
of Semigroup Theory we refer the reader to any standard monograph such
as [10, 11].
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2.1 Green’s relations and maximal subgroups

Let S be a semigroup. We use S1 to denote the semigroup S with an identity
element 1 6∈ S adjoined to it. This notation will be extended to subsets of
S, i.e. X1 = X ∪ {1}. Green’s relations, originally introduced in [7], are
equivalence relations which reflect the ideal structure of a semigroup. For
u, v ∈ S we define

uRv ⇔ uS1 = vS1, uL v ⇔ S1u = S1v,

H = R ∩L , D = R ◦L = L ◦R.

Each of these relations is an equivalence relation on S; their equivalence
classes are called the R-, L -, H - and D-classes, respectively. Moreover, L
is a right congruence and dually R is a left congruence. The corresponding
equivalence classes of an element a ∈ S will be denoted by Ra, La, Ha and
Da respectively.

Let e be an idempotent of a semigroup S. The set eSe is a submonoid of
S and is the largest submonoid whose identity is e. The group of units Ge
of eSe (i.e. the group of elements of eSe that have two-sided inverses with
respect to e) is the largest subgroup of S whose identity is e, and is called
the maximal subgroup of S containing e.

We now list some fundamental facts about Green’s relations and maxi-
mal subgroups, for proofs we refer the reader to [11, Section 2].

(G1) If s, t ∈ S are such that stRs then the mapping ρt : x 7→ xt is an
H -class preserving bijection between the L -classes Ls and Lst.

(G2) Furthermore, if stu = s, then the mappings ρt and ρu : Lst → Ls,
x 7→ xu, are mutually inverse bijections.

(G3) There are left/right dual statements to (G1) and (G2).

(G4) The maximal subgroups of S are precisely the H -classes that contain
idempotents.

(G5) For any two s, t ∈ S with sD t we have st ∈ Rs ∩ Lt if and only if
Rt ∩ Ls contains an idempotent.

(G6) If s, t ∈ S are such that st = s (resp. ts = s) then xt = x (resp. tx = x)
for all x ∈ Ls (resp. x ∈ Rs).

(G7) In particular every idempotent is a left identity in its R-class and a
right identity in its L -class.

(G8) If s ∈ S is a regular element (meaning sus = s for some u ∈ S) then
all the elements in the D-class Ds are regular (in which case we say
that Ds itself is regular).
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(G9) In a regular D-class every R-class and every L -class contains an
idempotent.

(G10) Let e, f ∈ E(S). If f e = e then e f ∈ E(S) and e f Re. Dually, if f e = f
then e f ∈ E(S) and e f L f .

2.2 A Reidemeister–Schreier type presentation for maximal subgroups

As a consequence of (G1), a semigroup acts on the H -classes in an R-class
in a way similar to a group acting on the cosets of a subgroup. This anal-
ogy was exploited in [20] to obtain a presentation for an arbitrary maximal
subgroup of a semigroup, closely resembling the classical Reidemeister–
Schreier presentation in group theory. Let us now review this presentation.

Let S be a semigroup, and let H be a maximal subgroup of S. Denote
by e the identity of H (so H = He, the H -class of e). Let R be the R-class
of e, and let Hj (j ∈ J) be the H -classes contained in R. Without loss of
generality assume 1 ∈ J and H1 = H.

The natural action of S on itself by right multiplication induces an action
on R∪{0} (where 0 is a new symbol intuitively meaning ‘undefined’). This
action respects the H -classes in R by (G1), and so can be represented by
an action (j, s) 7→ j · s of S on J ∪ {0} where

j · s =

{
l if j, l ∈ J and Hjs = Hl ,
0 otherwise.

Suppose now that S is generated by a set A. Let rj (j ∈ J) be elements of S1

such that
H1rj = Hj (or equivalently, 1 · rj = j) (2)

for all j ∈ J. By (G1), (G2) there exist r′j (j ∈ J) such that

hrjr′j = h, h′r′jrj = h′ (h ∈ H, h′ ∈ Hj). (3)

A (group) generating set for H is given by

{erjar′j·a : j ∈ J, a ∈ A, j · a 6= 0}, (4)

see [20, Theorem 2.7].
Now suppose further that S is given by a presentation 〈A|R〉. Accord-

ingly, suppose that the elements e, rj, r′j (j ∈ J) are given as words over A.
Introduce a new alphabet

B = {[j, a] : j ∈ J, a ∈ A, j · a 6= 0} (5)

representing the generators (4). Denote by ε the empty word. Define a
rewriting mapping

φ : {(j, w) : j ∈ J, w ∈ A∗, j · w 6= 0} → B∗
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inductively by

φ(j, ε) = ε, φ(j, aw) = [j, a]φ(j · a, w). (6)

Next suppose, without loss of generality, that the words rj (j ∈ J) form
a Schreier system, i.e. every prefix of every rj is equal to some other rk (in
particular this forces r1 = ε). A (group) presentation for H is now given by

H = 〈B | [j, a] = 1 (j ∈ J, a ∈ A, j · a 6= 0, rj·a = rja), (7)

φ(j, u) = φ(j, v) (j ∈ J, (u = v) ∈ R, j · u 6= 0)〉, (8)

see [20, Corollary 2.15]. Intuitively, this presentation for H is obtained by
rewriting the defining relations of S with respect to the action on H -classes
in R, and equating certain generators to 1. An immediate consequence of
this presentation is the following:

Proposition 2.1. [20, Corollary 2.8] Let S be a semigroup and let H be a maximal
subgroup of S. If S is finitely presented, and the number of H -classes in the R-
class of H is finite, then H is finitely presented.

3 Singular squares and a presentation for maximal subgroups in
free idempotent generated semigroups

We are now going to employ the Reidemeister–Schreier type presenta-
tion described above to exhibit a ‘canonical’ presentation for the maxi-
mal subgroup H(IG(E(S)), e) where e ∈ E. That this is a presentation for
H(RIG(E(S)), e) (S regular) was established by Nambooripad in [13] using
different methods, and utilised in [1, 2].

Let S be an arbitrary semigroup, let E = E(S), and form the free idem-
potent generated semigroup IG(E) as described in Section 1. Clearly, with-
out loss of generality we may assume that S is generated by E (i.e. S = S′ in
the terminology of (IG1)-(IG4)). Let e11 ∈ E be arbitrary. We seek to obtain
a presentation for the maximal subgroup H = H(IG(E), e11). A major sig-
nificant point here is the following: the action of any generator e ∈ E on the
H -classes contained in the R-class of e11 in IG(E) is equivalent to the ac-
tion of e on the H -classes contained in the R-class of e11 in S. This follows
from (IG3). Thus, in the presentation (7), (8), the relations to be rewritten
come from the presentation (1) for IG(E), but the underlying action may be
taken to come from S.

Let us fix some notation. Let D be the D-class of e11, let Ri (i ∈ I) be the
R-classes in D, let Lj (j ∈ J) be the L -classes in D , and let Hij = Ri ∩ Lj for
i ∈ I, j ∈ J. Next let K = {(i, j) ∈ I × J : Hij is a group}, and let eij be the
identity of Hij for every (i, j) ∈ K. Focusing on the R-class R = R1 and its
H -classes Hj = H1j (j ∈ J), let rj ∈ E∗ be a Schreier system as described in
Section 2. In fact, by the result of Fitzgerald [6], every element of D can be
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expressed as a product of idempotents from D of the form ei1 j1 ei2 j2 . . . ein jn
where (iq+1, jq) ∈ K for all q = 1, . . . , n − 1. It is then easy to verify that
we can choose our Schreier system {rj : j ∈ J} to consist entirely of such
products.

Keeping in mind the defining presentation (1) for IG(E) and the defini-
tion (6) of the rewriting mapping φ, the presentation (7), (8) has generators

B = {[j, e] : j ∈ J, e ∈ E, j · e 6= 0} (9)

and relations

[j, e] = 1 (j ∈ J, e ∈ E, j · e 6= 0, rj·e = rje), (10)

[t, e][t · e, f ] = [t, e f ] (t ∈ J, e, f ∈ E, {e, f } ∩ {e f , f e} 6= ∅, t · e f 6= 0).
(11)

Denote this presentation by P .
In what follows we will first deduce some consequences of the relations

(10), (11), leading to a new presentation, ultimately given in Theorem 5.
Then we will show that this new presentation actually implies all of the
relations (10), (11) and therefore it defines H.

Let us partition the generators B into two types:

B1 = {[t, e] : e = eij ∈ D & (i, t) ∈ K},
B2 = B \ B1.

We remark that the condition rj·e = rje appearing in (10) is an equality
of two words over E∗, and so, because of the way in which we chose the
Schreier system {rj : j ∈ J}, all the generators appearing in (10) belong to
B1.

Let us, for every i ∈ I, fix j(i) ∈ J such that (i, j(i)) ∈ K, which is
possible by (G9).

Lemma 3.1. If [t, eij] ∈ B1 then the relation

[t, eij] = [j(i), eit]−1[j(i), eij] (12)

is a consequence of the presentation P .

Proof. From [t, eij] ∈ B1 it follows that (i, t) ∈ K. The idempotents eit and eij
are R-related, and so the relation eiteij = eij is in presentation (1) for IG(E).
Also (i, j(i)) ∈ K, and so ei,j(i)eij = eij, implying j(i) · eij = j 6= 0 by (G5).
Hence the relation [j(i), eit][t, eij] = [j(i), eij] is in (11), and it clearly implies
the desired relation.

Lemma 3.2. For any (i, t) ∈ K the relation

[t, eit] = 1 (13)

is a consequence of (12) (and hence of P).
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Proof. Put j = t in Lemma 3.1.

Lemma 3.3. Suppose [t, e] ∈ B2 with t · e = j ∈ J.

(i) There exists i ∈ I such that (i, t), (i, j) ∈ K and ex = x for all x ∈ Ri.

(ii) For any such i the relation

[t, e] = [t, eij] (14)

is a consequence of P .

Proof. (i) Pick any idempotent ekj ∈ Lj (it exists by (G9)). From t · e = j it
follows that Lte = Lj, and hence e stabilises Lj pointwise on the right by
(G6). In particular, ekje = ekj, and it follows by (G10) that eekj is also an
idempotent in Lj, say eij. Note that necessarily (i, j) ∈ K. Now we have
eeij = eeekj = eekj = eij, and hence ex = x for all x ∈ Ri by (G6). Also

H1teij = H1teeij = H1jeij = H1j,

by (G7), and so (G5) implies that (i, t) ∈ K.
(ii) From eeit = eit it follows that eite is an idempotent in Ri. Also,

eite ∈ Lte = Lt·e = Lj, and hence eite = eij, a defining relation of IG(E). Its
rewritten form is [t, eit][t · eit, e] = [t, eij] which belongs to (11). By Lemma
3.2 the relation [t, eit] = 1 is a consequence of P . Also, clearly t · eit = t, and
the result follows.

Relations in Lemma 3.3 allow us to replace any generator from B2 by a
generator from B1. We observed earlier that no generator from B2 appears
in (10), so these relations remain unaltered by this substitution. Relations
in Lemma 3.1 allow us to express all the generators from B1 in terms of the
subset

{[j(i), eij] : (i, j) ∈ K}.

Let us introduce a new notation for these generators:

fij = [j(i), eij] ((i, j) ∈ K).

The relations from Lemma 3.1 become:

[t, eij] = f−1
it fij ((i, t), (i, j) ∈ K); (15)

they tell us how to replace any generator from B1 in terms of the fij. In
order to do the same for generators from B2 we first need to use Lemma 3.3
to find a corresponding generator from B1, and then use (15).

We now establish an important set of relations which the generators fij
satisfy.
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Definition 3.4. A quadruple (i, k; j, l) ∈ I × I × J × J is a square if
(i, j), (i, l), (k, j), (k, l) ∈ K. It is a singular square if, in addition, there ex-
ists an idempotent e ∈ E such that one of the following dual conditions
holds:

eeij = eij, eekj = ekj, eije = eil , ekje = ekl , or (16)
eije = eij, eile = eil , eeij = ekj, eeil = ekl . (17)

We will say that e singularises the square. Let ΣLR (respectively ΣUD) be
the set of all singular squares for which condition (16) (resp. (17)) holds,
and let Σ = ΣLR ∪ΣUD, the set of all singular squares. We call the members
of ΣLR the left-right singular squares, and those of ΣUD the up-down singular
squares.

Lemma 3.5. For every singular square (i, k; j, l) ∈ Σ the relation

f−1
ij fil = f−1

kj fkl (18)

is a consequence of P .

Proof. Suppose first that (16) holds. By Lemma 3.3 (ii) and (15) we have

f−1
ij fil = [j, eil ] = [j, e] = [j, ekl ] = f−1

kj fkl

as a consequence of P .
Consider now the case where (17) holds. The relation eeij = ekj belongs

to the presentation (1), its rewritten form is

[l, e][l · e, eij] = [l, ekj], (19)

and it belongs to (11). From eeij = ekj it follows that eekj = ekj and hence
ex = x for all x ∈ Rk. From eile = eil we have l · e = l. Hence, by
Lemma 3.3 (ii) and 3.2, we have [l, e] = [l, ekl ] = 1. The relation (19) is
now equivalent to [l, eij] = [l, ekj], which, keeping in mind (15), is precisely
the relation we sought to deduce.

Lemma 3.6. Every relation

[t, e][t · e, f ] = [t, e f ] (e, f ∈ E, t · e f 6= 0, {e, f } ∩ {e f , f e} 6= ∅) (20)

from (11) is a consequence of relations (12) (equivalently, (15)), (14), (18) from
Lemmas 3.1, 3.3, 3.5.

Proof. We distinguish eight cases depending on whether each of the three
generators belongs to B1 or B2.

Case 1: [t, e], [t · e, f ], [t, e f ] ∈ B1. From [t, e] ∈ B1 it follows that e = eij,
(i, t) ∈ K and t · e = j. Similarly, from [t · e, f ] = [j, f ] ∈ B1 it follows that
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f = ekl for some k ∈ I, and that (k, j) ∈ K. From (k, j) ∈ K and (G5) we
have e f = eijekl ∈ Hil , and so (i, l) ∈ K. By (G5) we have f e ∈ Hkj, and,
since f e is an idempotent, f e = ekj. Now {e, f } ∩ {e f , f e} implies that i = k
or j = l (or both). If i = k, using (15), we have

[t, e] = [t, eij] = f−1
it fij,

[t · e, f ] = [j, eil ] = f−1
ij fil ,

[t, e f ] = [t, eil ] = f−1
it fil ,

and (20) follows readily. Similarly, if j = l, we have [t, e] = [t, e f ] = f−1
it fij

and [t · e, f ] = [j, ekj] = 1 (by (13)), and (20) follows again.
Case 2: [t, e], [t · e, f ] ∈ B1, [t, e f ] ∈ B2. In Case 1 we have only used the

assumptions that [t, e], [t · e, f ] ∈ B1, and it then followed that [t, e f ] ∈ B1 as
well. Hence the present case cannot occur.

Case 3: [t, e], [t, e f ] ∈ B1, [t · e, f ] ∈ B2. Utilise [t, e], [t, e f ] ∈ B1 to get:

e = eij, (i, t) ∈ K, t · e = j, e f = eil , j · f = l.

From e f f = e f it follows that f e f is an idempotent L -related to e f , say
f e f = ekl . Now f ekl = ekl , and hence f x = x for all x ∈ Rk. Furthermore,
notice that H1jekl = H1j f e f = H1le f = H1l ; hence by (G5) we have (k, j) ∈
K. From Lemma 3.3 (ii) we have [j, f ] = [j, ekl ]. Using (15) we have

[t, e] = [t, eij] = f−1
it fij,

[t · e, f ] = [j, f ] = [j, ekl ] = f−1
kj fkl ,

[t, e f ] = [t, eil ] = f−1
it fil .

Recall that we have {e, f } ∩ {e f , f e} 6= ∅. If e f = e we have j = l and (20)
follows immediately. The case e f = f does not occur, as (i, j) ∈ K would
imply [t · e, f ] = [j, f ] ∈ B1. If f e = e we have i = k and (20) follows. Finally,
the case f e = f would imply f = ekj and l = j, and hence [j, f ] ∈ B1, which
is impossible.

Case 4: [t, e] ∈ B2, [t · e, f ], [t, e f ] ∈ B1. Let t · e = j. From [t · e, f ] ∈ B1
it follows that f = eil for some l ∈ J and that (i, j) ∈ K. Since [t, e f ] ∈ B1
we have e f ∈ Lte f = Lt·e f = Ll , hence e f = ekl for some k ∈ I, and also
(k, t) ∈ K. From eeil = e f = ekl it follows by (G1), (G3) that eHij = Hkj.
Furthermore eije = eij and so eeij is an idempotent by (G10); hence (k, j) ∈
K. Note that e, (k, t) and (k, j) satisfy the condition from Lemma 3.3 (i).
Hence Lemmas 3.3 (ii) and 3.1 give

[t, e] = [t, ekj] = f−1
kt fkj,

[t · e, f ] = [j, eil ] = f−1
ij fil ,

[t, e f ] = [t, ekl ] = f−1
kt fkl .
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As usual, we have {e, f } ∩ {e f , f e} 6= ∅. We cannot have e f = e as it im-
plies [t, e] ∈ B1. Neither can we have f e = e, as it implies e f Re (by (G10)),
and again [t, e] ∈ B1. If e f = f then i = k and (20) follows immediately.
If f e = f it follows that l · e = l, so that (i, k; j, l) is a singular square (be-
longing to ΣUD, singularised by e), and hence the relation f−1

ij fil = f−1
kj fkl

belongs to (18). Now we have:

[t, e][t · e, f ] = f−1
kt fkj f−1

ij fil = f−1
kt fkj f−1

kj fkl = f−1
kt fkl = [t, e f ].

Case 5: [t, e], [t · e, f ] ∈ B2, [t, e f ] ∈ B1. Let t · e = j and j · f = l. From
e f ∈ B1 it follows that e f ∈ Lte f = Ll so that e f = eil , and also (i, t) ∈ K.
Since ee f = e f it follows that ex = x for all x ∈ Ri, and thus (i, j) ∈ K and
eite = eij by (G10). From e f f = e f and (G10) it follows that f e f = f eil =
ekl ∈ Ll for some k ∈ I. Next note that H1jekl = H1j f e f = H1le f = H1l , since
e f ∈ Ll and (G7). It follows by (G5) that (k, j) ∈ K. Regarding e f and f e the
following cases cannot occur: e f = e because it implies [t, e] ∈ B1; e f = f
because it implies [t · e, f ] ∈ B1; f e = f because it implies f = f e f = ekl and
so [t · e, f ] ∈ B1. In the remaining case f e = e we have ekl = f e f = e f = eil
so that i = k, and then the customary combination of (14) and (15) gives

[t, e][t · e, f ] = [t, eij][j, ekl ] = f−1
it fij f−1

kj fkl = f−1
it fij f−1

ij fil = f−1
it fil = [t, e f ].

Case 6: [t, e], [t, e f ] ∈ B2, [t · e, f ] ∈ B1. Let t · e = j. Use [t · e, f ] ∈ B1
to deduce f = eil for some l ∈ J, and also (i, j) ∈ K. From eije = eij and
(G10) deduce eeij = ekj for some k ∈ I. By (G1), (G3), we have e f = eeil ∈
Hkl . But e f is an idempotent, and so (k, l) ∈ K and e f = ekl . Next note
H1tekl = H1te f = H1j f = H1l , so that by (G5) we have (k, t) ∈ K. This in
turn implies [t, e f ] ∈ B1, a contradiction.

Case 7: [t, e] ∈ B1, [t · e, f ], [t, e f ] ∈ B2. From [t, e] ∈ B1 deduce e = eij
and (i, t) ∈ K. Let j · f = l ∈ J. Then e f ∈ Hij f = Hil . But e f ∈ E, so
(i, l) ∈ K and e f = eil . But that implies [t, e f ] ∈ B1, a contradiction.

Case 8: [t, e], [t · e, f ], [t, e f ] ∈ B2. Let t · e = j and j · f = l. By Lemma
3.3 there exists i ∈ I such that e f x = x for all x ∈ Ri, (i, t), (i, l) ∈ K and
[t, e f ] = [t, eil ]. Since e f stabilises Ri pointwise on the left, it follows that
e does so as well. By (G10) the element eite ∈ Hij is an idempotent, thus
(i, j) ∈ K, and [t, e] = [t, eij] by Lemma 3.3. Since f stabilises Ll pointwise
on the right, it follows by (G10) that f eil = ekl for some k ∈ I. Next note
that H1jekl = H1j f eil = H1leil = H1l , and so (k, j) ∈ K by (G5). Also from
ekl = f eil we have that f stabilises Rk pointwise on the left, and ekj f = ekl ,
so that [t · e, f ] = [j, f ] = [j, ekl ] by Lemma 3.3. So now we have:

[t, e] = f−1
it fij, [t · e, f ] = f−1

kj fkl , [t, e f ] = f−1
it fil .

Let us also record that f Ri = Rk, and eRk = e f Ri = Ri. Consider now the
different possibilities for e f and f e.
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8.1: e f = e. We have j = j · e = j · e f = l, so that [t · e, f ] = 1, and (20)
follows.

8.2: e f = f . From Ri = e f Ri = f Ri = Rk we have i = k, and (20)
follows easily by cancellation of terms.

8.3: f e = e. We again have Ri = eRi = f eRi = f Ri = Rk and (20)
follows as in 8.2.

8.4: f e = f . Now we have l · e = j · f e = j · f = l. Hence (k, i; j, l) ∈ ΣUD
(singularised by e), and the relation f−1

kj fkl = f−1
ij fil is in (14). Now we have

[t, e][t · e, f ] = f−1
it fij f−1

kj fkl = f−1
it fij f−1

ij fil = f−1
it fil = [t, e f ].

This exhausts all the cases and completes the proof of the lemma.

Now we are going to use Lemmas 3.1–3.6 to transform the presentation
(9), (10), (11) for H to an equivalent presentation. First use Lemmas 3.1,
3.3, 3.5 to add all the relations (15), (14), (18) to our presentation. Then use
Lemma 3.6 to remove the redundant relations (11).

Next we would like to use relations (14) to eliminate all the genera-
tors from B2. However, note that there may be more than one relation (14)
involving the same generator [t, e] ∈ B2. Suppose we have two such re-
lations [t, e] = [t, eij] and [t, e] = [t, ekj], and that we decide to use the
former to eliminate [t, e]. This yields a new relation [t, eij] = [t, ekj], i.e.
f−1
it fij = f−1

kt fkj. Recall that here i and k both satisfy the condition of part (i)
of Lemma 3.3, which is easily seen to imply that (i, k; t, j) ∈ ΣLR, and so the
above relation belongs to (18). Therefore we may indeed eliminate all the
generators from B2 and all the relations from (14). Moreover, since no other
remaining relations contain generators from B2, they remain unchanged
after this elimination.

Next we turn to eliminating the generators from B1 other than the fij.
This is done using (15). The only relations that remain from this group are
those where t = j(i), and they are clearly equivalent to fi,j(i) = 1 (i ∈ I).
Also, after this substitution, every relation [j, eil ] = 1 from (10) becomes
fij = fil .

We have completed the proof of the following main theorem of this sec-
tion, which essentially says that the maximal subgroups of free idempotent
generated semigroups are defined by the relations arising from singular
squares:

Theorem 5. Let S be a semigroup with a non-empty set of idempotents E, let
IG(E) be the corresponding free idempotent generated semigroup, let e11 ∈ E be
arbitrary, and let H be the maximal subgroup of e11 in IG(E). With the rest of
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notation as introduced throughout this section, a presentation for H is given by

〈 fij ((i, j) ∈ K) | fij = fil ((i, j), (i, l) ∈ K, rjeil = rj·eil ), (21)

fi,j(i) = 1 (i ∈ I), (22)

f−1
ij fil = f−1

kj fkl ((i, k; j, l) ∈ Σ)〉. (23)

4 Outline of the method

The environment semigroup BI,J

There are two ways to compose mappings from a set X into itself: from left
to right and from right to left; we denote the two resulting semigroups by
TX and Top

X respectively (or Tn and Top
n if X = {1, . . . , n}). All the semi-

groups we are going to construct will be subsemigroups of some

BI,J = Top
I × TJ .

A typical element of β ∈ BI,J has the form β = (β(1), β(2)). To aid remem-
bering the different orders in which compositions are formed we will write
β(1) to the left of its argument, and β(2) to the right. The semigroup BI,J has
a unique minimal ideal

RI,J = {ρij = (ρi, ρj) : i ∈ I, j ∈ J},

where

ρi : I → I, x 7→ i,
ρj : J → J, x 7→ j,

are the constant maps. The multiplication in RI,J works as follows:

ρijρkl = ρil ,

i.e. RI,J is an I× J rectangular band. The semigroup BI,J is in fact the transla-
tional hull of RI,J (see [17]), an important background fact for our discussion,
even though it will not be explicitly used in any of the arguments.

Maximal subgroups in the minimal ideal

In each of the two constructions to be described in Sections 5, 6 we work
with a semigroup S satisfying:

(S1) RI,J ≤ S ≤ BI,J .

13



In each instance we will want to determine the maximal subgroup H of
IG(E(S)) containing ρ11.

The fact that ρ11 is in a rectangular band minimal ideal of S implies
some further simplifications to the general presentation given in Theorem
5, which we outline here. First note that now K = I × J, and so our gener-
ating set is simply

fij (i ∈ I, j ∈ J). (24)

Next, note that for every i ∈ I the element j(i) can be simply taken to be
1, whereupon relations (22) become fi1 = 1 (i ∈ I). The words r1 = ε,
rj = ρ1j (1 6= j ∈ J) clearly form a Schreier system of representatives. With
this system, relations (21) become 1 = f11 = f1l (1 6= l ∈ J). So the group
H = H(IG(E(S)), ρ11) is defined by the presentation

〈 fij (i ∈ I, j ∈ J) | f1j = fi1 = 1 (i ∈ I, j ∈ J), (25)

f−1
ij fil = f−1

kj fkl ((i, k; j, l) ∈ Σ))〉. (26)

Since our semigroups consist of (pairs of) mappings and the D-class
under consideration consists of (pairs of) constant mappings, the definition
of singular squares can be conveniently recast as follows:

Σ = ΣLR ∪ ΣUD

ΣLR = {(i, k; j, l) ∈ I × I × J × J :

(∃β ∈ E(S))(β(1)(i) = i & β(1)(k) = k & jβ(2) = lβ(2) = j)}
ΣUD = {(i, k; j, l) ∈ I × I × J × J :

(∃β ∈ E(S))(β(1)(i) = β(1)(k) = i & jβ(2) = j & lβ(2) = l)}.

(27)

To aid understanding of the forthcoming considerations, let us high-
light the relations produced by certain distinguished types of singular
squares. For example, a square (1, i; 1, j) ∈ Σ yields the relation f−1

11 f1j =
f−1
i1 fij, which, keeping in mind (25), is equivalent to fij = 1. A singular

square of the form (1, i; j, l) yields the relation fij = fil , while the square
(i, k; 1, j) yields fij = fkj. Let us call these three types the corner, flush top
and flush left squares, respectively.

One further type of square will be utilised: Suppose that (i, k; j, l) ∈ Σ
and that we already know that fij = 1 (e.g. by virtue of a corner square
involving i and j). Then the relation (26) becomes fkj fil = fkl . Let us call
this a 3/4 square. All four different types of singular squares are illustrated
in Figure 1.

The method

Let us outline the features and reasoning common to both forthcoming con-
structions. We will start with a group G, which ultimately we want to re-
alise as a maximal subgroup of the free idempotent generated semigroup
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Figure 1: The four distinguished types of singular squares, and the relations
they yield.
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arising from some semigroup S. In each instance we will introduce an aux-
iliary matrix

Y = (yij)I×J , (28)

with entries from a generating set for G. Aided by this auxiliary matrix,
we define a collection of idempotents from BI,J , which, together with RI,J ,
generate S. We then examine the presentation given in (25), (26) and prove
that it indeed defines our initial group G. This we do by performing the
following steps. First we consider certain idempotents from S \ RI,J such
that the (corner and flush) squares singularised by them allow us to prove:

(Rel1) fij = fkl whenever yij = ykl .

At this stage we may identify each letter fij with the corresponding entry yij
(considered also as a letter, and not as a group element). Then we consider
certain further idempotents such that:

(Rel2) The (3/4) squares singularised by these idempotents yield (after the
identification above) a set of relations which define G.

The argument is completed by a ‘bookkeeping step’, which ensures that we
do get the group G and not a proper homomorphic image:

(Rel3) Check (by considering every idempotent and every square singu-
larised by it) that every other relation from (25), (26) holds in G.

It in fact turns out that the auxiliary matrix Y yields a natural Rees
matrix representation (see [11, Section 3.2])M[H11; I, J; P] for the minimal
ideal D of IG(E), with the structure matrix P = (pji)J×I given by pji = y−1

ij .

5 First construction

In this section we present our first construction, which proves Theorems 1
and 2. In fact, we will present the construction in the finitely presented case
(Theorem 2), and then remark that obvious trivial changes adapt it to the
general case (Theorem 1).

So let G be any finitely presented group. It is well known that G can be
defined by a presentation of the form

G = 〈a1, . . . , ap | b1c1 = d1, . . . , bqcq = dq〉, (29)

where br, cr, dr ∈ {a1, . . . , ap} for all r = 1, . . . , q. This essentially follows
from the fact that a ‘long’ relator x1x2 . . . xs (s > 3) can be replaced by two
shorter relators x1x2y−1 and yx3 . . . xs, at the expense of introducing a new,
redundant generator y.
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Let us set

m = 1 + 2q, n = 1 + p + 2q, I = {1, . . . , m}, J = {1, . . . , n}. (30)

The auxiliary matrix (see Section 4) is:

Y = (yij)m×n =



1 1 1 . . . 1 1 1 1 1 . . . 1 1
1 a1 a2 . . . ap 1 c1 1 1 . . . 1 1
1 a1 a2 . . . ap b1 d1 1 1 . . . 1 1
1 a1 a2 . . . ap 1 1 1 c2 . . . 1 1
1 a1 a2 . . . ap 1 1 b2 d2 . . . 1 1

...
...

. . .
...

1 a1 a2 . . . ap 1 1 1 1 . . . 1 cq
1 a1 a2 . . . ap 1 1 1 1 . . . bq dq


.

(31)
Next we define a family of idempotents which, together with Rm,n, will

be used to generate S:

σu = (σ
(1)
u , σ

(2)
u ) (u = 2, . . . , m),

τu = (τ
(1)
u , τ

(2)
u ) (u = 1, . . . , q),

(32)

where

σ
(1)
u (x) =

{
1 if x = 1
u if x 6= 1

(33)

xσ
(2)
u =

{
x if 1 ≤ x ≤ p + 1
r + 1 if x > p + 1 and yu,x = ar

(34)

(with the convention that a0 = 1), and

τ
(1)
u (x) =

{
2u + 1 if x = 2u + 1
2u if x 6= 2u + 1

(35)

xτ
(2)
u =

{
p + 2u if x = p + 2u, p + 2u + 1
1 otherwise.

(36)

Let us interrupt our exposition at this point in order to illustrate the
construction thus far by means of a concrete example. Let us take G to be
the Klein bottle group

G = 〈a, b | a−1ba = b−1〉.

By introducing a redundant generator c = ba we obtain the following pre-
sentation

G = 〈a, b, c | ba = c, cb = a〉,
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which has the form (29). Thus here p = 3, q = 2, m = 5, n = 8, and the
auxiliary matrix is

Y =


1 1 1 1 1 1 1 1
1 a b c 1 a 1 1
1 a b c b c 1 1
1 a b c 1 1 1 b
1 a b c 1 1 c a

 .

The only definition from (33)–(36) that is perhaps not entirely straight-
forward is (34). So let us compute σ

(2)
3 . Its image is {1, 2, 3, 4}, and it acts

identically on it. Each of the remaining columns is mapped into that im-
age column which has the same 3rd entry. The 3rd entries for columns 5,
6, 7, 8 are b, c, 1, 1 respectively, and so 5, 6, 7, 8 are mapped to 3, 4, 1, 1
respectively.

The complete list of our idempotents is:

σ
(1)
2 =

(
1 2 3 4 5
1 2 2 2 2

)
σ

(2)
2 =

(
1 2 3 4 5 6 7 8
1 2 3 4 1 2 1 1

)
σ

(1)
3 =

(
1 2 3 4 5
1 3 3 3 3

)
σ

(2)
3 =

(
1 2 3 4 5 6 7 8
1 2 3 4 3 4 1 1

)
σ

(1)
4 =

(
1 2 3 4 5
1 4 4 4 4

)
σ

(2)
4 =

(
1 2 3 4 5 6 7 8
1 2 3 4 1 1 1 3

)
σ

(1)
5 =

(
1 2 3 4 5
1 5 5 5 5

)
σ

(2)
5 =

(
1 2 3 4 5 6 7 8
1 2 3 4 1 1 4 2

)
τ

(1)
1 =

(
1 2 3 4 5
2 2 3 2 2

)
τ

(2)
1 =

(
1 2 3 4 5 6 7 8
1 1 1 1 5 5 1 1

)
τ

(1)
2 =

(
1 2 3 4 5
4 4 4 4 5

)
τ

(2)
2 =

(
1 2 3 4 5 6 7 8
1 1 1 1 1 1 7 7

)
.

Returning to our general argument, let S be the subsemigroup of Bm,n
generated by the idempotents σu (u = 2, . . . , m), τu (u = 1, . . . , q) and Rm,n.
We start working towards accomplishing (Rel1) (see Section 4) by identify-
ing the squares singularised by the idempotent σu (u = 2, . . . , m) and the
relations these squares yield. Beginning with the left-right squares, notice
that im(σ

(1)
u ) = {1, u}, and so a typical square singularised has the form

(1, u; r + 1, l) where 0 ≤ r ≤ p, l > p + 1 and yu,l = ar. This is a flush top
square, and yields the relation

ful = fu,r+1 (2 ≤ u ≤ m, p + 1 < l < n, 0 ≤ r ≤ p, yul = ar). (37)

The up-down squares singularised by σ2 are of the form (2, i; j, l) (2 < i ≤
m, 1 ≤ j < l ≤ p + 1). For j = 1 we obtain a flush left square (2, i; 1, l),
which yields the relation

fil = f2l (2 < i ≤ m, 1 < l ≤ p + 1). (38)
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A general up-down square singularised by any σu has the form (u, i; j, l)
(2 ≤ i ≤ m, i 6= u, 1 ≤ j < l ≤ p + 1) and the relation it yields is an easy
consequence of (38):

f−1
uj ful = f−1

2j f2l = f−1
ij fil .

We see that the squares singularised by σu (2 ≤ u ≤ m) allow us pre-
cisely to deduce (Rel1): A typical generator fij is equal to an appropriate
fi,j1 (with 1 ≤ j1 ≤ p + 1) by (37), which in turn is equal to its ‘canonical
representative’ f2,j1 by (38). So from now on we identify each generator fij
with yij.

Let us now examine the squares singularised by τu (u = 1, . . . , q). The
most important such square is (2u, 2u + 1; p + 2u, p + 2u + 1). It is a left-
right 3/4 square, since under our identification f2u,p+2u = y2u,p+2u = 1, and
yields the relation

bucu = du (u = 1, . . . , q). (39)

Every other left-right square for τu is flush left (2u, 2u + 1; 1, j) (j 6= 1, 2u, 2u +
1), yielding either aj−1 = aj−1 (for j ≤ p + 1) or 1 = 1 (for j > p + 1). The
up-down squares have the form (2u, i; 1, p + 2u) (i 6= 2u + 1), and yield the
trivial relation 1 = 1.

At this stage we have accomplished step (Rel2), and have precisely a
presentation defining G. Furthermore we have examined all the squares
singularised by σ2, . . . , σm, τ1, . . . , τq. So, to verify (Rel3), i.e. prove that no
further relations are introduced, it is sufficient to prove that S contains no
further idempotents:

E(S) = Rm,n ∪ {σ2, . . . , σm, τ1, . . . , τq}. (40)

In order to prove (40), let us examine products of σs and τs of length 2.
Clearly, σ

(1)
u σ

(1)
v = σ

(1)
u for any u, v ∈ {2, . . . , m}. Next note that im(σ

(2)
u ) =

{1, . . . , p + 1}, and that σ
(2)
v acts identically on it. Hence σ

(2)
u σ

(2)
v = σ

(2)
u ,

and we conclude that
σuσv = σu. (41)

Let us now examine the product τuτv (1 ≤ u, v ≤ q). If u = v then of
course τuτv = τu; so let us suppose u 6= v. Since im(τ

(1)
v ) = {2v, 2v + 1},

and both these points are mapped to 2u by τ
(1)
u , it follows that τ

(1)
u τ

(1)
v =

ρ2u, the constant mapping with value 2u. A similar argument shows that
τ

(2)
u τ

(2)
v = ρ1, the constant 1. Hence

τuτv =
{

τu if u = v
ρ2u,1 if u 6= v.

(42)

A very similar argument shows that

σuτv = ρu,1. (43)
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Finally, let us consider the product τuσv. On the left we have

τ
(1)
u σ

(1)
v =

{
ρ2u if v 6= 2u + 1
µ if v = 2u + 1,

where

µ(x) =
{

2u if x = 1
2u + 1 if x 6= 1.

Note that µ is not an idempotent, since

µ(µ(1)) = 2u + 1 6= 2u = µ(1).

On the right τ
(2)
u σ

(2)
v is either constant ρ1, or else it maps {p + 2u, p + 2u +

1} onto some r ∈ {2, . . . , p + 1}, and everything else, including r, to 1, in
which case it is not an idempotent. So we conclude that

τuσv = ρ2u,1 ∈ Rm,n or τuσv 6∈ E(S). (44)

From (41)–(44) we see that the only products of length 2 of generators
of S that are not in Rm,n ∪ {σ2, . . . , σm, τ1, . . . , τq} are some of τuσv, and that
these products are not idempotent. It is now straightforward to see that
no product of length greater than 2 is going to produce any further new
elements of S, and hence that (40) indeed holds. This completes the proof
of (Rel3), and we can conclude that

H(IG(E(S)), ρ11) ∼= G,

proving Theorem 2.
Theorem 1 is proved in exactly the same way. We just omit the assump-

tion that G be finitely presented, at the expense of allowing the presentation
(29) to become infinite. This in turn makes the index sets I and J, the family
of idempotents σu, τv, and ultimately the semigroup S, infinite. Alterna-
tively, Theorem 1 can be deduced as a corollary of Theorem 3, which will
be proved in the next section.

6 Second construction

The semigroup S constructed in Section 5 is not regular: the non-constant
products τuσv are easily seen to be non-regular. Furthermore, there does
not exist a regular semigroup S′ with the same set of idempotents as S.
Indeed, for τu and σv as above, the sandwich set S(τu, σv) is easily seen to
be empty, implying that E(S) is not a regular biordered set; see [13] or [11,
Proposition 2.5.1]. So, in order to prove Theorems 3 and 4 we introduce a
new construction.

This construction has two advantages over that described in the previ-
ous section: it is in a sense more compact, and it always yields a regular
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semigroup. Its main disadvantage is that the constructed semigroup is fi-
nite if and only if the input group is finite.

Let G be an arbitrary group, let N be its (possibly infinite) order, and let
n = N2. We will work inside the semigroup B3,n = Top

3 × Tn, which has the
3× n rectangular band R3,n as its minimal ideal. The corresponding gener-
ators for the maximal subgroup containing ρ11, as introduced in Section 4,
are

fij (i = 1, 2, 3; j = 1, . . . , n) (45)

with
f1j = fi1 = 1 (i = 1, 2, 3; j = 1, . . . , n). (46)

The auxiliary matrix this time is

Y = (yij)3×n =

 1 1 1 . . . 1
1 y22 y23 . . . y2n
1 y32 y33 . . . y3n

 .

Its entries are the elements of G, arranged arbitrarily subject to the condi-
tion that every possible column appears (once and only once):

{(1, y2j, y3j) : j = 1, . . . , n} = {(1, g, h) : g, h ∈ G}. (47)

In fact, in what follows we will sometimes identify the index set J = {1, . . . , n}
and the set {(1, g, h) : g, h ∈ G} of all columns of Y. When we do want
to distinguish between the two sets we will write Yj for the jth column:
Yj = (1, y2j, y3j). The index set I is, of course, just {1, 2, 3}.

Now we proceed to define our extra idempotents. There are six of them

σu = (σ
(1)
u , σ

(2)
u ) (u = 1, . . . , 6), (48)

and are given by

σ
(1)
1 =

(
1 2 3
1 2 2

)
σ

(2)
1 : (1, g, h) 7→ (1, g, g)

σ
(1)
2 =

(
1 2 3
1 2 1

)
σ

(2)
2 : (1, g, h) 7→ (1, g, 1)

σ
(1)
3 =

(
1 2 3
1 1 3

)
σ

(2)
3 : (1, g, h) 7→ (1, 1, h)

σ
(1)
4 =

(
1 2 3
1 3 3

)
σ

(2)
4 : (1, g, h) 7→ (1, h, h)

σ
(1)
5 =

(
1 2 3
2 2 3

)
σ

(2)
5 : (1, g, h) 7→ (1, 1, hg−1)

σ
(1)
6 =

(
1 2 3
3 2 3

)
σ

(2)
6 : (1, g, h) 7→ (1, gh−1, 1).
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Note that only σ
(2)
5 and σ

(2)
6 actually depend on the group G.

Let us illustrate this with an example. We take

G = K4 = 〈a, b | a2 = b2 = 1, ab = ba〉 = {1, a, b, c},

the Klein four-group. The index sets are I = {1, 2, 3} and J = {1, . . . , 16},
and the auxiliary matrix is

Y =

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 a a a a b b b b c c c c
1 a b c 1 a b c 1 a b c 1 a b c

 .

If we want to compute, say, (12)σ
(2)
6 we proceed as follows. Take the 12th

column of Y – that is (1, b, c). Transforming it via (1, g, h) 7→ (1, gh−1, 1)
yields (1, a, 1), which is column 5. Thus (12)σ

(2)
6 = 5.

The full list of all the mappings is:

σ
(1)
1 =

(
1 2 3
1 2 2

)
σ

(2)
1 =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 1 1 6 6 6 6 11 11 11 11 16 16 16 16

)
σ

(1)
2 =

(
1 2 3
1 2 1

)
σ

(2)
2 =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 1 1 5 5 5 5 9 9 9 9 13 13 13 13

)
σ

(1)
3 =

(
1 2 3
1 1 3

)
σ

(2)
3 =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

)
σ

(1)
4 =

(
1 2 3
1 3 3

)
σ

(2)
4 =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 6 11 16 1 6 11 16 1 6 11 16 1 6 11 16

)
σ

(1)
5 =

(
1 2 3
2 2 3

)
σ

(2)
5 =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 2 1 4 3 3 4 1 2 4 3 2 1

)
σ

(1)
6 =

(
1 2 3
3 2 3

)
σ

(2)
6 =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 5 9 13 5 1 13 9 9 13 1 5 13 9 5 1

)
.

If we were to change the group G, say to G = C4 = 〈a | a4 = 1〉 =
{1, a, a2, a3} = {1, a, b, c}, the cyclic group of order 4, only the mappings
σ

(2)
5 and σ

(2)
6 would change:

σ
(2)
5 =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 4 1 2 3 3 4 1 2 2 3 4 1

)
σ

(2)
6 =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 13 9 5 5 1 13 9 9 5 1 13 13 9 5 1

)
.

We now return to the main argument. A routine verification shows
that the semigroup generated by {σu : u = 1, . . . , 6} has 21 elements:
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σu (u = 1, . . . , 6) themselves, three elements ρ11, ρ21, ρ31 belonging to the
minimal ideal R3,n, and twelve further elements:

σ7 = σ1σ3 = (
(

1 2 3
1 1 2

)
, (1, g, h) 7→ (1, 1, g))

σ8 = σ2σ5 = (
(

1 2 3
2 2 1

)
, (1, g, h) 7→ (1, 1, g−1))

σ9 = σ3σ6 = (
(

1 2 3
3 1 3

)
, (1, g, h) 7→ (1, h−1, 1))

σ10 = σ4σ2 = (
(

1 2 3
1 3 1

)
, (1, g, h) 7→ (1, h, 1))

σ11 = σ5σ4 = (
(

1 2 3
2 3 3

)
, (1, g, h) 7→ (1, hg−1, hg−1))

σ12 = σ6σ1 = (
(

1 2 3
3 2 2

)
, (1, g, h) 7→ (1, gh−1, gh−1))

σ13 = σ1σ3σ6 = (
(

1 2 3
2 1 2

)
, (1, g, h) 7→ (1, g−1, 1))

σ14 = σ2σ5σ4 = (
(

1 2 3
2 1 1

)
, (1, g, h) 7→ (1, g−1, g−1))

σ15 = σ3σ6σ1 = (
(

1 2 3
3 1 1

)
, (1, g, h) 7→ (1, h−1, h−1))

σ16 = σ4σ2σ5 = (
(

1 2 3
3 3 1

)
, (1, g, h) 7→ (1, 1, h−1))

σ17 = σ5σ4σ2 = (
(

1 2 3
2 3 2

)
, (1, g, h) 7→ (1, hg−1, 1))

σ18 = σ6σ1σ3 = (
(

1 2 3
3 3 2

)
, (1, g, h) 7→ (1, 1, gh−1)).

The elements {σ1, . . . , σ18} form a single D-class D illustrated in Figure 2.
It follows that the semigroup

S = 〈R3,n ∪ {σ1, . . . , σ6}〉 = R3,n ∪ D ≤ B3,n

has the following properties:

• S is regular;

• S has two D-classes: R3,n and D;

• S has precisely six idempotents (σ1, . . . , σ6) outside R3,n;

• S is finite if and only if R3,n is finite, which is the case if and only if G
is finite.
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Figure 2: The D-class D, with the idempotents circled.

We now follow the process outlined in Section 4 to prove that the max-
imal subgroup of IG(E(S)) containing ρ11 ∈ R3,n is isomorphic to G. So far
we have got the generators (45) and relations (46). Any further relations
arise from the squares singularised by σu, u = 1, . . . , 6.

Since im(σ
(1)
1 ) = {1, 2} it follows that the left-right squares singularised

by σ1 are of the form (1, 2; j, l), where Yj = (1, g, g), Yl = (1, g, h) for some
g, h ∈ G. These are flush top squares yielding the relations

f2j = f2l (whenever y2j = y2l). (49)

The left-right squares singularised by σ2 yield exactly the same relations,
while those singularised by σ3 and σ4 yield

f3j = f3l (whenever y3j = y3l). (50)

Next note that im(σ
(2)
1 ) = {(1, g, g) : g ∈ G}; so the up-down squares sin-

gularised by σ1 have the form (2, 3; j, l), where Yj = (1, g, g), Yl = (1, h, h).
For j = 1 we obtain the flush left square (2, 3; 1, l), yielding the relation

f2l = f3l (whenever y2l = y3l). (51)

The relation f−1
2j f2l = f−1

3j f3l produced from a general square (2, 3; j, l) is an
easy consequence of (51).

Combining (49), (50), (51) together gives us precisely the relations

fij = fkl (whenever yij = ykl), (52)

i.e. we have completed step (Rel1), and can identify each generator fij with
the entry yij of the auxiliary matrix (considered as a formal symbol).

The up-down squares singularised by σ2, σ3, σ4 do not yield any rela-
tions over and above (52). So there remains to analyse the relations yielded
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by σ5 and σ6. From im(σ
(1)
5 ) = {2, 3} it follows that the left-right squares

singularised by σ5 are of the form (2, 3; j, l), where Yj = (1, 1, hg−1) and
Yl = (1, g, h). This is a 3/4 square yielding the relation (hg−1) · g = h.
Clearly, as g and h range through G, we obtain the Cayley table of G (con-
sidered as a presentation), accomplishing (Rel2). The up-down squares for
σ5 have the form (2, 1; j, l), where Zj = (1, 1, g) and Zl = (1, 1, h), and yield
the trivial relation 1 = 1. Likewise, σ6 yields no further relation. Since S
has no further idempotents, we have accomplished (Rel3). This completes
the proof of Theorems 3 and 4.

7 Concluding remarks

During the work on this project we have implemented in GAP [3] the Rei-
demeister–Schreier type rewriting process described in Section 2 and used
in Section 3. This has enabled us to gather considerable ‘experimental
data’ and test several early conjectures. The output from any Reidemeister–
Schreier type rewriting has a large number of generators and defining rela-
tions. Thus, the Tietze Transformations programme, which is a part of the
standard GAP distribution, and which is in the GAP manual credited back
to the work of Havas, Robertson et al. [8, 9, 18], proved an invaluable tool.

It is well known that there exists a finitely presented group with an
unsolvable word problem. Combining such a group with Theorem 2 yields:

Corollary. There exists a free idempotent generated semigroup F arising from a
finite semigroup such that the word problem for F is unsolvable.

Such a free idempotent generated semigroup F would be non residually
finite and non-automatic as well.

The main open question remaining, as mentioned in the Introduction,
is:

Problem 1. Is it true that every finitely presented group is a maximal sub-
group of some free regular idempotent generated semigroup arising from
a finite semigroup?

All our examples were obtained by first fixing a rectangular band R, and
then constructing our semigroup S as an ideal extension of R. We remark
that for any fixed finite R we can obtain only finitely many maximal sub-
groups in free idempotent semigroups arising from ideal extensions from
R. Indeed, R determines the generators of the maximal subgroups, and
the relators arise from singular squares, and there are only finitely many of
them. Thus we are lead to ask:

Problem 2. Given a finite 0-simple semigroup R and and idempotent e ∈ R,
describe all the groups which arise as maximal subgroups containing e of
the free idempotent semigroups IG(S) where S is a finite ideal extension of
R.
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