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Abstract

The Salvador/Warts/Hippo (Hippo) pathway defines a novel signalling cas-

cade regulating cell contact inhibition, organ size control, cell growth, prolif-

eration, apoptosis and cancer development in mammals. The Hippo pathway

was initially utilised in D. melanogaster, where the Expanded protein acts in

the Hippo signalling cascade to control organ size. Willin is the proposed

human orthologue of Expanded and the aim of this thesis is to investigate

whether willin can activate the mammalian Hippo signalling pathway.

Ectopic willin expression causes an increase in phosphorylation of the core

Hippo signalling pathway components MST1/2, LATS1 and YAP, an effect

which can be antagonised by ezrin. In MCF10A cells, willin over-expression

antagonises a YAP-induced epithelial-to-mesenchymal transition via the N-

terminal FERM (Four-point-one Ezrin Radixin Moesin) domain of willin. Pre-

liminary results show that willin is expressed within the sciatic nerve of rat

and mice, and within the neuromast cells in the zebrafish; suggesting that

willin and the Hippo pathway may play a vital role in the developmental reg-

ulation within the peripheral nervous system. To conclude, willin influences

Hippo signalling activity by activating the core Hippo pathway kinase cassette

in mammalian cells.

Science never solves a problem without creating ten more . . .

George Bernard Shaw
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Chapter 1

Introduction

1.1 FERM domain proteins modulation on

cell growth in mammals

1.1.1 FERM domain family of proteins

The band 4.1 superfamily of proteins consists of a group of proteins that con-

tain a highly conserved Four point one Ezrin Radixin Moesin (FERM) domain.

FERM domains occur in numerous membrane associated signalling and cy-

toskeletal proteins, in which they act as multifunctional proteins. The FERM

superfamily of proteins can be classified into FERM domain families based on

sequence analysis. Many FERM domain containing protein family members

exist and include: merlin, ERM proteins (Ezrin, Radixin, Moesin), Band 4.1,

talin related proteins, expanded, protein tyrosine phosphatases (PTP) and

myosin (Bretscher et al., 2002; Sun et al., 2002) (Figure 1.1). For the purpose

of this thesis, the focus will be on expanded, merlin, ERM proteins and a novel

FERM domain containing protein called willin.

1.1.2 A closer look at the FERM domain

The FERM domain is usually found within the N-terminus of the 4.1 superfam-

ily of proteins, with the exception of myosin: where the FERM domain is lo-

cated within the C-terminus (Chishti et al., 1998) (Figure 1.1). The FERM do-

main is a cysteine rich hydrophobic protein module of around 300 amino acids

in length that is able to bind to various plasma membrane receptors (Conboy,

1986). Structural studies of the FERM domain have revealed three distinct

1
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subdomains termed F1, F2 and F3 (Edwards and Keep, 2001), which interact

together to form a globular clover-leaf-shaped structure (Hamada et al., 2000;

Pearson et al., 2000) (Figure 1.1). F1 has a ubiquitin-like structure containing

a Ras-binding domain; F2 has an acyl-CoA binding protein-like structure; and

F3 contains a phosphotyrosine binding (PTB), a pleckstrin homology (PH) and

an Enabled/VASP Homology 1 (EVH1) domain (Hamada et al., 2000; Pearson

et al., 2000).
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Figure 1.1: Schematic representation of FERM domain containing superfamily of
proteins. Image taken from Bretscher et al. (2002).
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The FERM domain of the 4.1 superfamily of proteins has been shown to

bind to a diverse range of molecules such as phosphoinositols (Martel et al.,

2001), glycophorins (Kusunoki and Kohno, 2009), CD44 (Tsukita et al., 1994;

Morrison et al., 2001; Bretscher et al., 2002; Morrison et al., 2007), ICAM-

2 (Ramesh, 2004), actin (Tsukita et al., 1994; Lee et al., 2004), neurofascin

(Gunn-Moore et al., 2006) and the C-terminal domain of FERM containing

proteins (Chishti et al., 1998). It has been proposed that the FERM domain

of the 4.1 superfamily of proteins is responsible for correct protein localisation

to the cell cytoskeleton (Section 1.1.4.2).

1.1.3 ERM protein conformation and regulation

ERM proteins contain highly conserved protein domains: where the N-terminal

FERM domain is followed by an α-helix spectrin binding domain, which in turn

is followed by a C-terminal domain (Figure 1.1). All three conserved domains

(FERM, α-helix and the C-terminal domains) are also identified in merlin.

ERM proteins can be isolated as monomers, homo- and heterodimers that

are able to bind to themselves or associate with other ERM family proteins

respectively (Gary and Bretscher, 1995). ERM proteins can be found in an

open ’active’ conformation or closed ’inactive’ conformation (Figure 1.2). The

globular FERM domain can interact with the C-terminal domain (CTD) of

the ERM protein (Chishti et al., 1998). Inter- and intra-molecular interaction

between ERM protein’s FERM and CTD result in a closed inactive head-to-

tail ERM conformation, in which binding sites of the ERM protein, such as

the actin and plasma membrane receptor binding motifs, are masked. ERM

proteins may bind to themselves or other ERM proteins in a monometric,

dimetric or oligometric conformation (Figure 1.2). The strong binding between

the FERM and CTD of ERM proteins explains why most interacting partners

cannot bind to purified full-length ERM proteins in-vitro (Mangeat et al.,

1999).
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FERM CTD 

‘active’ open conformation 

‘inactive’ closed conformation 

monomeric 

oligometric 

dimetric 

Figure 1.2: Schematic diagram showing different conformational states that ERM
proteins may form. ERM proteins bind through a head-to-tail interaction, where
the N-terminal FERM domain of the ERM protein can bind to the C-terminal
domain (CTD). ERM proteins can be in an open or a closed conformation. ERM
proteins may bind to themselves or other ERM proteins in a monometric, dimetric
or oligometric conformation.

Modifications that reduce and weaken the head-to-tail conformation of the

FERM domain binding to the C-terminal domain are expected to result in the

unfolding and activation of the ERM protein (Pearson et al., 2000). Binding

of phosphatidylinositol biphosphate (PIP2) to the FERM domain and Rho ki-

nase phosphorylation of a conserved theonine in the F-actin binding site (T567

in ezrin, T564 in radixin and T558 in moesin) stimulates the weakening of the

FERM domain binding to the CTD, resulting in the unfolding and unmask-

ing of essential binding sites within ERM proteins (Gary and Bretscher, 1995;

Bretscher et al., 2000; Hamada et al., 2000; Pearson et al., 2000). Dephos-

phorylation triggers the reversion of ERM proteins from an active open to an

inactive closed conformation (Kondo et al., 1997). ERM proteins are thereby

regulated by conformational changes, in which unphosphorylated ERM pro-

teins are in an inactive closed conformational state and active in a phosphory-

lated open conformation. Conversely, merlin is active in its unphosphorylated

closed state (Xu and Gutmann, 1998).
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1.1.4 Functions of merlin and ERM proteins

ERM proteins share approximately 78% amino acid identity and therefore

cover overlapping functions that include: cell adhesion, regulation of cell shape,

formation of microvilli, motility, membrane trafficking and signal transduction

(Bretscher et al., 2000, 2002). The scaffolding and signal transduction func-

tions of merlin and ERM proteins are discussed in more detail below.

1.1.4.1 Cellular scaffolding function of ERM proteins

ERM proteins were first identified as scaffolding linker molecules, located un-

derneath the plasma membrane, connecting several plasma membrane recep-

tors to the actin cytoskeleton. ERM proteins are mostly located in actin-rich

protrusion areas just underneath the plasma membrane, including microvilli,

filopodia and membrane ruffles (Franck et al., 1993; Amieva and Furthmayr,

1995).

The N-terminal FERM domain and extreme 30 residues of the carboxyl-

terminal are necessary for the maintenance of ERM proteins’ scaffolding linker

role (Turunen et al., 1994; Matsui et al., 1998). The FERM domain is essen-

tial for ERM and related proteins to bind, either directly or indirectly, to

various plasma membrane receptors. FERM binding motifs are present in

transmembrane receptors including the hyaluronate receptors CD44, CD43

and intracellular adhesion molecules 1, 2 and 3 (ICAM-1,2,3) (Tsukita et al.,

1994; Bretscher et al., 2002; Ramesh, 2004). Indirect linkage of the FERM

domain containing proteins to the plasma membrane receptors is conducted

by adapter proteins, such as the ERM binding phosphoprotein-50 (EBP50)

and a sodium-hydrogen exchanger regulatory factor (NHERF) via their PDZ

domains (Bretscher et al., 2000) (Figure 1.3). The N-terminal domain of ERM

proteins are able to bind to the F-actin cytoskeleton (Matsui et al., 1998; Tu-

runen et al., 1994) (Figure 1.3).
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Figure 1.3: Schematic representation of ERM proteins acting as scaffolding linkage
protein. ERM proteins are dormant when the N-terminal FERM domain (N) binds
to the C-terminal domain (C); forming a closed conformation. Upon activation (a),
ERM proteins form an open conformation where the FERM domain is able to bind
to other proteins. The FERM domain can bind to various upstream membrane
receptors either directly (b) or indirectly (c) using adaptor proteins such as EBP50.
The C-terminus binds to actin cytoskeleton. Image taken from Bretscher et al.
(2002).

Takeuchi et al. (1994) elegantly demonstrated the importance of ERM pro-

teins as cellular scaffolding molecules by showing that the microvilli on thy-

moma cells completely disappear in the presence of a mixture of ezrin, radixin

and moesin anti-sense phosphorothioate oligonucleotides (PONs; Figure 1.4).

Depletion of individual ERM proteins by anti-sense oligonucleotides results in

no significant phenotypic changes (Takeuchi et al., 1994). Cellular phenotypic

changes are only observed when the synthesis of all ERM proteins are sup-

pressed (Tsukita et al., 1994; Takeuchi et al., 1994). Functional redundancy

within the ERM protein family may potentially explain observations of ERM

protein compensation when another ERM protein is lost.
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Figure 1.4: Effects of ERM family member antisense PONs on the microvilli
structure of thymoma cells. Thymoma cells were cultured in the presence of
ezrin (A), radixin (B), or moesin (C) antisense PONs, or in the presence of the
ezrin/radixin/moesin antisense PONs mixture (D). In the presence of the mixture
of antisense PONs, microvilli completely disappeared, leaving a smooth cell surface
(D). Image taken from Takeuchi et al. (1994).

1.1.4.2 ERM proteins and merlin regulate growth signalling path-

ways

ERM proteins have not only been found to be important in assembling mem-

brane cytoskeletal associated protein complexes, but are also involved in mem-

brane trafficking, cell adhesion, formation of microvilli, motility and signal

transduction. ERM proteins can act both upstream and downstream of sig-

nalling pathways (Bretscher et al., 2002). As ERM proteins contain the abil-

ity to bind to membrane receptors, they are placed at a crucial juncture for

the integration of the extracellular environment and intracellular signalling

pathways. ERM proteins have been predominantly studied in their ability to

transduce growth signals essential for cell proliferation and survival (Gautreau

et al., 2002).

Phosphorylated ERM proteins bind to the hyaluronate CD44 receptor to

induce downstream signalling pathways that are involved in cell cycle prolifer-

ation, endorsing a growth promoting cellular state (Morrison et al., 2001; Bai

et al., 2007). ERM proteins interact with NHE1 to mediate phosphatidyli-
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nositol 3-kinase (PI3K) and Akt cell survival signals (Wu et al., 2004). Ezrin

has been identified as a component in tumour metastasis through binding

to the CD44 receptor, activating signalling pathways Rho-GTPase and inter-

acting with the Akt-mediated cell apoptotic pathway (Hunter, 2004). Hypo-

phosphorylated, active, merlin may compete with, and therefore inhibit ezrin

and other ERM proteins in binding to the CD44 receptor (Morrison et al., 2001;

Bai et al., 2007). Hypophosphorylated merlin is able to interfere with JNK

activation and platelet derived growth factor (PDGF) dependent activation of

Erk and PI3K (Morrison et al., 2001, 2007; Hilton et al., 2009). This results

in a growth inhibitory cellular state, opposing ERM metastasis cell growth

(Figure 1.5). Through this pathway, merlin may act as a tumour suppressor.

The expression of merlin and ERM proteins therefore have opposing effects on

growth signalling cascades, where merlin is growth inhibitory though binding

to CD44 and ERM proteins promote cell growth though CD44 binding. Pre-

vious results by Alfthan et al. (2004) show that merlin binds with a strong

affinity to ezrin, suggesting that merlin can directly inhibit the downstream

effects of ezrin.

Figure 1.5: Schematic representation of growth promoting and inhibitory role of
ERM and merlin (NF2) through binding to the hyaluronate CD44 plasma membrane
receptor. In the growth promoting mode, phosphorylated ERM protein binds to
CD44 and results in downstream proliferative growth. In the growth inhibitory
mode, unphosphorylated merlin binds to CD44 and inhibits downstream MEK and
Akt signalling pathways resulting in inhibition of cell proliferation. Image taken
from Morrison et al. (2001).
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Translocation of ERM and related proteins between the cytoplasm and

the plasma membrane could therefore be seen as a homeostatic balance be-

tween active and inactive proteins to regulate growth signalling intensity. The

active, phosphorylated and open conformation of ERM proteins can bind to

CD44 and therefore localise to the plasma membrane. Whereas, the inactive,

dephosphorylated and closed ERM conformations are observed within the cy-

toplasm of the cell. Merlin, in contrast, is believed to be in an inactive open

conformation state in the cytoplasm, whereas the closed hypo-phosphorylated

form of merlin is believed to be active in its tumour suppressive role at the

apical plasma membrane (Xu and Gutmann, 1998).

1.1.5 Willin: a novel FERM protein

Using a yeast two-hybrid screen of a rat sciatic nerve library, Gunn-Moore

et al. (2005) found a novel protein that binds to the carboxyl terminal of neu-

rofascin, which is a receptor essential for the formation of the node of Ranvier

and myelination in the nervous system (Charles et al., 2002). The novel intra-

cellular binding partner of neurofascin was sequenced and named ’willin’ (also

termed FRMD6; FERM domain-containing 6). Willin (see Appendix A for

sequence) was identified as a 614 amino acid protein with a predicted molec-

ular weight of approximately 71kDa (Gunn-Moore et al., 2005). Complete se-

quencing showed that willin contains an amino-terminal FERM domain, that

is structurally most closely related to ERM proteins (Gunn-Moore et al., 2005)

(Figure 1.6).

Willin shares high sequence similarity to merlin and ERM proteins within

the highly conserved N-terminal FERM domain (Figure 1.7). Willin, however,

comprises little homology with other FERM domain containing proteins out-

side the FERM domain (Gunn-Moore et al., 2005; Madan et al., 2006). The

FERM domain of willin shares 43% protein similarity with the FERM domain

of ezrin, 47% with that of radixin, 45% with moesin and 46% with merlin

(Figure 1.7). To date, the only identified and confirmed domain in willin is

the FERM domain. No proline-rich and actin binding domains are identified

in willin (Figure 1.7).
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Figure 1.6: Predicted 3D structure of the FERM domain of willin, compared
to the crystal structures of the FERM domain of ezrin, radixin and moesin. The
structural prediction was performed by V. Zaitsev (University of St. Andrews,
UK). F1= ubiquitin-like subdomain, F2= acyl-CoA binding-like subdomain and
F3= phosphotyrosine binding (PTB)/pleckstrin homology (PH)-like subdomain.

Actin binding domain FERM domain Proline rich domain 

Willin 

Ezrin 

Radixin 

Moesin 

Merlin 

43% 

47% 

45% 

46% 

Figure 1.7: Willin shares high sequence homology to ERM (ezrin, radixin and
moesin) proteins and merlin within the N-terminal FERM domain. Willin, merlin
and ERM proteins contain a highly conserved FERM domain within the N-terminus.
The FERM domain of willin shares 43% protein similarity with the FERM domain
of ezrin, 47% with that of radixin, 45% with moesin and 46% with merlin. No
proline-rich and actin binding domains are identified in willin.
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Willin, like other ERM proteins, is expressed in neuronal as well as non-

neuronal tissues. Willin has previously been identified in sciatic nerves (Gunn-

Moore et al., 2005), as well as being widely expressed in non-neuronal epithelial

cells (Madan et al., 2006). cDNA of willin has been identified in the human

uterus, placenta and cervix (Madan et al., 2006). Willin appears to have a very

similar cellular localisation to merlin and all three ERM proteins (Sun et al.,

2002; Gunn-Moore et al., 2005), presumably due to the conserved and essential

FERM domain shared by these proteins. Immunohistochemistry studies have

shown that willin, like ERM proteins, are found within different cellular sites

including intracellular sites such as the cytoplasm and nucleus but the most

pronounced staining was found at the apical plasma membrane (Gunn-Moore

et al., 2005; Herron et al., 2007; Stickney et al., 2004).

Willin has been shown to co-localise with actin (Gunn-Moore et al., 2005)

but precise binding interactions are unknown. The presence of the actin cy-

toskeleton is, however, not required for the plasma membrane localisation of

willin as cytochalasin-D induced actin disruption does not affect the localisa-

tion of willin expression at the plasma membrane (Gunn-Moore et al., 2005).

The FERM domain of willin may bind strongly to phospholipids in the lipid

rafts and cell surface glycoprotein, resulting in the localisation of willin near

the plasma membrane independent of the presence of actin (Herron et al.,

2007).

Previous investigation into the intracellular distribution of willin under epi-

dermal growth factor (EGF) treatment has shed light on willin’s potential, as

with the closely related merlin and ERM proteins, to be involved in growth

signalling pathways. In PC12 cells, a cytoplasmic pool of willin-GFP is seen

to translocate to the plasma membrane when the cells are treated with growth

factors (Gunn-Moore et al., 2005). Cytoplasmic to plasma membrane translo-

cation of willin under the influence of epidermal growth factor is not blocked

by wortmannin (Gunn-Moore et al., 2005), indicating that phosphatidylinosi-

tol 3-kinase (PI3K) activity is not required to translocate willin. It is plausible

that EGF is causing tyrosine phosphorylation of willin, as EGF is a known

activator of Ras (Marshall, 1995), Rho and Rac (Maddala et al., 2003); which

in turn interacts with and regulates the activation of ERM proteins (Section

1.1.3).
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Figure 1.8: Willin translocates to the plasma membrane after epidermal growth
factor (EGF) treatment. Before addition of EGF (t=0), willin-GFP expression was
mostly observed within the cytoplasm of a PC-12 cell. Upon addition of 100ng/ml
EGF, willin-GFP expression translocated to the plasma membrane in under 10
minutes. t= time of addition of EGF. Images were taken from Gunn-Moore et al.
(2005).

1.1.6 ERM proteins and associations with disease

FERM domain containing proteins are multifunctional proteins regulating the

architecture of the cell as well as being involved in tightly regulating cell growth

signals within the cell. Deregulation of ERM proteins have therefore been im-

plicated in disease, especially in tumours where an imbalance between growth

promoting and growth inhibitory signals has occurred.

Table 1.1 summarises disease states associated with FERM domain con-

taining proteins; 4.1 Band, merlin, ezrin, radixin, moesin and willin. For the

purpose of this thesis, further focus on FERM domain containing proteins and

their associated disease states will be on merlin, ezrin and willin.
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1.1.6.1 Merlin’s associations with disease

Merlin is one of the most well studied FERM domain containing proteins

in relation to disease states as the gene responsible for schwannomas forma-

tion is NF2 (neurofibromatosis type 2), the gene encoding the merlin protein

(Rouleau et al., 1993; Trofatter et al., 1993). Universal absence of merlin, but

not of other ERM protein family member, results in schwannoma formation

(Stemmer-Rachamimov et al., 1997).

Schwannomas are encapsulated tumours of pure Schwann cells which prolif-

erate next to, rather than ensheath nerve cells (Evans et al., 2000) (Figure 1.9).

Schwannomas are benign, usually bilaterally growing, lesions that commonly

occur on the 8th cranial nerve but can arise anywhere within the peripheral

nervous system (PNS) (Coons, 2001). Schwannoma formation is a dominant

inherited autosomal disease, where tumour formation follows the two-hit model

(Knudson, 1993). Transmission of a mutant gene through the germline predis-

poses the patient to tumour formation, after which schwannomas are initiated

by somatic mutation of the remaining copy in Schwann cells.

Figure 1.9: Loss of merlin results in schwannoma hyper-proliferation. A) Nor-
mal myelinating Schwann cells ensheathing axons. B) Loss of merlin, by biallelic
inactivation, results in abnormal myelination and axon-glia interaction, where the
Schwann cells no longer tightly ensheath axons. M= myelin and Ax= axon of the
neuron. Image taken from Giovannini et al. (2000).

Schwann cell tumours, lacking axon interactions, have pronounced effects

on myelination. Abnormal myelination results in the loss of saltatory conduc-

tion but may also result in neuropathy of adjacent nerve cells that become

compressed. A few suggestions explaining the impaired axon-glia interactions
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have been proposed so far. Loss of merlin in Schwann cells may lead to the

inability of cells to adhere to and ensheath axons due to abnormal adhesive,

motility and/or polarity properties of Schwann cells (Gutmann et al., 1999;

Giovannini et al., 2000).

Merlin is a tumour suppressor gene, although the precise mechanisms by

which its mutations result in schwannomas are unknown. One major setback

to further understanding human schwannomas is that no successful model has

yet been developed in mice. Homozygous NF2 mutants in mice results in em-

bryonic lethality (McClatchey et al., 1997), whereas murine NF2 heterozygos-

ity effects proliferation of other tissues not observed in human schwannomas,

such as osteoblasts, ondotoblasts and renal tubular cells (Giovannini et al.,

2000). Giovannini et al. (2000) have shown that biallelic inactivation of merlin

leads to Schwann cell hyperplasia and disruption of the axon-glial interaction

(Figure 1.9.B). Schwann cell hyperplasia is believed to be an early symptom

of human schwannomas, although Schwann cell hyperplasia in mice does not

progress to tumour formation (Giovannini et al., 2000). The loss of merlin in

human schwannoma tissues has supported merlin’s tumour suppressive role.

Additionally, over-expression of wild type merlin in schwannoma cells leads to

a significant reduction in proliferation and results in apoptosis (Lutchman and

Rouleau, 1995; Sherman et al., 1997).

1.1.6.2 Ezrin’s associations to disease

Ezrin has been identified as a component in tumour metastasis through bind-

ing to the CD44 receptor, thereby activating signalling pathways Rho-GTPase

and interacting with the Akt-mediated cell apoptotic pathway (Harrison et al.,

2002; Hunter, 2004). Ezrin expression has been proposed to play a key role

in cell motility, adhesion and tumour metastasis, and over-expression of ezrin

expression has been found in osteocarcinoma (Wang et al., 2010), breast (El-

liott et al., 2005) and prostate cancer (Pang et al., 2004). Increased expression

of ezrin in some cancer types has been shown to correlate well with both

metastasis and poor cancer prognosis (Saotome et al., 2004).

Ezrin is able to activate MAPK and Akt signalling pathways for cell sur-

vival (Section 1.1.4.2), which further supports that ezrin is a tumour promoting

protein which may allow metastatic cells to survive in what may otherwise be

a hostile environment (Saotome et al., 2004). Further evidence for ezrin as

a tumour promoting protein is observed in gliomas, where ezrin expression
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promotes tumour motility and invasion by mediating the hepatocyte growth

factor signalling cascade (Wick et al., 2001).

In addition to an increased expression of ezrin found in numerous tumours,

the distribution of ezrin has also been shown to correlate with severity and

prognosis of certain cancers. For example, in head and neck cancers, a sig-

nificant correlation is found between cytoplasmic ezrin and poor prognosis

(Madan et al., 2006), implying that the distribution of ezrin is critical for its

ability to affect cellular proliferation.

1.1.6.3 Associated diseases related to willin

Diseases related to loss or over-expression of willin remain, to date, unknown.

However, the closely related FERM domain containing protein 3 (FRMD3) has

been shown to be a novel tumour suppressor in non-small-cell lung carcinoma

(Haase et al., 2007).

A closer look at the location of the willin gene implies that, like FRMD3,

the willin gene may be implicated in human cancers. The human willin gene

is located on chromosome 14, open reading frame 31. Interestingly, the 14q

region of the chromosome is found to be implicated in numerous cancers such

as: uterine leiomyoma and leiomyosarcoma (Levy et al., 2000), meningiomas

(Tse et al., 1997), gastro-intestinal stromal tumours (Fukasawa et al., 2000),

neuroblastomas (Theobald et al., 1999) and gliomas (Dichamp et al., 2004).

14q mutations and loss of heterozygosity have also been linked with mu-

tations and loss of heterozygosity on chromosome 22q12 - the location of the

merlin gene (Leone et al., 1999; Fukasawa et al., 2000). This raises the possi-

bility that willin, like merlin, may act as a tumour suppressor. This possibility

is further supported by suggestions that willin is the human homologue of the

Drosophila protein called expanded: a protein that acts as a tumour suppressor

in the Hippo pathway in Drosophila (Section 1.2).
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1.2 FERM domain proteins modulation of cell

growth in Drosophila

Drosophila Melanogaster genetics has given insight into how a tumour sup-

pressor signalling complex, termed the Hippo pathway, could modulate cell

growth by regulating cell proliferation and apoptosis. Two FERM domain

containing proteins, merlin and expanded, have been found to act upstream

of the Drosophila Hippo pathway, and have therefore provided another avenue

on which FERM domain containing proteins may act as tumour suppressors

to regulate cell proliferation.

1.2.1 Hippo pathway regulates organ size and cell pro-

liferation

The Hippo pathway is composed of several signalling proteins and cascades,

and is essential for the modulation of cell growth, proliferation, apoptosis and

cell adhesion. The control of cell growth via the Hippo pathway is of particular

importance during development and tissue size control and has to be tightly

regulated as cell over-proliferation may result in tumourigenesis (Edgar, 2006;

Harvey and Tapon, 2007; Pan, 2007). The ultimate downstream effect of the

Hippo pathway is to inhibit cell growth and promote apoptosis, thereby acting

as a tumour suppressor signalling cascade.

The core Hippo pathway complex consists of Hippo/Salvador, Mats/Warts

and Yorkie and a schematic summary of the pathway is represented in Fig-

ure 1.10. The Hippo kinase interacts with and phosphorylates a scaffold-

ing protein called Salvador (Wu et al., 2003). Hippo and Salvador together

phosphorylate and activate Warts kinase and its associated protein Mats (Lai

et al., 2005). Phosphorylated Warts then phosphorylates a transcriptional

co-activator, Yorkie, on three sites (Oh and Irvine, 2009). Phosphorylation

of Yorkie on site S168 induces 14-3-3 binding, further resulting in Yorkie cy-

toplasmic retention (Dong et al., 2007). When Yorkie is relieved from the

inhibition by the Hippo pathway, Yorkie positively regulates cell growth and

survival by binding to and activating a transcription factor, Sd, to induce cy-

clin E, DIAP1 and ex expression (Goulev et al., 2008; Wu et al., 2009; Zhang

et al., 2008b). Inhibition of Yorkie, through cytoplasmic retention, therefore

results in cell cycle arrest and apoptosis.
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These pioneering studies converge on one special fea-
ture of the Hippo pathway: It not only functions to inhibit
cell proliferation, but also to promote apoptosis (Edgar
2006). This function is achieved at least in part by tran-
scriptional activation of cycE, diap1 (for review, see Edgar
2006), andbantammicroRNA (Nolo et al. 2006; Thompson
and Cohen 2006). Therefore, like many other signaling
pathways, the Hippo pathway regulates a transcription
program. The missing transcriptional link was identified
to be Yki (YAP homolog) transcription coactivator using
Wts as bait in yeast two-hybrid (Huang et al. 2005). Yki
regulates transcription of the Hippo pathway target genes,
and its overexpression phenocopies the loss of Hippo
pathway components. A biochemical study showed that
Wts directly phosphorylates Yki and leads to Yki cyto-
plasmic retention and inactivation (Dong et al. 2007).
The Yki transcription coactivator possesses no DNA-

binding activity. Therefore, a key question was the iden-
tification of target transcription factors that mediate Yki
activity. Clues from mammalian YAP-interacting TEAD
family transcription factors and reported Yki yeast two-
hybrid data led to the identification of Scalloped (Sd),
a critical regulator of proliferation and survival of wing

imaginal disc cells and the Drosophila TEAD homolog,
as a direct Yki target transcription factor mediating
Yki-induced gene expression and overgrowth phenotype
(Goulev et al. 2008; Wu et al. 2008; L Zhang et al. 2008;
Zhao et al. 2008b). Therefore, Sd is the first DNA-binding
factor identified to mediate the Hippo pathway effects in
Drosophila.
A search for mutations with similar phenotypes to

Hippo pathway defects yielded the discoveries of Mer and
Ex, two FERM domain-containing cytoskeleton-related
proteins that act upstream of the Hippo pathway core
components (Fig. 2; Hamaratoglu et al. 2006). While the
double mutant of mer and ex mimics mutation of other
Hippo pathway components, the mer or ex single muta-
tion had only a weak effect on inducing extra interom-
matidial cells, a common phenotype in Hippo pathway
mutants. It was shown later that Mer and Ex may have
different contributions to the phenotypes observed,
where mer mutant clones showed defects in apoptosis
and ex mutant clones showed impaired cell cycle exit
(Pellock et al. 2007). However, the biochemical mecha-
nisms of Hippo pathway regulation byMer and Ex remain
unclear, possibly including an indirect effect on receptor

Figure 2. Models of the Hippo pathway in
Drosophila and mammals. In Drosophila, Fat
protocadherin may initiate the Hippo pathway
signal in response to Ds binding, and is mod-
ulated by binding of Lft and phosphorylation
by Dco (Feng and Irvine 2009; Mao et al. 2009;
Sopko et al. 2009). Fat may inhibit a noncon-
ventional myosin Dachs, which represses Wts
protein levels (Cho et al. 2006). Fat may also
activate Ex with an unknown mechanism
(Bennett and Harvey 2006; Silva et al. 2006;
Willecke et al. 2006; Tyler and Baker 2007).
Mer and Ex also activate the Hippo pathway
(Hamaratoglu et al. 2006). They may form a
complex with Hpo and Sav (Yu et al. 2010).
Kibra interacts with both Mer and Ex, and
may also be in the complex (Yu et al. 2010).
Hpo kinase interacts with and phosphory-
lates a scaffold protein, Sav (Wu et al. 2003). To-
gether, they phosphorylate and activate Wts
kinase and its associated protein, Mats (Lai
et al. 2005).Wts phosphorylates a transcription
coactivator, Yki, on three sites (Oh and Irvine
2009). Phosphorylation of Yki S168 induces
14–3–3 binding and cytoplasmic retention

(Dong et al. 2007). Yki may also be retained in the cytoplasm by physical interaction with Ex, Wts, and Hpo (Badouel et al. 2009; H
Oh et al. 2009). When Yki is relieved from inhibition and gets into the nucleus, it binds and activates a transcription factor, Sd, to induce
cycE, diap1, and ex expression (Goulev et al. 2008; Wu et al. 2008; L Zhang et al. 2008). Yki inducesbantammicroRNA through Hth and
Tsh (Peng et al. 2009). In mammals, functional significance of Fat and Ex homologs are not clear. However, Mer may still activate the
Hippo pathway (Yokoyama et al. 2008). RASSF, a subgroup of Ras effector proteins, may also activate Mst1/2 (Hpo homolog) (Oh et al.
2006). Relationships between Hpo, Sav, Wts, and Mats are basically conserved in mammalian Mst1/2, Sav1 (Sav homolog), Lats1/2 (Wts
homolog), and Mob (Mats homolog). Lats1/2 phosphorylates YAP on five conserved HXRXXS motifs (four on TAZ) (Zhao et al. 2007).
Dependent on cell context, there may exist another YAP kinase in response to Mst1/2 and another Lats1/2 kinase (Zhou et al. 2009). S127
(S89 in TAZ) phosphorylation-dependent 14–3–3 binding and cytoplasmic retention are conserved in YAP/TAZ (Zhao et al. 2007; Lei et al.
2008). YAP is also inhibited by S381 phosphorylation, which primes CK1d/e phosphorylation of S384, and S387 finally leads to SCFb-TRCP-
mediated ubiquitination and degradation (Zhao et al. 2010). Sd homologs, TEADs, are major YAP target transcription factors. They
mediate expression of CTGF, Gli2, and many other target genes (Zhao et al. 2008b). AREG is induced by YAP through an unidentified
transcription factor (J Zhang et al. 2009). YAP and TAZ also bind Smad1 and Smad2/3 to activate expression of TGF-b and BMP target
genes, respectively, to maintain stem cell pluripotency (Varelas et al. 2008; Alarcon et al. 2009).

Zhao et al.

864 GENES & DEVELOPMENT

Figure 1.10: Schematic diagram of the Hippo pathway in Drosophila. Dashed
arrows indicate unknown biochemical mechanisms. Image taken from Zhao et al.
(2010a).

Signalling proteins involved in the Hippo cascade were identified using

Drosophila mutants. Deregulation of the Hippo pathway results in significant

apical hypertrophy of epithelial structures such as the wings, legs and eyes

in adult Drosophila (Boedigheimer and Laughon, 1993; Boedigheimer et al.,

1997; McCartney et al., 2000; Hamaratoglu et al., 2006) (Figure 1.11). Loss of

Hippo, Salvador or Warts caused abnormal proliferation and survival of non-

neuronal epithelial cells which failed to die but instead proliferated further,

resulting in the expansion of adult Drosophila wings and eye tissue. Hippo,

Salvador, Warts or Mats mutants all resulted in a significant increase in the

cell cycle regulator cyclin E and DIAP-1, a Drosophila inhibitor of apoptosis
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gene product (Tapon et al., 2002; Harvey et al., 2003; Pantalacci et al., 2003;

Wu et al., 2003; Udan et al., 2003). Huang et al. (2005) identified a down-

stream transcriptional co-activator, Yorkie, involved in increasing cyclin E and

DIAP-1 expression. Suppression of Yorkie downstream of the Hippo cascade

was supported by observations that over-expression of Yorkie recapitulates

Warts and Hippo mutant phenotypes: such as tissue atrophy and significant

increase in DIAP-1 transcription (Huang et al., 2005).

Figure 1.11: Overgrowth phenotypes are observed when Hippo pathway com-
ponents are mutated in D. Melanogaster. A) Normal fly thorax. B) A tumour
outgrowth of the thorax as a result of clonal deletion of both expanded and merlin.
C-E) The crystalline arrangement of cells in the pupal retina of the fly as observed
through a scanning electron microscope. C) Normal retina cell arrangement. The
retina arrangement of cells is disrupted by over-proliferation and inappropriate sur-
vival of cells in hippo (D) and merlin and expanded (E) mutant retinas. Image
taken from Edgar (2006).
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1.2.2 Merlin and expanded modulate the Hippo path-

way

Genetic epistasis experiments have positioned the FERM domain containing

proteins merlin and expanded upstream of the Hippo Salvador pathway; posi-

tively regulating the Hippo complex (Hamaratoglu et al., 2006). A recent study

identified a FERM domain binding consensus motif in Salvador, which likely

mediates direct interaction with the FERM domain of merlin (Yu et al., 2010).

Expanded has also been shown to co-immunoprecipitate with both Hippo and

Salvador (Yu et al., 2010). Whether these interactions occur in a physiolog-

ical setting remains unknown, but raises the possibility that merlin and ex-

panded may activate the Hippo/Salvador complex via direct interaction. The

C-terminal domain of expanded has also been identified to bind to Yorkie via

WW domain-PY motif interactions (Badouel et al., 2009). In Drosophila, the

C-terminal tail of expanded is also responsible for the activation and phospho-

rylation of the core Hippo pathway components (Boedigheimer et al., 1997).

Loss of merlin and/or expanded leads to the development of hyperplastic

imaginal discs and overgrowth of adult wings (Boedigheimer and Laughon,

1993) (Figure 1.11), the same phenotypes that are observed in Hippo/Warts

mutants. Additionally, over-expression of expanded induces apoptosis, reduces

cell proliferation, decreases cell number in Drosophila wing, and severely dis-

rupts eye development (Boedigheimer et al., 1997; Blaumueller and Mlodzik,

2000).

Merlin and expanded may have overlapping tumour suppressive functions

in controlling cell growth, but inactivation of both proteins is required to result

in a significant overgrowth phenotype (Boedigheimer and Laughon, 1993; Mc-

Cartney et al., 2000; Hamaratoglu et al., 2006). Mutations of both merlin and

expanded have a more pronounced effect on the adult antennae, thorax, wings

and legs of Drosophila outgrowths, compared to mutants of either merlin or

expanded alone (Hamaratoglu et al., 2006).

Expanded mutants in the Drosophila results in an over-proliferative phe-

notype in the eye wing and tarsal segments (Figure 1.12) although not as

prominent as when both merlin and expanded genes are mutated (Figure 1.11).

Loss of expanded resulted in an increase wing span and over-proliferative head

capsule in addition to missing legs and swollen tarsal segments (Figure 1.12).
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1294 M. Boedigheimer and A. Laughon

Fig. 1. Adult ex phenotype. (A) Wing from Canton S fly. (B) Canton S head capsule showing normal eyes and antennae with aristae
(arrowhead). (C) Wing from ex697 fly. Arrowhead points to incomplete crossvein. (D) An exe1 pharate adult head capsule with missing
eyes and aristae. (E) Canton S with tarsal segments numbered. (F) SEM of exe1 pharate adult showing 2 missing legs and 4 legs with
truncated tarsal segments. The remaining tarsal segments are bracketed. (G) ex697 tarsal segments with characteristic swelling and internal
vesicles. Tarsal segments are numbered in panels E and G.

Figure 1.12: Expanded mutant Drosophila shows over-proliferation phenotypes
in the eye, wing and tarsal segments. Wing (A) and head (B) from a wild-type
Drosophila. Drosophila expanded mutants show over-proliferative defects in wing
(C) head capsule (D). E) Wild-type Drosophila with tarsal segments labelled. F)
Expanded mutant show defects in the tarsal segments of the Drosophila, with 2 legs
missing and 4 legs showing truncated tarsal segments. G) Expanded mutants also
have characteristic swelling of the tarsal segments. Image taken from Boedigheimer
and Laughon (1993).
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Merlin and expanded co-localise in Drosophila (Boedigheimer and Laughon,

1993) and may heterodimerise with each other in order to function as an ac-

tive tumour suppressor (McCartney et al., 2000). Loss of merlin results in an

increase in expanded expression, either as a way of compensating for the loss

of merlin or it may be possible that the expanded epitope is masked in the

presence of merlin (McCartney et al., 2000). The latter supporting the for-

mation of a merlin-expanded heterodimer, where expanded may function to

stabilise the active tumour suppressor conformation by increasing the overall

functional level of merlin. However, as more studies have shown that both

merlin and expanded act as tumour suppressors, it is likely that expanded and

merlin can act independently as monomers, able to compensate for the loss of

the other.

Independent functions of merlin and expanded are further supported by

recent experiments by Pellock et al. (2007), who have shown that merlin and

expanded differentially regulate apoptosis and cell cycle exit in Drosophila.

While expanded has a clear role in regulating cell cycle exit, merlin regulates

apoptosis (Pellock et al., 2007). These observations increase the possibility

that merlin and expanded may be regulated by different upstream receptors.

Although the upstream events of expanded and merlin are unknown, there

is evidence for an upstream protocadherin receptor, named Fat, to interact

with expanded through an unknown mechanism (Bennett and Harvey, 2006;

Silva et al., 2006; Tyler and Baker, 2007; Willecke et al., 2008). No upstream

receptor for Drosophila’s merlin has yet been identified.

1.2.3 Other ERM proteins in Drosophila

Drosophila have only one ERM protein homologue, D-Moesin, which shares

58% sequence homology with human moesin, including 26% identity in the di-

vergent C-terminal region (McCartney and Fehon, 1996). Loss of D-Moesin in

Drosophila studies have shown that this protein is essential for cytoskeletal dis-

tribution, maintenance of apical-basal polarity and epithelial integrity (Miller,

2003). D-Moesin subcellular localisation is primarily in the apical membrane

regions (McCartney and Fehon, 1996). Interestingly, the same subcellular

apical membrane distribution is observed with Hippo pathway components,

including merlin, FAT and expanded (Silva et al., 2006; Willecke et al., 2006;

Bennett and Harvey, 2006; Cho et al., 2006; Maitra et al., 2006). Physio-
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logically, loss of D-Moesin results in severe developmental problems, includ-

ing missing posterior structures in the Drosophila fly in addition to defects

in correct organisation and assembly in adherent junctions, photoreceptors,

and imaginal discs (Polesello and Payre, 2004). Whether these developmental

problems are due to moesin’s role in the Hippo pathway remains, to date,

unknown.

1.3 FERM proteins may modulate the Hippo

pathway in mammals

1.3.1 The Hippo pathway is highly conserved between

Drosophila and mammals

To date, most research identifying Hippo pathway components have been ex-

plored in Drosophila. Significant conservation of genes and pathway signalling

of cellular processes between mammals and Drosophila have argued that stud-

ies of the Hippo pathway in flies can contribute directly to understanding the

mammalian pathway (Potter et al., 2000). It is however important to note that

unlike Drosophila studies, in which the Hippo pathway proteins are encoded

by one single gene, most mammalian Hippo pathway proteins are composed of

multiple isoforms (Sudol and Harvey, 2010). Therefore, the mammalian Hippo

pathway cascade may be more complex, consisting of multiple isoforms, com-

pared to the Hippo pathway in the Drosophila model. Figure 1.13 shows the

corresponding orthologue components between the Drosophila and mammalian

Hippo signalling proteins.

The relationship between the Drosophila Hippo, Salvador, Warts and Mats

are conserved in mammals: MST/2 (Hippo homologue), SAV1 (Sav homo-

logue), LATS1/2 (Wts homologue) and MOB (Mats homologue). Unknown

upstream activators of the pathway activate the Hippo pathway by phospho-

rylating MST1/2, resulting in downstream activation and phosphorylation of

the LATS1/2 kinase which binds in a complex with MOB1. LATS1/2 and

MOB1 together phosphorylate and inhibit the downstream co-activator YAP.

LATS1/2 phosphorylates YAP on five conserved HXRXXS motifs (Zhao et al.,

2007). Phosphorylation of YAP on S127 site results in 14-3-3 binding, which

further results in YAP-phosphorylation dependent cytoplasmic retention of
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YAP (Zhao et al., 2007). YAP is also inhibited through phosphorylation at

site S381, which primes CK1δ/ε phosphorylation of S384 and S387 on YAP,

resulting in SCFβ-TRCP-mediated ubiquination and degradation (Zhao et al.,

2010b). This mechanism of YAP degradation may provide a possible long-term

YAP inhibition for cell contact inhibition.

These pioneering studies converge on one special fea-
ture of the Hippo pathway: It not only functions to inhibit
cell proliferation, but also to promote apoptosis (Edgar
2006). This function is achieved at least in part by tran-
scriptional activation of cycE, diap1 (for review, see Edgar
2006), andbantammicroRNA (Nolo et al. 2006; Thompson
and Cohen 2006). Therefore, like many other signaling
pathways, the Hippo pathway regulates a transcription
program. The missing transcriptional link was identified
to be Yki (YAP homolog) transcription coactivator using
Wts as bait in yeast two-hybrid (Huang et al. 2005). Yki
regulates transcription of the Hippo pathway target genes,
and its overexpression phenocopies the loss of Hippo
pathway components. A biochemical study showed that
Wts directly phosphorylates Yki and leads to Yki cyto-
plasmic retention and inactivation (Dong et al. 2007).
The Yki transcription coactivator possesses no DNA-

binding activity. Therefore, a key question was the iden-
tification of target transcription factors that mediate Yki
activity. Clues from mammalian YAP-interacting TEAD
family transcription factors and reported Yki yeast two-
hybrid data led to the identification of Scalloped (Sd),
a critical regulator of proliferation and survival of wing

imaginal disc cells and the Drosophila TEAD homolog,
as a direct Yki target transcription factor mediating
Yki-induced gene expression and overgrowth phenotype
(Goulev et al. 2008; Wu et al. 2008; L Zhang et al. 2008;
Zhao et al. 2008b). Therefore, Sd is the first DNA-binding
factor identified to mediate the Hippo pathway effects in
Drosophila.
A search for mutations with similar phenotypes to

Hippo pathway defects yielded the discoveries of Mer and
Ex, two FERM domain-containing cytoskeleton-related
proteins that act upstream of the Hippo pathway core
components (Fig. 2; Hamaratoglu et al. 2006). While the
double mutant of mer and ex mimics mutation of other
Hippo pathway components, the mer or ex single muta-
tion had only a weak effect on inducing extra interom-
matidial cells, a common phenotype in Hippo pathway
mutants. It was shown later that Mer and Ex may have
different contributions to the phenotypes observed,
where mer mutant clones showed defects in apoptosis
and ex mutant clones showed impaired cell cycle exit
(Pellock et al. 2007). However, the biochemical mecha-
nisms of Hippo pathway regulation byMer and Ex remain
unclear, possibly including an indirect effect on receptor

Figure 2. Models of the Hippo pathway in
Drosophila and mammals. In Drosophila, Fat
protocadherin may initiate the Hippo pathway
signal in response to Ds binding, and is mod-
ulated by binding of Lft and phosphorylation
by Dco (Feng and Irvine 2009; Mao et al. 2009;
Sopko et al. 2009). Fat may inhibit a noncon-
ventional myosin Dachs, which represses Wts
protein levels (Cho et al. 2006). Fat may also
activate Ex with an unknown mechanism
(Bennett and Harvey 2006; Silva et al. 2006;
Willecke et al. 2006; Tyler and Baker 2007).
Mer and Ex also activate the Hippo pathway
(Hamaratoglu et al. 2006). They may form a
complex with Hpo and Sav (Yu et al. 2010).
Kibra interacts with both Mer and Ex, and
may also be in the complex (Yu et al. 2010).
Hpo kinase interacts with and phosphory-
lates a scaffold protein, Sav (Wu et al. 2003). To-
gether, they phosphorylate and activate Wts
kinase and its associated protein, Mats (Lai
et al. 2005).Wts phosphorylates a transcription
coactivator, Yki, on three sites (Oh and Irvine
2009). Phosphorylation of Yki S168 induces
14–3–3 binding and cytoplasmic retention

(Dong et al. 2007). Yki may also be retained in the cytoplasm by physical interaction with Ex, Wts, and Hpo (Badouel et al. 2009; H
Oh et al. 2009). When Yki is relieved from inhibition and gets into the nucleus, it binds and activates a transcription factor, Sd, to induce
cycE, diap1, and ex expression (Goulev et al. 2008; Wu et al. 2008; L Zhang et al. 2008). Yki inducesbantammicroRNA through Hth and
Tsh (Peng et al. 2009). In mammals, functional significance of Fat and Ex homologs are not clear. However, Mer may still activate the
Hippo pathway (Yokoyama et al. 2008). RASSF, a subgroup of Ras effector proteins, may also activate Mst1/2 (Hpo homolog) (Oh et al.
2006). Relationships between Hpo, Sav, Wts, and Mats are basically conserved in mammalian Mst1/2, Sav1 (Sav homolog), Lats1/2 (Wts
homolog), and Mob (Mats homolog). Lats1/2 phosphorylates YAP on five conserved HXRXXS motifs (four on TAZ) (Zhao et al. 2007).
Dependent on cell context, there may exist another YAP kinase in response to Mst1/2 and another Lats1/2 kinase (Zhou et al. 2009). S127
(S89 in TAZ) phosphorylation-dependent 14–3–3 binding and cytoplasmic retention are conserved in YAP/TAZ (Zhao et al. 2007; Lei et al.
2008). YAP is also inhibited by S381 phosphorylation, which primes CK1d/e phosphorylation of S384, and S387 finally leads to SCFb-TRCP-
mediated ubiquitination and degradation (Zhao et al. 2010). Sd homologs, TEADs, are major YAP target transcription factors. They
mediate expression of CTGF, Gli2, and many other target genes (Zhao et al. 2008b). AREG is induced by YAP through an unidentified
transcription factor (J Zhang et al. 2009). YAP and TAZ also bind Smad1 and Smad2/3 to activate expression of TGF-b and BMP target
genes, respectively, to maintain stem cell pluripotency (Varelas et al. 2008; Alarcon et al. 2009).

Zhao et al.

864 GENES & DEVELOPMENT

Figure 1.13: Schematic diagram of the Hippo pathway in Drosophila and mam-
mals. Corresponding orthologue components of the Drosophila and mammals are
shown in the same colour. Dashed arrows indicate unknown biochemical mecha-
nisms. Image taken from Zhao et al. (2010a).

The downstream effects of YAP inhibition through cytoplasmic retention

is the same as that observed with the Drosophila homologue, Yorkie, as YAP

is inhibited through cytoplasmic retention by 14-3-3 protein binding (Zhao

et al., 2007, 2008). YAP cytoplasmic retention prevents the co-transcriptional

factor from binding to downstream transcriptional proteins in the nucleus,

thereby preventing the transcription of cell survival proteins and promoting

apoptosis. Sd homologue TEADs are the most studied YAP transcription

factor targets. TEADs activation mediates expression of CTGF, Gli2 and
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many other gene targets that results in cell proliferation and survival (Zhao

et al., 2008). YAP also binds to Smad1 and Smad2/3 transcription factors

to activate the expression of TGF-β and BMP target genes respectively, to

maintain stem cell pluripotency (Varelas et al., 2008; Alarcon et al., 2009).

Core Hippo pathway components have also been shown to affect the cell cycle.

In human cells, LATS1/2 has been shown to affect cyclin E and cyclins A/B,

inducing cell cycle arrest at G1-S or G2-M respectively (Xia et al., 2002; Li

et al., 2003). Whether cyclin levels are affected by LATS converging onto

YAP or whether this effect is observed through additional signalling cascades

remains unknown.

1.3.2 Modulation and regulation of the mammalian

Hippo pathway

The Hippo pathway, like many biological processes has to be tightly regu-

lated and modulated. Many upstream proteins and negative feedback loops

are therefore believed to exist, making the Hippo pathway signalling cascade

more complex than that represented in Figure 1.13. Most research has focussed

on downstream targets and physiological affects of the core Hippo pathway:

MST1/2, LATS and YAP. Less is known about the upstream receptors, acti-

vators and modulators of the Hippo signalling cascade. The functional mech-

anistic actions of the mammalian homologues of merlin and expanded remain

unclear and are further discussed in Section 1.3.2.1. The identity of other up-

stream members of the mammalian Hippo pathway has remained enigmatic.

Recent studies have suggested that the proposed upstream Fat protocadherin

receptor of the Hippo pathway in Drosophila, does not have the same control

on organ size and activity of the Yorkie orthologues, YAP and TAZ, in mice

(Saburi et al., 2008; Mao et al., 2011). Studying Drosophila models has clearly

led to insight into some of the fundamental biological aspects of tumourige-

nesis within the mammalian system, but it should be noted that there will

always be differences between the Drosophila and mammalian model.

1.3.2.1 FERM modulation on the Hippo pathway

As discussed in Section 1.2.2, the FERM domain containing proteins mer-

lin and expanded activate the Hippo pathway in Drosophila. The mam-

malian genome contains potential homologous to the reported upstream
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Hippo pathway regulators; including two possible expanded homologous

(FRMD6=Expanded 1 and FRMD1=Expanded 2) and one merlin homologue

(NF2/merlin).

Interestingly, the proposed homologue to the Drosophila expanded is willin

(FRMD6). The expanded gene, 1427 amino acids in length, is significantly

larger than the willin gene which is 614 amino acids in length, and may have

split its functions during vertebrate evolution. The expanded and willin pro-

teins are especially divergent in the carboxyl termini (Figure 1.14), which is

the region proposed to activate and phosphorylate the Drosophila Hippo path-

way (Boedigheimer et al., 1997) and bind to and inhibit Yorkie (Badouel et al.,

2009). In D. melanogaster, Yorkie is believed to contact expanded via a WW

domain-PY motif interaction (Badouel et al., 2009), but none of the three PY

motifs in the expanded C-terminus are conserved in willin (Figure 1.14). A

55% protein similarity is, however, found in the FERM domain of expanded

and willin (Figure 1.14).

Willin 

Expanded 55% 

614aa 

1427aa 

FERM domain PPXY domain 

Figure 1.14: Schematic representation of protein domains in willin and expanded.
Willin is composed of 614 amino acids (aa) and contains a FERM domain at the
N-terminus. Expanded consists of 1427 amino acids and contains a FERM domain
as well as three PPXY motifs. The FERM domain of willin and expanded share
55% similarity.

A study by Zhao et al. (2007) has shown that the expression of merlin and

willin enhances the inhibition of YAP2, resulting in YAP nuclear to cytoplas-

mic translocation. Merlin and willin may therefore regulate cell proliferation

through the Hippo pathway resulting in YAP translocation within the cell.

Loss of merlin is associated with a clear increase in the protein levels of YAP,

which has been shown to affect human meningioma cell growth by signalling

through YAP (Striedinger et al., 2008). In addition to this increase, merlin

loss was associated with nuclear localisation of YAP (Striedinger et al., 2008).

Further evidence for the involvement of merlin in the Hippo pathway comes
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from recent data which supports that merlin and the YAP oncoprotein function

antagonistically to regulate liver development (Zhang et al., 2010). Strikingly,

the merlin-deficient phenotypes in multiple tissues were largely suppressed by

heterozygous deletion of YAP, suggesting that YAP is a major effector of mer-

lin in growth regulation (Zhang et al., 2010).

Whether merlin and willin protein expression results in phosphorylation of

the core Hippo signalling cassette (MST, LATS and YAP) remains unknown.

In Drosophila, the FERM domain of expanded is not required for activation

and phosphorylation of the core Hippo component (Boedigheimer et al., 1997)

and the domains required for YAP cytoplasmic retention by merlin and willin

remain unknown.

The involvement of other FERM domain containing proteins in the Hippo

signalling pathway has not been studied and may suggest an essential role

in signal modulation, as FERM proteins have been shown to modulate other

FERM proteins. For example, ezrin, which is absent in Drosophila, may have

an inhibitory role on the mammalian Hippo pathway as it can inhibit the

functions of merlin (Section 1.1.4.2).

Evolutionary conservation between Drosophila and mammals is further

supported by experiments showing that human LATS, MATS2 and YAP genes

can all functionally rescue their respective Drosophila mutants in-vivo (Tao

et al., 1999; Wu et al., 2003; Lai et al., 2005). However, the biological functions

and consequences of these pathways might vary between different organisms.

Willin displayed an overlapping localisation to expanded as it is predominantly

localised at the apical junction of epithelial cells, possibly due to the conserved

FERM domain. Despite this, willin did not display growth suppressive activ-

ity in D. melanogaster tissues (Figure 1.15). In addition, willin mis-expression

did not limit the size of D. melanogaster wings and it failed to rescue the

overgrowth defect and elevated Yorkie activity associated with ex deficiency

(work done in collaboration with Dr Kieran Harvey, University of Melbourne,

Australia; Figure 1.15). Divergence in the willin gene compared to that of ex-

panded and the absence of the PPXY motifs in willin may explain why willin

cannot compensate for the loss of expanded in Drosophila. Other mammalian

proteins, such as angiomotin (Zhao et al., 2011) have also been proposed to

inactivate YAP through PPXY motifs, a role fulfilled by the C-terminus of

expanded in D. melanogaster.



28
1.3. FERM PROTEINS MAY MODULATE THE HIPPO PATHWAY IN

MAMMALS

           Willin-GFP                     anti-FAT                           Merge 

           Willin-GFP                     anti-Ex                             Merge 

F
ig

u
re

1.
15

:
W

ill
in

di
sp

la
ys

si
m

ila
r

su
bc

el
lu

la
r

lo
ca

lis
at

io
n

as
ex

pa
nd

ed
bu

t
ca

nn
ot

fu
nc

ti
on

al
ly

re
pl

ac
e

it
.

P
la

na
r

(A
-C

)
an

d
op

ti
ca

l
(D

-F
)

cr
os

s
se

ct
io

ns
of

th
ir

d
in

st
ar

la
rv

al
w

in
g

im
ag

in
al

di
sc

s
ex

pr
es

si
ng

w
ill

in
-G

F
P.

W
ill

in
-G

F
P

w
as

de
te

ct
ed

at
th

e
ap

ic
al

pl
as

m
a

m
em

br
an

e,
si

m
ila

r
to

Fa
t

ex
pr

es
si

on
(r

ed
in

B
an

d
C

)
an

d
ex

pa
nd

ed
(r

ed
in

E
an

d
F
).

(G
-I

)
A

du
lt

fe
m

al
e

D
.

m
el

an
og

as
te

r
w

in
gs

of
th

e
in

di
ca

te
d

ge
no

ty
pe

s.
(J

)
Q

ua
nt

ifi
ca

ti
on

of
th

e
ar

ea
of

ad
ul

t
w

in
gs

of
th

e
in

di
ca

te
d

ge
no

ty
pe

s
(n

=
32

fo
r

ea
ch

ge
no

ty
pe

).
(K

)
Q

ua
nt

ifi
ca

ti
on

of
th

e
sh

ap
e

of
ad

ul
t

w
in

gs
of

th
e

in
di

ca
te

d
ge

no
ty

pe
s.

(L
-N

)
T

hi
rd

in
st

ar
la

rv
al

ey
e

im
ag

in
al

di
sc

s.
C

lo
ne

s
ar

e
po

si
ti

ve
ly

m
ar

ke
d

w
it

h
G

F
P

(g
re

en
)

an
d

ar
e

of
th

e
fo

llo
w

in
g

ge
no

ty
pe

s:
w

ild
-t

yp
e

(L
),

ex
M

G
H

1
(M

),
an

d
ex

M
G

H
1

al
so

m
is

ex
pr

es
si

ng
w

ill
in

-G
F
P

(N
).

Im
ag

e
fr

om
a

co
lla

bo
ra

ti
on

w
it

h
D

r
K

ie
ra

n
H

ar
ve

y
(U

ni
ve

rs
it
y

of
M

el
bo

ur
ne

,A
us

tr
al

ia
).



29
1.3. FERM PROTEINS MAY MODULATE THE HIPPO PATHWAY IN

MAMMALS

1.3.2.2 Cell density regulates Hippo signalling

Cell-to-cell contact, adhesion and polarity have all previously been described

as important factors in activating the Hippo signalling cascade (Bennett and

Harvey, 2006; Zhao et al., 2007; Graves et al., 2001; Lee et al., 2001; Chen

et al., 2010). Extracellular signals from cell-to-cell contact provide neighbour-

ing cells with vital information about the cell’s external environment. The

Hippo pathway has been proposed to play a role in regulating organ size by

inhibiting cell growth at high cell density, where the pathway is believed to

be suppressed at low cell density and activated at high cell density. This is

supported by in-vitro work, where Zhao et al. (2007) have shown that YAP

promotes cell proliferation as it is predominantly localised to the nucleus at low

cell density, whereas at high cell density, YAP is localised to the cytoplasm.

Several other components of the Hippo pathway have also been implicated in

contact inhibition. Merlin becomes dephosphorylated and activated in conflu-

ent cells (Shaw et al., 1998; Morrison et al., 2001) which have been reported

to be both necessary and sufficient to result in contact inhibition. LATS2

and WW45 are also involved in contact inhibition as their knock-out mouse

embryonic fibroblast (MEF) cells show loss of contact inhibition (McPherson

et al., 2004; Lee et al., 2008).

The Hippo signalling pathway may be regulated by the strength of cell-to-

cell adhesion (Pan, 2007). Over-crowding of cells in an organ may result in

quantitative or qualitative changes in the adherent junctions between neigh-

bouring cells, which in turn might modulate the Hippo signalling activity. The

mechanisms involved in cell density dependent regulation of the Hippo path-

way remains unclear. One possible theory is that unknown upstream plasma

membrane receptors of the Hippo pathway may be activated and up-regulated

at high cell density upon interaction with other surface proteins upon cell-to-

cell contact or through binding of an unknown extracellular ligand (Buttitta

and Edgar, 2007). The activated receptor may then activate FERM domain

containing proteins, which in turn stimulate the MST/LATS kinase cascade to

inhibit oncogenic YAP, ultimately resulting in the inhibition of cell prolifera-

tion and apoptosis. FAT was identified as a potential transmembrane receptor

for the Hippo pathway (Bennett and Harvey, 2006; Cho et al., 2006; Silva

et al., 2006; Willecke et al., 2006). In this cell-density dependent proposed

model, abundance of FAT, its ligand (possibly Dachsous), or the intensity of

FAT can somehow respond to small differences in morphogen signalling levels
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between two neighbouring cells (Harvey and Tapon, 2007).

1.3.2.3 Cell stress regulates Hippo signalling

As well as upstream proteins and plasma membrane receptors, extracellular

cues are also vital in fully activating the Hippo pathway. Intracellular signals

or mechanical tension on the cell membrane, might potentially regulate the

Hippo signalling pathway. The mammalian homologue of Hippo, MST2, has

been shown to be a pro-apoptotic responder to stress (O’Neill and Kolch,

2005). Recent studies have shown that for MST to result in an apoptotic

downstream effect, MST has to be both phosphorylated and cleaved (Graves

et al., 2001). The increased expression of MST merely sensitises the cells to cell

death (Lee et al., 2001). Extracellular cell death signals are therefore believed

to be required for full activation of the Hippo pathway to result in apoptosis.

1.3.3 Associated diseases with the mammalian Hippo

pathway

1.3.3.1 Expression of Hippo pathway components

To date, it remains unclear in which mammalian tissues and cell types the

Hippo pathway controls proliferation and apoptosis. In Drosophila, the Hippo

pathway restricts growth of imaginal discs (Tapon et al., 2002; Harvey et al.,

2003; Udan et al., 2003; Wu et al., 2003; Huang et al., 2005; Lai et al., 2005;

Bennett and Harvey, 2006; Hamaratoglu et al., 2006; Silva et al., 2006), which

are columnar epithelial cells, but does not limit tissue growth in other tissues

such as salivary glands (Harvey and Tapon, 2007). This raises the possibil-

ity that the Hippo pathway regulates cell proliferation in a subset of human

tissues and cell types that share similar growth, proliferative and apoptotic

properties to Drosophila imaginal discs (Harvey and Tapon, 2007). Loss of

Hippo pathway components and their associated contributions to tumour for-

mation will give insight into the expression and importance of Hippo pathway

components (Section 1.3.3.2).

1.3.3.2 Implications of Hippo components in disease

The physiological functions of the Hippo pathway components are harder to

investigate in the mammalian system compared to the Drosophila model, as
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most of the mammalian Hippo components knock-outs in mice are embry-

onically lethal (Table 1.2). However, consistent with the critical role of the

Hippo pathway in mammalian physiology in regulating organ size control and

cell proliferation, mutations in the Hippo pathway components have been im-

plicated in human diseases, especially tumourigenesis. Table 1.2 summarises

the importance of the Hippo components and their associations with cancer

development.

The importance of merlin as a tumour suppressor has previously been dis-

cussed in Section 1.1.6.1. Genetic studies have demonstrated that MST1/2 are

tumour suppressors. WW45 and MST1/2 mutant livers are significantly larger

and histological analysis showed formation of a poorly differentiated hepato-

cellular carcinoma in WW45 mutants and cholangiocarcinoma was observed

in MST1/2 mutants (Zhou et al., 2009; Song et al., 2010; Lu et al., 2010).

The loss of LATS proteins also promotes tumourigenesis. Mice deficient in

LATS1 develop ovarian carcinomas and soft-tissue sarcomas (St John et al.,

1999). Furthermore, methylation-dependent silencing of LATS1 and LATS2

correlates with an aggressive form of human breast cancer (Takahashi et al.,

2005). LATS plays an important role in sister chromatid segregation (Bothos

et al., 2005) and the loss of these proteins will greatly affect cell cycle pro-

gression and genomic instability that could ultimately result in cell defects.

Converging mechanisms on the Hippo pathway components are also involved

in the regulation of cell growth. For example, miRNA mediated silencing of

LATS2 by miR372 and miR373 are also up-regulated in testicular germ cell

tumours (Voorhoeve et al., 2007).

The oncogenic activity of YAP is supported by reports that showed that

the YAP gene locus is amplified in a wide spectrum of human and murine

tumours such as: oral squamous-cell carcinoma, and carcinomas of the lung,

pancreas, oesophagus, liver and mammary gland (Imoto et al., 2005; Dai et al.,

2003; Bashyam et al., 2005; Snijders et al., 2005; Overholtzer et al., 2006;

Zender et al., 2006; Fernandez-L et al., 2009). Conversely, YAP has been

reported to promote p73-dependent apoptosis in response to DNA damage,

suggesting a potential pro-apoptotic and therefore tumour suppressive function

under certain conditions (Strano et al., 2001; Basu et al., 2003; Matallanas

et al., 2007; Oka et al., 2008; Yuan et al., 2008). Further studies are required

to investigate the opposing functions of YAP as an oncogene, as the pro-

apoptotic function of YAP was shown to be activated (Matallanas et al., 2007)



32
1.3. FERM PROTEINS MAY MODULATE THE HIPPO PATHWAY IN

MAMMALS

P
ro

te
in

P
h
en

o
ty

p
e

o
f
K

O
m

ic
e

H
u
m

a
n

d
is

ea
se

R
ef

er
en

ce

M
er

li
n

L
et

h
al

b
ef

or
e

ge
st

at
io

n
N

eu
ro

fi
b
ro

m
at

os
is

,
M

cC
la

tc
h
ey

et
al

.
(1

99
7)

S
ch

w
an

n
om

as
,

H
an

em
an

n
(2

00
8)

M
en

in
gi

om
as

T
ro

fa
tt

er
et

al
.
(1

99
3)

W
W

45
P
er

in
at

al
le

th
al

it
y

O
st

eo
sa

rc
om

a,
L
ee

et
al

.
(2

00
8)

H
ap

at
os

ar
co

m
a

M
S
T

1/
2

E
m

b
ry

on
ic

le
th

al
H

ep
at

oc
el

lu
la

r
O

h
an

d
Ir

vi
n
e

(2
00

9)
ca

rc
in

om
as

Z
h
ou

et
al

.
(2

00
8)

L
A

T
S
1

P
ar

ti
al

le
th

al
it
y

at
P

1
S
ac

ro
m

a,
S
t

Jo
h
n

et
al

.
(1

99
9)

S
u
rv

iv
or

s:
m

am
m

ar
y

O
va

ri
an

ca
n
ce

r,
T
ak

ah
as

h
i
et

al
.
(2

00
5)

gl
an

d
d
ef

ec
ts

B
re

as
t

ca
n
ce

r
H

is
ao

ka
et

al
.
(2

00
2)

L
A

T
S
2

L
et

h
al

it
y

at
E

10
B

re
as

t
ca

n
ce

r
T
ak

ah
as

h
i
et

al
.
(2

00
5)

M
cP

h
er

so
n

et
al

.
(2

00
4)

Y
A

P
L
et

h
al

it
y

at
E

8
C

an
ce

r
M

or
in

-K
en

si
ck

i
et

al
.
(2

00
6)

Z
en

d
er

et
al

.
(2

00
6)

T
A

Z
P
ar

ti
al

le
th

al
it
y

at
b
ir

th
.

P
ol

yc
yc

si
tc

ki
d
n
ey

M
ak

it
a

et
al

.
(2

00
8)

S
u
rv

iv
or

s:
ki

d
n
ey

an
d

d
is

ea
se

ca
n
ce

r
H

os
sa

in
et

al
.
(2

00
7)

lu
n
g

d
ef

ec
ts

em
p
hy

se
m

a

T
ab

le
1.

2:
M

am
m

al
ia

n
H

ip
po

si
gn

al
lin

g
co

m
po

ne
nt

s
an

d
th

ei
r

co
nt

ri
bu

ti
on

s
to

tu
m

ou
ri

ge
ne

si
s.

K
O

=
kn

oc
k-

ou
t.

T
ab

le
ad

ap
te

d
fr

om
W

an
g

et
al

.(
20

09
).



33 1.4. KEY QUESTIONS TO BE ADDRESSED IN THESIS

or inhibited (Oka et al., 2008) by LATS1 phosphorylation.

1.3.3.3 Hippo pathway components antagonise oncogenic proper-

ties in-vitro

YAP over-expression has been shown to enhance oncogenic activity in both

immortalised mammary and pancreatic epithelial cells in-vitro. These onco-

genic properties include the ability to support growth factor and anchorage

independent growth, epithelial-to-mesenchymal transition and resistance to

apoptosis (Overholtzer et al., 2006; Dong et al., 2007; Zhao et al., 2008; Chan

et al., 2009; Zhang et al., 2009a). Over-expression of YAP in-vitro results in

changes where a typical polarised uniform epithelial sheet of cells transforms

into mesenchymal-like metastatic cells, exhibiting neither regimented struc-

ture nor tight intracellular adhesion. Interestingly, MST and LATS proteins

can antagonise the oncogenic properties of YAP in these breast cancer cell

lines (Overholtzer et al., 2006; Hao et al., 2008; Zhang et al., 2008a), further

supporting the tumour suppressive functions of the Hippo pathway on YAP.

1.4 Key questions to be addressed in thesis

Studying Drosophila models has clearly led to insight into some fundamental

biological aspects of tumourigenesis within the mammalian system and has

opened up a new avenue for FERM domain containing proteins to modulate

on the Hippo pathway in both Drosophila and mammals. To date, willin’s

involvement in growth signalling pathways in the mammalian system is un-

known even though the Drosophila orthologue, expanded, has been shown to

activate and modulate the Hippo pathway. It is predicted that willin plays a

role in the Hippo pathway (Figure 1.16). The aim of this thesis is to investi-

gate the role of willin in the mammalian Hippo pathway. Research will focus

on the biological effect willin has on the mammalian Hippo pathway on cell

proliferation and apoptosis in-vitro on both immortalised cell lines as well as

primary cell cultures. The modulation of willin and other ERM proteins on

the activation of the mammalian Hippo pathway will be investigated in order

to directly contribute to the understanding of human cancers and potential

therapeutics.
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Figure 1.16: Schematic representation of the predicted interaction of willin on
growth controlling signalling pathways. Merlin has been shown to inhibit cell pro-
liferation by inhibiting MEK/ERK and Akt/mTOR signalling pathway as well as
predicted interactions with the Hippo signalling pathway to inhibit cell growth.
ERM proteins have growth promoting properties through inhibiting the actions of
merlin. The effects of merlin, willin and ERM proteins on the Hippo pathway, to
date, remain unknown (dashed line).



Chapter 2

Materials and Methods

2.1 Molecular cloning

2.1.1 Polymerase chain reaction (PCR)

PCR reactions for the amplification of full-length willin, the FERM domain

and the C-terminal domain of willin contained: 0.5 units PfuTurbo DNA Poly-

merase (Roche), appropriate 10X buffer (Roche), 1% DMSO (Sigma), 0.5µM

forward primer, 0.5µM reverse primer (Invitrogen; see Table 2.1 for list of PCR

primers), 200µM dNTPs (Promega) and 100ng pWillin-GFP DNA template.

The PCR reaction was conducted in a Biometra T-Gradient Thermal Cycler

(Biometra, Germany) and the thermal PCR cycle was as described in Table

2.2. PCR reaction on cDNA contained Taq PCR master mix (Sigma), 0.5µM

forward primer, 0.5µM reverse primer (Table 2.1) and 200ng cDNA. Biometra-

T thermal cycler (Biometra, Germany) was set to the conditions described in

Table 2.3.

35
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NAME NUCLEOTIDE SEQUENCE
BMP2-F CGACCCTCGACCCCCGAGTC
BMP2-R CACGCGGGGACACGTCCATT
Cterm-F CGGGATCCACGATGAAGAAGCAGTACCGGGAATCTTAC
Cterm-R2 CGGAATTCCTAAGCGTAATCTGGGACGTCGTATGGGTA

CACAACAAACTCTGGAACTTC
DR-500bp-F GAGTGGAAGCAGGACTCTGG
DR-500bp-R GTGAGTCCAAGCAATGCTGA
EF1a-F ATGGCACGGTGACAACATGCT
EF1a-R CCACATTACCACGACGGATG
FERM-F CGGGATCCACGATGCGCAGTGTGTGCATTTTCCTT
FERM-R CGGAATTCCTAAGCGTAATCTGGGACGTCGTATGG

GTACTCTTCGTTTTCCTCCAGC
IGFBP2-F CCAGCTCCAGGTGAGCCGC
IGFBP2-R CCAGCAGAAGCCCCGCTTCC
m-actin-F AGGCATTGTGATGGACTCCG
m-actin-R AGTGATGACCTGGCCGTCAG
m-cyclo-F AGGGTGGTGACTTTACACGC
m-cyclo-R GGTTTGATGGGTAAAATGCC
mRT-PCR-F AGCACAGATGGCCGTGTATT
mRT-PCR-R TCAGTATCATCCCGACACGA
MST1/2-F GAGAAGCTTGGAGAAGGGTC
MST1/2-R2 CCACAGTACTCCATAACAATCCA
PRL-F ACCAGGAAAAGGGAAACGAATGCC
PRL-R CGGCGCGGTCAAACAGGTCT
R-ezrin-F CCCGGCCGATCCCAATTTGTGAA
R-ezrin-R GGCGGAGACACGTCGGGAC
R-LATS1-F TGCCGCAAAGGCCGAGCATA
R-LATS1-R TGGCATTGATAGGTCTGGCAGCT
R-LATS2-F TGAGCGCAGAGACGGTGGGT
R-LATS2-R ACGTCCAATGTTTTGGCATAGCTGATT
R-merlin-F TTTGCCATAGGCAGCCCGCC
R-merlin-R GTTACACCCACCACTCCTCAAATACC
R-MST1-F TGCTTACTTGGTAACCCAGCCTCAG
R-MST1-R TGGGACTCGGTCCTCAGGGGA
R-MST2-F AGCAGGACTTCAAGAACAAGAGTCATG
R-MST2-R GGCGGCTTCAGTCGCAGGTT
r-willin-F CAGCCCACAACACAATGAAC
r-willin-R AGTGCAGCACCTGTTTCCTT
R-YAP-F AGCCCAAGTCCCACTCGCGA
R-YAP-R ACGAGGGTCAAGCCTTGGGTC
RASSF8-F GGGGCTGGGCATAGAACTGTTGG
RASSF8-R TTCCATGGTGCACCGGCCAGT
Willin2-F GCTCAAGCTTCGAATTCGCCATGAAC
Willin2-R ATAGCGGCCGCCACAACAAACTCTGGAACT

Table 2.1: Nucleotide primer sequences used for PCR, RT-PCR and qPCR.



37 2.1. MOLECULAR CLONING

Step Temperature (oC) Time (sec)
1 94 300
2 94 30
3 50.2 60
4 72 120
5 72 600
6 4 pause

Table 2.2: Thermal PCR cycle for full-length willin PCR. Steps 2-4 were repeated
a total of 40 times before steps 5 and 6 were performed.

Step Temperature (oC) Time (sec)
1 94 300
2 94 30
3 52 40
4 72 60
5 72 600
6 4 pause

Table 2.3: Thermal PCR cycles for amplification of willin from cDNA. Steps 2-4
were repeated a total of 40 times before steps 5 and 6 were performed.

2.1.2 Agarose gel

1% (w/v) or 2% (w/v) agarose was melted in TBE buffer (0.45M Tris-borate,

10mM EDTA, pH 8.3; Sigma). Once cooled, a final concentration of 0.5µg/ml

ethidium bromide (Sigma) was added. A 1% (w/v) agarose gel was used to

separate DNA fragments larger than 1kb and 2% (w/v) for DNA fragments

smaller than 1kb. The gel was left to set for 20 minutes at room temperature

in a DNA gel rig. 6X agarose gel buffer (50% glycerol, 49.75% TBE, 0.25%

bromophenol blue) was added to the samples before DNA was loaded into the

wells. Hyperladder I (Bioline) was run simultaneously to analyse DNA band

size. DNA gels were run at 60V for 1 hour and bands were visualised under

UV light using GeneSnap software (Syngene).
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2.1.3 Purification of DNA from agarose gel

DNA bands were visualised under low UV light (230-50Hz, Ultratec Ltd) and

excised from the agarose gel using a sterile blade. The DNA band was purified

using a Wizard SV gel and PCR Clean-up Kit (Promega) according the to

manufacturer’s protocol.

2.1.4 Restriction digest

5µg DNA was cut using 5 units restriction enzyme (Promega) and the ap-

propriate 10X buffer (Promega) according to manufacturer’s protocol. The

restriction digest product was heat inactivated at 68oC for 20 minutes. Dou-

ble restriction digests were performed as follows: first restriction digest, heat

inactivation, DNA clean up (Section 2.1.3), followed by a second restriction di-

gest and heat inactivation. Restriction digest products were run on an agarose

gel (Section 2.1.2) for analysis and extraction.

2.1.5 Ligation reaction

Restriction digested plasmid and the DNA insert were ligated using 5 units

T4Turbo DNA ligase (Promega) and its appropriate 10X buffer (Promega) ac-

cording to manufacturer’s protocol; using a 1:5µl and 1:10µl vector:insert ratio.

A control reaction was set up using 1µl vector in the absence of DNA insert.

The ligation reaction was incubated at room temperature for a minimum of 4

hours.

2.1.6 Generating competent DH5α cells

A glycerol scrape of DH5α was added to 5ml Luria-Bertani (LB) medium (2%

(w/v) tryptone, 0.5% bacto-yeast extract, 10mM NaCl, 2.5mM KCl, 10mM

MgCl2, 10mM MgSO4, pH 7.5). DH5α bacterial cells were grown, shaking at

210rpm, in an orbital incubator at 37oC for 15-18 hours. After incubation,

0.5ml of DH5α cell mixture was placed in fresh 50ml LB medium, shaking at

210rpm at 37oC, until an absorbance reading between 0.3 and 0.4 was measured

at 600nm (UV1601 Shimadzu Corporation). DH5α cells were harvested using

a 4.2 Rotar Beckman J6-MC Centrifuge (Beckman) at 3,500g, at 4oC, for 10

minutes. The DH5α cell pellet was resuspended in 20ml of 100mM CaCl2 and

incubated on ice for 30 minutes. DH5α competent cells were harvested at 400g
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for 5 minutes at 4oC. The cell pellet was resuspended in 1ml 100mM CaCl2 and

incubated on ice for 30 minutes before being used for transformations (Section

2.1.7). Competent DH5α cells were stored at -80oC in 50% glycerol for future

use.

2.1.7 Transformation

A 25µl ligation product (Section 2.1.5) was added to 200µl DH5α competent

cells (Section 2.1.6) and left to incubate on ice for 30 minutes. The transfor-

mation mixture was heat shocked at 42oC for 45 seconds and incubated on

ice for an additional minute. 800µl SOC medium (2% (w/v) tryptone, 0.5%

bacto-yeast extract, 10mM NaCl, 2.5mM KCl, 10mM MgCl2, 10mM MgSO4,

20mM glucose, pH 7.5) was added and incubated at 37oC for 1 hour, shaking at

210rpm. 100µl of these cells were spread on agar plates that contained the ap-

propriate antibiotic resistance (100µg/ml ampicillin or 50µg/ml kanamycin);

dependent on the DNA plasmid’s resistance. For DH5α transformations with

pGEMT-easy plasmids, cells were spread onto X-gal plates (LB agar, 0.1mM

IPTG and 2% X-gal and 100µg/ml ampicillin; protected from light).

2.1.8 Plasmid purification from transformed DH5α cells

A single colony from an agar plate (Section 2.1.7) or a glycerol stock scrape

(Section 2.1.9) was added to 5ml LB medium, containing the appropriate

antibiotic (100µg/ml ampicillin or 50µg/ml kanamycin). Transformed DH5α

cells were grown at 210rpm, 37oC, for 15-18 hours. DNA was purified using a

Qiagen Spin Miniprep Kit (Qiagen), according to the manufacturer’s manual.

The DNA concentration of purified plasmid was measured at 260nm (UV1601

Shimadzu Corporation) and stored at -20oC. DNA was sequenced at the DNA

Sequencing Service (University of Dundee, UK).

2.1.9 Glycerol stocks

Glycerol stocks of transformed DH5α cells were made for long-term storage.

600µl LB overnight medium containing transformed DH5α cells and 400µl

sterile 50% glycerol were mixed and stored at -80oC.
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2.2 Tissue culture

2.2.1 Cell culture

All cells were kept in an incubator at 37oC with an atmospheric environment

of 5% CO2. Growth medium used for different cell lines are presented in Table

2.4.

CELL LINE GROWTH MEDIUM COMPONENTS

HEK293 MEM, 10% FCS (Bethyl Laboratories), 2mM
L-Glutamate, 100 units Penicillin, 0.1mg/ml
Streptomycin, + 1% Non Essential Amino Acids

TRex Same as HEK293 + 5 µg/ml Blasticidin (Invitrogen)
TRex-willinGFP Same as TRex + 250µg/ml Zeocin (Invitrogen)
MCF10A DMEM (Invitrogen), 5% Horse serum (Invitrogen),

20ng/ml EGF, 0.5µg/ml Hydrocortisone, 100ng/ml
Cholera toxin, 10µg/ml Insulin, 100 units Penicillin
+ 0.1mg/ml Streptomycin

MCF10A-pBabe Same as MCF10A + 2µg/ml Puromycin
MCF10A-YAP Same as MCF10A + 300µg/ml Hygromycin
MCF10A-YAP Same as MCF10A-YAP + 2µg/ml Puromycin
+ pBabe
Phoenix-A DMEM, 10% FCS (Bethyl Laboratories), 2mM

L-Glutamate, 100 units Penicillin + 0.1mg/ml
Streptomycin

Schwann cells DMEM, 10%FCS (Bethyl Laboratories), 2mM
L-Glutamate, 100 units Penicillin, 0.1mg/ml
Streptomycin, 10µM Forskolin + 20ng/ml Heregulin

Fibroblasts DMEM, 10% FCS (Bethyl Laboratories),
2mM L-Glutamate, 100 units Penicillin
and 0.1mg/ml Streptomycin

Table 2.4: Growth medium reagents for different tissue culture cell lines. All
materials were from Sigma unless otherwise stated.

Cells were split, into T75 flasks, three times a week, in a class II sterile

chamber. Growth medium was removed and the cells were rinsed with 1.5ml,

pre-warmed to 37oC, Trypsin-EDTA (Sigma). Cells were detached from the

plastic surface by gently tapping the flask. Cells were harvested with 15ml

fresh medium and the appropriate cell density was added back into the flask
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containing 15ml fresh medium. Cells were passaged up to 40 times before

being replaced with fresh cells that were stored in liquid nitrogen (Section

2.2.8). MCF10A cells were obtained from ATCC and were grown according to

Debnath et al. (2003). HEK-293 cells were obtained from ATCC, TRex cells

were are kind gift from Dr. Chris Tate (University of Cambridge, UK) and

primary Schwann and fibroblast cells were a kind gift from Prof. Sue Barnett

(University of Glasgow, UK).

2.2.2 DNA transfection

HEK-293 cells were transfected with DNA using GeneJammer transfection

reagent (Stratagene) according to the manufacturer’s manual (Table 2.5).

HEK-293 cells were harvested and the appropriate cell density was added to

dishes so that HEK-293 cells were 60-80% confluent on the day of transfection.

Cells were placed in dishes with or without coverslips for use of immunofluo-

rescence microscopy or western blotting respectively.

Size of dish GeneJammer DNA Optimem Medium
(mm) (µl/dish) (µg/dish) (µg/dish) (ml/dish)

35 6 2 100 2
60 15 5 250 5
90 30 10 750 10
150 60 20 1000 15

Table 2.5: Volumes of reagents used in GeneJammer DNA transfection in different
sized dishes.

2.2.3 siRNA transfection

HEK-293 cells were grown to 60-80% confluency in dishes with or without cov-

erslips for use of immunofluorescence microscopy or western blotting respec-

tively. Three duplex siRNA oligo-ribonucleotides specifically targeted against

the willin gene were designed (Invitrogen): siRNA1 = GCCUCUAUAU-

GAAUCUGCAGCCUGUACAGGCUGCAGAUUCAUAUAGAGGC, siRNA2

= CACAGACUAUAUGUCGGAAACCAAAUUUGGUUUCCGACAUAUAG-

UCUGUG and siRNA3 = GACAGAGCAGCAAGAUACUAUUAUUAAU-
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AAUAGUAUCUUGCUGCUCUGUC. siRNA was transfected into HEK-293

cells using GeneEraser (Stratagene) transfection reagent according to the man-

ufacturer’s protocol. The volume of siRNA was either split so that there was

an equal volume of each siRNA duplex or made up of a single siRNA duplex.

2.2.4 Retroviral production and transfection

Retroviral infections were performed on MCF10A cell lines. Appropriate safety

measures were taken when producing and transfecting a retrovirus. All viral

work was done in a class II tissue culture hood designated for viral work only.

All liquid waste was aspirated into a viral container containing Virkon (Antec

International Ltd) and solid waste was placed in a double bag within the tissue

culture hood after which it was placed within the viral waste. Both liquid and

solid wastes were autoclaved before being disposed of.

Phoenix-A cells were harvested and 4x106 cells were plated into 90mm

dishes. After 24 hours, Phoenix-A cells were transfected with a pBabe vector

containing the gene of interest and an empty vector was used as a control.

For each 90mm transfection: 43µl Mirus LT1 (Mirus) was added to 1.5ml

serum free Optimem (Invitrogen) and was left to incubate for 20 minutes at

room temperature. 20µg of pBABE vector was added to Mirus LT1-Optimem

solution and left to incubate for a further 30 minutes. The DNA-LT1-Optimem

solution was then added drop by drop to the plate of Phoenix-A cells, which

contained a total of 10ml of DMEM and 10% FCS. 24 hours post-transfection,

the medium was removed and 4ml DMEM containing 10% FCS was added.

Media was collected 48 hours post-transfection and 4ml DMEM containing

10% FCS was added back on the cells. 72 hours post-transfection, media

containing the virus was collected. The media containing the virus from 48

hours and 72 hours post-transfection were pooled together and passed through

a 0.45µm filter to remove cellular debris. The media containing the virus was

used directly for retroviral transfection.

Cells to be transfected by retroviral transfection were harvested and 5x105

cells were plated per 90mm dishes. 24 hours after seeding, culture media was

aspirated from the 90mm dishes and 4ml of virus-media containing 8µg/ml

polybrene (Sigma) was added to the cells and left to incubate for 8 hours in a

37oC viral tissue culture incubator. Media was aspirated after the incubation

and 10ml fresh culture media was added. Cells were selected with 2µg/ml
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puromycin 48 hours post-infection. Four days after puromycin selection only

puro-resistant cells remained.

2.2.5 Stable cell line production

Confluent T75 flasks were transfected with appropriate DNA plasmids using

either the GeneJammer transfection (Section 2.2.2) or the retroviral transfec-

tion (Section 2.2.4) method. Cells were incubated in a sterile tissue culture

incubator at 37oC. 48 hours post-transfection, cells were selected for plas-

mid expression using appropriate antibiotics: 500µg/ml zeocin and 5µg/ml

blasticidin were added to TRex-willin-GFP cell line; 2µg/ml puromycin was

added to MCF10A-willin, MCF10A-FERM and MCF10A-Cterm cell lines;

and 300µg/ml hygromycin was added to MCF10A-YAP cells. The cells were

maintained in antibiotic containing medium thereafter.

2.2.6 Inducing TRex cell line

Willin-GFP expression was induced in the TRex-willin-GFP cells with growth

medium containing 1µg/ml tetracycline. Fresh tetracycline was added every

48 hours for long inductions.

2.2.7 Storage of cell lines

Confluent T75 flask containing cells to be frozen down were trypsinised and

resuspended in growth medium. Cells were harvested at 350g for 5 minutes

at room temperature. The cell pellet was resuspended in freezing medium

containing 40% FCS, 50% normal cell maintenance medium and 10% DMSO.

1.5ml aliquots were added to a cryotube and placed at -80oC in a cryo-freezing

container (Nalgene) for 24 hours. The cryotubes were placed in a liquid nitro-

gen store for long-term storage.

2.2.8 Rescue of frozen cell lines

Cells were quickly thawed at 37oC and added to a sterile T75 flask containing

20ml growth cell medium. After 24 hours, the medium was aspirated and

replaced with fresh medium.
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2.3 Cell assays and treatments

2.3.1 Fixing and mounting cells for fluorescent mi-

croscopy

Cells were grown in dishes containing coverslips and treated as desired. When

cell treatment was completed, the cells were washed three times with phos-

phate buffered saline (PBS; Sigma) and fixed with 1ml neutral buffered, filter

sterilised, formalin (NBF; 10% (v/v) formalin, 0.4% (w/v) NaH2PO4.H2O,

0.65% (w/v) Na2HPO4; Sigma) for 10 minutes at room temperature. Dishes

were gently washed an additional three times with PBS and mounted with

mowial (Sigma) and DAPI (4’,6-diamidino-2-phenylindole; Sigma) on micro-

scope slides. Images of the cells were taken using a DeltaVision deconvolution

microscope (Applied Precision) or a multiphoton microscope (Leica). All im-

ages were taken from a Z-stack. Excitation wavelenght was 405nm for DAPI,

488nm for GFP and 633nm for mCherry. Slides were examined using either

the X10 and X20 objectives under dry conditions or using the X40 and X63

objectives under oil immersion.

2.3.2 Propidium iodide staining for FACS analysis

Cells were washed three times in PBS and harvested in 10ml fresh growth

medium at 350g for 5 minutes. The cell pellet was washed in ice-cold PBS

and harvested at 350g for 5 minutes at 4oC. For cell cycle analysis, 0.5x106

cells were fixed in 80% ethanol and left overnight at -4oC. Fixed cells were

harvested at 350g for 5 minutes at 4oC and the ethanol was aspirated. Fixed

cells were resuspended in PBS containing 3µM propidium iodide (PI) and 500

units of RNaseA (Promega). Cells were incubated in PI solution for 30 min-

utes before being analysed on the FACS machine (FACscan Flow Cytometer,

Becton Dickinson) at 615nm wavelength. For live/dead discrimination on cell

populations, cells were harvested and resuspended in ice-cold PBS containing

3µM PI. Cells were incubated in PI solution for 5 minutes and analysed on

the FACS flow cytometer (Becton Dickinson) at 615nm.
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2.3.3 Nuclear versus cytoplasmic protein extraction

Cells were grown in two 90mm dishes and harvested at 300g for 5 minutes

at 4oC. The cell pellet was resuspended in 0.5ml ice-cold cytoplasmic extrac-

tion buffer (10mM HEPES pH7.9, 1.5mM MgCl2, 10mM KCl, 0.5mM DTT)

and incubated on ice for 5 minutes. Cells were lysed with 20 stokes using a

Dounce homogeniser and the lysate was centrifuged at 228g for 5 minutes at

4oC to pellet nuclei and other fragments. The supernatant, containing the

cytoplasmic fraction, was stored at -20oC. The nuclear pellet was resuspended

in 0.5ml ice-cold nuclear extraction buffer (0.25mM sucrose, 10mM MgCl2)

and layered over a sucrose bed (0.88mM sucrose, 0.5mM MgCl2). The nuclear

fraction was pelleted by centrifugation at 2800g for 10 minutes at 4oC. 5X

protein sample buffer (250mM TrisHCl pH6.8, 10% SDS, 30% glycerol, 5% β-

mercaptoethanol and 0.02% bromophenol blue) was added to both nuclear and

cytoplasmic fractions and run on a protein SDS gel (Section 2.4.2.3). β-actin

and coilin antibodies were used as a loading and a “carry-over contamination”

control for cytoplasmic and nuclear extracts respectively.

2.3.4 Membrane and cytoplasmic sub-fractionation

Cells were grown in 90mm dishes, harvested at 300g for 5 minutes at 4oC

and washed twice in ice-cold PBS. The cell pellet was resuspended in 5ml

hypotonic buffer (20mM Tris-HCl pH 7.4, 10mM KCl, 1mM EDTA, 1mM

DTT, 1% aprotinin and 1mM PMSF) and incubated for 10 minutes on ice.

Cells were lysed by 40 strokes using a Dounce homogeniser and equilibrated

to 125mM NaCl. Cell lysates were spun at 1500g for 10 minutes at 4oC. The

pellet containing whole cells and nuclei was stored at -80oC (P1 fraction). The

supernatant was added to a Beckman ultraclear centrifuge tube and spun at

100,000g for 1 hour at 4oC. The supernatant was incubated in 4 volumes of

ice-cold acetone for 45 minutes and centrifuged at 3000g for 10 minutes at 4oC.

The acetone was aspirated and air-dried for an additional 40 minutes before the

pellet was resuspended in 200µl 1% ice-cold Triton X-100 (S100). The pellet

left in the Beckman centrifuge was resuspended in 200µl 1% ice-cold Triton

X-100 and incubated on ice for 15 minutes. After incubation, the membrane

fraction was centrifuged at 16,000g for 15 minutes at 4oC. The Triton soluble

supernatant (P100s) was removed and stored at -80oC until needed. The

Triton insoluble pellet (P100i) was resuspended in 200µl 1% ice-cold Triton
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X-100 and stored at -80oC until needed. 5XPSB (250mM TrisHCl pH6.8, 10%

SDS, 30% glycerol, 5% β-mercaptoethanol and 0.02% bromophenol blue) was

added to P1, P100s, P100i and S100 protein extracts and boiled for 10 minutes

before being loaded on a SDS gel (Section 2.4.2.3).

2.3.5 Immunoprecipitation (IP)

2.3.5.1 Cross-linking antibody to Sepharose-G beads

10µl Sepharose-G beads (Sigma) were washed twice in PBS. Beads were resus-

pended in 100µl PBS containing 2µg of antibody and incubated with agitation

for 1 hour at room temperature. Freshly prepared disuccinimidyl suberate

(DSS, Pierce) was added to the antibody/Sepharose-G mixture to a final con-

centration of 650µg/ml and was incubated with agitation, for 1 hour at room

temperature. After DSS cross-linking, Sepharose beads were washed four times

with TBS. To release any unbound antibody, Sepharose beads were washed

four times with 0.1M glycine (pH 2.8) followed by three washes with TBS.

Before and after cross-linking samples were separated on a 10% Tris/glycine

SDS gel (Section 2.4.2.3) to confirm that the heavy chain of the antibody was

covalently linked to the beads.

2.3.5.2 Immunoprecipitation

Cells were grown in 90mm plates and transfected or induced for the desired

protein expression. Cells were harvested at 420g for 5 minutes at 4oC and

resuspended in 300µl lysis buffer: 25mM Tris-HCl (pH 7.4), 150mM NaCl,

1mM CaCl2, 1% TX-100 and 1% protease inhibitors (Roche). Cells were

vortexed and incubated on ice for 15 minutes. Samples were sonicated twice

for 10 seconds and centrifuged at 10,000g for 20 minutes at 4oC to pellet

insoluble material. To 20µl of protein-G Sepharose mixture conjugated to

desired antibody (Section 2.3.5.1), cell lysate and wash buffer (25mM Tris-HCl

pH 7.5, 150mM NaCl, 1% protease inhibitors) were added in a 1:1 ratio and

incubated with agitation at 4oC overnight. 15 hours after agitated incubation,

protein-G Sepharose and the antibody solution were centrifuged for 1 minute

and the supernatant was removed. The Sepharose complex was washed 3 times

in wash buffer with a 30 second 500g spin. The pellet was resuspended in 50µl

PSB (62.5mM Tris-HCl pH 6.8, 2% (w/v) SDS, 10% glycerol, 50mM DTT,
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0.01% (w/v) bromophenol blue) and separated on a SDS gel (Section 2.4.2.3)

to detect binding.

2.3.6 MTT assay

Cells were plated in 96 well plates in a total volume of 100µl medium. After cell

treatment, MTT solution (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazo-

lium bromide; Sigma) was added to a final concentration of 1mg/ml. After

a 3 hour incubation period in a sterile tissue culture incubator at 37oC, all

medium was aspirated and 100µl DMSO was added to each well. Plates were

shaken for 5 minutes and the absorbance was measured at 590nm using MRX

Microplate Reader (DYNEX Technologies).

2.3.7 TNFα treatment

Cells were treated, between 0-8 hours, with TNFα (Sigma) to a final concen-

tration ranging from 0-200ng/ml.

2.3.8 Colorimetric caspase-3 assay

All materials for the caspase-3 assay were from the caspACE colorimetric assay

kit (Promega).

2.3.8.1 Preparation of cell extract

Cells were grown in 35mm dishes and treated with either 50ng/ml TNFα,

50ng/ml TNFα and an apoptosis inhibitor Z-VAD-FMK (Promega) to a final

concentration of 50µM, or left untreated. Cells were harvested at 450g for 10

minutes at 4oC and washed in ice-cold PBS. The cell pellet was resuspended in

lysis buffer provided in the caspase kit (Promega) at a concentration of 1x106

cells/ml. The cell extract was lysed by two freeze-thaw cycles and incubated

on ice for 15 minutes. Cell lysates were centrifuged at 15,000g for 20 minutes

at 4oC and the supernatant was collected. The protein concentration of cell

lysate was measured using a Bradford assay (Section 2.4.2.1).

2.3.8.2 Caspase assay

25µg of protein extract (Section 2.3.8.1) was used for the caspase-3 assay.

Table 2.6 shows the components needed for a single reaction in a 96 well plate.
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Plates were covered in parafilm and incubated for 4 hours at 37oC and the

absorbance was measured at 405nm using a MRX Microplate Reader (DYNEX

Technologies). The difference between the amount of yellow produced in the

absence and presence of Z-VAD-FMK inhibitor was a measure of the caspase-

3 activity present in the sample. The specific activity (SA) of caspase-3 was

calculated as described in CaspACE assay manual (Promega).

Blank -ve control induced inhibited
apoptosis apoptosis

caspase buffer 32µl 32µl 32µl 32µl
DMSO 2µl 2µl 2µl 2µl

100mM DTT 10µl 10µl 10µl 10µl
untreated cell extract - Xµl - -

induced apoptosis extract - - Xµl -
inhibited apoptosis extract - - - Xµl

dH2O to total 98µl 98µl 98µl 98µl

Table 2.6: Volumes and reagents used in colorimetric caspase-3 assay (Promega).

2.3.9 Anchorage independence growth assay

Cells were harvested and seeded 2x104 cells per 35mm dish in a mixture

of 0.35% agarose/DMEM:F12 complete media onto a lower layer of 0.5%

agarose/DMEM:F12 complete media. Once the agarose was set, a layer of

DMEM:F12 complete media was added above the agarose layers. Dishes were

incubated at 37oC in a humidified incubator for 3 weeks. Cell growth media

was replaced twice a week and the number of colonies, defined as ≥5 cells,

were counted after 14 and 21 days using a brightfield microscope.

2.3.10 Cell migration assay

Cells were harvested and 1x105-1x106 cells were placed in 0.5ml serum-free

growth media. Media containing cells were added to the top chamber of 24

well 8.0µm pore Boyden chamber (Biocoat, Becton Dickinson). The lower

chamber contained growth media with 20% serum. Cells were incubated at

37oC in a humidified incubator for 24 hours. After 24 hours, media in the top

Boyden chamber was removed and washed 3 times in sterile PBS and the top
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membrane was scrubbed free of cells using a cotton swab. The bottom side

of the porous membrane was stained with 0.1% crystal violet (Sigma) and a

brightfield image of the cells was taken. Crystal violet dye was extracted with

500µl 0.1M sodium citrate in 50% ethanol and absorbance was measured at

570nm using a MRX Microplate Reader (DYNEX Technology).

2.3.11 Adhesion assay

A 96 well plate was coated with 10µg/ml laminin (Sigma) at 37oC for 1 hour

in a sterile chamber. Some wells were left uncoated for a negative control.

Wells were washed twice with cell growth medium containing 0.1% BSA and

blocked with cell medium containing 0.5% BSA for 1 hour at 37oC. Wells were

then washed with medium containing 0.1% BSA and plates were chilled on

ice for 30 minutes. 2x104 cells were plated into each well and left to incubate

at 37oC for 30 minutes. After incubation, plates were shaken at 2000rpm for

10 seconds and wells were washed twice in PBS. Cells were fixed in 4% PFA

for 10 minutes at room temperature and washed twice with PBS. Cells were

stained with 5mg/ml crystal violet in 2% ethanol for 10 minutes and the total

number of cells in the wells were counted using a brightfield microscope.

2.3.12 Scratch assay

The same number of cells were plated into 35mm dishes and left to grow until

confluent. Once a monolayer of confluent cells was observed in the dishes, a

scratch was made with the end of a yellow tip. Brightfield images were taken

just after the scratch and at different time points depending on cell growth

and migration. The percentage of scratch covered by cells was calculated using

Image J software.

2.4 Protein and RNA detection

2.4.1 Reverse transcriptase PCR

2.4.1.1 RNA extraction

Lab surfaces and materials needed were cleaned with DEPC water (0.1%

DEPC in sterilised water) and put under UV light for 10 minutes to create

an RNase-free environment. RNA was extracted from cells using the RNeasy
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Mini Kit (Qiagen), according to manufacturer’s protocol. The extracted RNA

concentration was measured at 260nm (UV1601 Shimadzu Corporation) and

stored at -80oC until needed.

2.4.1.2 DNase digestion of RNA samples

DNase digestion of 5µg RNA was achieved using 2 units RQ1 RNase Free

DNase (Promega) and appropriate 10X buffer (Promega) according to the

manufacturer’s protocol. DNase digestion was incubated at 37oC for 30 min-

utes. DNase treated RNA samples were stored at -80oC until further required.

2.4.1.3 Reverse transcriptase PCR (RT-PCR)

2µg of DNase treated RNA was denatured at 65oC for 10 minutes in 10µl

RNase free water and 1µM random hexanucleotides (Roche). 20 units Pro-

tector RNase Inhibitor (Roche), 200µM dNTPs, 50 units AMV Reverse Tran-

scriptase (Roche), and the appropriate 5X buffer were added and incubated

at 25oC for 10 minutes, 55oC for 30 minutes and denatured at 95oC for 2 min-

utes. Concentration of the cDNA product was measured at 260nm (UV1601

Shimadzu Corporation) and stored at -20oC until further needed. The PCR

was conducted on the cDNA as described in Section 2.1.1.

2.4.1.4 Quantitative PCR (qPCR)

Quantitative PCR (qPCR) was set up using Brilliant SYBR qPCR Master

Mix (Stratagene) according to the manufacturers protocol. For each 20µl

reaction: 10µl supermix, 0.5µM forward primer, 0.5µM reverse primer (for

primer nucleotide sequences see Table 2.1) and 200ng DNase-treated cDNA

were added to a PCR tube. A qPCR thermal cycle was set as described in

Table 2.7. Fluorescence was read on a Mx3005P machine (Stratagene).

2.4.2 Western blotting

2.4.2.1 Bradford assay

A calibration curve was made by measuring the absorbance at 595nm for

known amounts of BSA protein ranging from 0-8µg; 1µl protein, 500µl distilled

water and 500µl Bradford reagent (Sigma). The protein concentration of the
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Step Temperature (oC) Time (sec)
1 95 300
2 94 30
3 56 60
4 72 60
5 72 600
6 4 pause

Table 2.7: qPCR thermal cycle profile. Steps 2-5 were repeated a total of 40 times
before steps 5 and 6 were continued.

sample was determined by comparison with the standard curve when 1µl of the

protein sample was mixed well with 500µl distilled water and 500µl Bradford

reagent.

2.4.2.2 Whole cell protein extraction

To extract cells from transfection dishes, the cells were washed three times

with PBS. Cells were scraped off and the same volume of protein sample

buffer (2XPSB: 120mM Tris-HCl pH 6.8, 4% SDS, 20% glycerol, 10% 2-β-

mercaptoethanol and 0.004% bromophenol blue) was added. Samples were

sonicated on ice for three 5 seconds bursts and boiled for 15 minutes. Whole

cell lysates were run on a SDS gel or stored at -20oC. Lysates for phosphory-

lation studies were never stored and were always made and used fresh.

2.4.2.3 SDS PAGE gel

A separating gel was made using materials listed in Table 2.8. Upon the

addition of APS and TEMED the gel was left to set for 30 minutes in a Mighty

Small mini-Vertical Unit (Hoefer). Once set, a stacking gel was made (Table

2.9) and poured onto the separating gel. Combs were placed in the stacking

gel and left to set for 30 minutes. Protein samples were run on polyacrylamide

gels for 1 hour at 100 volts in Tris-glycine SDS running buffer (25mM Tris,

250mM glycine, 0.1% SDS, pH 8.3). A pre-stained protein standard ladder

(Biolabs) was run simultaneously with the protein samples to analyse protein

size.
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Reagents Volume for Volume for Volume for Volume for
8% gel 10% gel 12% gel 15% gel

Distilled water 4.60ml 4.00ml 3.30ml 2.3ml
1.5M Tris-HCl, pH8.8 2.50ml 2.50ml 2.50ml 2.50ml

10% SDS 100µl 100µl 100µl 100µl
30% Acrylamide 2.70ml 3.30ml 4.00ml 5.00ml

10% APS 100µl 100µl 100µl 100µl
TEMED 10µl 10µl 10µl 10µl

Table 2.8: Composition of a 8%, 10%, 12% and 15% Tris/glycine SDS polyacry-
lamide gel electrophoresis gel. All reagents were from Sigma.

Reagents Volume

Distilled water 2.68ml
0.5M Tris-HCl, pH6.8 1.25ml

10% SDS 50µl
30% Acrylamide 1.00ml

10% APS 15µl
TEMED 5µl

Table 2.9: Composition of the stacking gel for SDS gel. All reagents were from
Sigma.

2.4.2.4 Transferring proteins to nitrocellulose membrane

Six blotting pads were fully soaked in Tris-glycine transfer buffer (25mM Tris,

190mM glycine, 0.1% SDS, 20% methanol, pH8.5). Four blotting papers and

a nitrocellulose membrane (Protran, Scheicher) were soaked briefly in transfer

buffer before a transfer stack was made. The transfer stack contained: 3

blotting pads, 2 blotting papers, SDS PAGE gel, nitrocellulose membrane, 2

blotting papers and 3 blotting pads (placed into electrophoresis chamber from

the cathode to the anode end respectively). A blot module was filled with

transfer buffer and the outer buffer chamber was filled with 650ml deionised

water. Proteins were transferred from the SDS PAGE gel to the nitrocellulose

membrane at 33V for 1 hour.
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2.4.2.5 Western blotting

Nitrocellulose membrane was blocked overnight in 5% milk, 0.1% Tween

(Sigma) in TBS (50mM Tris, 138mM NaCl, 2.7mM KCl, pH 8.0), with gentle

agitation at 4oC. Primary antibody was added in concentrations as described

in Table 2.10 to 3% milk, 0.1% Tween and TBS, unless otherwise stated, for

1 hour at room temperature.

Antibody Primary Antibody Secondary Antibody

GFP 1:1,000 anti-GFP 1:10,000 anti-mouse HRP
(Santa-Cruz) (Santa-Cruz)

FLAG 1:500 anti-FLAG M2 1:10,000 anti-mouse HRP
(Stratagene) (Santa-Cruz)

β-actin 1:10,000 anti-βactin 1:10,0000 anti-mouse HRP
(Sigma) (Santa-Cruz)

MST1 1:1,000 anti-MST* 1:10,000 anti-rabbit HRP
(Cell Signalling) (Santa-Cruz)

Phospho MST1/2 1:1,000 anti-pMST1/2* 1:10,000 anti-rabbit HRP
(thr183/180) (Cell Signalling) (Santa-Cruz)

Lats1 1:1,000 anti-Lats1* 1:10,0000 anti-rabbit HRP
(Cell Signalling) (Santa-Cruz)

Phospho-Lats1 1:1,000 anti-pLats* 1:10,000 anti-rabbit HRP
(ser909) (Cell Signalling) (Santa-Cruz)

YAP 1:1,000 anti-YAP* 1:10,000 anti-rabbit HRP
(Cell Signalling) (Santa-Cruz)

phospho-YAP 1:1,000 anti-pYAP* anti-rabbit HRP
(Ser127) (Cell Signalling) (Santa-Cruz)
caspase-3 1:1,000 anti-caspase 3 1:10,000 anti-mouse HRP

(Sigma) (Santa-Cruz)
coilin 1:1,000 anti-coilin 1:10,000 anti-rabbit HRP

(Sigma) (Santa-Cruz)
HA 1:500 anti-HA 1:10,000 anti-mouse HRP

(Sigma) (Santa-Cruz)

Table 2.10: Concentrations of primary and secondary antibody used in western
blot protocol. All antibodies were diluted in TBS, 0.1% Tween, 5% milk with the
exception of starred antibodies (*) that were incubated in 5% BSA, 0.1% Tween in
TBS left gently shaking overnight at -4oC.
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Blots were washed three times, 5 minutes each, with 0.1% Tween in TBS.

Secondary HRP antibody was added in concentrations as described in Table

2.10 to 3% (w/v) dried milk, 0.1% Tween in TBS for 1 hour at room temper-

ature. The nitrocellulose blot was washed an additional 5 times, each lasting

at least 6 minutes. The nitrocellulose membrane was incubated, for 5 min-

utes, with 4ml SuperSignal West Pico enhanced chemi-luminescence reagent

(Pierce), before protein bands were visualised using a LAS-3000 Intelligent

Dark Box (Fujifilm).

2.4.3 Wholemount in-situ hybridisation

2.4.3.1 Preparation of DNA template for RNA probe synthesis

The willin DNA sequence of interest was amplified using RT-PCR (Section

2.4.1) and cloned into the pGEMT easy vector (Promega) according to the

manufacturer’s protocol. Orientation of the insert was obtained through DNA

sequencing (DNA Sequencing Service, University of Dundee, UK). 5µg of the

DNA template was linearised using the Sph1 restriction enzyme (Section 2.1.4)

to cut at the 5’ or 3’ end of the insert to make an anti-sense and sense probe

respectively. The restriction digest was left overnight at 37oC for complete

linearisation. DNA was extracted by addition of 100µl phenol/chloroform

(Sigma) to the restriction digest product, which was vortexed and centrifuged

at 10,000g. The top layer was transferred to a nuclease-free 1.5ml microcen-

trifuge tube. The phenol/chloroform DNA extraction was repeated again. 10µl

3M sodium acetate (pH5.2) was added and the DNA was precipitated using

ice-cold 70% ethanol (made with DEPC water). DNA was left to precipitate

for 30 minutes at -80oC, after which the DNA was pelleted at 10,000g for 15

minutes. The DNA pellet was air-dried for one hour and resuspended in 20µl

DEPC treated water. The DNA concentration was measured on a spectrom-

eter and 1µl of DNA template was run on an agarose gel (Section 2.1.2) to

confirm linearisation.

2.4.3.2 RNA probe synthesis

Table 2.11 shows the materials and quantities needed for RNA probe synthesis.

All reagents were added to a RNA-free PCR tube and both sense and anti-

sense RNA probe were synthesised. The RNA probe reaction was incubated

at 40oC for 2 hours, after which 2µl of RNase free DNase (Roche) was added
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to digest the DNA template at 37oC for 15 minutes. 1µl 0.5M EDTA (pH 8.0)

was added to stop the reaction. RNA was precipitated by the addition of 30µl

of a lithium chloride precipitation solution (Ambion). RNA was precipitated

for 4 hours at -20oC and pelleted by centrifuged at 10,000g for 15 minutes.

The pellet was washed with ice-cold 70% ethanol (made with DEPC treated

water) and re-centrifuged at 10,000g for 15 minutes to maximise the removal

of unincorporated nucleotides. Ethanol was carefully removed and the RNA

was resuspended in 20µl DEPC water. 1µl of the RNA probe was run on an

agarose gel to check whether RNA was present. 60µl of hybridisation mix (HM)

(50% formamide (Sigma), 5X sodium chloride/sodium citrate buffer (Sigma),

1mg/ml tRNA (Roche), 100mg/ml heparin (Sigma), 0.1% Tween-20 (Sigma),

made to pH4.5 with citric acid (Sigma)) was added to the RNA probe and

stored at -20oC.

Reagents Volume

10X transcription buffer 2µl
10X DIG-NTP 2µl
linearilised DNA 1µg
SP6 RNA Polymerase 2µl
RNase inhibitor 1µl
DEPC treated water to total of 20µl

Table 2.11: Volumes of reagents needed to make a RNA probe. All reagents were
from Roche.

2.4.3.3 Zebrafish embryo collection

The night before eggs were collected, male and female zebrafish were placed

in a breeding tank at 27oC. The next morning, eggs were collected and unfer-

tilised and abnormal eggs were removed. Fertilised embryos were placed in a

Petri dish containing fish water at 27oC until embryos developed to desired de-

velopmental stage (from 6-96 hours-post-fertilisation). Embryos were washed

in fish water and dead and abnormal cells were removed from the Petri dish

every 12 hours.
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2.4.3.4 Zebrafish fixation, removal of chorion and pigmentation

Once the zebrafish embryos reached the desired developmental stage, the em-

bryos were fixed for one hour at room temperature and then overnight at 4oC

with 4% paraformaldehyde in PBS. The chorions of the fixed embryos were

manually removed using a needle and watchmakers forceps under a dissect-

ing microscope. To remove zebrafish pigmentation, the fixed dechorionated

embryos were incubated in PBS containing 3% H2O2 (Sigma) and 0.5% KOH

(Sigma) at room temperature until pigmentation had completely disappeared.

After the pigmentation was removed, the embryos were washed for 5 minutes

in PBS.

2.4.3.5 Embryo dehydration and rehydration

Embryos were dehydrated in methanol for long-term storage at -20oC. Embryos

were washed for 5 minutes in 66% PBS/33% methanol, 5 minutes in 33%

PBS/66% methanol and a final 10 minute wash with 100% methanol. Before

the in-situ protocol was conducted, embryos needed to be rehydrated by a 5

minute wash in 66% methanol/33% PBS, 5 minutes in 33% methanol/66%

PBS and four 5 minute washes in PBS with 0.2% Tween-20 (Sigma).

2.4.3.6 Permeabilisation and hybridisation of zebrafish embryos

Embryos were permeabilised by a 10µg/ml proteinase K (Roche) digestion at

room temperature for the desired time as shown in Table 2.12. After pro-

teinase K digestion, embryos were quickly washed in PBS containing 0.02%

Tween and refixed in 4% paraformaldehyde in PBS for 20 minutes at room

temperature. Embryos were then washed an additional 5 times for 5 minutes

in PBS containing 0.02% Tween.

2.4.3.7 Wholemount hybridisation of zebrafish embryos

Embryos were pre-hybridised for 5 hours at 65oC in 100µl hybridisation mix

(HM). 100ng of the RNA probe was added to the HM containing embryos and

left to incubate at 65oC for 12 hours. After embryos were hybridised in the

RNA probe, embryos were washed as described in Table 2.13.
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Developmental stage Duration of proteinase K digestion

1 cell-1 somite 30 sec
1-8 somite 1 min
9-18 somite 3 min
18 somite-24hpf 10 min
48hpf-4 days 30 min

Table 2.12: Duration of proteinase-K digestion at different zebrafish developmental
stages in preparation for whole mount in-situ protocol.

Step Temp (oC) Time (min) Wash Components

1 65 1x10 75% HM/25% 2X SSC
2 65 1x10 50% HM/25% 2X SSC
3 65 1x10 25% HM/25% 2X SSC
4 65 1x10 2X SCC
5 65 1x20 0.2X SCC + 0.1% Tween
6 65 2x20 0.1X SSC + 0.1% Tween
7 20 1x5 66% 0.2X SCC/33% PBS-Tw
8 20 1x5 33% 0.2X SCC/66% PBS-Tw
9 20 2x5 PBS-Tw

Table 2.13: Washes conducted after RNA hybridisation of zebrafish embryos. PBS-
Tw represents PBS containing 0.1% Tween-20.

2.4.3.8 NBT/BCIP staining

Hybridised embryos were pre-incubated in PBS containing 0.1% Tween, 5%

foetal calf serum (Gibco) and 2mg/ml BSA (Sigma) for 2 hours at 4oC. Em-

bryos were incubated in anti-DIG (Roche) solution diluted 1:5,000 in PBS con-

taining 0.1% Tween, 5% foetal calf serum (Gibco) and 2µg/ml BSA (Sigma)

for 12 hours at 4oC. Embryos were washed a total of seven times in PBS con-

taining 0.1% Tween for 15 min each. Embryos were transferred to a 6 well

dish and excess wash solution was removed. NBT/BCIP colouration buffer

(100mM TrisHCl, pH9.5, 50mM MgCl2, 100mM NaCl, 0.1% Tween, 0.4mg/ml

NBT and 0.19mg/ml BCIP) was added to embryos and left for 10 minutes,

protected from light exposure. Staining reaction was stopped by washing the
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embryos in PBS containing 0.1% Tween. Embryos were stored at -20oC in

50% glycerol.

2.4.3.9 Imaging and sectioning of embryos

Wholemount zebrafish embryos were studied in dark and brightfield mode

using a dissecting Leica MZ7.5 binocular microscope (Leica Microsystems).

Embryos were, additionally, flat-mounted in PBS by the addition of small

jelly silicon drops underneath each corner of a glass coverslip. To prepare em-

bryos for cryosectioning, embryos were placed in a cryomatrix in their desired

orientation and snap frozen in isopentane (Fisher Scientific), which was cooled

over liquid nitrogen to reach temperatures close to the isopentane freezing

point (-159oC). Wholemount embryos were cut at 10µm on a cryostat (Leica

Microsystems, CM1850). All images were taken using a Leica DMRB micro-

scope (Leica Microsystems) or Olympus CK40 microscope (Olympus) with a

Nikon Coolpix 4500 digital camera (Nikon).



Chapter 3

Willin Expression Activates the

Hippo Pathway

3.1 Introduction

Recent studies utilising D. melanogaster genetics have indicated that Merlin

and a second FERM protein called Expanded, play a key role in controlling

the Hippo signalling cascade; limiting organ size by inhibiting cell proliferation

and promoting apoptosis (Edgar, 2006; Hamaratoglu et al., 2006; Harvey and

Tapon, 2007). As the reported human orthologue sequence of Expanded (Ex1)

is that of willin (Hamaratoglu et al., 2006), it was predicted that willin can

act upstream of the mammalian Hippo pathway cassette, with the ability to

activate and phosphorylate the highly conserved Hippo pathway components.

If willin is the true homologue of the Drosophila protein Expanded then

willin will act upstream of the Hippo signalling pathway to phosphorylate

and inhibit YAP, further resulting in downstream cell viability and cell cycle

changes. Therefore, initial characterisation of willin, its ability to phospho-

rylate the core Hippo pathway components (MST1/2, LATS1 and YAP) and

potential downstream apoptotic changes were investigated using the epithelial

Human Embryonic Kidney (HEK-293) cell line as an in-vitro model system.
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3.2 Results

3.2.1 Molecular cloning of TRex inducible plasmids

An inducible system was created as previous stable cell lines expressing willin

have resulted in cell death (Herron, 2007). The TRex inducible system from

Invitrogen was based on the tet-on system, where the gene of interest was

expressed only upon the addition of tetracycline (Figure 3.1). Dr Chris Tate

(University of Cambridge, UK) kindly provided HEK-293 cells stably express-

ing the tetracycline repressor plasmid (pcDNA6/TR). Consequently, only the

inducible plasmid was cloned and transfected into the TRex-HEK-293 cells to

create a stable willin-inducible cell line.

!

Figure 3.1: Schematic diagram demonstrating how willin expression was induced
using the TRex system. Firstly the tetracycline repressor (tetR) protein was ex-
pressed from a pcDNA6/TR plasmid in HEK-293 cells (a). The TetR formed ho-
modimers and bound to Tet-operator-2 (TetO2) sequences in the inducible expres-
sion vector, repressing the protein expression of willin (b). Addition of tetracycline
(tet) to the cell medium resulted in binding of the tetracycline to the TetR ho-
modimers (c), which resulted in a conformational change in tetR so that the TetR
homodimers were released from the TetO2 sequences and willin gene expression was
induced (d).
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A TRex-willin-GFP plasmid was created to be used for the inducible cell

line system. A willin-GFP fragment was cut out of the pWillin-GFP plasmid

using EcoR1 and Not1 restriction enzymes. A DNA fragment encoding willin-

GFP was then ligated into the pTRex plasmid (Figure 3.2). The correct

full-length sequence of willin-GFP in the TRex plasmid was confirmed by the

DNA Sequencing Service (University of Dundee, UK).

 

Figure 3.2: Cloning of the TRex-willin-GFP plasmid. pWillin-GFP plasmid was
digested with EcoR1 and Not1 restriction enzymes to produce a willin-GFP frag-
ment. This fragment was ligated into an empty pTRex plasmid clone A to produce
the plasmid, TRex-willinGFP.
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Full-length willin tagged to myc-his was also cloned into the TRex system.

Full-length willin DNA was amplified by PCR using willin2-F and willin2-R

primers (see Table 2.1 for primer sequence) as the forward and reverse primer

respectively on the pwillin-GFP plasmid. The PCR fragment was then cut

using EcoR1 and Not1 restriction enzymes and ligated into the pTRex-clone-

C plasmid (Figure 3.3). The correct full-length willin-myc-his sequence was

confirmed by the Sequencing Service (University of Dundee, UK).

 

Figure 3.3: Schematic diagram of molecular cloning procedure used to construct
the TRex-willin-myc-his plasmid. A PCR was conducted on the pWillin-GFP using
willin2F and willin2R primers to produce a willin fragment with EcoR1 and Not1
restriction sites at the 5’ and 3’ end respectively. The willin PCR fragment was then
ligated into the empty pTRex clone C plasmid, so that willin was in frame with the
C-terminal myc and his tags, to create the TRex-willin-myc-his plasmid.
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3.2.2 Tetracycline induces willin-GFP expression

The TRex-willin-GFP plasmid was transiently transfected into TRex HEK-

293 cells (expressing the tetracycline repressor plasmid:pcDNA6/TR) and a

stable cell line was created through antibiotic selection with 5µg/ml blasti-

cidin and 500µg/ml zeocin. The TRex system worked as an on-off system

and induced expression did not respond in a dose-response nature; increasing

tetracycline concentrations did not increase willin-GFP expression levels. The

recommended 1µg/ml of tetracycline was used to induce willin-GFP expression

in all future experiments.

Willin-GFP fluorescence was observed when a final concentration of 1µg/ml

tetracycline was added to the inducible cell line growth medium, and absent

when no tetracycline was present (Figure 3.4). Western blot analysis confirmed

that willin-GFP was only expressed in the presence of tetracycline (Figure 3.5).

Upon addition of tetracycline, willin-GFP expression was induced within 2

hours (Figure 3.5). Figure 3.5 shows that the same amount of willin-GFP was

expressed 6 to 24 hours post-induction. The TRex-willin-GFP cells no longer

expressed willin-GFP 48 hours post-induction and fresh tetracycline had to

be added to the cell culture medium for longer experiments as the half-life

of tetracycline is about 6 hours and the protein turn-over of willin-GFP is

approximately 2 days.

!

!

Fig. HEK-293 cells were co-transfected with willin-cherry and either ezrin-GFP (a-c) 

or merlin-GFP (d-f) constructs. Co-localisation was seen at the plasma membrane 

when willin-cherry and ezrin-GFP contructs were co-transfected (C, yellow patches) 

but not when willin-cherry was co-transfected with merlin-GFP (f). 

 

!

  
 

Fig. TRex-willinGFP inducible system. A stable TRex HEK293 cell line was created 

so that only upon the addition of 1µg/ml tetracycline was willin-GFP expressed (b) 

and absent when not induced (a). 

 

 

 

        - tet                             + tet  

Figure 3.4: Fluorescence images of the TRex-willin-GFP inducible system. A
stable HEK TRex-willin-GFP cell line was created so that only upon the addition
of 1µg/ml tetracycline (tet) was willin-GFP expressed and absent when not induced.
Cells were either incubated in 1µg/ml tetracycline (tet) for 48 hours or left untreated
(-tet). After treatment, the cells were fixed and the nuclei were stained with DAPI.
Images were taken on a Multiphoton microscope (Leica). Bar= 50µm.
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!-actin 

willin-GFP 

Figure 3.5: Western blot showing that willin-GFP was expressed in the TRex-
willin-GFP inducible cell line upon the addition of tetracycline. Whole cell lysates
were collected 0, 2, 4, 8, 10 or 12 hours after 1µg/ml tetracycline (tet) treatment
and separated on a 10% SDS gel. The nitrocellulose membrane was probed with
anti-GFP and β-actin antibodies.

3.2.3 siRNA willin knockdown using TRex system.

The TRex-willin-GFP inducible system was an ideal system to optimise siRNA

knockdown experiments of willin. Cells were incubated in 5nM siRNA de-

signed to specifically knockdown willin expression (see Section 2.2.3 for siRNA

sequences). 24 hours prior to siRNA treatment completion, cells were incu-

bated in 1µg/ml tetracycline to induce willin-GFP expression. Fluorescence

microscopy images of siRNA treated cells (0-72 hours) showed that willin-GFP

expression was decreased in the presence of siRNA (Figure 3.6). Willin-GFP

fluorescence knockdown was observed 48-72 hours after siRNA treatment (Fig-

ure 3.6).

Western blot analysis confirmed willin-GFP knockdown using the custom

designed siRNA duplexes (Figure 3.7). Cells were treated for 0, 24, 48, or 72

hours with siRNA against willin and incubated in 1µg/ml tetracycline 24 hours

before siRNA treatment was completed. Whole cell lysates were separated on

a SDS gel and knockdown of willin-GFP expression was observed 48-72 hours

after siRNA treatment (Figure 3.6).
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Figure 3.6: Fluorescence microscope images of siRNA willin knockdown using the
TRex-willin-GFP inducible system. TRex-willin-GFP were incubated with siRNA
against willin for either 0, 24, 48 and 72 hours. Cells were treated with 1µg/ml
tetracycline 24 hours before siRNA treatment was completed. After treatment, the
cells were fixed and the nuclei were stained with DAPI. Knockdown fluorescence of
willin-GFP was observed 48-72 hours after siRNA treatment. Bar= 100µm.
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Figure 3.7: Western blot showing willin-GFP knockdown using siRNA designed
specifically to knockdown willin expression. Cells were treated with either 0, 24,
48 and 72 hours of siRNA and treated with 1µg/ml tetracycline 24 hours before
siRNA treatment was completed. Whole cell lysates were separated on a 10% SDS
gel. Willin-GFP knockdown was observed 48-72 hours after siRNA treatment. The
nitrocellulose membrane was probed with anti-GFP and β-actin antibodies.
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An example of the success of developing siRNA specific to willin was shown

by utilising a novel photoporation technique. In collaboration with the biopho-

tonics group at the University of St Andrews, Maria Leilani Torres-Mapa was

able to use the TRex-willin-GFP cell line to photoporate siRNA into a desired

single cell and observe willin-GFP knockdown using a violet diode laser system

(Torres-Mapa et al., 2010) (See Appendix E). For the photoporation studies,

cells were incubated with 5nM siRNA duplexes and 10µg/ml Mito-DsRed en-

coding plasmid in the transfection media. Cells were targeted using a 3.4mW

laser at the focus of a 1 second exposure time. Control dishes included (1)

cells with Mito-DsRed plasmid and siRNA without laser treatment; (2) cells

without Mito-DsRed plasmid but with siRNA without laser treatment, and

(3) cells with neither Mito-DsRed plasmid and siRNA with laser treatment.

Expression of willin-GFP was then induced with 1µg/ml tetracycline, and flu-

orescence was monitored over a 48 hour time period. For all control dishes,

spontaneous DNA transfections or knockdown was not observed.

Figure 3.8: Gene knockdown using a violet diode system. A) A TRex-willin-
GFP cell fluorescing red due to the expression of the Mito-DsRed and B) under
brightfield imaging. C) Fluorescence image of the same field of view using a FITC
HYQ, Nikon filter cube. Red arrow points to a cell which has been co-transfected
with Mito-DsRed and willin specific siRNA. Blue arrows point to cells that have
been transfected with siRNA only. Work done and published by Torres-Mapa et al.
(2010).

Figure 3.8 shows immunofluorescent microscope images of TRex-willin-

GFP cells which were photoporated in the presence of siRNA against willin

and Mito-DsRed plasmid. Figure 3.8(a) shows a successfully transfected TRex-

willin-GFP cells expressing Mito-DsRed protein. Clear knockdown of willin-

GFP expression, as indicated by the absence of green fluorescence, was ob-

served when TRex-willin-GFP cells were photoporated with willin siRNA (blue

arrows in Figure 3.8). More cells were observed to have a lost willin-GFP
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expression (blue arrows) than those that expressed the Mito-DsRed plasmid

together with the loss of willin-GFP (red arrow; Figure 3.8). It can be con-

cluded that the efficiency for gene knockdown will be higher compared to that

of DNA transfection, as siRNA are much smaller in comparison to DNA plas-

mids (25bp versus∼5000bp). No spontaneous Mito-DsRed plasmid and siRNA

duplex transfections were observed in untreated dishes (Mito-DsRed plasmid

and siRNA treatment but no laser treatment), indicating the specificity of

action of the lasers.

3.2.4 Cellular distribution of willin, MST1 and LATS1

are cell density dependent.

Cell density and cell-to-cell contact play an important role in the activation

of the Hippo pathway and the cellular distribution of many Hippo pathway

components have been shown to be cell density specific (Zhao et al., 2007;

Hao et al., 2008). ERM proteins, especially merlin, have also been shown to

be cell density dependent (Muranen et al., 2005). The distribution of willin at

different cell densities was therefore further investigated.

Figure 3.9 shows that willin’s subcellular localisation is complex, since it

can be localised within the cytoplasm, at the plasma membrane, but also

within the nucleus of the cell. This mixed cellular distribution is common for

ERM family proteins (Muranen et al., 2005) and has previously been pub-

lished by Gunn-Moore et al. (2005). Fluorescence images showed that at low

cell density, willin was predominately found within the cytoplasm of an iso-

lated single cell. Punctate staining near the nucleus was sometimes observed

in a single isolated cell (Figure 3.9.A). At higher cell density, willin was pre-

dominantly recruited to the plasma membrane; especially to cellular junctions

between contacting neighbouring cells (Figure 3.9.B).
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A B B 

Figure 3.9: Fluorescence images of TRex-willin-GFP cells expressing willin-GFP.
Cells were induced for willin-GFP expression with 1µg/ml tetracycline for 48 hours
prior to being fixed. Willin-GFP localisation varied depending on cell density. A)
Willin-GFP expression was predominately found within the cytoplasm of an isolated
cell. Punctate staining was sometimes observed near the nucleus (shown by arrows).
B) Upon contact with other neighbouring cells at higher density, willin-GFP expres-
sion was more predominately found at the plasma membrane. Willin-GFP expres-
sion was frequently observed to be recruited at cellular junctions between contacting
cells. Bar= 100µm.

A biochemical membrane/cytoplasmic fractionation was conducted to fur-

ther support the fluorescence observations that indicated that willin-GFP

expression may be recruited to the plasma membrane upon cell-to-cell con-

tact. 5x105 TRex-willin-GFP cells were plated onto either 35mm, 60 or 90mm

dishes; to represent high, medium and low cell density respectively. The TRex-

willin-GFP cells were induced for willin-GFP expression for 24 hours with

1µg/ml tetracycline and the membrane/cytoplasmic protein fractionations

were extracted using the P100/S100 protocol (Section 2.3.4). Immunoblot

analysis of the membrane and cytoplasmic fractions showed that as the cell

density increased, willin-GFP expression was increased in the Triton X-100

soluble membrane fraction and decreased in the cytoplasmic fraction (Figure

3.10). Results from the membrane/cytoplasmic fractionation assay supported

the previous fluorescence observations that willin was predominantly relocated

to the plasma membrane at high cell density (Figure 3.9).
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Figure 3.10: Willin-GFP expression translocated to the membrane fraction upon
cell-to-cell contact. Increasing cell density resulted in an increased expression of
willin-GFP within the Triton X-100 soluble membrane fraction and a decrease within
the cytoplasmic fraction. TRex-willin-GFP cells were induced for willin-GFP ex-
pression for 24 hours with 1µg/ml tetracycline at low, medium and high density.
Membrane and cytoplasmic protein extracts were obtained using the P100/S100
protocol and equal amounts of protein were separated on a 10% SDS gel. The
nitrocellulose membrane was probed with anti-GFP and anti-β-actin antibodies.

As the Hippo pathway is activated at high cell density and willin is recruited

to the plasma membrane at high cell densities, the expression of MST1 and

LATS1 at different cell densities was further investigated in the Triton X-100

soluble membrane faction. The nitrocellulose membrane from Figure 3.10 was

re-probed with MST1 and LATS1 antibodies. Interestingly, MST1 protein

expression in the membrane soluble fraction decreased when cell density in-

creased, inversely of that observed with willin (Figure 3.11). LATS1 expression

however increased within the Triton X-100 soluble membrane fraction when

cell density increased, which is the same correlation as that of willin expression

(Figure 3.11).
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Figure 3.11: Cell density influenced willin, MST1 and LATS1 localisation to the
membrane. The nitrocellulose membrane from Figure 3.10 was re-probed with MST1
and LATS1 primary antibodies followed by their respective anti-rabbit-HRP sec-
ondary antibody. Immunoblot analysis showed that willin and LATS1 expression
increased within the Triton X-100 soluble membrane fraction when cell density in-
creased, while MST1 expression decreased.

3.2.5 Expression of willin influences phosphorylation of

MST1/2, LATS1 and YAP

Zhao et al. (2007) have recently demonstrated that the mammalian transcrip-

tional co-activator YAP, the human orthologue of Yorkie, is inactivated by

both willin and merlin by an unknown mechanism. Willin’s ability to result

in MST1/2, LATS1 and YAP phosphorylation, which thereby inactivates the

ability of YAP to affect downstream targets, was further investigated. The

stable inducible TRex-willin-GFP cell line was used to investigate the effect

of willin expression upon the kinases upstream of YAP.

The TRex-willin-GFP cells were plated out into 60mm dishes and 1µg/ml

tetracycline was added 0, 24, 48 or 72 hours after plating so that the cell

density in all experimental dishes remained unchanged. Notably, YAP phos-

phorylation could only be studied over a two day induction period, since high

cell density caused YAP phosphorylation in uninduced cells, as has been previ-

ously observed by Zhao et al. (2007). YAP phosphorylation experiments were

therefore performed at an even lower cell density than MST1/2 and LATS1

phosphorylation studies. Image J analysis of the phosphorylation western blots

(representative shown in Figure 3.12.A) showed that a significant increase in

phosphorylation of MST1/2, LATS1 and YAP was observed when cells were
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induced for willin-GFP expression (Figure 3.12.B, t-test: p<0.01, n=3).
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Figure 3.12: Willin expression induced significant phosphorylation of Hippo path-
way components. TRex-willin-GFP cells were induced for willin-GFP expression
with 1µg/ml tetracycline over a period of 0-4 days. Whole cell lysates were harvested
and separated on a 10% SDS gel for immunoblot analysis with Hippo component
antibodies; pMST1/2, MST1/2, LATS1, pLATS1, pYAP and YAP. A) Immunoblot
showing that willin-GFP expression results in phosphorylation of Hippo pathway
components MST1/2, LATS1 and YAP. B) Image J analysis, showed that induced
willin expression resulted in significant phosphorylation of MST1/2, LATS1 and
YAP compared to uninduced TRex-willinGFP cells (t-test: n=3, p<0.01**). Rel-
ative protein phosphorylation was calculated by measuring the integrated density
(ID) of phosphorylated protein over the ID of whole protein present, relative to
baseline phosphorylated protein when no tetracycline was added, which was set at
1 . Error bars represent ± standard deviation.
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Experimental controls were performed to exclude the effects of tetracy-

cline and the GFP-tag on phosphorylation of the Hippo pathway components:

MST1/2, LATS1 and YAP. For the tetracycline control, the TRex cells were

incubated in 1µg/ml tetracycline for 0, 24, 48 and 72 hours. Western blot

analyses showed that no difference in MST1/2, LATS and YAP phosphoryla-

tion was observed when TRex cells were incubated in the presence or absence

of tetracycline (Figure 3.12.A). For the latter GFP control, the TRex cells

were transiently transfected with either an empty-GFP vector or treated with

only GeneJammer transfection reagent. Western blot analysis showed that

no changes in MST1/2, LATS1 and YAP phosphorylation was detected be-

tween the untransfected control and an empty-GFP expression plasmid (Figure

3.13.B).
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Figure 3.13: Addition of tetracycline and transient transfection of empty-GFP
expression plasmid do not result in phosphorylation of Hippo pathway components.
A) TRex cells were treated with 1µg/ml tetracycline and whole cell lysates were
collected 0, 24, 48 and 72 hours after tetracycline treatment. The protein samples
were separated on an 10% SDS gel and the nitrocellulose membrane was probed with
antibodies against the core Hippo pathway components. B) TRex cells were either
transfected with only GeneJammer transfection reagent (lane 1) or transfected with
empty-GFP construct (lane 2). Whole cell lysates were collected 48 hours post-
transfection and separated on a 10% SDS gel. The nitrocellulose membrane was
probed with pMST1/2, MST1, pLATS1, LATS1, pYAP and YAP antibodies.
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3.2.6 Willin expression results in YAP translocation to

the cytoplasm

Activation of the Hippo pathway through phosphorylation of the core Hippo

pathway cassette has been reported to translocate YAP from the nucleus to the

cytoplasm through binding of the 14-3-3 protein to the YAP phosphorylation

site Ser127 (Zhao et al., 2007; Hao et al., 2008).

The inducible TRex-willin-GFP cell line was used to investigate YAP

translocation as phosphorylation of MST1/2, LATS1 and YAP was observed

under induced willin-GFP conditions. The same induced conditions were

therefore used, with the TRex-willin-GFP cells being induced for willin-GFP

expression with 1µg/ml tetracycline. 50ng/ml TNFα was used as a positive

control to promote YAP translocation into the cytoplasm, as cell death signals

have been shown to promote full activation of the Hippo pathway (Lee et al.,

2001; Graves et al., 2001).

Nuclear versus cytoplasmic fractionation on willin-GFP inducible cells

showed that when willin-GFP expression was induced for two days with

1µg/ml tetracycline, YAP expression was highest in the cytoplasmic fraction

and lower in the nuclear fraction (Figure 3.14). This pattern was unaltered

by TNFα addition (Figure 3.14). YAP expression remained mostly within the

nucleus when cells were not expressing willin-GFP (absence of tetracycline;

Figure 3.14). Therefore, further supporting the observation that willin expres-

sion resulted in the activation and phosphorylation of the Hippo pathway.
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Figure 3.14: Willin-GFP expression resulted in YAP translocation from the nu-
cleus to the cytoplasm. The TRex-willin-GFP cells were either uninduced, induced
with 1µg/ml tetracycline for 48 hours, or induced and treated for 6 hours with
50ng/ml TNFα. The nuclear and cytoplasmic protein fractions were extracted and
separated on a 10% SDS gel. The nitrocellulose membrane was probed with anti-
YAP, β-actin and coilin antibodies.
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3.2.7 Willin expression does not influence cell viability

or the cell cycle

Studies examining the Hippo pathway in D. melanogaster have shown that Ex-

panded and Merlin differentially regulate cell cycle exit and apoptosis (Pellock

et al., 2007). Experiments using the controlled tetracycline inducible expres-

sion of willin-GFP in HEK-293 cells were therefore conducted to investigate

potential changes in cell viability and cell cycle. A live/dead discrimination as-

say (Section 2.3.2) was performed using a propidium iodide (PI) stain, where

cell viability was measured by FACS analysis. The PI entered the cell and

bound to the DNA when the plasma membrane was leaky (necrosis and late

apoptosis), whereas cells remained unstained when the plasma membrane re-

mained intact (Figure 3.15).
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Figure 3.15: Schematic diagram showing how propidium iodide (PI) stain discrim-
inated between viable and dying cells. Cells did not stain with PI (red) when the
plasma membrane remained intact: in viable and early apoptotic cell. PI bound to
the DNA when the plasma membrane was leaky in necrotic and late apoptotic cells.



75 3.2. RESULTS

TRex-willin-GFP and TRex control cells were treated with 1µg/ml tetra-

cycline for a period of 0-97 hours. Willin-GFP expression was induced in the

TRex-willin-GFP cells but not in the TRex cell line. Cells were harvested and

analysed on a FACS machine (FACscan Flow Cytometer, Becton Dickinson)

to detect cells positively stained with PI. A FACS compensation study was

conducted to compensate for colour bleed-though of fluorescence emission, as

the cells contained both green (GFP) and red fluorescence (PI) (Figure 3.16).

 
 

Fig. Compensation study for FACS analysis so that when TRex-willinGFP cells are 

induced for willinGFP expression they will not be picked up by the red filter (B). 

Every dot on the graph represents a cell and is plotted on a graph to measure green 

fluorescence (GFP) on the y-axis and red fluorescence (PI) on the x-axis.  
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Figure 3.16: FACS analysis plots to compensate for colour bleed-through of flu-
orescence emission on a FACS machine. Every dot on the graph represents a cell
and is plotted on a graph to measure green fluorescence (GFP) on the y-axis (FL1-
H) and red fluorescence (PI stain) on the x-axis (FL2-H). TRex-willin-GFP cells
were either untreated (not stained), induced with 1µg/ml tetracycline (green stain),
stained with PI (red stain), or both induced with 1µg/ml tetracycline and stained
with PI (red and green stain). 10,000 cells were counted in total.
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Figure 3.17A shows the histogram outputs of a FACS live/dead discrimi-

nation experiment, where the first and second peaks represents live and dead

cells respectively. Under the inducible conditions, willin-GFP expression in

the TRex-willin-GFP cell line did not result in cell death. No significant cell

viability changes were observed when both TRex and TRex-willin-GFP cells

were treated with 1µg/ml tetracycline (24-96 hours) compared to untreated

controls (0 hours tetracycline) (Figure 3.17b: t-test; p>0.05, n=3).

Even though no cell viability changes were observed, willin expression may

result in cell cycle changes; such as a cell cycle arrest as seen with Expanded

in the D. melanogaster model (Pellock et al., 2007). Cell cycle changes in

the inducible TRex-willin-GFP cell line were therefore investigated. TRex

and TRex-willin-GFP cells were treated with 1µg/ml tetracycline for 0-96

hours, fixed and stained with PI to detect the cell cycle stages in a 10,000

cell population. The first peak detected on the FACS cell cycle histogram

represent cells in the G1 phase of the cell cycle, the second peak represents

cells in the G2 phase of the cell cycle, and the plateau between the two peaks

represent cells in the synthesis (S) phase.

Inducing cells for willin-GFP expression did not influence the cell cycle as

the percentage of cells in the G1, S and G2 phases of the cell cycle remained

unchanged when willin-GFP expression was induced (1-4 days with tetracy-

cline) compared to uninduced (0 days of tetracycline) (Figure 3.18: t-test;

p>0.05, n=3). Additionally no apoptotic bodies were observed in the FACS

histograms (Figure 3.18A), supporting the observation that willin expression

did not influence cell viability. Tetracycline itself did not result in any changes

in the cell cycle as cells in the G1, S and G2 phases remained unchanged when

TRex cells were incubated in the absence and presence of 1µg/ml tetracycline

(Figure 3.18).
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Figure 3.17: Controlled induced expression of willin-GFP did not result in changes
in positively propidium iodide stained cells. TRex and TRex-willin-GFP cells were
uninduced (0 hour tetracycline) or induced with 1µg/ml tetracycline for 24-96 hours.
Cells were stained with PI and live/dead population peaks were observed on FACS
histograms, showing cell counts on the y-axis and FL-2H fluorescence on the x-
axis. In total 30,000 cells were counted (A). The percentage of TRex (B) and
TRex-willin-GFP (C) cells in the live and dead peaks were analysed using Dako-
cytometry software. No significant cell viability changes were observed when cells
were uninduced or induced for willin-GFP expression (t-test; p >0.05, n=3). Error
bars represent ± standard error.
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Fig. Willin expression does not influence the cell cycle. Cell cycle FACS histograms 

show that the effect on the cell cycle when TRex and TRex-willinGFP cells were 

uninduced and induced with 1µg/ml tetracycline. WillinGFP is expressed when 

tetracycline is added to the TREx willin-GFP cell line whereas the TRex cell line was 

used as a control and does not result in willin-GFP expression. 10,000 live cells were 

counted (cell count in y-axis) and intensity of PI fluorescents was measured (x-axis). 
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Figure 3.18: Willin expression did not influence the cell cycle. TRex and TRex-
willin-GFP cells were incubated in 1µg/ml tetracycline for 0, 24, 48, 72, 96 hours.
Cells were harvested, fixed and stained with PI. A total of 10,000 cells were anal-
ysed. A) FACS histogram output shows cell count on y-axis and intensity of PI
fluorescence on the x-axis. B) Cell cycle analyses of three experiments were col-
lated and the number of cells in the G1, S and G2 phases were calculated using
Dako-cytometry software. No cell cycle changes were observed when the TRex and
TRex-willin-GFP cells were induced with 1µg/ml tetracycline (t-test; p>0.05, n=3).
Error bars represent ± standard error.
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To investigate the downstream effect of YAP on the cell cycle in HEK-293

cells, HEK-293 cells were transiently transfected with a FLAG-YAP expression

construct, a kind gift from Dr. D. Haber (Harvard University, USA), or left

untreated. Cells were fixed and stained with PI to investigate cell cycle changes

48 hours post-transfection. No significant cell cycle changes were observed

when HEK-293 cells were transfected with the FLAG-YAP expression plasmid

compared to those left untreated (Figure 3.19; t-test; p>0.05, n=3).
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Figure 3.19: Transient transfection of a YAP-FLAG expression construct in HEK-
293 cells did not result in cell cycle changes. HEK-293 cells were either transfected
with YAP-FLAG or left untreated. Cells were harvested 48 hours post-transfection,
fixed and stained with PI. A total of 10,000 cells were analysed in each individual
experiment. A) FACS histogram output show the cell count on y-axis and the
intensity of PI fluorescence on the x-axis. B) Cell cycle analyses of three experiments
were collated and the number of cells in the G1, S and G2 phases of the cell cycle
were calculated using Dako-cytometry software. The percentage of cells in each stage
of the cell cycle remained unchanged when HEK-293 were untransfected (control)
or transfected with a YAP-expression construct (t;test, p>0.05, n=3). Error bars
represent ± standard error.
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3.2.8 Ezrin and merlin modulate the ability of willin to

phosphorylate MST1/2

As no cell cycle or cell viability changes were observed by induced willin-GFP

expression alone, combinations of merlin and ezrin were transfected into the

inducible system to see whether other upstream FERM domain containing

proteins were needed to result in phosphorylation and complete downstream

activation of the Hippo pathway.

To investigate the effect that ezrin and merlin expression has on willin’s

phosphorylation on MST1/2, combinations of transfections were used: merlin-

GFP, GFP-ezrin, both merlin-FLAG and GFP-ezrin, and all the described

combinations with willin-GFP expression induced by 1µg/ml tetracycline.

Whole protein lysates were extracted 48 hours post-transfection.

A hierarchy in the ability to activate MST1/2 phosphorylation was ob-

served, where the expression of either merlin or willin was sufficient to result

in MST1/2 phosphorylation, whereas ezrin did not result in MST1/2 phospho-

rylation (Figure 3.20). A synergistic trend was observed on the phosphoryla-

tion of MST1/2 when cells were co-transfected with merlin and willin (Figure

3.20). However, this trend was not statistically significant (t-test; p>0.05,

n=3). Ezrin had an inhibitory effect on both merlin’s and willin’s ability to

induce phosphorylation of MST1 (Figure 3.20; t-test; p<0.01, n=3). Willin

enhanced merlin’s ability to induce the phosphorylation on MST (Figure 3.20),

whereas merlin did not enhance or inhibit either willin’s or ezrin’s ability to

phosphorylate MST (Figure 3.20).
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Figure 3.20: Ezrin and merlin expression modulated the ability of willin to induce
phosphorylation of MST1/2. A) TRex-willin-GFP cells were transfected with 1µg
of either GFP-ezrin and/or merlin-GFP and/or induced with 1µg/ml tetracycline.
Whole cell lysates were separated on a 10% SDS gel and the nitrocellulose mem-
brane was probed with pMST1/2, MST1 and actin antibodies. B) The relative
protein phosphorylation was calculated by measuring the integrated density (ID) of
phosphorylated protein over the ID of whole protein present, relative to the base-
line phosphorylated protein of the empty-GFP transfection, which was set at 1. The
presence of ezrin-GFP in cells expressing willin-GFP significantly decreased MST1/2
phosphorylation (t-test; p<0.01, n=3**). Willin-GFP expression significantly en-
hanced MST1/2 phosphorylation when compared to only merlin transfected cells
(t-test; p<0.01, n=3**). No significant change in phosphorylation of MST1/2 was
observed in merlin and willin expressing cells when compared to phosphorylation of
MST1 by willin alone (t-test; p>0.05, n=3). Error bars represent ± standard error.
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A MTT assay was performed to see whether willin could influence cell vi-

ability in cells transfected with ezrin or merlin. TRex-willin-GFP cells were

transfected with merlin, ezrin or both merlin and ezrin, and willin-GFP expres-

sion was induced with 1µg/ml tetracycline. Willin expression did not affect

MTT absorbance levels when cells were expressing merlin, ezrin or both merlin

and ezrin (Figure 3.21; t-test; n=8, p>0.05).
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Figure 3.21: Induced willin-GFP expression did not affect MTT absorbance lev-
els when cells were transiently transfected with merlin, ezrin or both merlin and
ezrin. TRex-willin-GFP cells were transiently transfected with merlin-GFP, GFP-
ezrin or both merlin-GFP and GFP-ezrin, and willin-GFP was induced with 1µg/ml
tetracycline. MTT absorbance was read at a wavelength of 570nm, 48 hours post-
transfection and induction. No significant change was observed in the presence or
absence of willin-GFP expression (t-test; p>0.05, n=8). Error bars represent ±
standard deviation.

Graves et al. (2001) have shown that for MST to result in a downstream

apoptotic events, it needs to be both phosphorylated and cleaved. Over-

expression of willin, merlin, ezrin or combinations of these in the TRex HEK-

293 cell line did not result in MST1 cleavage (Figure 3.20), which further

supported the observations that no downstream cell death occurred in the

FERM containing protein combinations investigated.
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3.2.9 Willin binds directly to ezrin and indirectly to

merlin

Previous studies in D. melanogaster have indicated that Expanded and Merlin

can bind to each other, co-localising in the plasma membrane, and that protein

expression of one influences the cellular distribution of the other (McCartney

et al., 2000). Merlin has previously been shown to co-precipitate with ezrin in

mammalian cells (Meng et al., 2000), and therefore the same conditions were

used to establish if willin would also co-precipitate with ezrin and merlin.

A previous Ph.D. student lab member, Dr Lissa Herron, has shown by im-

munoprecipitation experiments that willin can bind to merlin but not ezrin

(Figure 3.22). In these experiments HEK-293 cells were transfected with plas-

mids expressing the following combinations of proteins and harvested 48 hours

post-transfection: pCMVTag4a (empty FLAG) with willin-GFP or GFP-ezrin;

willin-FLAG with GFP-ezrin; and merlin-FLAG with willin-GFP or GFP-

ezrin. Immunoblot analyses of input and precipitate lanes (Figure 3.22) show

that both merlin-FLAG and willin-FLAG are able to co-precipitate with GFP-

ezrin under these conditions (lanes 8 & 10), but merlin-FLAG was not able

to co-precipitate with willin-GFP (lane 4); the FLAG tag alone was not suf-

ficient for precipitation of GFP-ezrin or willin-GFP (lanes 2 & 6). Neither

empty FLAG, willin-FLAG nor merlin-FLAG co-precipitated untagged GFP

(data not shown).
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Fig. HEK-293 cells were co-transfected with willin-cherry and either ezrin-GFP (a-c) 

or merlin-GFP (d-f) constructs. Co-localisation was seen at the plasma membrane 

when willin-cherry and ezrin-GFP contructs were co-transfected (C, yellow patches) 

but not when willin-cherry was co-transfected with merlin-GFP (f). 
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Fig. TRex-willinGFP inducible system. A stable TRex HEK293 cell line was created 

so that only upon the addition of 1µg/ml tetracycline was willin-GFP expressed (b) 

and absent when not induced (a). 
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Figure 3.22: Willin can directly bind to merlin but not ezrin. HEK-293 cells
were co-transfected with plasmids expressing either empty FLAG, Merlin-FLAG or
Willin-FLAG and Willin-GFP or GFP-Ezrin. Input sample = whole cell extract.
Output sample = final immunoprecipitated sample. Lane 1. empty FLAG/Willin-
GFP input; Lane 2. empty FLAG/Willin-GFP IP; Lane 3. Merlin-FLAG/Willin-
GFP input; Lane 4. Merlin-FLAG/Willin-GFP IP; Lane 5. empty FLAG/GFP-
Ezrin input; Lane 6. empty FLAG/GFP-Ezrin IP; Lane 7. Merlin-FLAG/GFP-
Ezrin input; Lane 8. Merlin-FLAG/GFP-Ezrin IP; Lane 9. Willin-FLAG/GFP-
Ezrin input; Lane 10. IP= immunoprecipitation, WB= western blot. Work con-
ducted by Dr. Lissa Herron.

A fluorescence co-localisation study was performed to further investigate

the interactions between willin, merlin and ezrin using a deconvolution Deltavi-

sion microscope (Applied Precision). HEK-293 cells were transfected with plas-

mids expressing GFP-ezrin (kind gift from Dr R. Lamb, Institute of Cancer

Research, London, UK) or merlin-GFP (kind gift from Dr W. Ip, University

of Cincinnati, USA) and willin-mCherry (cloned by Andrew Robertson, Uni-

versity of St Andrews, UK). GFP-ezrin co-localised well with willin-mCherry

within the plasma membrane (Figure 3.23 A-C). Conversely, the expression of

merlin-GFP at the membrane appeared to exclude willin-mCherry expression

at the membrane and no co-localisation was observed, supporting the biochem-

ical data and suggesting that there is no direct interaction between merlin and

willin (Figure 3.23 D-F).
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Fig. HEK-293 cells were co-transfected with willin-cherry and either ezrin-GFP (a-c) 

or merlin-GFP (d-f) constructs. Co-localisation was seen at the plasma membrane 

when willin-cherry and ezrin-GFP contructs were co-transfected (C, yellow patches) 

but not when willin-cherry was co-transfected with merlin-GFP (f). 
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Fig. TRex-willinGFP inducible system. A stable TRex HEK293 cell line was created 

so that only upon the addition of 1µg/ml tetracycline was willin-GFP expressed (b) 

and absent when not induced (a). 

 

 

 

Figure 3.23: Willin co-localised with ezrin but not merlin in HEK-293 cells. HEK-
293 cells were co-transfected with willin-cherry and either ezrin-GFP (A-C) or
merlin-GFP (D-F) constructs. 48 hours post-transfection cells were fixed and fluo-
rescence images were taken on a Deltavision microscope. Images displayed are rep-
resentative and taken from a deconvoluted Z-stack. Co-localisation was seen at the
plasma membrane when willin-cherry and ezrin-GFP constructs were co-transfected
(C, yellow patches) but not when willin-cherry was co-transfected with merlin-GFP
(F).
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To investigate whether the FERM domain containing proteins could be

found in a complex together, a triple transfection was performed with ezrin,

merlin and willin expression plasmids. The same immunoprecipitation (IP)

conditions (Section 2.3.5) were used as those used to obtain the IP data

shown in Figure 3.22. HEK-293 cells were transfected with a combination of

empty FLAG, GFP-ezrin, merlin-FLAG and willin-myc (cloned as described

in Figure 3.3) expression plasmids. Cell lysates were collected 48 hours post-

transfection and an immunoprecipitation was performed using FLAG and GFP

antibodies conjugated to protein-G beads to pull out willin-myc, with either

empty-FLAG, merlin-FLAG and ezrin-GFP proteins. Figure 3.24 shows that

empty-FLAG did not pull out willin-myc (lane 1 & 2), ezrin-GFP pulled out

willin-myc (lane 3 & 4) and merlin-FLAG pulled out willin-myc (lane 5 & 6).

Merlin can therefore co-precipitate with willin, possibly through an indirect

interaction via ezrin (Figure 3.24).
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Figure 3.24: Willin binds indirectly to merlin via ezrin. HEK-293 cells were
co-transfected with merlin-FLAG, GFP-ezrin and willin-myc constructs. 48 hours
post-transfection cell lysates were collected and an immunoprecipitation assay was
performed. Immunoprecipitation inputs (I) and outputs (O) were separated on a
10% SDS gel and the nitrocellulose membrane was probed with an anti-myc antibody
to detect willin binding. Merlin-FLAG and GFP-ezrin were able to pull out willin-
myc (lane 4 & 6). Empty-FLAG alone did not result in pull down of willin-myc
protein (lane 2).



87 3.2. RESULTS

3.2.10 Willin expression sensitises cells to cellular death

Work by Lee et al. (2001) has shown that MST expression highly sensitises

cells to cell death by the addition of TNFα and cycloheximide in Hela cells.

Therefore, further investigations were conducted to see if willin expression

sensitises cells to cell death, as only partial Hippo pathway signalling activation

was observed thus far; where induction of willin expression resulted in no cell

viability or cell cycle changes.

To test optimal conditions for TNFα-induced cell death, different TNFα

concentrations (0-100ng/ml) were tested. Both TRex and TRex-willin-GFP

cells were treated with 1µg/ml tetracycline, to induce willin-GFP expression

in the latter only. The cells were incubated with 0, 25, 50 or 100ng/ml TNFα

for 6 hours, 48 hours post-induction, before a MTT assay was performed as a

measure of cell stress and viability. Figure 3.25 shows that increasing TNFα

concentrations on TRex and TRex-willin-GFP cells decreased cell viability.
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Figure 3.25: Increasing TNFα concentrations on TRex and TRex-willin-GFP cells
decreased cell viability as measured by a MTT assay. Both TRex and TRex-willin-
GFP cells were treated with 1µg/ml tetracycline 48 hours prior to a 6 hour TNFα
treatment. The percentage of cell viability was measured as the absorbance level
for treated/untreated cells, multiplied by 100. Significant cell viability differences
between TRex and TRex-willin-GFP cells were observed when cells were treated
with 25-100ng/ml TNFα compared to TRex-willin-GFP cells that were untreated
(t-test; p<0.01, n=8**). Error bars represent ± standard deviation.
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A MTT assay showed that when cells were incubated for 6 hours in 50ng/ml

TNFα, cell viability significantly decreased to an average of 73% when willin-

GFP was expressed, whereas the percentage of control cells not expressing

willin-GFP was on average 93% (Figure 3.25). 50ng/ml TNFα was therefore

the optimal concentration to test sensitisation to TNFα-induced cell death

stimuli in further experiments.

Lee et al. (2001) have shown that MST over-expression resulted in sen-

sitisation to cell death signals, resulting in caspase-3 activation. Caspase-3

activation was therefore further investigated when cells expressing willin were

incubated in the presence or absence of TNFα. TRex and TRex-willin-GFP

cells were both incubated with 1µg/ml tetracycline to control for the affect

tetracycline has on caspase-3 activation, for a period of 0-4 days. Whole

cell lysates were collected and immunoblot analysis showed that no caspase-3

cleavage was observed when TRex and TRex-willin-GFP cells were incubated

with 1µg/ml tetracycline to induce willin-GFP expression in the latter only

(Figure 3.26). This result supports the previous observation that willin-GFP

induced expression did not result in cell death.

!

Figure 3.26: Induced willin-GFP expression with 1µg/ml tetracycline did not
result in caspase-3 activation. TRex and TRex-willin-GFP cells were incubated in
1µg/ml tetracycline for 0-4 days. Whole-cell lysates were separated on a 20% SDS
gel and the nitrocellulose membrane was probed with an anti-caspase-3 antibody. No
active 17kDa caspase-3 was observed when both TRex and TRex-willin-GFP cells
were induced with 1µg/ml tetracycline. As a positive control, TRex-willin-GFP
cells were incubated in 50ng/ml TNFα for 4 hours.
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To investigate whether willin expression resulted in cells being sensitised

to TNFα-induced cell death, induced (1µg/ml tetracycline) TRex and TRex-

willin-GFP cells were treated with 50ng/ml TNFα for a period of 0-4 hours.

Whole cell lysates were collected and caspase-3 cleaved and un-cleaved protein

levels were detected. Cleaved caspase-3 was observed within 1 hour of TNFα

treatment and increased steadily over a period of 4 hours when willin-GFP

expression was induced in TRex-willin-GFP cells (Figure 3.27.A). However,

no caspase-3 cleavage changes were observed when TRex cells were treated

with TNFα for 0-4 hours (Figure 3.27b; t-test; p>0.05, n=3). After 3 and 4

hours of 50ng/ml TNFα treatment, significantly more cleaved caspase-3 was

observed when cells were over-expressing willin-GFP compared to control cells

that did not express willin-GFP (Figure 3.27B; t-test: p<0.01, n=3).
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Figure 3.27: Controlled willin-GFP expression sensitised cells to apoptotic stress.
TRex and TRex-willin-GFP cell lines were incubated in 1µg/ml tetracycline and
treated with 50ng/ml TNFα for 0-4 hours. Whole-cell lysates were collected, sep-
arated on a 20% SDS gel and the nitrocellulose membrane was probed with an
anti-caspase-3 antibody. A) Cleaved and active caspase-3 at the desired molecular
weight of 17kDa was observed when willin-GFP was expressed within the TRex-
willin-GFP cell line. B) Image J analysis was used to calculate % of active caspase
present by dividing the integrated density (ID) of cleaved active caspase-3 over the
ID of total caspase-3 present. TRex cells that expressed willin-GFP showed signifi-
cant caspase-3 cleavage when under 3 and 4 hour TNFα stress compared to TRex
cells not expressing willin-GFP (t-test; p<0.01, n=3**). Error bars represent ±
standard deviation.
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A colorimetric caspase-3 assay was conducted to measure the specific ac-

tivity of active caspase-3 when the TRex cell lines were under TNFα-induced

stress. The colorimetric substrate (AC-DEVD-pNA), labelled with a chro-

mophore p-nitroaniline, was provided with the caspase-3 assay kit (Promega).

Upon cleavage by caspase-3 (DEVDase), pNA was released from the substrate.

Free pNA produced a yellow colour that was monitored by a spectrometer at

a wavelength of 405nm (Figure 3.28). The amount of yellow produced was

therefore proportional to the presence of active caspase-3. Z-VAD-FMK was

provided within the kit to inhibit caspase-3 activity so that the difference be-

tween yellow produced in the absence and presence of the inhibitor was a direct

measure of active caspase-3 present within the samples.

 

Figure 3.28: The colorimetric substrate (AC-DEVD-pNA) provided within the
caspase-3 assay kit (Section 2.3.8: Promega) was labelled with a chromophore p-
nitroaniline. Upon cleavage by caspase-3 (DEVDase), pNA was released from the
substrate. Free pNA produced a yellow colour that was monitored by a spectrometer
at a wavelength of 405nm. The amount of yellow produced was therefore propor-
tional to the presence of active caspase-3. Z-VAD-FMK was provided within the
kit to inhibit caspase-3 activity so that the difference between yellow produced in
the absence and presence of the inhibitor was a direct measure of active caspase-3
present within the samples.

Both TRex and TRex-willin-GFP cells were induced with 1µg/ml tetracy-

cline 2 days prior to a 6 hour treatment with either: 50ng/ml TNFα, with or

without Z-VAD-FMK and untreated cells as a control. The difference between

the accumulation of dye produced in the absence of inhibitor and in the pres-

ence of inhibitor was a measure of the caspase-3 activity present. Cell lysates

were collected and a colorimetric assay was conducted to measure the specific

activity (SA) of caspase-3. The results obtained confirmed active caspase-3

activity in TRex-willin-GFP cells expressing willin-GFP, whereas no caspase-

3 activity was observed in the control TRex cells, when cells were put under

50ng/ml TNFα-induced apoptotic stress (Figure 3.29).
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Figure 3.29: Under TNFα stress, willin expression resulted in caspase-3 activation
(t-test; p<0.01, n=3**). TRex and TRex-willin-GFP cells were incubated in 1µg/ml
tetracycline 2 days prior to 6 hour 50ng/TNFα treatment. Cell lysates were collected
and a colorimetric assay was conducted to measure the specific activity (SA) of active
caspase-3. Error bars represent ± standard error.

To further support that willin expression sensitises cells to TNFα-induced

cell death, a live/dead PI FACS discrimination experiment (Section 2.3.2) was

performed. Both TRex and TRex-willin-GFP cells were treated with 1µg/ml

tetracycline for 48 hours and were either treated with or without 50ng/ml

TNFα for 6 hours. Cells were harvested and 30,000 cells were analysed for cell

viability. The percentage of live cells remained unchanged when TRex control

cells, that did not express willin-GFP, were either treated with 50ng/ml TNFα

or left untreated (Figure 3.30; t-test: p>0.05, n=3). However, a decrease

from ∼ 80% to ∼ 60% was observed when cells were induced for willin-GFP

expression in the presence of TNFα (Figure 3.30; t-test; p<0.01, n=3) further

supporting previous experimental observations that the expression of willin

resulted in cell sensitisation to cell death stimuli.



93 3.2. RESULTS

0 

20 

40 

60 

80 

100 

120 

TRex 

TRex + TNFa 

TRex-w
illi

nGFP 

TRex-w
illi

nGFP + TNFa 

%
 o

f 
c
e
ll

s
 

dead live  

                        !                   +                  !                   +  

                        +                   +                  +                   + 

                                 TRex                       TRex-willinGFP 

TNF" 

tet 

Figure 3.30: TNFα treatment on cells expressing willin-GFP resulted in cell death.
TRex and TRex-willin-GFP cells were either treated with 1µg/ml tetracycline for
48 hours or both tetracycline (48 hours) and 50ng/ml TNFα (6 hours). The number
of live and dead cells were measured, from a sample of 30,000 cells, using the PI
staining detection protocol on a FACS machine and analysed using Dako-cytometry
software. Cell viability decreased when cells were treated with TNFα and induced
for willin-GFP expression compared to treated with TNFα alone (t-test; p<0.01,
n=3). Error bars represent ± standard deviation.

3.2.11 Willin expression enhances MST1 cleavage un-

der apoptotic stress

Graves et al. (2001) have shown that MST needs to be both phosphorylated

and cleaved to result in an apoptotic downstream effect. Phosphorylation of

MST1 occurred when willin expression was induced (as described in Section

3.2.5) and MST1 cleavage was therefore further investigated. As cell density

is such an important factor for the activation of the Hippo pathway, cell den-

sity had to be tightly controlled in all experiments. To look at the effect of

cell density on MST1 cleavage, TRex-willin-GFP cells were plated at either

low, medium or high confluency levels and were left untreated, treated with

1µg/ml tetracycline for 48 hours, 50ng/ml TNFα for 6 hours or both. Whole
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cell lysates were collected and MST1 protein expression was detected though

immunoblot analysis. MST1 cleavage was not detected when cells were left

untreated or induced for willin-GFP expression (Figure 3.31). However, MST1

cleavage was observed when 50ng/ml TNFα was added to the inducible cell

line. Interestingly, this MST1 cleavage was enhanced when willin-GFP ex-

pression was induced by tetracycline at low cell density (Figure 3.31), further

supporting that willin expression sensitised cells to cell death. However no

such enhancement was seen when cells were plated out at medium to high

confluency (Figure 3.31), suggesting that this observation was dependent on

cell density.
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Figure 3.31: MST cleavage was observed under TNFα stress. TRex-willin-GFP
cells were plated at different densities and either left untreated, treated with 1µg/ml
tetracycline for 48 hours, 50ng/ml TNFα for 6 hours, or both. Whole cell lysates
were separated on a 10% SDS gel and the nitrocellulose membrane was probed with
an anti-MST antibody. MST cleavage was observed only when cells were treated
with TNFα. At low cell density conditions, MST1 cleavage was increased when both
TNFα treatment and willin-GFP expression were both present.

To further investigate that it was the expression of willin that resulted in

enhanced MST1 cleavage when cells were under apoptotic stress at low cell

density, an experiment was performed detecting MST1 cleavage when cells

were either over-expressing willin or had reduced willin expression using siRNA

in the absence and presence of TNFα. Immunoblot analysis showed that, at

low cell density, willin expression resulted in an enhanced MST1 cleavage when

cells where treated with TNFα compared to cells that were not expressing

willin (t-test; p<0.05, n=3). However, no MST1 cleavage was observed when

cells were not treated with TNFα (Figure 3.32), the same observation as that
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observed in Figure 3.31. Knockdown of willin in the TRex-willin-GFP cells

resulted in a further reduction of MST1 cleavage compared to cells that were

endogenously expressing willin, however this reduction was not statistically

significant (Figure 3.32; t-test: p>0.05, n=3).
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Figure 3.32: Willin expression enhanced MST1 cleavage under TNFα-induced
stress. TRex-willin-GFP cells were either left untreated, treated with 1µg/ml tetra-
cycline, 50ng/ml TNFα for 6 hours, both tetracycline (48 hours) and TNFα (6
hours), siRNA against willin (72 hours), and both siRNA (72 hours) and TNFα
(6 hours) treatment. Whole cell lysates were separated on a 10% SDS gel and the
nitrocellulose membrane was probed with an anti-MST antibody. A) Immublot
showing that MST1 was cleaved only under TNFα stress. B) Image J analysis on
immunoblots show that willin-GFP expression enhanced MST1 cleavage compared
to TRex-willin-GFP cells that were not induced for willin-GFP expression (con-
trol) (t-test; p<0.05, n=3*). siRNA knockdown of willin reduced MST1 cleavage
although not significantly (t-test; p>0.05, n=3) compared to untreated controls.
Error bars represent ± standard deviation.
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3.3 Discussion

3.3.1 Willin expression partially activates the Hippo

pathway

The production of a tetracycline-inducible willin expression cell line (TRex-

willin-GFP) proved to be a successful system to investigate Hippo signalling

activation in HEK-293 cells. If willin is truly the human homologue of the

Drosophila protein Expanded then willin will act upstream of the Hippo sig-

nalling pathway to activate and inhibit YAP, further resulting in downstream

cell viability and cell cycle changes. As predicted, an increase in willin ex-

pression resulted in an increase in phosphorylation of the core Hippo pathway

components: MST1/2, LATS1 and YAP (Section 3.2.5). Induced expression of

willin resulted in an inhibition of YAP through YAP phosphorylation-induced

cytoplasmic retention (Section 3.2.6); however this was not sufficient to result

in further apoptotic downstream effects (Section 3.2.7). Willin over-expression

resulted in partial activation of the Hippo pathway as no cell viability or cell

cycle changes were observed when willin was expressed in HEK-293 cells.

The more upstream a protein is found within a signalling cascade, the

less effect it can have on downstream targets. As willin is upstream of the

core Hippo pathway cassette (MST, LATS and YAP) it is expected that full

apoptotic downstream events are less likely to be observed. Other human

signalling pathways, upstream proteins and negative feedback loops may all

regulate and modulate the inhibition of YAP.

Another FERM domain containing protein called FRMD3 has previously

been shown to have no impact on cell cycle progression or cell death in HEK-

293 cells, even though it has been shown to be a novel putative tumour sup-

pressor in non-small cell lung carcinoma (Haase et al., 2007). Partial activation

of the Hippo pathway by willin expression therefore does not rule out willin’s

ability to be a tumour suppressor, as downstream cellular effects are very cell

specific.

3.3.2 Willin expression results in sensitisation to TNFα-

induced cell death

The partial activation of the Hippo pathway by willin expression may explain

cell sensitisation to TNFα-induced cell death (Section 3.2.10). The reason for
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this may be complex and MST may be a vital molecular switch for the Hippo

pathway to lead to full downstream activation of the Hippo pathway; resulting

in apoptosis and cell cycle changes. Lee et al. (2001) have previously reported

that the MST kinase has to be both phosphorylated and cleaved to result in

cellular death. Although phosphorylation of MST1/2 (and also LATS1 and

YAP) occurred upon willin expression, cleaved MST1 was never observed in

this scenario. Only upon TNFα stimulation was MST cleaved and an apoptotic

downstream effect observed (Section 3.2.11). Interestingly, cells undergoing

TNFα treatment and over-expressing willin had more cleaved MST1 compared

to cells undergoing TNFα treatment alone. So the phosphorylation of MST

caused by willin over-expression may have primed downstream apoptotic effect,

however additional signals such as cell-to-cell contact or cell death signals are

needed to promote the pre-apoptotic state of the cell into the full apoptotic

downstream effects of the Hippo pathway (Figure 3.33).

The expression of willin enhances caspase-3 activation (Section 3.2.10)

through an unknown mechanism. One possible theory is that willin expres-

sion may enhance caspase-3 mediated activation of MST1, which agrees with

recent findings that suggest that TNFα-induced cell death in hepatocytes re-

quires MST1/2 (Song et al., 2010). However, we cannot rule out the possibility

that other factors are involved and that the effects of willin expression could

be indirect.

3.3.3 Cell density is an important factor in the Hippo

pathway

Cell density plays an important role in the activation of the Hippo pathway;

with the pathway being activated at high cell densities and inhibited at lower

cell densities. The mechanisms of Hippo pathway modulation remains, to

this date, largely unknown. Cell-to-cell contact, adhesion and polarity have

all previously been described as important factors in activating the Hippo

signalling cascade (Graves et al., 2001; Lee et al., 2001; Bennett and Harvey,

2006; Zhao et al., 2007; Chen et al., 2010).

At high cell density, YAP phosphorylation was often observed in untreated

control cells. These observations support those by Zhao et al. (2007) who have

shown that, in-vitro, YAP becomes phosphorylated at high cell density. All

experiments were therefore performed at very low density and phosphorylation
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data for YAP when willin was induced could only be conducted over a 48 hour

period, compared to 72 hours for MST1/2 and LATS1. MST1/2 and LATS1

may have been less prone to cell density variables as they are further upstream

of other converging pathways onto YAP.

At low cell density, willin expression resulted in enhanced MST1 cleavage

when cells were under TNFα stress. Whereas no increase in MST1 cleavage was

observed, under TNFα-induced stress, when willin was expressed at medium

and high cell density (Section 3.2.11). At medium and high cell densities, the

Hippo pathway may have already been activated so that an increase in willin

expression does not have an enhanced effect, as MST was already cleaved.

It is important to note that at high cell density in-vitro, the proportion

of phosphorylated YAP protein increases, but this does not result in all cells

dying, rather cells become contact inhibited and form a monolayer. In addi-

tion, YAP over-expression in HEK-293 cells did not result in changes in the

cell cycle. Therefore in HEK-293 cells, it is likely that the mammalian Hippo

pathway activation results in sensitisation to cell death, and additional signals

such as cell contact and cell death signals are required to result in cell survival

changes (Figure 3.33). This theory supports our data, as willin expression

resulted in phosphorylation of MST1, LATS and YAP but had no impact on

cell cycle progression or cell death.

3.3.4 Distribution of Hippo proteins is cell density de-

pendent

The subcellular distribution of willin is varied as it can be localised at the

plasma membrane, cytoplasm and nucleus (Section 3.2.4). This mixed cellular

distribution is common within the ERM family of proteins (Gunn-Moore et al.,

2005; Madan et al., 2006). The distribution of willin, like the distribution of

other Hippo pathway proteins, changes depending on cell density. At low cell

density, willin is predominately found in the cytoplasm, whereas at high cell

density willin is re-distributed to the plasma membrane. As the Hippo pathway

is activated though cellular contact, willin translocation to cellular junctions

upon cellular contact with neighbouring cells may be vital in the downstream

activation of the Hippo pathway. Future experiments should identify potential

upstream receptors candidates such as FAT or CD44 (Chapter 6).

Complexes between the Hippo pathway components in the mammalian
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system remains, to this date, largely unknown. Increasing cell density resulted

in an increase of expression of willin and LATS1 in the Triton X-100 soluble

membrane fraction. Whereas MST1 expression decreased in the Triton X-100

soluble fraction when cell density was increased. More research needs to be

done to see whether willin and LATS can be found in a complex together.

A complex between willin and LATS is plausible as localisation studies on

LATS have shown similar distribution to that of willin. LATS has been shown

to translocate to the plasma membrane upon cell-to-cell contact, with a high

expression of these proteins found at cellular adherent junctions (Yang et al.,

2004; Zhao et al., 2011).

3.3.5 Ezrin, merlin and willin can modulate activation

of the Hippo pathway

A hierarchy in the ability to activate MST1/2 phosphorylation was observed,

where the expression of either merlin or willin was sufficient to result in

MST1/2 phosphorylation, whereas ezrin did not result in MST1/2 phospho-

rylation at the cell density tested (Section 3.2.8). A synergistic trend was ob-

served on the phosphorylation of MST1/2 when cells were co-expressed with

merlin and willin (Figure 3.20). Ezrin had an inhibitory modulation on both

merlin’s and willin’s ability to phosphorylate MST1. Willin had an enhanced

effect on merlin’s ability to phosphorylate MST. Whereas merlin did not en-

hance or inhibit either willin’s or ezrin’s ability to induce the phosphorylation

of MST.

Cell density is an important factor when studying the Hippo pathway and

it is important to note that at different cell densities merlin and ezrin may have

different modulation effects. The modulation on MST1 phosphorylation was

chosen as it was the most upstream protein of the Hippo pathway complex, and

future studies should also focus on the ability of ezrin and merlin to modulate

the hippo pathway through phosphorylation of LATS1 and YAP.

The identification of possible binding factors is a key step in the character-

isation of a novel protein. Willin can bind to ezrin, possibly via a head-to-tail

conformation typically found between ERM protein binding. Previous results

by Alfthan et al. (2004) have shown that ezrin binds with a strong affinity to

merlin, resulting in the inhibition of merlin’s downstream effects. The observed

findings in this thesis support this theory as ezrin decreases phosphorylation
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caused by increased expression of both merlin and willin. It is possible that

the identified willin-ezrin interaction could be an important controlling mech-

anism for upstream activation of the Hippo pathway in mammals, and future

studies will investigate this possibility.

Willin and merlin do not appear to co-localise or bind directly (Section

3.2.9). However when merlin, ezrin and willin are over-expressed within the

cell, merlin can indirectly be associated with willin (Section 3.2.9). Whether

this indirect binding occurs at a physiological level remains unknown. When

merlin and willin are co-expressed in HEK-293 cells, the distribution of willin

is altered as merlin appears to exclude willin expression at the membrane. This

may be due to competition of upstream receptors. Willin’s exclusion from the

plasma membrane does, however, not affect willin’s ability to phosphorylate

the Hippo pathway, as the expression of willin in fact had an enhanced effect on

merlin’s ability to phosphorylate MST. ERM proteins distribution is of great

importance in its ability to modulate the Hippo pathway and may explain why

high cytoplasmic ezrin expression has prognostic significance for head and neck

squamous cell carcinoma (Madan et al., 2006).

3.4 Conclusion

Figure 3.33 summarises the main findings of this chapter. Willin expression

can induce the phosphorylation of the core Hippo pathway cassette (MST1/2,

LATS1 and YAP) resulting in YAP inhibition through retention of YAP in

the cytoplasm. Willin expression was not sufficient to result in cell viability

or cell cycle changes in HEK-293 cells. However, willin expression did result

in sensitisation to TNFα-induced cell death and enhanced MST1 cleavage in

apoptotic stimuli conditions. Expression of merlin and ezrin can also modulate

the Hippo pathway; where a synergistic trend was observed when both merlin

and willin were expressed and where ezrin has an inhibitory role.
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Figure 3.33: Updated Hippo pathway schematic to summarise results. Willin
expression phosphorylates the core Hippo pathway cassette (MST1/2, LATS1 and
YAP); resulting in YAP inhibition through retention of YAP in the cytoplasm, pos-
sibly through binding to 14-3-3 protein. Ezrin can bind directly to merlin and willin
and has an inhibitory effect on the Hippo pathway. A synergistic effect was observed
when both merlin and willin were expressed. For the Hippo pathway to result in
apoptosis, the core proteins (MST, LATS and YAP) need to be phosphorylated and
MST1 needs to be cleaved. MST1 cleavage can be induced with a cell death stimuli
such as TNFα.



Chapter 4

Willin Expression Antagonises a

YAP-induced EMT Phenotype

4.1 Introduction

In the previous chapter, willin expression in HEK-293 cells was shown to par-

tially activate the Hippo pathway with no measurable physiological down-

stream outputs (Chapter 3). The function of willin in a non-tumourigenic,

human mammary epithelial MCF10A cell line was further investigated as over-

expression of YAP and deregulation of upstream Hippo components have pre-

viously been shown to induce a measurable epithelial-mesenchymal transition

(EMT) in these cells (Overholtzer et al., 2006; Hao et al., 2008; Zhang et al.,

2008a, 2009b).

Over-expression of YAP in MCF10A cells has been shown to induce an

EMT response: where a typical polarised uniform epithelial sheet of cells

transformed into mesenchymal-like cells, exhibiting neither regimented struc-

ture nor tight intracellular adhesion (Overholtzer et al., 2006; Zhao et al., 2007;

Hao et al., 2008; Zhang et al., 2008a, 2009b). Hippo pathway components have

been shown to antagonise a YAP-induced phenotype, resulting in functional

downstream changes in anchorage-independent growth, cell migration, prolif-

eration and adhesion (Overholtzer et al., 2006; Hao et al., 2008; Zhang et al.,

2008a, 2009b). Willin’s ability to antagonise a YAP-induced EMT phenotype

in MCF10A cells was further investigated as willin has been placed upstream

of the core Hippo pathway components (MST1/2, LATS1 and YAP; Chapter

3).

102
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4.2 Results

4.2.1 Willin expression in MCF10A cells

4.2.1.1 Willin expression results in increased phosphorylation of

MST1/2, LATS1 and YAP in MCF10A cells

To confirm that willin expression resulted in an increased phosphorylation

of the core Hippo pathway components in MCF10A cells, and was not cell-

specific to HEK-293 cells, MCF10A cells were retrovirally transfected with

either pBabe-empty-vector or pBabe-willin-HA expression plasmids (kind gift

from Dr. Paul Reynolds’ lab, University of St Andrews, UK). 48 hours post

retroviral transfection, whole cell lysates were collected and run on a 10% SDS

gel. Immunoblot analysis confirmed that willin-HA was expressed in MCF10A

cells retrovirally transfected with pBabe-willin-HA (Figure 4.1).

Willin 

!-actin 

Vector    Willin 

Figure 4.1: Immunoblot confirmed that willin-HA was expressed in MCF10A
cells. MCF10A cells were retrovirally transfected with pBabe-willinHA or pBabe-
vector plasmids. Whole cell lysates were collected and run on a 10% SDS gel. The
nitrocellulose membrane was probed with an anti-HA antibody to detect willin-HA
expression. β-actin detection was used as a loading control.

Expression of willin-HA in MCF10A cells resulted in an increase in phos-

phorylation of the core Hippo pathway cassette (Figure 4.2). Image J analysis

of three phosphorylation western blots (representative shown in Figure 4.2.A)

showed that a significant increase in phosphorylation of MST1/2, LATS1 and

YAP was observed when MCF10A cells expressed willin-HA compared to an

empty vector control (Figure 4.2.B, t-test: p<0.01, n=3).
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Figure 4.2: Expression of willin resulted in increased phosphorylation of MST1/2,
LATS1 and YAP in MCF10A cells. pBabe-willin-HA and pBabe-vector were retro-
virally transfected into MCF10A cells. 48 hours post-transfection, whole cell lysates
were collected and run on a 10% SDS gel. A) The nitrocellulose membrane was
probed with antibodies detecting both phosphorylated and total protein expression
of MST1/2, LATS1 and YAP. B) Immunoblots were analysed using Image J software
to calculate relative phosphorylation of MST1/2, LATS1 and YAP to empty vector
controls that were standardised to 1. Relative phosphorylation was calculated by
measuring the integrated density (ID) of phosphorylated protein/ID of total protein
detected. Error bars represent ± standard error (n=3).
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4.2.1.2 Willin expression results in YAP nuclear exit in MCF10A

cells

Activation of the Hippo pathway through phosphorylation of the core Hippo

pathway cassette has previously been reported to result in YAP transloca-

tion from the nucleus to the cytoplasm (Zhao et al., 2007; Hao et al., 2008).

Nuclear to cytoplasmic translocation of YAP was observed when willin was

over-expressed in HEK-293 cells (Section 3.2.6). To confirm that willin ex-

pression had the same effect on YAP translocation in MCF10A cells, nuclear

fractionation experiments were conducted on stable MCF10A cells expressing

empty vector and willin-HA.

MCF10A cells were retrovirally transfected with pBabe-willin-HA or

pBabe-vector expression plasmids. Stable cell lines of each were created by

antibiotic selection with 2µg/ml puromycin. Nuclear fractionation was per-

formed on both cell lines and equal protein concentrations of nuclear cell lysates

were run on a 10% SDS gel. Image J analysis of western blots (representa-

tive immunoblot shown in Figure 4.3.A) showed that nuclear YAP levels were

significantly reduced, by ∼8 fold, in MCF10A cells that expressed willin-HA

compared to MCF10A cells that expressed the empty vector (Figure 4.3.B;

t-test: p<0.01, n=3).
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Figure 4.3: Expression of willin in MCF10A cells resulted in YAP nuclear exit.
A) Nuclear fractions were collected from MCF10A cells over-expressing willin-HA
and an empty vector, and run on a 10% SDS gel. The nitrocellulose membrane was
probed with anti-YAP and coilin antibodies, where the latter was used as a nuclear
fraction loading control. B) Image J analysis confirmed that a significant decrease
in YAP nuclear expression was observed in MCF10A-willinHA compared to the
MCF10A-vector cells (t-test; p<0.01, n=3**). YAP protein expression levels were
relative to control MCF10A-vector cells which were set to 1. Error bars represent
± standard deviation.
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4.2.1.3 Willin expression reduces cell proliferation at high cellular

density

Previous studies have shown that the expression of the Hippo pathway kinases

enhanced contact inhibition as proliferation rates were inhibited at high cell

density but not at a low cell density (Camargo et al., 2007; Dong et al., 2007;

Zhao et al., 2007). As willin expression was shown to activate the Hippo path-

way (Section 4.2.1.1), its ability to influence cell proliferation was investigated.

MCF10A cells were retrovirally transfected with pBabe-vector or pBabe-

willin-HA constructs. Stable cell lines were created and plated out into 96 well

plates. A MTT assay was performed as a measure of cell proliferation every

24 hours for 7 days. Medium was replaced with fresh growth medium every 48

hours to prevent cells becoming nutrient deprived. Differences in proliferation

curves were observed between MCF10A cells expressing an empty vector and

MCF10A cells expressing willin-HA (Figure 4.4). At low cell density, the

proliferation rate was the same in MCF10A cells over-expressing willin-HA or

an empty vector (Figure 4.4). At high cell density (confluency was reached

3-4 days post plating), the rate of cell proliferation was reduced in MCF10A

cells over-expressing willin-HA compared to that of MCF10A cells expressing

an empty vector control (Figure 4.4).
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Figure 4.4: Willin expression in MCF10A cells (dashed line) reduced cell prolifera-
tion at high cell density. A MTT assay was performed on stable MCF10A-willinHA
and MCF10A-vector cells as a measure of cell proliferation every 24 hours for 7 days.
Error bars represent ± standard deviation.
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To confirm that willin expression in MCF10A cells reduced proliferative

growth at high cell density, the number of cells were counted using a haemo-

cytometer. 2x106 MCF10A cells expressing willin-HA or an empty vector were

plated out into 35mm dishes and the number of cells were counted every 24

hours for 5 days. Growth medium was replaced every 48 hours to prevent nu-

trient deprivation of the cells. A contact inhibition plateau in stable MCF10A

cells expressing an empty vector was observed at ∼5x106 cells, whereas con-

tact inhibition in MCF10A cells over-expressing willin-HA was observed at a

lower cell number of ∼3x106 (Figure 4.5). This data supported previous ob-

servations from the MTT assay (Figure 4.4) that willin expression enhanced

contact inhibition and reduced cell proliferation at high cell density.
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Figure 4.5: Willin expression slowed proliferation rate in MCF10A cells. 2x106

MCF10A cells over-expressing willin-HA or an empty vector were plated out into
35mm dishes and the number of cells were counted every 24 hours for 5 days. Less
cells were counted in MCF10A cells expressing willin-HA (dashed line) when com-
pared to MCF10A cells expressing an empty vector (solid line). Error bars represent
± standard deviation (n=6).

In human cells, LATS1/2 have been shown to affect cyclin E and cyclins

A/B, inducing cell cycle arrest at G1-S or G2-M respectively (Xia et al., 2002;

Li et al., 2003). The effect of willin on the cell cycle at high cell density

was further investigated as willin expression reduced cell proliferation at high

cell density. MCF10A cells were retrovirally transfected with pBabe-vector

or pBabe-willin-HA vectors and plated into 35mm dishes. Cells were har-

vested at a high confluency, fixed with ethanol and stained with propidium
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iodide for cell cycle analysis (Section 2.3.2). Willin expression in MCF10A

cells resulted in a small G1 arrest (Figure 4.6: t-test; p<0.05, n=6). Willin

expression in MCF10A cells did not affect cell viability as stable MCF10A cells

over-expressing willin-HA were successfully passaged and willin expression in

MCF10A cells did not result in an increase of cells in the sub-G1 phase of the

cell cycle (Figure 4.6.A).
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Figure 4.6: Willin expression in MCF10A cells resulted in a small G1 arrest at high
cell density. 10,000 MCF10A cells expressing either willin-HA or an empty vector
were harvested at high cell density, fixed with ethanol, and stained with PI. A) The
FACS histogram outputs show cell count on the y-axis and PI fluorescence inten-
sity on the x -axis. B) Cell cycle histograms were analysed using Dako-cytometry
software and the percentage of cells in G1, S and G2 phases of the cell cycle were
calculated. Willin expression in MCF10A cells resulted in a small G1 arrest (t-test;
p<0.05, n=6*). Error bars represent ± standard deviation.
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4.2.1.4 Willin expression modulates cellular migration

Hippo pathway components have been shown to inhibit cell migration at high

cell densities (Zhao et al., 2007; Hao et al., 2008; Zhang et al., 2008a). Willin’s

ability to inhibit cell migration was therefore further investigated. MCF10A

cells were retrovirally transfected with pBabe-willin-HA or pBabe-vector ex-

pression plasmids and migration through a Boyden chamber was measured.

MCF10A cells were plated at either low (5x105) or high (1x106) cell density

within the Boyden chamber and cell migration through the 8.0µm pores was

measured 24 hours after plating. Figure 4.7 shows that the expression of willin-

HA in MCF10A cells reduced cellular migration through a Boyden chamber

by ∼ 25% at high cell density (t-test; p<0.05, n=3), whereas the reduction in

cell migration upon expression of willin in MCF10A cells was not statistically

significant at low cell density (t-test; p>0.05, n=3).

Low density High density 

* 

Figure 4.7: Willin expression in MCF10A cells reduced cell migration. MCF10A
cells over-expressing willin-HA or an empty vector were seeded into a Boyden cham-
ber at low (5x105) and high (1x106) cell density. Cell migration though a Boyden
chamber was measured 24 hour after plating. No significant reduction in migration
was observed at low cell density (t-test; p>0.05, n=3). However, willin expression
in MCF10A reduced cell migration significantly at high cell density (t-test; p<0.05,
n=3*). Error bars represent ± standard deviation.
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4.2.2 Expression of willin and its FERM domain can

antagonises a YAP-induced EMT phenotype in

MCF10A cells

Hippo pathway components have been shown to antagonise a YAP-induced

EMT phenotype, resulting in functional downstream changes in anchorage-

independent growth, cell migration, adhesion as well as changes in epithelial

and mesenchymal markers (Overholtzer et al., 2006; Zhao et al., 2007; Hao

et al., 2008; Zhang et al., 2008a, 2009b). Further studies were performed to

investigate whether full-length willin and its conserved FERM domain were

sufficient to negatively regulate an oncogenic YAP-induced EMT phenotype

in MCF10A cells: reducing cell migration and anchorage independent growth,

and enhancing cell adhesion.

4.2.2.1 Cloning and expression of the FERM and C-terminal do-

main of willin

To investigate whether the conserved FERM domain of willin was sufficient

to antagonise a YAP-induced EMT phenotype, both the FERM and the C-

terminal domain of willin were cloned into a pBabe(puro) expression vector

and expressed in MCF10A cells over-expressing YAP. The amino acid and

DNA nucleotide sequences of the defined FERM and C-terminal domains of

willin are shown in Figure 4.8.

Using PCR, the FERM and C-terminal domains of willin were amplified

from a willin-GFP plasmid using primers (FERM domain: FERM-F & FERM-

R; C-terminal domain: Cterm-F & Cterm-R2. See Table 2.1 for primer se-

quence) that contained a BamH 1 and EcoR1 restriction site at the 5’ and 3’

end respectively. A hemagglutinin tag (HA: YPYDVPDYA) was incorporated

into the reverse primer so that cloned FERM and C-terminal plasmids were

C-terminally tagged with HA. A restriction digest using BamH 1 and EcoR1

enzymes was performed on the PCR inserts and the pBabe-puro vector. The

FERM and C-terminal domain PCR products were ligated into a pBabe vec-

tor and constructs were named pBabe-FERM and pBabe-Cterm respectively

(Figure 4.9). The DNA Sequencing Service (University of Dundee, UK) con-

firmed that unmutated FERM and C-terminal domains of willin, C-terminally

tagged with HA, were cloned into a pBabe(puro) expression vector.
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Amino acid sequence: 

 
MNKLNFHNNRVMQDRRSVCIFLPNDESLNIIINVKILCHQLLVQVCDLLRLKDCHLFGLSVI

QNNEHVYMELSQKLYKYCPKEWKKEASKGIDQFGPPMIIHFRVQYYVENGRLISDRAARYYY

YWHLRKQVLHSQCVLREEAYFLLAAFALQADLGNFKRNKHYGKYFEPEAYFPSWVVSKRGKD

YILKHIPNMHKDQFALTASEAHLKYIKEAVRLDDVAVHYYRLYKDKREIEASLTLGLTMRGI

QIFQNLDEEKQLLYDFPWTNVGKLVFVGKKFEILPDGLPSARKLIYYTGCPMRSRHLLQLLS

NSHRLYMNLQPVLRHIRKLEENEEKKQYRESYISDNLDLDMDQLEKRSRASGSSAGSMKHKR

LSRHSTASHSSSHTSGIEADTKPRDTGPEDSYSSSAIHRKLKTCSSMTSHGSSHTSGVESGG
KDRLEEDLQDDEIEMLVDDPRDLEQMNEESLEVSPDMCIYITEDMLMSRKLNGHSGLIVKEI

GSSTSSSSETVVKLRGQSTDSLPQTICRKPKTSTDRHSLSLDDIRLYQKDFLRIAGLCQDTA

QSYTFGCGHELDEEGLYCNSCLAQQCINIQDAFPVKRTSKYFSLDLTHDEVPEFVVstop 
 

 
Nucleotide sequence: 

 

atgaacaaattgaattttcataacaacagagtcatgcaagaccgccgcagtgtgtgcatttt
ccttcccaacgatgaatctctgaacatcatcataaatgttaagattctgtgtcaccagttgc

tggtccaggtttgtgacctgctcaggctaaaggactgccacctctttggactcagtgttata
caaaataatgaacatgtgtatatggagttgtcacaaaagctttacaaatattgtccaaaaga

atggaagaaagaggccagcaagggtatcgaccaatttgggcctcctatgatcatccacttcc

gtgtgcagtactatgtggaaaatggcagattgatcagtgacagagcagcaagatactattat
tactggcacctgagaaaacaagttcttcattctcagtgtgtgctccgagaggaggcctactt

cctgctggcagcctttgccctgcaggctgatcttgggaacttcaaaaggaataagcactatg
gaaaatacttcgagccagaggcttacttcccatcttgggttgtttccaagagggggaaggac

tacatcctgaagcacattccaaacatgcacaaagatcagtttgcactaacagcttccgaagc

tcatcttaaatatatcaaagaggctgtccgactggatgacgtcgctgttcattactacagat
tgtataaggataaaagggaaattgaagcatcgctgactcttggattgaccatgaggggaata

cagatttttcagaatttagatgaagagaaacaattactttatgatttcccctggacaaatgt
tggaaaattggtgtttgtgggtaagaaatttgagattttgccagatggcttgccttctgccc

ggaagctcatatactacacggggtgccccatgcgctccagacacctcctgcaacttctgagc

aacagccaccgcctctatatgaatctgcagcctgtcctgcgccatatccggaagctggagga
aaacgaagagaagaagcagtaccgggaatcttacatcagtgacaacctggacctcgacatgg

accagctggaaaaacggtcgcgggccagcgggagcagtgcgggcagcatgaaacacaagcgc
ctgtcccgtcattccaccgccagccacagcagttcccacacctcgggcattgaggcagacac

caagccccgggacacggggccagaagacagctactccagcagtgccatccaccgcaagctga

aaacctgcagctcaatgaccagtcatggcagctcccacacctcaggggtggagagtggcggc
aaagaccggctggaagaggacttacaggacgatgaaatagagatgttggttgatgacccccg

ggatctggagcagatgaatgaagagtctctggaagtcagcccagacatgtgcatctacatca
cagaggacatgctcatgtcgcggaagctgaatggacactctgggttgattgtgaaagaaatt

gggtcttccacctcgagctcttcagaaacagttgttaagcttcgtggccagagtactgattc

tcttccacagactatatgtcggaaaccaaagacctccactgatcgacacagcttgagcctcg
atgacatcagactttaccagaaagacttcctgcgcattgcaggtctgtgtcaggacactgct

cagagttacacctttggatgtggccatgaactggatgaggaaggcctctattgcaacagttg
cttggcccagcagtgcatcaacatccaagatgcttttccagtcaaaagaaccagcaaatact

tttctctggatctcactcatgatgaagttccagagtttgttgtgtaa 

 
 

 
Figure 4.8: Amino acid and DNA nucleotide sequence of full-length willin. The N-
terminal FERM domain sequence of willin is underlined and in bold. The underlined
FERM domain was cloned into pBABE vector. The sequence located at the 3’ end
of the FERM domain to the stop codon was also cloned into the pBabe-puro vector
and was termed the C-terminal domain of willin.
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Figure 4.9: Schematic diagram of molecular cloning techniques performed to con-
struct pBabe-FERM and pBabe-Cterm expression plasmids. PCR was conducted
on the willin-GFP plasmid using FERM-F & FERM-R or Cterm-F & Cterm-R2
primers to produce a FERM and C-terminal fragment with BamH1 and EcoR1
restriction sites at the 5’ and 3’ end respectively (1). A restriction digest was per-
formed using BamH 1 and EcoR1 enzymes on both the PCR inserts and pBabe-puro
so that the PCR fragments could be cloned into the multiple cloning site (MCS) of
the pBabe vector (2). The PCR fragments were ligated into the pBabe vector and
constructs were named pBabe-FERM and pBabe-Cterm (3).
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pBabe-willin-HA, pBabe-FERM, pBabe-Cterm and pBabe-vector were

retrovirally transfected into MCF10A cells over-expressing YAP-FLAG (kind

gift from Dr. D. Haber, Harvard University, USA). Stable cell lines were cre-

ated by 2µg/ml puromycin selection. Immunoblot analysis confirmed that

full-length willin, the FERM and the C-terminal domain of willin were ex-

pressed in the MCF10A-YAP cell lines created (Figure 4.10).

Willin-HA 

Cterm/FERM-HA 

YAP-FLAG 

vector  C-term   FERM   willin 

Figure 4.10: MCF10A-YAP stable cell lines were created over-expressing an empty
vector, full-length willin, the FERM domain or the C-terminal domain of willin.
Whole cell lysates were collected from MCF10A-YAP (YAP-FLAG) stable cell lines
created to express either willin-HA, FERM-HA or the C-terminal-HA domain of
willin. Lysates were run on a 10% SDS gel and the nitrocellulose membrane was
probed with anti-FLAG and high affinity anti-HA antibody, to detect YAP and
willin expression respectively.

4.2.2.2 Willin expression results in a morphological change in

MCF10A-YAP cells

A mesenchymal-like phenotype of MCF10A-YAP cells was reverted back to

a more epithelial-like phenotype when full-length willin and the FERM do-

main of willin were expressed in MCF10A-YAP cells (Figure 4.11). The

mesenchymal-like phenotype of MCF10A cells remained unchanged when an

empty vector or the C-terminal domain of willin were retrovirally transfected
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into MCF10A-YAP cells (Figure 4.11). Expression of full-length willin and

its FERM domain resulted in cellular morphological alternations, where the

morphology of a cell changed from a spindle-shaped mesenchymal appearance

with increased scattering to more uniform and polarised epithelial appearance

(Figure 4.11).

A 

C 

B 

D 

Figure 4.11: Willin and FERM expression antagonised a YAP-induced EMT mor-
phological phenotype. Brightfield images were taken of MCF10A-YAP cells express-
ing either full-length willin (A), the FERM domain of willin (B), the C-terminal
domain of willin (C) or an empty vector (D). A more epithelial-like phenotype was
observed when MCF10A-YAP cells expressed full-length willin or the FERM do-
main of willin, while a more mesenchymal-like morphology was observed when cells
expressed the C-terminal domain of willin or an empty vector. Bar= 50µm.
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Susana Moleirinho, a Ph.D. student in our lab, showed that the levels

of mesenchymal and epithelial markers varied between MCF10A-YAP cells

expressing an empty vector or full-length willin, confirming the morphological

EMT phenotype observations shown in Figure 4.11. Expression of willin-HA in

MCF10A cells resulted in a decrease of the mesenchymal marker vimentin and

N-cadherin and an increase in the epithelial marker occludin and E-cadherin

(Figure 4.12).

To further investigate that the EMT changes observed were due to activa-

tion of the Hippo pathway converging through phosphorylation of the Ser127

YAP site, a mutant MCF10A-YAP(S127A) cell line was created. Susana

Moleirinho retrovirally transfected MCF10A-YAP(S127A) cells with a pBabe-

vector or pBabe-willin-HA expression plasmids. Immunoblot analysis showed

that no changes in either epithelial (E-cadherin and occludin) or mesenchy-

mal (vimentin and N-cadherin) markers were observed when willin-HA or an

empty vector were expressed in MCF10A-YAP(S127A) cells (Figure 4.12).
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Figure 4.12: Willin expression antagonised a YAP-induced EMT phenotype in
MCF10A cells. Whole cell lysates were collected of MCF10A-YAP or MCF10A-
YAP(S127A) cells over-expressing vector or willin-HA and run on a 10% SDS gel.
The nitrocellulose membrane was probed with epithelial (E-cad and occludin) and
mesenchymal antibodies (vimentin and N-cad). Immunoblots show increased E-
cadherin, occludin and decreased vimentin, N-cadherin in MCF10A-YAP cells ex-
pressing willin, but no changes were observed between MCF10A-YAP(S127A) cells
expressing willin and an empty vector control. Work done by Susana Moleirinho.
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4.2.2.3 Expression of willin and its FERM domain reduces anchorage-

independent growth

Stable MCF10A-YAP cells over-expressing either an empty vector, full-length

willin, FERM or the C-terminal domain of willin were seeded and grown in

soft-agar to measure anchorage-independent growth. The number of colonies,

defined as 5 or more cells, were counted 2 and 3 weeks after plating. The

experiment was conducted as a double-blind study to reduce counting bias.

Brightfield images in Figure 4.13.A show that the colony sizes observed in

MCF10A-YAP cells over-expressing the FERM domain of willin and full-length

willin was different to the colony sizes observed in MCF10A-YAP cells over-

expressing an empty vector or the C-terminal domain of willin. Colony sizes

were larger in MCF10A-YAP cells expressing an empty vector and the C-

terminal domain of willin compared to MCF10A-YAP cells that were express-

ing willin and the FERM domain of willin (Figure 4.13.A).

In addition to cell colony size differences, variations in the total number of

colonies formed in MCF10A-YAP cells over-expressing full-length willin and

the FERM domain of willin were observed when compared to MCF10A-YAP

cells over-expressing the C-terminal domain of willin or an empty vector (Fig-

ure 4.13.B). A ∼50% reduction in colony formation was observed, both 2 and

3 weeks after plating, when either full-length willin or the FERM domain of

willin was over-expressed in MCF10A-YAP cells, compared to MCF10A-YAP

cells that expressed an empty vector (Figure 4.13.B; t-test, p<0.01, n=6). Ex-

pression of the C-terminal domain of willin in MCF10A-YAP cells did not alter

the cells ability to grow in soft agar when compared to MCF10A control cells

expressing an empty vector (Figure 4.13B; t-test; p>0.05, n=6). Two weeks

post-seeding, a slight trend was observed where the FERM domain of willin

seemed to have a stronger effect on the ability to inhibit anchorage-independent

growth than full-length willin; however this effect was not statistically signifi-

cant (Figure 4.13B; t-test, p>0.05, n=6).
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Figure 4.13: Expression of willin and its FERM domain reduced anchorage-
independent growth. Stable MCF10A-YAP cells over-expressing either an empty
vector, full-length willin, the FERM or the C-terminal domain of willin were grown
in soft-agar. A) Brightfield images taken of formed colonies. Colony sizes were
larger in MCF10A-YAP cells expressing an empty vector and the C-terminal do-
main of willin compared to MCF10A-YAP cells that expressed full-length willin
and its FERM domain. B) Number of colonies (>5 cells) were counted 2 and 3
weeks after plating. Expression of willin and its FERM domain significantly reduced
anchorage-independent growth in MCF10A-YAP cells compared to MCF10A-YAP
cells that expressed an empty vector or the C-terminal domain of willin (t-test;
p<0.01, n=6**). Error bars represent ± standard deviation.
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4.2.2.4 Expression of willin and its FERM domain reduces cell mi-

gration

Previous studies have shown that YAP over-expression in MCF10A cells results

in an increase in cell migration (Overholtzer et al., 2006; Zhao et al., 2007).

To investigate the negative regulation on YAP by willin, cell migration was

measured using both a wound healing scratch assay and a Boyden chamber

assay.

Stable MCF10A-YAP cells over-expressing an empty vector, full-length

willin, the FERM domain and the C-terminal domain of willin were plated

out onto 35mm dishes. Once the dishes were confluent, a scratch was made

using the end of a yellow tip and brightfield images were taken after the scratch

was made 24 hours post wound formation. Representative brightfield images

of the wound healing assay for MCF10A-YAP cells over-expressing an empty

vector, full-length willin, the FERM and the C-terminal domain of willin are

shown in Figure 4.14.A. The percentage of scratch covered with cells was

measured using image J, 24 hours post wound formation. Cell migration was

reduced by ∼50% when MCF10A-YAP cells over-expressed full-length willin

and its truncated FERM domain compared to MCF10A-YAP that expressed

an empty vector (Figure 4.14.B; t-test: p<0.01, n=9). Expression of the C-

terminal domain of willin in MCF10A-YAP cells did not affect cell migration

when compared to the empty vector control (Figure 4.14.B; t-test: p>0.05,

n=9).

A second migration assay was conducted to confirm that the expression

of willin and its FERM domain reduced cell migration. MCF10A-YAP cells

expressing an empty vector, full-length willin, FERM or the C-terminal do-

main of willin were plated into Boyden chambers. 24 hours after incubation,

the number of cells migrated through the 8.0µm pores in the chamber were

measured. Consistent with data obtained for the scratch assay, cell migration

through a Boyden chamber was reduced by ∼50% when MCF10A-YAP cells

over-expressed full-length willin and its truncated FERM domain compared

to MCF10A-YAP cells that expressed an empty vector (Figure 4.15; t-test:

p<0.01, n=3). Furthermore, expression of the C-terminal domain of willin in

MCF10A-YAP cells did not affect cell migration when compared to the empty

vector control (Figure 4.15; t-test: p>0.05, n=3).
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Figure 4.14: Expression of willin and its FERM domain in MCF10A-YAP cells
reduced cell migration. A scratch was made with a yellow pipette tip in confluent
MCF10A-YAP cells expressing an empty vector, full-length willin, the FERM or
the C-terminal domain of willin. A) Brightfield images were taken before and 24
hours after the scratch was made. B) The percentage of the scratch covered after
24 hours was measured using Image J software. Expression of willin and its FERM
domain in MCF10A-YAP cells significantly reduced cell migration when compared
to MCF10A cells that expressed an empty vector or the C-terminal domain (t-test;
p<0.01, n=9**). Error bars represent ± standard deviation.
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Figure 4.15: Expression of willin and its FERM domain reduced cell migration
through a Boyden chamber. MCF10A-YAP cells expressing an empty vector, full-
length willin, the FERM or the C-terminal domain of willin were plated into Boyden
chambers. 24 hours after incubation, the number of cells migrated through the
chamber were fixed and stained with crystal violet (CV). The CV dye was extracted
and measured at a wavelength of 570nm. Expression of willin and the FERM domain
of willin significantly reduced cell migration through a Boyden chamber (t-test;
p<0.05, n=3*). Error bars represent ± standard deviation.

4.2.2.5 Expression of willin and its FERM domain enhances cell

adhesion

During cell culture maintenance, it was noted that MCF10A-YAP cells over-

expressing full-length willin and the FERM domain of willin took twice as

long to trypsinise compared to MCF10A-YAP cells over-expressing an empty

vector or the C-terminal domain of willin. Taking together this observation

and the fact that changes in cell adhesion is a hallmark of EMT, the ability of

willin to affect cell adhesion was further investigated.

Stable MCF10A-YAP cells expressing an empty vector, full-length willin,

the FERM or the C-terminal domain of willin were seeded onto a laminin

coated 96 well plate. After a 30 minute incubation, an adhesion assay was

performed and the number of cells adherent to the laminin plate were fixed

and counted (Section 2.3.11). Expression of full-length willin and its truncated
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FERM domain enhanced cell adhesion to a laminin-coated dish, by a 1.6-1.8

fold respectively, compared to MCF10A-YAP cells that expressed an empty

vector (Figure 4.16: t-test; p<0.05 n=4). The truncated C-terminal domain

of willin had no effect on cell adhesion when compared to MCF10A-YAP cells

that expressed an empty vector (Figure 4.16: t-test; p>0.05, n=4).
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Figure 4.16: Expression of willin and its FERM domain enhanced cell adhesion.
An adhesions assay was performed on stable MCF10A-YAP cells expressing either
an empty vector, full-length willin, the FERM or the C-terminal domain of willin.
Number of cells adherent to laminin-coated dishes, after adhesion assay was per-
formed, was increased in MCF10A-YAP cells expressing both full-length willin and
the FERM domain of willin when compared to MCF10A cells over-expressing an
empty vector (t-test; p<0.05, n=4*). Error bars represent ± standard deviation.

4.2.3 The FERM domain of willin increases phosphory-

lation of MST1/2, LATS1 and YAP

As the FERM domain of willin can antagonise a YAP-induced phenotype,

with observed changes in cell migration, adhesion and anchorage-independent

growth, experiments were conducted to investigate whether the FERM domain

of willin could activate the core Hippo pathway components. As investigations

into phosphorylation of the core Hippo pathway components had to be per-

formed at low cell density, transfection into HEK-293 cells were preferred over
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the longer retroviral transfection method required for MCF10A cells.

HEK-293 cells were plated at low cell density and were transiently trans-

fected with pBabe-willin-HA, pBabe-FERM, pBabe-Cterm or pBabe-vector.

Whole cell lysates were collected 48 hours post-transfection and run on a 10%

SDS gel. The nitrocellulose membrane was probed with antibodies detecting

both total and phosphorylated core Hippo pathway components: MST1/2,

LATS1 and YAP. Immunoblot analysis showed that an increased phosphoryla-

tion of MST1/2, LATS1 and YAP was observed when HEK-293 cells expressed

full-length willin or its truncated FERM domain (Figure 4.17). Expression of

the C-terminal domain of willin in HEK-293 cells did not result in phospho-

rylation changes of MST1/2, LATS1 and YAP when compared to an empty

vector control (Figure 4.17).
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Figure 4.17: Expression of full-length willin and its FERM domain resulted in an
increased phosphorylation of core Hippo components: MST1/2, LATS1 and YAP.
HEK-293 cells were transfected with either an empty vector, willin-HA, FERM-HA
or Cterm-HA expression plasmids. Whole cell lysates were collected 48 hours post-
transfection and run on a 10% SDS gel. The nitrocellulose membrane was probed
with core Hippo pathway antibodies; pMST1/2, MST1, pLATS1, LATS1, pYAP
and YAP.
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4.2.4 Expression of willin and its FERM domain nega-

tively regulate YAP target gene expression

Hao et al. (2008) have recently reported genes, involved in cell proliferation,

migration and adhesion, that are either up- or down-regulated by YAP and

are negatively regulated by LATS1. qPCR analysis was conducted to see if

willin could be a negative regulator of YAP by affecting the regulation of some

of the genes listed to be affected by YAP: PRL, IGFB3, BMP2 (Hao et al.,

2008) and RASSF8. The RASSF8 gene was chosen as a prospective regulator

of willin as it has previously been shown to be a potential binding partner of

willin (Rual et al., 2005). qPCR analysis was performed on stable MCF10A-

YAP cells over-expressing an empty vector, full-length willin, the FERM or the

C-terminal domain of willin. Expression of full-length willin and its conserved

FERM domain altered the expression of YAP gene targets: increasing BMP2

and RASSF8; and decreasing PRL and IGFBP3 RNA levels (Table 4.1, Figure

4.18; t-test; p<0.01, n=5). Expression of the C-terminal domain of willin did

not result in changes in total RNA levels of YAP downstream targets when

compared to MCF10A-YAP cells expressing an empty vector (Figure 4.18;

t-test; p>0.05).

Gene name Accession # Description

Down-regulated
PRL NM000948 Prolactin

IGFBP3 NM001013398 Insulin growth factor-binding protein 3
Up-regulated

BMP2 NM001200 Bone morphogenetic protein 2
RASSF8 NM001164746 Ras association domain family 8

Table 4.1: List of genes up-regulated and down-regulated by the expression of
willin and the FERM domain of willin in MCF10A-YAP cells.



125 4.2. RESULTS

0
 

1
0

 

2
0

 

3
0

 

4
0

 

5
0

 

v
e
c
to

r
 

w
il

li
n

 
c
-t

e
r
m

 
F

E
R

M
 

Relative mRNA levels 

0
 

0
.2

 

0
.4

 

0
.6

 

0
.8

 

1
 

1
.2

 

1
.4

 

v
e
c
t
o

r
 

w
il

li
n

 
c
-
t
e
r
m

 
F

E
R

M
 

Relative mRNA level 

0
 

5
 

1
0

 

1
5

 

2
0

 

2
5

 

3
0

 

3
5

 

4
0

 

v
e
c
to

r
 

w
il

li
n

 
c
-t

e
r
m

 
F

E
R

M
 

Relative mRNA levels 

0
 

0
.2

 

0
.4

 

0
.6

 

0
.8

 

1
 

1
.2

 

1
.4

 

1
.6

 

v
e
c
to

r
 

w
il

li
n

 
c
-t

e
r
m

 
F

E
R

M
 

Relative mRNA level 

Relative mRNA level 

Relative mRNA level 

Relative mRNA level 

Relative mRNA level 

 v
e
c
to

r 
  
  

  
 w

il
li

n
  
  

  
  
c
-t

e
rm

  
  
  
  

F
E

R
M

  
 v

e
c
to

r 
  

  
  
 w

il
li

n
  
  

  
  
c
-t

e
rm

  
  

  
  

F
E

R
M

  

 v
e
c
to

r 
  

  
  
 w

il
li

n
  

  
  

  
c
-t

e
rm

  
  

  
  

F
E

R
M

  
 v

e
c
to

r 
  
  

  
 w

il
li

n
  

  
  
  
c
-t

e
rm

  
  
  

  
F

E
R

M
  

P
R

L
 

I
G

F
B

P
3

 

R
A

S
S

F
8
 

B
M

P
2

 

F
ig

u
re

4.
18

:
E

xp
re

ss
io

n
of

w
ill

in
an

d
it

s
F
E

R
M

do
m

ai
n

an
ta

go
ni

se
d

Y
A

P
ta

rg
et

pr
ot

ei
ns

.
qP

C
R

an
al

ys
is

w
as

pe
rf

or
m

ed
on

kn
ow

n
Y

A
P

do
w

ns
tr

ea
m

ta
rg

et
s:

P
R

L,
IG

F
B

P
3,

B
M

P
2

an
d

R
A

SS
F
8.

E
xp

re
ss

io
n

of
w

ill
in

an
d

it
s

F
E

R
M

do
m

ai
n

in
M

C
F
10

A
-Y

A
P

ce
lls

si
gn

ifi
ca

nt
ly

de
cr

ea
se

d
R

N
A

le
ve

ls
of

P
R

L
an

d
IG

F
B

P
3,

an
d

in
cr

ea
se

d
R

N
A

le
ve

ls
of

B
M

P
2

an
d

R
A

SS
F
8

(t
-t

es
t;

p<
0.

01
,n

=
5)

.
E

rr
or

ba
rs
±

re
pr

es
en

t
st

an
da

rd
de

vi
at

io
n.



126 4.3. DISCUSSION

4.3 Discussion

4.3.1 Willin expression activates the Hippo pathway

cassette in MCF10A cells

Willin’s ability to activate the Hippo pathway is not exclusive to HEK-293

cells, as willin expression in MCF10A cells leads to an increase in phospho-

rylation of MST1/2, LATS1 and YAP, which further resulted in downstream

YAP nuclear exit. Future studies should focus on willin’s ability to antagonise

YAP in different cell types, as YAP has also been reported to function as a

tumour suppressor, rather than a oncogene, in MDA-231 breast cell line (Yuan

et al., 2008). The function of willin may therefore be cell-specific.

4.3.2 Willin expression enhances contact inhibition

The Hippo tumour suppressor pathway regulates organ size and tumourige-

nesis through activation of the cascade at high cell densities to inhibit cell

proliferation. Consistent with data that showed that Hippo pathway compo-

nents reduce cell proliferation (Camargo et al., 2007; Dong et al., 2007; Zhao

et al., 2007), willin expression in MCF10A cells enhanced contact inhibition;

reducing cell proliferative rate and migratory capacity at high cell density,

whereas the cell proliferation rate and migration at low cell density remained

unchanged to wild-type MCF10A cells (Section 4.2.1). Whether the change

in proliferation rate is due to activation of the Hippo pathway or alternative

signalling cascades remains unclear and requires further investigation.

Core Hippo pathway components have been found to affect the cell cycle.

In human cells, LATS1/2 have been shown to affect cyclin E and cyclins A/B,

inducing cell cycle arrest at G1-S or G2-M respectively (Xia et al., 2002; Li

et al., 2003). At high cell density, willin expression in MCF10A cells resulted

in a slight but significant cell cycle arrest at G1 (Section 4.2.1.3). This G1

cell cycle arrest may have been enhanced if cells were synchronised before cell

cycle analysis was performed. Congruous with willin expression in HEK-293

cells, willin expression in MCF10A cells did not result in cell death as stable

cell lines were successfully passaged and no increase in cells in sub-G1 phase

of the cell cycle was observed.
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4.3.3 Willin expression antagonises a YAP induced

EMT phenotype

The induction of EMT by YAP over-expression is consistent with an emerg-

ing concept of EMT inducers as oncogenes. The loss of contact inhibition

by cells over-expressing YAP and the gain of anchorage-independent growth

in soft agar are hallmarks of cancer cells in-vitro (Hanahan and Weinberg,

2000). A protein that antagonises the YAP-induced phenotype may therefore

have tumour suppressive properties. Upstream Hippo components have pre-

viously been confirmed to negatively regulate YAP in human cell lines (Over-

holtzer et al., 2006; Zhao et al., 2007; Hao et al., 2008; Zhang et al., 2008a,

2009b). In addition, ectopic willin expression antagonised a YAP-induced

EMT phenotype in MCF10A cells, in terms of changes in functional outputs

of anchorage-independent growth, adhesion and migration, but also in EMT

marker expression changes.

Willin expression in MCF10A-YAP cells resulted in morphological cell al-

teration from a spindle-shaped mesenchymal-like appearance with increased

scattering to more uniform and polarised epithelial-like phenotype (Section

4.2.2). EMT markers confirmed a mesenchymal-epithelial transition when

willin was expressed in MCF10A-YAP cells, with a decrease in N-cadherin

levels and a production of E-cadherin. The presence of E-cadherin in epithe-

lial cells allows for greater cell-cell adhesive strength compared with that of a

N-cadherin expressing mesenchyme (Chu et al., 2004, 2005). Regular shaped

cell-cell junctions and adhesion between neighbouring epithelial cells holds

them tightly together and inhibits the movement of individual cells away from

the epithelial monolayer. The EMT reversion in MCF10A-YAP cells by willin

expression therefore resulted in an increased cell adhesion and decreased cell

migratory capacity and anchorage-independent growth.

Furthermore, willin expression did not result in changes to EMT marker

expression in cells expressing a constitutively active YAP mutant (MCF10A-

YAP-S127A), demonstrating that the downstream antagonistic EMT effects

of willin on YAP were via YAP’s Ser127 phosphorylation site. Other

studies, conducted by Susana Moleirinho, confirmed that the inhibition of

anchorage-independent growth and cell migration by over-expression of willin

in MCF10A-YAP cells was due to willin’s downstream effects converging onto

the YAP Ser127 phosphorylation site.



128 4.3. DISCUSSION

4.3.4 FERM domain of willin activates the Hippo path-

way

The conserved FERM domain of willin was sufficient, and as efficient as full-

length willin, to antagonise a YAP-induced EMT phenotype in MCF10A cells

whereas the C-terminal domain of willin could not (Section 4.2.3). In addition

to antagonising a YAP-induced EMT phenotype in MCF10A cells (changing

cell migration, adhesion and anchorage-independent growth), the expression

of the FERM domain of willin resulted in an increase in phosphorylation of

MST1/2, LATS1 and YAP in HEK-293 cells. The FERM domain contains a

motif that is able to activate the Hippo kinase complex, whether the FERM

domain activates and/or regulates upstream Hippo pathway receptors, that

contain a FERM-binding motif, or activates downstream Hippo pathway ki-

nases directly, remains unknown and requires further studies.

The FERM domain of willin is a scaffolding domain which can bind to dif-

ferent proteins that contain a FERM binding motif. For example, the CD44

plasma membrane receptor contains a FERM-binding peptide motif composed

of KKKLVIN (Mori et al., 2008) and may explain why the FERM domain of

willin is efficient, and as effective as full-length willin, to activate the Hippo

pathway. The binding of the FERM domain of willin to potential upstream

receptors may also inhibit other proteins from binding (Figure 4.19). For ex-

ample, the FERM domain of willin may bind to the CD44 receptors and inhibit

ezrin or merlin’s ability to bind to CD44; thereby having a modulatory role on

the Hippo pathway, rather than having a direct effect on the Hippo pathway

itself (Figure 4.19). A second explanation on how the FERM domain of willin

is able to phosphorylate the Hippo pathway is that the FERM domain of willin

may bind to other ERM proteins, resulting in the masking of potential binding

motifs or phosphorylation sites to promote a closed and inactive ERM protein

conformation. The inhibition of ERM proteins that may result in the suppres-

sion of the Hippo pathway will be released to further result in the activation

of the Hippo pathway (Figure 4.19). Finally, the FERM domain of willin may

also regulate the distribution, aggregation and availability of upstream Hippo

pathway receptors. The FERM domain of willin may potentially regulate the

number of Hippo pathway receptors. The more upstream Hippo pathway re-

ceptors there are, which may include CD44 or FAT, the more cells will become

sensitised to extracellular stimuli that activate the Hippo cascade. Merlin has
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been shown to affect the up-regulation of various upstream plasma membrane

receptors to enhance the growth inhibitory effects of merlin (McClatchey and

Giovannini, 2005; Curto and McClatchey, 2008).
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Figure 4.19: Schematic diagram illustrating the possible theories on how the
FERM domain of willin may modulate the Hippo pathway. 1) The FERM do-
main of willin may bind to upstream plasma membrane receptors that contain a
FERM binding motif. Binding to the plasma membrane localises the FERM do-
main of willin to the correct cellular location to activate the core Hippo pathways.
2) Binding of the FERM domain to unknown upstream receptors may saturate the
receptors and prevent other proteins from binding. Proteins that may inhibit the
Hippo pathway are therefore prevented from binding to upstream Hippo pathway
activators, resulting in the suppression of the Hippo pathway to activate the Hippo
pathway. 3) The FERM domain may also bind to the C-terminal end of other ERM
proteins. The binding of the FERM domain of willin to other proteins may result
in the masking of potential binding motifs or phosphorylation sites to promote a
closed and inactive protein conformation. Inhibition of ERM proteins that may re-
sult in suppression of the Hippo pathway will be released to result in the activation
of the Hippo pathway. 4) The binding of the FERM domain may also result in the
up-regulation of upstream Hippo pathway receptors.

Willin shares sequence homology with the D.melanogaster protein Ex-

panded only within its conserved FERM domain (Gunn-Moore et al., 2005;

Hamaratoglu et al., 2006). The Expanded and willin proteins are especially

divergent in the carboxyl termini, which is the region of Expanded that is pro-

posed to phosphorylate the Hippo pathway in D.melanogaster (Boedigheimer
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et al., 1997). Differences between the D. melanogaster and mammalian Hippo

pathway would explain why willin cannot rescue the function of its orthologue

in D. melanogaster tissues (Dr Kieran Harvey, unpublished work: Section

1.3.2.1), since the C-terminal domain of Expanded resulted in activation of

the Hippo pathway in D. melanogaster (Boedigheimer et al., 1997), while the

FERM domain activates the Hippo pathway in mammals. Importantly, not

all FERM domain containing proteins can activate the Hippo pathway, since

ezrin has been shown to have an inhibitory effect (Chapter 3).

4.3.5 Willin and its FERM domain negatively regulate

YAP targets

Hao et al. (2008) have recently reported genes that are either up- or down-

regulated by YAP. Expression of willin and its truncated FERM domain can

negatively regulate previously reported YAP downstream targets (Hao et al.,

2008): decreasing PRL & IGFBP3 and increasing BMP2 & RASSF8 (Sec-

tion 4.2.4). PRL, IGFBP3, BMP2 and RASSF8 genes are all involved in cell

proliferation, migration and adhesion. PRL enhances cell proliferation and mi-

gration in MCF7 cells (Doll et al., 2007) and IGFBP3 has been shown to have a

protective role against the carcinogenic effects of growth hormone (Grimberg,

2000). BMP2 belongs to TGFβ family of proteins which acts as an anti-

proliferative factor in epithelial cells (Massagu et al., 1994) whereas RASSF8

acts as tumour suppressor (Falvella et al., 2006; Lock et al., 2010). Down-

regulation of PRL and IGGBP3 and up-regulation of BMP2 and RASSF8

may explain the negative effects on cell proliferation, migration and tumouri-

genic cell characteristics when willin and the FERM domain of willin are ex-

pressed. It remains unclear whether willin regulates these genes by converging

on YAP through the Hippo pathway or if the regulation of these genes is

YAP-independent through other signalling cascades.

4.4 Conclusion

The Hippo pathway is an important signalling cascade controlling EMT and

cellular proliferation. Figure 4.20 summarises the main findings of this chap-

ter. Expression of willin and its FERM domain can antagonise a YAP-induced

EMT phenotype in MCF10A cells. EMT is a reversible process, where over-
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expression of YAP results in a morphological change towards a mesenchymal-

like phenotype in MCF10A cells and willin expression can revert this phe-

notype back into a more epithelial-like phenotype. This changes cell migra-

tion, proliferation, anchorage-independent growth and cell adhesion ability of

MCF10A-YAP cells. Expression of willin and its active FERM domain in

MCF10A-YAP cells can also antagonise known YAP targets: decreasing PRL

and IGFBP3 and increasing BMP2 and RASSF8 RNA expression.
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Cell Migration 
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Figure 4.20: Summary of chapter’s findings showing that expression of willin can
antagonise a YAP-induced EMT phenotype. EMT is a reversible process: where
over-expression of YAP results in a morphological change towards a mesenchymal-
like phenotype in MCF10A cells, and willin expression can revert this phenotype
back into a more epithelial-like phenotype. This changes cell migration, prolifera-
tion, anchorage independent growth and cell adhesion ability of MCF10A-YAP cells.
Expression of willin and its active FERM domain in MCF10A-YAP cells can also
antagonise known YAP targets: decreasing PRL and IGFBP3 and increasing BMP2
and RASSF8 RNA expression.



Chapter 5

Willin Expression Within The

Peripheral Nervous System

5.1 Introduction

5.1.1 Willin expression in the mammalian PNS

Willin was initially isolated as a potential binding partner to neurofascin

through a yeast two-hybrid screen of a rat sciatic nerve library (Gunn-Moore

et al., 2005; Herron et al., 2007). However, expression of willin in the sci-

atic nerve during different developmental stages remains unknown and was

therefore investigated. The sciatic nerve is composed of different cell types,

of which neurons, fibroblast and Schwann cells are the major components.

Further studies were conducted to define where willin was expressed within

the sciatic nerve. The level of Hippo pathway components, as well as ERM

proteins, were also investigated in these cells to examine whether the Hippo

pathway proteins were present within both the fibroblast and Schwann cells.

The Hippo pathway has been extensively studied in the fibroblast cell line,

NIH-3T3, and the core Hippo pathway components have previously been iden-

tified in primary mouse embryonic fibroblast (Guo et al., 2007; Zhang et al.,

2008a). To date, the expression of the Hippo pathway components in Schwann

cells is unknown. ERM proteins have been identified in Schwann cells and it

is well documented that the gene responsible for schwannomas formation is

NF2, a gene encoding the merlin protein (Rouleau et al., 1993; Trofatter et al.,

1993). Willin expression in Schwann cells may therefore have a protective role

in schwannoma formation by compensating for merlin’s loss, as both merlin

132
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and willin have been proposed to have similar cell proliferative functions and

have been shown to activate the Hippo pathway (Chapter 3). Additionally,

ERM proteins have been shown to compensate for each other’s loss (Fehon

et al., 2010).

5.1.2 Willin expression in the zebrafish PNS

There is a greater emphasis and need for physiological genomics (Cowley, 1999)

in research today and the zebrafish (Danio rerio) is a powerful model organism

for the study of vertebrate biology (Amatruda et al., 2002), being well suited

to both developmental and genetic analysis. A comparison between the human

genome and the nearly completed zebrafish genome demonstrates conservation

of cell-cycle regulating genes, tumour suppressors and oncogenes (Dooley and

Zon, 2000; Amatruda et al., 2002). In additional to conservation of genes

between humans and zebrafish, its external development, transparency of em-

bryos, small size, ease and cost of maintenance are all factors that contribute

to the zebrafish organism being a good model system for cancer cell biology.

Recently, work has been conducted to investigate the role of the Hippo

tumour suppressor kinase in zebrafish. YAP has been shown to be required

for the development of brain, eyes, and neural crest during embryogenenis in

zebrafish (Jiang et al., 2009). The Hippo pathway has also been proposed to

be essential for normal pronephros development in the zebrafish (Skouloudaki

et al., 2009). Wholemount in-situ hybridisations were therefore performed as a

quick and efficient method to establish spatial and temporal gene expression of

willin in embryos and early stage zebrafish larvae. As willin is expressed in the

peripheral nervous system (sciatic nerve) in the mammalian system, emphasis

was placed on identifying willin expression in the PNS of the zebrafish model.
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5.2 Results

5.2.1 Willin Expression in the Sciatic Nerve

5.2.1.1 Willin is expressed in mouse sciatic nerve from develop-

mental stages E18.5 to adult

Willin was initially isolated as a potential binding partner to neurofascin

through a yeast two-hybrid screen of a rat sciatic nerve library (Gunn-Moore

et al., 2005; Herron et al., 2007). However, the expression of willin in the

sciatic nerve during different developmental stages remained unknown and

was therefore investigated. Stuart Gillespie (University of Edinburgh, UK)

kindly provided sciatic nerve RNA samples from E18.5, P4, P8, P15, P21 and

6 month-old mice. RT-PCR reactions using mRT-PCR-F and mRT-PCR-R

primers (see Table 2.1 for primer sequence) were performed to detect willin

expression at different developmental stages of the mouse sciatic nerve. Figure

5.1 shows that willin expression is detected in the sciatic nerve of E18.5, P4,

P8, P15, P21 and 6 month-old mice.
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Figure 5.1: Willin expression at different developmental stages (E18.5 to 6 month)
of the mouse sciatic nerve. mRT-PCR-F & mRT-PCR-R primers were used for the
amplification of willin and m-cyclo-F & m-cyclo-R primers for cyclophilin (loading
control) from mouse sciatic nerve cDNA. PCR products were run on a 2% agarose
gel and DNA bands were detected under UV light.

The PCR product was cloned into a pGEMT easy vector (Promega; Figure

5.2) and the plasmid, containing the PCR insert, was sent to the Sequencing

Service (University of Dundee, UK). The Sequencing Service confirmed that
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the PCR products using mRT-PCR-F and mRT-PCR-R primers (see Table

2.1 for primer sequence) on mouse cDNA specifically amplified the correct

mouse willin gene of interest (NM-028127; see Appendix B for sequence).
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Figure 5.2: Schematic diagram of molecular cloning of PCR products into the
pGEMT-easy vector system in preparation for DNA sequencing. PCR was per-
formed on cDNA (1). The PCR product contained an A-tail due to Taq PCR
enzyme used in the PCR reaction. The PCR product could therefore be ligated into
the pre-cut pGEMT-easy vector (Promega) containing T-tails at each cut end (2).
When PCR product was inserted into the pGEMT easy vector, the LacZ operon
was affected (3), resulting in white colony formation on ampicillin agar plates.
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RT-PCR analysis data of willin expression at the different developmental

stages of the sciatic nerve (Figure 5.1) suggested that RNA expression levels

may vary during development. Quantitative PCR was therefore conducted

on sciatic nerve RNA of E.18.5, P4, P8, P15, P21 and 6 month-old mice. In

addition to detecting willin levels, qPCR analysis also detected mouse MST1/2

levels to investigate a potential correlation between the expression levels of

willin and downstream Hippo kinases at the different developmental stages.

MST1/2 RT-PCR product was amplified from a sciatic nerve RNA of a

6 month-old adult mice using MST1/2-F and MST1/2-R primers (see Table

2.1 for primer sequence; Figure 5.3). The PCR product was cloned into a

pGEMT easy vector (Figure 5.2) and the DNA Sequencing Service (University

of Dundee, UK) confirmed that the PCR using MST1/2-F and MST1/2-R

primers on mouse cDNA was able to amplify both the MST1 (NM021420.3)

and MST2 (NM019635.2) gene.

willin MST1/2 cyclophilin 

 1     2    3     1     2    3     1     2     3 

Figure 5.3: RT-PCR products of willin, MST1/2 and cyclophilin from sciatic nerve
tissue of a 6 month-old mouse. RT-PCR reaction was done in triplicate using the
following primers: willin, mRT-PCR-F & mRT-PCR-R; MST1/2, MST1/2-F &
MST1/2-R2 ; cyclophilin, m-cyclo-F & m-cyclo-R. RT-PCR products were run on
a 2% agarose gel and detected at their correct corresponding sizes: willin, 511bp;
MST1/2, 218bp; cyclophilin, 344bp.

qPCR analysis showed that the RNA levels of both willin and MST1/2 in

the mouse sciatic nerve varied throughout the developmental stages (Figure

5.4). However, no correlation was detected between willin and MST1/2 mRNA

expression in the sciatic nerve from E18.5 to 6 month-old adult mice (Figure

5.3). The level of RNA expression of MST1/2 in the mouse sciatic nerve

remained unchanged during development with the exception of a ∼2.5 fold
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increased peak at P21 (Figure 5.4). In contrast, willin RNA levels in the

mouse sciatic nerve increased ∼4 fold from E18.5 to P8, with a slight drop

in expression at P15 and again an increased peak at stage P21 (Figure 5.3).

Both willin and MST1/2 expression in the mouse sciatic nerve were highest at

P21 and lowest in a 6 month-old adult mice (Figure 5.3).
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Figure 5.4: Relative quantification of willin and MST1/2 levels in the mouse
sciatic nerve at different developmental stages (E18.5 to 6 months old). qPCR was
conducted on cDNA samples and gene expression was standardised to cyclophilin
levels; relative to expression at E18.5 which was set to 1. Error bars represent ±
standard deviation.

5.2.1.2 ERM and Hippo pathway components are differently ex-

pressed in primary Schwann and fibroblast cells

The major components of a sciatic nerve are neurons, Schwann cells and fibrob-

last cells. qPCR analysis was performed to investigate the level of expression of

willin, and core Hippo pathway components, in primary Schwann and fibrob-

last cultures. Dr Jennifer R. Higginson (University of Glasgow, UK), kindly

provided primary Schwann and fibroblast cell cultures isolated from a rat sci-

atic nerve. RNA was isolated from both the primary fibroblast and Schwann

cells and RT-PCR products of willin (r-willin-F & r-willin-R primers), merlin
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(R-merlin-F & R-merlin-R primers), ezrin (R-ezrin-F & R-ezrin-R primers),

MST1 (R-MST1-F & R-MST1-R primers), MST2 (R-MST2-F & R-MST2-R

primers), LATS1 (R-LATS1-F & R-LATS1-R primers), LATS2 (R-LATS2-F

& R-LATS2-R primers) and YAP (R-YAP-F & R-YAP-R primers) all sep-

arated at their correct corresponding sizes on a 2% agarose gel (Figure 5.5;

see Table 2.1 for primer sequence). PCR products were cloned into a pGEMT

easy vector and the DNA Sequencing Service (University of Dundee, UK) con-

firmed that the PCR products amplified were that of willin (XM-001064688.2;

see Appendix C for sequence), merlin (NM-013193.1), ezrin (NM-019357),

MST1 (NM-001107800.1), MST2 ((NM-031735.1), LATS1 (NM-001134543.1),

LATS2 (NM-001107267.1) and YAP (NM-001034002).
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Figure 5.5: RT-PCR products of ERM proteins (merlin, ezrin and willin) and
Hippo pathway proteins (MST1/2, LATS1/2, YAP) on rat primary fibroblast and
Schwann cells. RT-PCR products were run on an agarose gel and PCR products
were detected at their correct corresponding sizes: willin (417bp), merlin (324bp),
ezrin (245bp), MST1 (276bp), MST2 (549bp), LATS1 (347bp), LATS2 (346bp),
YAP (419bp).
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qPCR analysis showed that ERM and the core Hippo pathway proteins are

differently expressed in primary rat Schwann and fibroblast cells (Figure 5.6).

Both ERM (willin, merlin & ezrin) and Hippo components proteins (MST1,

MST2, LATS1, LATS2 & YAP) were more abundant in primary fibroblast cells

than Schwann cells, with the exception of ezrin which was equally expressed

in both fibroblast and Schwann cells (Figure 5.6). The levels of willin, MST2

and YAP1 are very low, and possibly absent, in Schwann cells (Figure 5.6).
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Figure 5.6: qPCR analysis of ERM and Hippo pathway proteins in primary rat
fibroblast and Schwann cells. ∆Cq gene expression was calculated and standardised
to β-actin expression levels. Error bars represent ± standard deviation.

Immunohistochemical staining of willin in a human nerve bundle confirmed

that willin was absent in Schwann cells (Figure 5.7). Dr Michael Prystowsky

(Albert Einstein College of Medicine, USA) showed that willin expression

within the human nerve bundle is sparse, with higher expression levels of

willin observed in the surrounding tissues that may possibly be fibroblast cells

(Figure 5.7).
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Figure 5.7: Immunohistochemistry staining of willin in the PNS. A) Haematoxylin
and eosin staining of a nerve bundle in the PNS. B) Immunohistochemistry stain-
ing of willin on a PNS nerve bundle (N). Willin staining (brown) is low in the
nerve bundle and more willin staining is observed within its surrounding tissue. Im-
munohistochemistry was done by Dr Michael Prystowsky (Albert Einstein College
of Medicine, USA).

5.2.2 Wholemount Zebrafish In-Situ Hybridisation

5.2.2.1 Willin is endogenously expressed in Zebrafish embryos

Before a wholemount Danio rerio (zebrafish) in-situ hybridisation was per-

formed, RT-PCR was conducted to confirm that willin was expressed in the

zebrafish embryos. Total RNA from whole zebrafish was extracted 24, 48 and

96 hours post-fertilisation (hpf). cDNA was synthesised from the RNA and a

PCR reaction was used to amplify willin and a positive EF1α control; using

DR-500bp-F & DR-500bp-R and EF1a-F & EF1a-R primers (see Table 2.1 for

primer sequences) respectively. Figure 5.8 shows that willin was expressed in

zebrafish embryos 24, 48 and 72 hpf. The willin RT-PCR product was cloned

into a pGEM-T easy vector (Promega; Figure 5.2) and the DNA Sequencing

Service (University of Dundee, UK) confirmed that the zebrafish willin gene

of interest (NM001111187; see Appendix D for sequence) was amplified.
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Figure 5.8: Willin expression in zebrafish 24, 48 and 96 hours post-fertilisation
(hpf). RNA from whole zebrafish was extracted and RT-PCR was performed using
DR-500bp-F and DR-500bp-R primers to amplify willin expression. RT-PCR of
EF1α, using EF1a-F and EF1a-R primers, was conducted as a positive control.
RT-PCR products were run on a 2% SDS gel and detected under UV light.

5.2.2.2 RNA probe synthesis

As willin was found to be expressed in the zebrafish embryos (24-96 hpf),

a wholemount in-situ hybridisation was performed to establish spatial and

temporal gene expression of willin in a zebrafish embryo. Firstly, a RNA

probe to detect specifically willin RNA was synthesised. RNA was isolated

from a 48 hpf zebrafish embryo and RT-PCR was performed to amplify a

∼500bp product of the zebrafish willin gene using DR-500bp-F and DR-500bp-

R primers (see Table 2.1 for primer sequence). The PCR product was cloned

into a pGEMT easy vector system and orientation of the PCR insert was

confirmed by the DNA Sequencing Service (University of Dundee, UK). Both

willin orientations (5’-3’ and 3’-5) within the pGEMT easy vector were used

to make RNA probes (Figure 5.9).
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Figure 5.9: Schematic diagram showing techniques used for RNA probe synthesis.
Zebrafish RNA was isolated and cDNA was made through a reverse transcription
reaction. PCR was conducted using primers specific to willin (DR-500bp-F + DR-
500bp-R). PCR product was ligated into the pGEMT easy vector system and orien-
tation of the PCR insert was confirmed by DNA sequencing. Plasmid was linearised
using Sph1 and SP6 RNA polymerase was used to create both sense and anti-sense
RNA probes, depending on original orientation of willin in the pGEMT easy vector.
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To check the integrity and quality of the newly synthesised RNA probe,

the RNA probe was run at high voltage (180 volts) on an agarose gel for 5

minutes. Figure 5.10 shows that both sense and anti-sense RNA probes were

of good quality as one clear single RNA band was observed and the RNA was

not degraded.
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Figure 5.10: Sense and anti-sense RNA probes were of good quality. RNA probes
were synthesised and run at high voltage (180 volts) on a 1% agarose gel for 5
minutes. RNA probes were visualised under UV light.

5.2.2.3 Willin is expressed in lateral line neuromast cells

Wholemount in-situ hybridisations were performed using both sense and anti-

sense RNA probes in zebrafish embryos 24-96 hpf. The anti-sense RNA probe

should specifically detect endogenous willin RNA expression, whereas the sense

RNA probe was used as a negative control to detect non-specific binding. Fig-

ure 5.11 illustrates the in-situ protocol used for wholemount zebrafish embryos.
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Figure 5.11: Schematic diagram of zebrafish in-situ hybridisation protocol using
RNA probes. Zebrafish embryos were fixed and membrane was permeabilised with
by a proteinase-K digestion. DIG labelled sense and anti-sense RNA probes were
incubated overnight to bind to specific mRNA sequence of interest. After washes,
zebrafish embryos were incubated in anti-DIG antibody that were conjugated to
alkaline phosphatase. The presence of bound antibody to RNA probe was detected
using NBT/BCIP staining. NBT and BCIP together yield an insoluble blue/purple
precipitate when reacted with alkaline phosphatase. Cells that contained the RNA
probe therefore stain blue whereas in the absence of a bound RNA probe the cell
remained unchanged.
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In-situ hybridisation of wholemount zebrafish using the sense willin RNA

probe resulted in a small amount of non-specific binding to the phospholipid-

rich yolk sac. No non-specific binding was observed using willin sense RNA

probe in zebrafish embryo’s anterior trunk, posterior trunk, and tail at 24, 48,

72 and 96 hpf (Figure 5.12).
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Figure 5.12: Wholemount zebrafish in-situ control with sense-RNA probe. Whole-
mount in-situ hybridisations were performed on A) 24, B) 48, C) 72 and D) 96 hpf
zebrafish embryos with sense-RNA probe.

Specific willin expression was detected by in-situ hybridisation using willin

anti-sense RNA probe in zebrafish embryos aged 24-97 hpf. The expression

pattern of willin observed represented that of both anterior and posterior lat-

eral line neuromast cells (Figure 5.13 & 5.14). Neuromast cells are part of

the PNS in zebrafish and are deposited along the trunk and head to respond

to water movements and pressures (Dijkgraaf, 1963; Ma and Raible, 2009;

Montgomery et al., 2000).

Figure 5.13 shows whole zebrafish embryos 24, 48, 69 and 72 hpf, hybridised

with the willin anti-sense RNA probe. Microscopic images of the embryos

confirmed that willin was expressed in typical neuromast cells in both the

posterior and anterior lateral line of the zebrafish embryo (Figure 5.14).
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Figure 5.13: Wholemount zebrafish in-situ staining of willin 24-96 hpf. Whole-
mount in-situ experiments were conducted a) 24, b) 48, c) 72 and d) 96 hours
post-fertilisation using a 500bp anti-sense RNA probe specifically designed to de-
tect willin expression. a) at 24 hpf the whole embryo epithelium was stained with
2-3 neuromast detected in the posterior lateral line (arrow). b-d) at 48-96 hpf these
neuromast become more apparent and were observed every 5-10 somites in the pos-
terior lateral line and neuromast rosettes were also stained in the anterior lateral
line in the head (arrows).
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Figure 5.14: Zebrafish willin expression in neuromast cells. In-situ hybridisation
was performed with anti-sense probes on 24-96 hpf zebrafish embryos, and willin
expression were observed in neuromast cells. a, b and c show that the distinctive
neuromasts were stained and observed every 3-6 somites along the posterior lateral
line in a 72 hpf zebrafish. d) Two neuromasts were stained in the anterior end of
the 24 hpf embryo’s tail. No additional neuromasts were observed in the 24 hpf
embryo. e) Neuromast cells in the form of distinctive rosettes were observed in
anterior lateral line just posterior to the developing ear in a 72 hpf embryo. f)
A close-up of willin stained anterior lateral line neuromast in a 72 hpf zebrafish
embryo.
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Two willin stained neuromasts were deposited within the posterior lateral

line in 24 hpf embryos (Figure 5.14.D). No additional stained neuromasts were

observed in 24 hpf zebrafish embryos. As the zebrafish embryo developed (48-

97 hpf) more willin stained neuromasts were detected every 5-10 somites along

the posterior lateral line (Figure 5.14.A-B). At 72 hpf, willin stained neuromast

cells in the form of distinctive rosettes were observed in the anterior lateral

line just posterior to the developing ear (Figure 5.14.E-F). The number of

positively stained neuromasts in both the anterior and posterior lateral line

of the zebrafish declined in more developed (96 hpf) embryos (Figure 5.13).

However, some willin staining, distinctive of neuromasts, was still observed

in the posterior and anterior lateral line in 96 hpf zebrafish embryos (Figure

5.13).

Cryo-cross-sections were performed on the zebrafish in-situ hybridisations

to investigate the spatial and temporal gene expression of willin in more detail.

In addition to willin being expressed in the distinct neuromast cells, willin was

also expressed in the epithelial layer of the zebrafish embryos (Figure 5.13,

5.15). Figure 5.15.A shows a cross-section through a 48 hpf zebrafish head,

were willin expression was found to be within the epithelial layer. In addition,

a cross section through the tail of a 48 hpf zebrafish fish also showed willin

expression in the epithelial layer (Figure 5.15B-C). The cryosection of the

tail was sliced through a superficial neuromast cells which was observed in

the epidermis, above the basement membrane (shown by an arrow in Figure

5.15C).

Epithelial expression of willin in the head and tail of the 48 hpf zebrafish

embryo was polarised to one side of the epithelium. Predominantly more willin

was expressed in the epithelial layer dorsal of the zebrafish head compared to

the ventral side (Figure 5.15.A). Additionally, more willin was expressed on

one side of the 48 hpf embryo tail compared to the other. Notably, the lateral

epithelial side that contained the superficial neuromast was predominantly

stained with willin compared to the opposite lateral side in the tail of the

zebrafish (Figure 5.15.B-C).
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Figure 5.15: Cross section of wholemount zebrafish in-situ hybridisation using
a 500bp anti-sense RNA probe to detect willin RNA. A) Cross section of 48 hpf
zebrafish embryo’s head, where willin staining was observed at the epithelial layer.
B) Cross section of 48 hpf zebrafish embryo’s tail. Cryosection was sliced through a
superficial neuromast (arrow) which was observed in the epidermis that sits above
the basement membrane. C) Cross section of a 48 hpf zebrafish embryo’s tail more
anterior to cross section in B.
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5.3 Discussion

5.3.1 Willin expression in the mammalian PNS

5.3.1.1 Willin is expressed in the mouse sciatic nerve

Previous work showed that willin was expressed in the sciatic nerve, where

willin was initially isolated as a potential binding partner to neurofascin

through a yeast two-hybrid screen of a rat sciatic nerve library (Gunn-Moore

et al., 2005; Herron et al., 2007). However, willin expression during the devel-

opmental stages of the mouse remained unknown.

RT-PCR analysis confirmed that willin was expressed in the mouse sciatic

nerve from the developmental stages of E18.5 to 6 month-old adult. Quantita-

tive PCR showed that the RNA levels of both willin and MST1/2 in the mouse

sciatic nerve varied at different developmental stages. However no correlation

was observed between the expression of willin and MST1/2. The lack of corre-

lation between willin and MST1/2 expression may be due to willin acting on

other proteins and pathways during development. It is also important to note

that it is not the total level of MST1/2 expressed that is critical, but whether

it is in an active (phosphorylated) or inactive (unphosphorylated) state.

Even though no correlation between willin and MST1/2 RNA levels in

the sciatic nerve were observed during development, both willin and MST1/2

levels peaked at P21 and were lowest in the 6 month-old adult mice. At P21,

myelination is in the late and final stages (Fern et al., 1998); where Schwann

cells have insulated the axon and sheath formation is inhibited. Transforming

growth factor (TGF)-βs plays a role in inhibiting myelination and are believed

to up-regulate cell adhesions molecules such as neural cell adhesion molecule

(NCAM) and L1 (Mirsky and Jessen, 1996). Willin and MST1/2 may be up-

regulated during late myelination in response to extracellular matrix signals

such as TGF-β to reduce cell proliferation. Expression of both willin and

MST1/2 in the sciatic nerve was lowest in adult mice, supporting the concept

that the Hippo pathway is critical during early stages of development, thereby

regulating organ size and proliferation.
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5.3.1.2 Willin, ERM proteins and the Hippo components are dif-

ferently expressed in primary Schwann and fibroblast cells

Primary fibroblast and Schwann cells were isolated to define and characterise

which cell type in the sciatic nerve endogenously expressed willin. qPCR

analysis showed that willin, ERM and Hippo pathway components were all

expressed in the primary rat fibroblast cells. This is consistent with data by

Zhang et al. (2008a) and Guo et al. (2007) who identified the core Hippo

pathway components in primary mouse embryonic fibroblast (MES) and in a

fibroblast cell line, NIH-3T3. Intriguingly, 40% of fibroblast cells arise through

epithelial to mesenchymal transition (Iwano et al., 2002) and willin and the

Hippo pathway have been shown to control EMT (Chapter 4). Fibroblasts

have a prominent role in the progression, growth and spread of cancer, by

producing growth factor, chemokines and extracellular matrix facilitating an-

giogenic recruitment of endothelial cells and pericytes (Kalluri and Zeisberg,

2006). Willin and the Hippo pathway components may have a tumour suppres-

sive function in the fibroblast cells though inhibition of the cancer enhancing

properties of these cells and this requires further investigations.

Significantly lower willin, ERM proteins and Hippo pathway components

were expressed in primary Schwann cells compared to fibroblast cells; with

the exception of ezrin, which was equally expressed in both. Willin, MST2

and YAP1 appear to be absent in the primary Schwann cells. However, it

is important to note three major factors. Firstly, the expression of different

isoforms of willin, ERM proteins and Hippo pathway components may be cell

specific. Secondly, isolated primary cell culture do not represent cells in their

physiological environment and may have resulted in different protein levels

being expressed, as neighbouring cells in-vivo may affect proteins expression

within the Schwann cells. Finally, cell density is an important factor in the

activation of the Hippo pathway and the fact that the primary Schwann cells

did not proliferate as fast as the fibroblast cells, and were therefore harvested

at a lower cell density, may explain why the levels of Hippo pathway proteins

were lower in Schwann cells.
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5.3.2 Willin expression in the zebrafish PNS

5.3.2.1 Willin is expressed in neuromast cells

In-situ hybridisation showed that willin was expressed in distinctive neuromast

cells found within the anterior and posterior lateral line of the zebrafish (Danio

rerio). Neuromast cells are part of the peripheral nervous system of the fish

and form the sensory lateral line organ. Neuromast cells consists of a core

mechanosensory hair cells surrounded by support cells; which are innervated by

sensory neurons that are localised in a cranial ganglion (Ghysen and Dambly-

Chaudiere, 2004). Neuromast cells are deposited along the trunk and head of

the zebrafish to respond to changes in water movements and pressure relative

to the zebrafish’s body (Dijkgraaf, 1963; Montgomery et al., 2000) (Figure

5.16). Neuromast mechanosensory hair cells are therefore of importance in a

wide variety of zebrafish behaviour such as prey detection, predator avoidance,

school swimming and sexual courtship (Coombs and Meunz, 1989). The lateral

line hair cells share structural, functional and molecular similarities with the

hair cells in the vertebrate inner ear (Ma and Raible, 2009).

Willin expression in the neuromast cells at different developmental stages

(24-96 hpf) of the zebrafish embryo coincide with previous data which showed

that neuromast cells are deposited along the posterior lateral line 24 hpf and

that all neuromasts are deposited 72 hpf (Ma and Raible, 2009). Neuromast

deposition resulted in 5-6 neuromast being positioned every 5-10 somites along

the trunk and tail as well as 2-3 terminal neuromasts formed at the top of the

tail (Gompel et al., 2001).
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Neuromast migration from head to tail 

Figure 5.16: Schematic representation of neuromast migration in zebrafish de-
velopment. At 32 hours post-fertilisation, the posterior lateral line primordium has
migrated halfway down the length of the trunk with two neuromast being deposited,
L1 and L2. At 3 days after fertilisation, the posterior lateral line consists of five
neuromast (L1-L5) with 2-3 terminal neuromasts. The posterior lateral line gan-
glion is located caudal to the developing ear and neuromasts are innervated by the
posterior lateral line. Diagram obtained from Ma and Raible (2009).

The rosette appearance of the willin stained neuromast cells (Figure 5.14)

suggests that the surrounding supportive neuromast cells express willin. Many

proteins involved in cell adhesion are present within the neuromast cells as

neuromast cells undergo apicobasal polarisation before actin-rich membranes

become enriched in the focal points to form the classical rosette like appearance

of the neuromast cells (Lecaudey et al., 2008; Hava et al., 2009; Ma and Raible,

2009). Willin, like other FERM domain containing proteins, is involved in

cell adhesion and translocates to cellular junctions upon cell-to-cell contact

(Chapter 3) and to focal adhesion sites during cytokinesis (Yang et al., 2004).

Willin’s role as a scaffolding protein to maintain cellular structure may explain

why willin is expressed within these actin-enriched focal point neuromast cells.

Willin may be involved in the development of neuromast cells as positively

stained neuromasts appeared to decline in embryos at 96 hpf. In zebrafish, all

neuromasts are deposited and matured 3 days after fertilisation (Ghysen and

Dambly-Chaudiere, 2007). Proteins involved in the deposition and develop-

ment of neuromast cells can therefore be transiently expressed in neuromast

until they are matured. As willin expression appeared to decline in neuromast

cells it may be that willin is involved in the developmental stages in neuro-

mast development and redundant once the neuromast mature. However, it is
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important to note that other factors could also explain this scenario. Willin

expression at 96 hpf seems to be expressed widely within the epithelial layer of

the zebrafish so that the neuromast, which are deeper in the dermal layer can-

not be observed as clearly. Cryosectioning and co-staining with a neuromast

marker should clarify whether willin staining declines in mature neuromasts.

One such neuromast marker is Sox2 (Hernandez et al., 2007). Willin expres-

sion within the neuromast of a 96 hpf zebrafish embryo might be lower, and a

longer incubation with the NBT/BCIP substrate may be required to visualise

the expression.

5.3.2.2 Willin expression in the zebrafish epithelial layer

Willin is not only expressed in the neuromast cells but seems to be widely

expressed in the epithelial layer of the zebrafish. It is important to note that

willin expression in more tissues may have been observed if the NBT/BCIP

in-situ substrate reaction was left longer to incubate. We can therefore not

rule out that willin may be expressed at lower levels in other zebrafish tissues.

As YAP has previously been shown to be required for the development of the

brain, eyes, and neural crest during embryogenenis in zebrafish (Jiang et al.,

2009), willin may also have a role in the development of these organs, possibly

through the Hippo pathway.

At hatching, neuromasts are present in the epithelium on both the head

and trunk (Tarby and Webb, 2003). Cryosection through the tail showed

that the neuromast at 48 hpf was present within the epithelium. Previous

data support this observation and the migration of the neuromast from the

epithelial layer into the dermis to form the lateral line is illustrated in Figure

5.17. The neuromasts develop from the lateral side of the epithelium (Tarby

and Webb, 2003). The polarised expression of willin observed in Figure 5.15 is

possibly an in-situ hybridisation artifact as the lateral line is formed on both

sides of the zebrafish.
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Figure 5.17: Schematic representation of the morphogenesis of the lateral line
canal. A) A superficial neuromast (nm) is located in the epidermis (ep) that
sits above the basement membrane (bm). B) Bony canal walls ossify intra-
membraneously and expand upwards from the underlying dermal bone (db) on either
side of the neuromast, which appears to sink into an epithelial groove. C) The ep-
ithelium fuses over the neuromast forming an epithelial canal. D) The dermal canal
bone continues to ossify and the canal walls fuse to form the canal roof. nm= neu-
romast, bm= basement membrane, d= dermis, dm= dermal bone, ep = epithelium.
Image obtained from Tarby and Webb (2003).

5.4 Conclusion

To conclude, willin is expressed in both the mammalian and zebrafish periph-

eral nervous system. qPCR analysis has shown that willin is endogenously

expressed in the sciatic nerve, where a high abundance level of expression is

observed in primary isolated fibroblast cells. ERM (merlin, ezrin & willin) and

Hippo signalling proteins were identified in fibroblast cells. A lower level of ex-

pression was observed in primary Schwann cells and willin, MST2 and YAP1

appear to be absent. Willin is also expressed in the zebrafish PNS. In-situ

hybridisation of wholemount zebrafish embryos identified willin expression in

the distinctive neuromast cells of both the anterior and posterior lateral line.

This data suggests that willin and the Hippo pathway may play an essential

role in the developmental regulation within the peripheral nervous system.



Chapter 6

Future Experiments

Willin, like other ERM proteins, is placed at a crucial juncture for the inte-

gration of the extracellular environment and intracellular signalling pathways.

FERM domain containing proteins (Expanded and merlin) have been shown to

activate a novel Hippo signalling cascade that regulates cell contact inhibition,

organ size control, cell growth, proliferation, apoptosis and cancer development

in Drosophila. Work described in this thesis has shown that willin, the pre-

dicted human homologue of Expanded, is a novel FERM containing protein

candidate that can partially activate the tumour suppressor Hippo signalling

pathway cassette in the mammalian system.

Induced willin expression resulted in an increased phosphorylation of the

Hippo pathway components MST1/2, LATS1 and YAP (Chapter 3). Willin

expression in HEK-293 cells resulted in a partial activation of the Hippo path-

way as no cell cycle or cell viability changes were observed, even though YAP

translocated from the nucleus to the cytoplasm (Chapter 3). Willin expres-

sion in HEK-293 cells did however sensitise cells to TNFα-induced cell death,

possibly because the core Hippo components MST1/2, LATS1 and YAP were

phosphorylated and YAP translocated from the nucleus to cytoplasm when

willin expression was induced (Chapter 3). However, it can not be ruled out

that willin expression sensitised cells to cell death stimuli, independent of the

Hippo pathway, through activation of other signalling pathways.

Quantifiable changes were, however, observed when willin was over-

expressed in MCF10A cells as willin expression was able to antagonise a

YAP-induced EMT phenotype: increasing cell adhesion and contact inhibi-

tion and decreasing cell migration and anchorage independent growth (Chap-

ter 4). EMT changes are hallmarks of the development and progression of

156
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cancers. The control of EMT by the Hippo pathway is, therefore, vital during

development. Interestingly, the FERM domain of willin alone was able to an-

tagonise a YAP-induced EMT phenotype and phosphorylate the core Hippo

pathway cassette, suggesting that the scaffolding function of the FERM do-

main may be the key to the activation and modulation of the Hippo pathway

(Chapter 4). The FERM domain contains a motif that is able to activate the

Hippo kinase complex, whether the FERM domain activates and/or regulates

upstream Hippo pathway receptors that contain a FERM binding motif or

activates downstream Hippo pathway kinases directly remains unknown and

requires further studies (see Figure 4.19 for possible theories on how the FERM

domain may activate the Hippo pathway).

Preliminary studies have shown that willin is expressed during early stages

of development in the mouse sciatic nerve (Chapter 5). Isolation and qPCR

analysis on primary rat Schwann and fibroblast cells have identified that willin

and the Hippo pathway components are expressed predominantly within the

fibroblast cells (Chapter 5). As fibroblast cells have a prominent role in the

progression, growth and spread of cancers, willin and the Hippo pathway com-

ponents may play an important role in tumour suppression through inhibition

of cancer enhancing properties of the fibroblast cells. Intriguingly, 40% of the

fibroblast cells arise from epithelial to mesenchymal transition (Iwano et al.,

2002). The expression of willin and the Hippo pathway components in the

fibroblast cells may therefore be related to the cell’s origin as willin and the

Hippo pathway components have been shown to modulate EMT in MCF10A

cells (Chapter 4).

This work has demonstrated that willin is a novel protein involved in the

activation of the Hippo pathway and may therefore act as a tumour suppres-

sor. The initial characterisation work on the novel willin protein has placed

willin upstream of the mammalian Hippo pathway, like its Drosophila homo-

logue Expanded. Although both willin and Expanded can activate the Hippo

pathway, similarities and differences are observed between the two proteins.

In the mammalian system, willin activates the Hippo pathway through the

FERM domain (Chapter 4), whereas Expanded activates the Hippo pathway

through the C-terminal end (Boedigheimer et al., 1997).

Despite amassing a wealth of knowledge about the novel willin protein and

its involvement in the Hippo pathway, the modulatory mechanisms of willin on

the newly expanding mammalian Hippo pathway still remains unknown. Fur-
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ther progress into the novel mammalian Hippo pathway is likely to continue as

the signalling cascade is crucial for organ size control and differentiation dur-

ing normal development, and misregulation of this pathway results in cancer

development. Further studies should focus on identifying Hippo binding pro-

teins and complexes, determining the modulation of the Hippo pathway and

investigating the Hippo signalling cascade in a physiological in-vivo system.

6.1 Binding proteins and complexes

The Hippo pathway in the D. melanogaster model has been extensively stud-

ied. Less is known about the tumour suppressor signalling cascade in the

mammalian system. The aim of this project was to investigate the role of

willin in the Hippo pathway. Willin was shown to activate the Hippo pathway,

however the molecular details of how willin expression resulted in the phospho-

rylation of the Hippo pathway or the Hippo protein complexes formed remains

unknown.

Biomolecular studies in HEK-293 cells have proposed that willin can bind

directly to ezrin and indirectly to merlin (Chapter 3). Future studies should

focus on identifying further upstream and downstream binding partners of

willin. Emphasis on upstream willin receptors is important to understand how

the Hippo pathway is initially activated and modulated. Potential candidate

upstream receptors include Fat and CD44, which have previously been shown

to activate the Hippo pathway (Reddy and Irvine, 2008; Xu et al., 2010). The

CD44 plasma membrane receptor contains a FERM binding peptide motif

composed of KKKLVIN (Mori et al., 2008) and may explain why the FERM

domain of willin is efficient, and as effective as full-length willin, to activate

the Hippo pathway (Chapter 4). Further truncation of the FERM domain of

willin should identify the peptide motif necessary for the phosphorylation and

activation of the core Hippo pathway.

In Drosophila, Expanded’s C-terminal domain is essential for the phos-

phorylation and activation of the Hippo pathway, whereas the FERM domain

of Expanded localises the protein to the apical membrane in order to bind

to upstream plasma membrane receptors (Boedigheimer et al., 1997). In the

mammalian system, the FERM domain of willin has been shown to activate

the Hippo pathway (Chapter 4). It is hypothesised that the FERM domain of

willin also localises the protein to upstream plasma membranes receptors that
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contain a FERM binding motif. The function of the C-terminal domain of

willin remains to this date unknown but may have an inhibitory effect on its

FERM domain through head-to-tail binding, or may be required for cellular

protein localisation. Further localisation studies using both the FERM and

C-terminal domains of willin are required to support this hypothesis.

Even though a high protein sequence conservation is observed between the

Drosophila and mammalian system, experiments in this thesis have shown

that differences between the two systems are also observed; as the FERM

domain of willin can activate the Hippo pathway in the mammalian system

(Chapter 4), whereas the C-terminal domain of Expanded results in activation

of the Drosophila Hippo pathway (Boedigheimer et al., 1997). Differences and

similarities between the Drosophila and mammalian Hippo signalling cascade

requires further investigation as the function of the Hippo kinase complexes

may have split during vertebrate evolution to result in differences in the Hippo

pathway complexes formed between Drosophila and mammals. For example,

the C-terminal domain of Expanded has been identified to bind to Yorkie and

Yorkie is believed to contact Expanded via WW domain-PY motif interactions

(Badouel et al., 2009). However, none of these three PY motifs in Expanded

are conserved between willin and YAP in mammals (Figure 1.14). The Hippo

complexes formed in the Drosophila and mammalian model may therefore

be very different. Further investigations are therefore required to identify

Hippo kinase complexes in the mammalian system and to investigate whether

the core Hippo components form a complex with willin and translocate as

one unit or whether activations are transient and proteins act independently.

Live imaging and immunoprecipitation studies will provide this information.

The production of a willin antibody to detect endogenous willin expression is

however essential.

Preliminary results suggest that willin and LATS may co-localise as both

willin and LATS translocate to the membrane fraction at high cell density

in HEK-293 cells, whereas MST1 protein levels decreased in the membrane

fraction at increasing cell density (Chapter 3). A complex between willin and

LATS is plausible as localisation studies on LATS have shown similar distri-

bution to that of willin. LATS has been shown to translocate to the plasma

membrane upon cell-to-cell contact, with a high expression of these proteins

found at cellular adherent junctions (Yang et al., 2004; Zhao et al., 2011). More

research into the molecular binding complexes formed in the Hippo pathway
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will result in a greater understanding on how the Hippo pathway is activated

and modulated.

6.2 Modulation of the Hippo pathway

As with all biological processes and pathways, modulation and negative feed-

back loops are essential. The same is true for the modulation of the Hippo

pathway which has to be tightly regulated to balance cell death and prolif-

eration. Therefore, upstream activation and inhibition of the Hippo pathway

needs to be strictly controlled. To date, little is known about upstream factors

that activate the Hippo pathway cascade. High cell density and extracellular

cell death signals have thus far been proposed. It can therefore not be ruled out

that willin may have both growth inhibitory and growth proliferative functions

at different cell densities.

The expression of willin can enhance merlin’s ability to phosphorylate

MST1/2, whereas ezrin has an inhibitory effect on MST1/2 phosphorylation

by willin, merlin and both willin and merlin (Chapter 3). How merlin, ezrin

and willin modulate the Hippo pathway cascade is not known. Whether ezrin,

merlin and willin modulate the Hippo pathway by competing for the same up-

stream receptor, or whether the classical head-to-tail binding of ERM proteins

results in conformational changes, which in turn blocks upstream or down-

stream protein binding motifs, is unknown and requires further investigation.

Future work should also focus on identifying the protein structure of willin.

The protein conformation of willin may change from an open (active) to a

closed (inactive) state, as has been proposed for the activation and inhibition

of Expanded by merlin (McCartney et al., 2000). The open conformation may

expose the FERM domain or potential phosphorylation sites that are necessary

for the activation of the Hippo pathway. Binding of ezrin to willin may result

in a conformational change in willin from an open and active state that is

growth inhibitory to a closed and inactive state that is growth promoting.

The Hippo pathway, like many signalling cascades, is composed of a com-

plex network of proteins. An increasing number of novel mammalian proteins,

such as Kibra (Genevet et al., 2010; Yu et al., 2010), have been shown to acti-

vate the Hippo pathway. To date, nothing is known about how the expression

of these proteins results in an increased phosphorylation of MST1/2, LATS1

and YAP. Future identification of the kinases involved in activation of MST1/2
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will provide vital information on the activation of the Hippo pathway and how

the signalling cascade may be regulated.

Modulation of the Hippo pathway can be further analysed using the

MCF10A cell line. The reversion of an EMT phenotype in MCF10A-YAP

cells is quantifiable using different combinations of ERM proteins, as well as

other novel upstream proteins of the Hippo pathways such as Kibra. Combina-

tions of shRNA knock-outs of ERM proteins and double knock-outs with YAP,

will provide vital information on the modulation and hierarchy of activation

of the Hippo pathway. As ERM proteins can compensate for each other’s loss

(Fehon et al., 2010) it would also be interesting to investigate whether the loss

of willin results in an increase in other upstream Hippo components such as

merlin or Kibra.

6.3 Role of willin in a physiological system

Extensive information about proteins can be obtained through cell culture

analysis. However, the role of proteins may be very cell specific. For example,

YAP has been shown to have tumour suppressive functions as well as being

oncogenic (Yuan et al., 2008). In addition, different isoforms of the mammalian

Hippo pathway proteins are expected to be present in different cell types. The

physiological downstream effect of the Hippo pathway, as well as the different

isoforms expressed in an array of cell tissues and cell lines, requires further

investigation. Unlike in Drosophila, in which the Hippo pathway proteins are

encoded by one single gene, most mammalian Hippo pathway proteins are

composed of multiple isoforms (Sudol and Harvey, 2010). To date, a total of

three isoforms of willin have been proposed. For this reason the mammalian

Hippo pathway cascade may be more complex, consisting of multiple isoforms,

when compared to the Hippo pathway in the Drosophila model. Furthermore,

co-culture of primary cells such as fibroblast and Schwann cells will represent

a more physiological setting.

The ultimate aim of this project is to shift to a physiological in-vivo system.

One such system is the zebrafish (Danio rerio) model. Preliminary data has

shown that willin is expressed in the epithelial layer and distinct lateral line

neuromast cells of the zebrafish (Chapter 5). Willin expression, localisation,

embryonic micro-injection and morpholino knock-out (Eisen and Smith, 2008)

experiments will provide more detailed information of the role of willin and
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its regulation of cellular growth. The core Hippo pathway components have

recently been studied in the zebrafish model (Jiang et al., 2009; Skouloudaki

et al., 2009) and further studies are anticipated to see whether willin has a

similar distribution and function in the zebrafish. Future studies will also focus

on creating a transgenic knock-out mouse. As willin knock-out mice may be

embryonic lethal, as seen with merlin (McClatchey et al., 1997), an inducible

Cre-lox recombination system (Brocard et al., 1997) may be preferable.

6.4 The bigger picture

In-vivo experiments in this thesis have shown that willin can, as predicted

from the Drosophila homologue Expanded, activate and phosphorylate the

core Hippo signalling cascade. It is however very plausible that willin may be

involved in a number of other pathways to regulate cell growth; such as the

inhibition of the MEK/ERK and AKT/mTOR signalling pathways (Figure

6.1). Willin’s involvement in regulating and modulating cellular growth may

therefore be more complex, with multiple downstream cell proliferative sig-

nalling pathways involved (Figure 6.1). Future work should therefore investi-

gate other potential signalling avenues of willin on cell proliferation, especially

as its closely related family member, merlin, has been shown to be involved in

a complex network of signalling pathways (Section 1.1.4.2; Figure 6.1).

While this project showed that willin expression activates the novel Hippo

pathway tumour suppressor signalling cassette in-vitro, the question of whether

willin is a tumour suppressor gene in human cancer awaits further analysis,

since no studies have addressed if this gene is mutated or silenced in cancer.

Advances in upstream Hippo pathway components such as willin may not only

solve the puzzle of size control and cell proliferation, but will also provides new

targets for treatment of human diseases such as atrophy and cancers, as well

as utilising tissue engineering and regenerative medicine.
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Figure 6.1: Potential growth signalling pathways modulated by willin. Only one of
the signalling pathways predicted to be activated by willin was investigated within
this thesis. Work in this thesis focused on the novel Hippo tumour suppressor
pathway. Other potential signalling pathways that may be modulated by willin
include the MEK/ERK and AKT/mTOR signalling pathways. Unknown potential
pathways modulated by willin are boxed in red.
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Appendix A

Human willin sequence

(BC020521)

Amino acid sequence:

MNKLNFHNNRVMQDRRSVCIFLPNDESLNIIINVKILCHQLLVQVCDLLRLKDCHLFGL
SVIQNNEHVYMELSQKLYKYCPKEWKKEASKGIDQFGPPMIIHFRQYYVENGRLISDRA
ARYYYYWHLRKQVLHSQCVLREEAYFLLAAFALQADLGNFKRNKHYGKYFEPEAYFPSW
VVSKRGKDYILKHIPNMHKDQFALTASEAHLKYIKEAVRLDDVAVHYYRLYKDKREIEA
SLTLGLTMRGIQIFQNLDEEKQLLYDFPWTNVGKLVFVGKKFEILPDGLPSARKLIYYT
GCPMRSRHLLQLLSNSHRLYMNLQPVLRHIRKLEENEEKKQYRESYISDNLDLDMDQLE
KRSRASGSSAGSMKHKRLSRHSTASHSSSHTSGIEADTKPRDTGPEDSYSSSAIHRKLK
TCSSMTSHGSSHTSGVESGGKDRLEEDLQDDEIEMLVDDPRDLEQMNEESLEVSPDMCI
YITEDMLMSRKLNGHSGLIVKEIGSSTSSSSETVVKLRGQSTDSLPQTICRKPKTSTDR
HSLSLDDIRLYQKDFLRIAGLCQDTAQSYTFGCGHELDEEGLYCNSCLAQQCINIQDAF
PVKRTSKYFSLDLTHDEVPEFVVstop 

!
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Nucleotide sequence:

atgaacaaattgaattttcataacaacagagtcatgcaagaccgccgcagtgtgtgc
attttccttcccaacgatgaatctctgaacatcatcataaatgttaagattctgtgt
caccagttgctggtccaggtttgtgacctgctcaggctaaaggactgccacctcttt
ggactcagtgttatacaaaataatgaacatgtgtatatggagttgtcacaaaagctt
tacaaatattgtccaaaagaatggaagaaagaggccagcaagggtatcgaccaattt
gggcctcctatgatcatccacttccgtgtgcagtactatgtggaaaatggcagattg
atcagtgacagagcagcaagatactattattactggcacctgagaaaacaagttctt
cattctcagtgtgtgctccgagaggaggcctacttcctgctggcagcctttgccctg
caggctgatcttgggaacttcaaaaggaataagcactatggaaaatacttcgagcca
gaggcttacttcccatcttgggttgtttccaagagggggaaggactacatcctgaag
cacattccaaacatgcacaaagatcagtttgcactaacagcttccgaagctcatctt
aaatatatcaaagaggctgtccgactggatgacgtcgctgttcattactacagattg
tataaggataaaagggaaattgaagcatcgctgactcttggattgaccatgagggga
atacagatttttcagaatttagatgaagagaaacaattactttatgatttcccctgg
acaaatgttggaaaattggtgtttgtgggtaagaaatttgagattttgccagatggc
ttgccttctgcccggaagctcatatactacacggggtgccccatgcgctccagacac
ctcctgcaacttctgagcaacagccaccgcctctatatgaatctgcagcctgtcctg
cgccatatccggaagctggaggaaaacgaagagaagaagcagtaccgggaatcttac
atcagtgacaacctggacctcgacatggaccagctggaaaaacggtcgcgggccagc
gggagcagtgcgggcagcatgaaacacaagcgcctgtcccgtcattccaccgccagc
cacagcagttcccacacctcgggcattgaggcagacaccaagccccgggacacgggg
ccagaagacagctactccagcagtgccatccaccgcaagctgaaaacctgcagctca
atgaccagtcatggcagctcccacacctcaggggtggagagtggcggcaaagaccgg
ctggaagaggacttacaggacgatgaaatagagatgttggttgatgacccccgggat
ctggagcagatgaatgaagagtctctggaagtcagcccagacatgtgcatctacatc
acagaggacatgctcatgtcgcggaagctgaatggacactctgggttgattgtgaaa
gaaattgggtcttccacctcgagctcttcagaaacagttgttaagcttcgtggccag
agtactgattctcttccacagactatatgtcggaaaccaaagacctccactgatcga
cacagcttgagcctcgatgacatcagactttaccagaaagacttcctgcgcattgca
ggtctgtgtcaggacactgctcagagttacacctttggatgtggccatgaactggat
gaggaaggcctctattgcaacagttgcttggcccagcagtgcatcaacatccaagat
gcttttccagtcaaaagaaccagcaaatacttttctctggatctcactcatgatgaa
gttccagagtttgttgtgtaa 
 



Appendix B

Mouse willin sequence

(NM028127)

Amino acid sequence:

MNKLTFHNNKAMQDRRRVCIFLPNDKSVSIIINVKILCHQLLVQVCDLLRLKDSHLF
GLSVIQNNEHVYMELSQKLYKYCPKEWKKEASKVRQYEVTWGIDQFGPPMIIHFRVQ
YYVENGKLISDRIARYYYYWHLRKQVLHSQCVLREEAYFLLAAFALQADLGNFKRKL

HHGDYFEPEAYFPAWVVSKRGKDYILKHIPNMHKDQFALTASEAYYIKEAVRLDDVA
IHYYRLYKDKREAEGSLTLGLTMRGIQIFQNLEEEKQLLYDFPWTNVGKLVFVGKKF
EILPDGLPSARKLVYYTGCPTRSRHLLQLLSNSHRLYMNLQPVLRHLRKQEENEEKK
QYRESYISDNLDLDMDPLEKRSRASGSSAGSVKHKRLSRHSTASHSSSHTSGIEADT
KPRDPGPEDSCSGSAMHRKLKTCSSMTSHGSSHTSGVESGGKDRLEEDSQDEEIEML

VDDPRDLEPMPEESLEVSPEMCIYITEDMLLSRKLNGHSGLIVKEIGSSTSSSSETV
VRLRGQSTDSLPQTICRKPKTSTDRHSLSLDDIRLYQKDFLRIAGLCQDTAQSYTFG
CGHELDESGLYCNSCLAQQCVNIQDAFPVKRASKYFSLDLTHDEVPEFVV 
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Nucleotide sequence:

cggcgccgctggagcagacgccggttgtgagtcggaagcctggcgctgtcgactttggaggtctcccag
tggactttctacagctatgaaacctacactgtggggcaccacgatgcttccgttggccgtatgatgagg
aggagaagttggctttggagtgctgggagcctgagaagttgctgagcacccagcgcccccagcccgccc
actggcccgcccataacacaatgaacaaactgaccttccataacaacaaagccatgcaggaccgtcgca
gagtgtgtattttcctccccaatgacaagtccgtgagcatcatcataaatgttaaaattctgtgtcacc
agttgctggtccaggtgtgtgacctgctcaggttaaaggacagtcacctctttggtctcagtgttatac
aaaataatgaacatgtatatatggaattgtcacaaaagctttataagtattgtccaaaagaatggaaaa
aggaggccagcaaggtacggcaatacgaagtcacttggggcatcgaccagtttgggccccccatgatca
tccacttccgggtgcagtactacgtggagaatgggaagctgatcagtgaccgaattgcaagatactatt
attactggcacctacggaaacaggtgctgcactcccagtgtgtgctcagagaggaggcctacttcctgc
tggcagcctttgcactgcaagctgacctcggcaacttcaaaaggaaactgcaccacggagactactttg
agccagaggcttacttcccggcatgggttgtttccaagcgggggaaggactacatcctgaaacacatcc
caaacatgcacaaggaccagtttgccctgacggcctccgaggcctacctaaagtacatcaaagaagccg
tccgactggacgacgtcgccatccattactacagactgtacaaggataaaagggaggctgaaggctcac
tgaccctaggactgaccatgcgaggaatacagatttttcagaatctagaagaagagaaacaattgctct
atgatttcccctggacaaatgttgggaagttggtgtttgtgggcaagaagtttgagattttgccagatg
gccttccctccgccaggaagctggtctactacacagggtgtcccacgcgctcccggcatctcctgcagc
tcctgagcaacagccaccgcctctacatgaacctgcagcccgtcctgcgccacctccgcaagcaggagg
agaatgaagagaaaaagcagtaccgggaatcctacatcagcgacaacctggaccttgacatggacccgc
tggaaaagcggtcccgagccagtgggagcagcgctggcagcgtgaagcataagcgcctgtcccgccact
ccacggccagccacagcagctcccacacctccggcatcgaggcagacaccaagccccgggacccagggc
cggaagacagctgttcaggcagcgccatgcaccggaagctgaagacctgcagctccatgaccagccacg
gcagctcccacacctctggggttgagagtggaggcaaagaccgcctggaagaggactcgcaagatgagg
aaatcgagatgctggtggatgaccccagggacctggagccgatgcctgaagagtcgctggaagtcagcc
cagagatgtgtatctacatcacggaagatatgctcctgtcgaggaagctgaacggacactcagggttaa
ttgtgaaagaaatcggctcctccacctccagctcttcggaaacggttgtcaggctgcgtggacagagca
ccgactcccttccacagacgatatgtcgaaaaccaaagacttccaccgatcgccatagcctgagccttg
acgacatcagactgtaccagaaagacttcctgcgcatcgcgggcctgtgtcaggacactgctcagagct
acacgtttgggtgtggccatgaactggatgagagcggtctctactgcaacagctgcctggctcagcagt
gtgtcaacatacaggacgcattcccagtgaaaagagccagcaagtacttttctctggaccttactcacg
acgaagtcccagagttcgtcgtctgagtcgcccctgcgggcagccctgcgggcagccgctgtctgctgg
aggctgtggagtctgagggtctttacacattatttgtgccataactttttcaccccaaacttagctttt
tctttatagtattcgagatggaaacaaaagccttgggacagttgcactttaagtattatgcagaggtaa
aagaaacagagaatgtaagaggaagacaagtgcccagattgtctattgcccctttggaaggaagtgtgc
tttccagctttacccagatttcagactgtcagactgcagtgtgtttgttcatctcttgtgttccggttc
aaatttatgtttatcacgtgaaagatgttataggcttatctgtttgcttatgggtttttcagccacttc
ctcatgaggcacggtttgagggggaggacaaaggggagttctctcttcttttctggagagccattctta
gtacatagccattgttgcctcacagaggttggtccgaaatgaacactgaagttggtgggagtcttatgt
tctagccaaagatgtgtatgtgatggaagatggaagccccactcagagtccagaaggcgtgtgccggga
cactgggctccttcacaaatggacagtgctctgtccgctgttttgttcttccatgaccttcccaggaag
ctctgggattggcctgtgcttgtgacatggtacattttgcagtttacaaagctggtgtatgttaacaac
cattgggaatgtctcagaagacatttgtttggttgtatttcctttgttggtttttaatggtggccaaca
gatggtgatgctagtttctgctttaacaagatacccttactgtatgtatatgttatacgtatctagata
cgtgggactctgtgtgtttatgtgtttgaagcttagtgactcttcatttggacttcagtatatgtcttg
cacacatagaatttcttgtttaatgtcaaggatgcttagacacagacaatcagttgataaatgtagagt
taagagtgacttttccatgtgtgcctttggccaagattctcaaccctgattgcataatagacttgtcca
gagagcttttaaaacatgcccgggtcccaccaggccagtttaaaccagtctcctgtggctgggagattg
atttaaagtgtaccaggttgagacagtaatgcacagtaggattggagatccaagagtgtctttctattc
attttgaagtaaaagtatacagaaaatattagtgatagagaatgggccacttttaagacagggcctgct
actgttacagtgtataatgaagccaggagaatgagtttggtcaacttgatatccattgaagacgttgct
cgcccttcaggagagaacttcatagcacaatgtctttctaggagatgtttttaatgatttagtatttta
caacatttgtttaccatattttgatactccatttttgctatctgccaggttttattaaaaagaagacta
tgtattattttctaaagaaactcatatttttgtacaaacttatgtttccaagtaaggaagaaatagatg
tagggtcaggcagaacatagcagtgtttccccctggctaggtcagtgtcccagagcccgtggtggccac
agacatgcccggtcaccatgctgccctcctgtgctggcacggcctcagcagggtcacatccagtaactc
tcacctgacactaaagaaggaaaaagaagttctgtgctcatgactttattttgcttttgttgaatgctt
ttagaagaaccaaagtttcagatgccagaatgtataagtgtctcagtgtccacagataggcaaagggca
aaggggtccgtcacctgatggcttcttttgcttccgagtcattgcatagtctcatcattgctcacagat
gcttaggggccacaccctggtgaagtacgcgatctccagagcacagatggccgtgtattcccacagccc
tcggcatctcttgcagatgcagagatggaaaggttgcttgcttggctgtgtgctttataccttttttct
ctctgctccagaatccagtcttcagggttctgcccaggctgtcgatcgccatttgccctcttccaggca
gacttggaaatagtcttaaagggttttcaaagacaagatcagccaggaaacagtttctcatttctgacc
cacgggagaatcatagacatatatgtatgtggagctccactttgaagaattgacattcttgtattgggc



Appendix C

Rat willin sequence (163scII)

Amino acid sequence:

QRTLPDHWPAHNTMNKLTFHNNKVMQDRRRVCIFLPNDKSVSIIINVKILCHQLLVQVC
DLLRLKDSHLFGLSVIQNNEHVYMELSQKLYKYCPKEWKKEASKGIDQFGPPMIIHFRV
QYYVENGKLISDRIARYYYYWHLRKQVLHSQCVLREEAYFLLAAFALQADLGNFKRKVH

HGDYFEPEAYFPAWVVSKRGKDYILKHIPNMHRDQFALTASEAYLKYIKEAVRLDDVAI
HYYRLYKDKREVEGSLTLGLTMRGIQIFQNLEEEKQLLYDFPWTNVGKLVFVGKKFEIL
PDGLPSARKLVYYTGCPTRSRHLLQLLSNSHRLYMNLQPVLRHLR  

!

Nucleotide sequence:

cagcgcaccctgcctgaccactggccagcccacaacacaatgaacaaactgaccttccataa

caacaaagtcatgcaggaccgccgcagagtgtgtattttcctccccaatgacaagtctgtga
gcatcatcataaatgttaaaattctgtgtcaccagttgctggtccaggtgtgtgacctgctc

aggttgaaggatagtcacctctttggtctcagtgttatacaaaataatgaacacgtatatat
ggaattgtcacaaaagctctataagtattgtccaaaagaatggaaaaaggaggccagcaagg

gcatcgaccagtttgggcctcccatgatcatccatttccgggtgcagtactatgtggagaac

gggaagctgatcagtgaccggattgcgagatactattattactggcacctaaggaaacaggt
gctgcactctcagtgtgtgctcagagaggaggcctacttcctgctggcagcctttgcactgc

aggctgacctcgggaacttcaaaaggaaagtgcaccatggagactactttgagccagaggct
tacttcccagcatgggtggtttccaagcgggggaaggactacatcctgaaacacattccaaa

catgcacagagaccagtttgcactgacagcctccgaggcatatctaaagtacatcaaagagg

ccgtccgactggatgacgtcgccatccattactacagactgtacaaggataaaagagaggtt
gaaggttcactgaccctgggactgaccatgcgagggatacagatctttcagaatctagaaga

agagaaacagttgctgtatgatttcccctggacaaatgttgggaagttggtgtttgtgggca
agaagtttgagattttgcccgatggcctcccctccgccaggaagctggtctactacaccggg

tgccccacacgctcccggcatctcctgcagctgctgagcaacagccaccggctctacatgaa

cctgcagcccgtcctgcgccacctccgc  

!
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Appendix D

Zebrafish willin sequence

(NM001111187)

Amino acid sequence:

MSVPTKQERTVCVLLPNKETLDITVGVKATGQDVFHRVCELLGVRELHYFGLTLVKNNE
HIFLDLEEKLAKYFPKEWKQDSGKGSHRRSIPPLLCLKVQYYVENGRLICERKARKLYY
YDLRERVLRSECRQQEEVYFQLAGFALQADHSDHSSEGQSHGHAMYFQPKEYFPPWIIA

KRGIDYLLCHGPKVHKELWGMSCRDAVLLFIRESCRLEDVPVTFYRLQKDKKEEKGSAL
LGLTLRGMQVFQEVNNVRDLLYDFPWFHVGRLTFLGKKFEIQPDGLPSARKLVYYTGSA
FRSRHLLLHLSSCHRLYLSLQPALKHLRQLEETEEKKRYRESYISDELDLDQPCSEGSP
RLSRHSTSSSGIEADTRQNSVSVEMVSVEEKEKSSINTSSTAQSHEEHWQETDSQEPGE
VSVDDPVDLLRLAELLEGVSVDCPTIQSVKDSKDQHMSSVTGKDQTDLSDPDGLKQVLN

QKLSNPSDCYNLSLEDVRQLSPLLPLGTPTAPNASIGYTFALPHSPTNPCPDDTSLCVQ
RPTNCLSLARLDDNQPLELVL  

!
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Nucleotide sequence:

ctcaaaacaaacacacacacggactttaatacgcgatattcacaatgaaggaaccaatacct

gtgagcaaagcactttgaagaaaaagattcaagtcgtagtgtgtgattgtgtgtgtgtgtgt
gtgtgtgtgtgtgtgtgtgtcagtgtttttgtttctgtgtgtgtgtgtgtgtgtgtatatgt

gtgagtggatgagctcttatagaccatgtctgtccccaccaaacaagagaggaccgtatgtg
tcctccttcccaacaaggagacactggacatcacagtgggggtgaaagcaactggtcaagat

gtgtttcaccgtgtctgcgagcttctcggtgtcagagagctgcactactttggattaacttt

agtcaaaaacaatgagcacatctttctggacttggaagagaaacttgccaagtatttcccca
aggagtggaagcaggactctgggaaggggtcacacaggaggtccatccctcccctgctctgt

ctgaaggtccagtattatgtggagaacggcagactcatctgtgagcgtaaagcgagaaagct
gtactactatgaccttcgtgagcgagtcctgcgctctgaatgccgacagcaggaggaagtgt

atttccagctggcaggattcgctctacaggccgatcactctgaccactcatcagaaggacag

agtcacggacatgccatgtatttccaacccaaagaatattttcctccatggataatagcaaa
gcgtggcatcgactacctgctgtgtcacgggcccaaggtccataaggagctgtggggaatgt

cctgtcgagacgctgtcctgctgttcatcagagagtcctgccgtctggaggacgtcccagtc
accttctatcgtctgcagaaggacaagaaagaagagaagggttcagcattgcttggactcac

tctcagaggaatgcaagtgtttcaggaggtgaacaacgtgcgtgatctgctctatgatttcc

cctggtttcatgtgggacgactcactttcttgggaaaaaagtttgagatccagccggacggt
ttgccctcagcgaggaagctggtttactatacgggttcggcatttcgctctcgtcatctgct

tctgcatctgagctcatgtcatcgcttatatctgagtttacagcctgccctcaaacacctgc
ggcagctggaagagactgaggagaagaagcggtatcgtgaatcttacatcagtgatgagctg

gacctggaccagccatgcagtgaaggcagtcctcgtctgtccagacactccaccagcagctc

cggcatcgaggcggacaccagacagaacagcgtctcggtagagatggtctcagtggaggaga
aagagaaatccagcatcaacaccagcagcacagctcagagccatgaagagcactggcaggag

acagattcgcaggagccgggagaggtttctgtggacgatcctgtggatctcttgcgattggc
tgagctactggagggagtgtccgtcgactgtcccaccatccaatcagtcaaggactctaaag

atcagcatatgagctcagtcacaggtaaagaccaaacagacctaagtgatccagacggcctg

aaacaggttttgaatcagaagctttctaacccatccgactgctataatctaagcctggagga
cgtgcgacagttatctcctcttcttccgctgggaacgccgacagctccaaacgcctccatcg

gctacacatttgcgctcccacattccccaaccaacccatgtccagatgacacttcactctgt
gtccagagacccacgaactgcctttctctggcccgcctggatgataaccagccgctggagct

tgtgctataaaatctggacttgtgatagtattttgttccttattttgacatattttcatctg

aacaagaaagaagaccatgatttggtccatatggagttgatcgggttgttggatcattgcta
tcggtcgatctcatgtgagcgacaggttgatcccgcccctttgtgccagtaatcatcatcat

catcatcatcatcattatcatcatcatcagaaaagagaatagatgactctgacatacactat
ttgtaataaataatgcaataattcatccgattgactgcttaaagactttaaagtccatgtga

accggacgatgctgagacgtttatttcaggatgttgatgtgcttccaactgaaacagaatat

tgagaagggggcggggctttcctgtgcacattattacgtaaagcgtaacctaactgcaagag
atggtattaatatgcagttgctatggaaaccctcaagctgacatcaagggaaggaccgccac

tctaaacacggaagcaaatggtcatactttgattgaagattaccaaaacaaatacatttttc
agtggattaacttgcatgtattaattattcaccttaagaatggcaatgtgagctagcaaatt

tgattttaagcggactttaaagcccaaagttcacttgaagtttccaattattgtatagtcca

acataaagtgtcaattttttttgtgattgcatgtatagtacaagtacagtttatctggtact
ttgtccacaaggtgtcaacactcagattagatgctctttttaagtccaaaataaattgagat

ggaaaaaaagcaacaacaaactactgaagacagcaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aa 
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Appendix E

Published papers
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FNZ__T^S HYTaP]^T_d DSd^TN^ 5WWTLYNP %FHD5&
FNSZZW ZQ DSd^TN^ LYO 5^_]ZYZXd
BZ]_S <L`RS
F_& 5YO]Pb^ ?K). 1FF$ FNZ_WLYO
HYT_PO ?TYROZX

,8A4;>BB4 %=6CA
HYTaP]^T_d ZQ F_& 5YO]Pb^
FNSZZW ZQ 6TZWZRd
;TQP$ F_& 5YO]Pb^
?K). 1GF$ FNZ_WLYO
HYT_PO ?TYROZX

-0@B8= .;>A27=4@
+8A70= &7>;0980!

HYTaP]^T_d ZQ F_& 5YO]Pb^
FNZ__T^S HYTaP]^T_d DSd^TN^ 5WWTLYNP %FHD5&
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_]LY^TPY_ XLXXLWTLY NPWW _]LY^QPN_TZY& =Y NZY_]L^_ _Z []PaTZ`^ ^_`OTP^$
bSTNS ^SZbPO _SP RPYP]L_TZY ZQ ^_LMWP NPWW WTYP^ ZaP] L QPb bPPV^$ bP
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ZQ `[ _Z $,("& 7STYP^P SLX^_P] ZaL]d %7<C%?)& LYO S`XLY PX%
M]dZYTN VTOYPd %<9?*1+& NPWW^ L]P Pc[Z^PO _Z L _TRS_Wd QZN`^PO
,(-%YX WL^P] TY _SP []P^PYNP ZQ [WL^XTO 8B5 PYNZOTYR QZ] L XT_Z%
NSZYO]TLW _L]RP_PO ]PO g`Z]P^NPY_ []Z_PTY& JP ]P[Z]_ _]LY^QPN_TZY PQ%
fNTPYNTP^ L^ L Q`YN_TZY ZQ WL^P] [ZbP] LYO Pc[Z^`]P _TXP QZ] Z`]
^d^_PX& JP LW^Z ^SZb$ QZ] _SP f]^_ _TXP$ _SL_ L NZY_TY`Z`^ bLaP WL^P]
^Z`]NP NLY MP ^`NNP^^Q`WWd L[[WTPO _Z ^PWPN_TaP RPYP ^TWPYNTYR Pc[P]T%
XPY_^ `^TYR ^XLWW TY_P]QP]TYR EB5& GST^ bZ]V T^ L XLUZ] ^_P[ _ZbL]O^
LY TYPc[PY^TaP LYO [Z]_LMWP [SZ_Z_]LY^QPN_TZY ^d^_PX& e %#$# *5,1-9< 5.
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?PdbZ]O^2 [SZ_Z[Z]L_TZY3 [SZ_Z_]LY^QPN_TZY3 RPYP _]LY^QPN_TZY3 RPYP VYZNVOZbY3
aTZWP_ OTZOP&

DL[P] (1,*0FFE ]PNPTaPO FP[& **$ *((13 ]PaT^PO XLY`^N]T[_ ]PNPTaPO 8PN& )0$
*((13 LNNP[_PO QZ] [`MWTNL_TZY 8PN& *1$ *((13 [`MWT^SPO ZYWTYP >`W& /$ *()(&
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6ELQLMLO>QFLK OBCBOP QL QEB RPB LC QFDEQIV CL@RPBA I>PBO IFDEQ QL

MBOCLO>QB QBJMLO>OFIV QEB @BIIRI>O JBJ?O>KB >KA >IILT BULD"

BKLRP J>QBOF>I QL ?B Q>HBK RM ?V QEB @BII#
%

9EFP QB@EKFNRB E>P

?B@LJB FK@OB>PFKDIV MLMRI>O ARB QL FQP PFJMIF@FQV! OL?RPQKBPP!

>KA BCY@FBK@V# 3LPQ LC FQP >MMIF@>QFLKP E>SB ?BBK MOBALJF"

K>KQIV! ?RQ KLQ IFJFQBA QL! QEB ABIFSBOV LC KR@IBF@ >@FAP PR@E >P

MI>PJFA 04.
%W'

>KA JBPPBKDBO 74.
(

QL FKQO>@BIIRI>O @LJ"

M>OQJBKQP# 2K >AAFQFLK! AVBP!
&

K>KLM>OQF@IBP!
)

>KA PBJF@LKAR@"

QLO K>KL@OVPQ>IP
*

@>K >IPL ?B FKGB@QBA FKQL QEB @BIIP! TEF@E @>K

?B RPBCRI CLO JLKFQLOFKD DBKB LO! MLQBKQF>IIV! AORD >@QFSFQV#

<>OFLRP I>PBO"?>PBA PVPQBJP E>SB ?BBK RPBA CLO MELQLML"

O>QFLK >KA RIQFJ>QBIV @BII QO>KPCB@QFLK# =>SBIBKDQEP FK QEB

RIQO>SFLIBQ
+ %;<&! SFPF?IB

%!*!,W%$ %<28&! >KA FKCO>OBA
&W(!%% %27&!

FK ?LQE MRIPBA %K>KLPB@LKA LO CBJQLPB@LKA& >KA @LKQFKRLRP

T>SB %@T& JLAB! E>SB >II ?BBK RPBA CLO @BII QO>KPCB@QFLK# 9EB

JB@E>KFPJ CLO MLO>QFLK FP ABMBKABKQ LK QEB QVMB LC I>PBO RPBA

>KA FQP MRIPB ARO>QFLK#
%&

1BJQLPB@LKA @BII QO>KPCB@QFLK E>P

@ROOBKQIV BJBODBA >P QEB JLPQ R?FNRFQLRP >KA @LKPFPQBKQ

JBQELA! ?RQ QEFP PVPQBJ OBNRFOBP QEB RPB LC BUMBKPFSB I>PBOP

TFQE > QVMF@>IIV I>ODB CLLQMOFKQ %B#D#! QEB QF"P>MMEFOB CBJQLPB@"

LKA I>PBO LP@FII>QLO&# 2K QBOJP LC @T I>PBOP FK QEB <28 IFDEQ

OBDFLK! QEB YOPQ I>PBO RPBA CLO @BII QO>KPCB@QFLK T>P QEB

(,,"KJ LRQMRQ IFKB LC >K >ODLK"FLK I>PBO! TEF@E >D>FK E>P >

I>ODB CLLQMOFKQ#
,

2K &$$)! 6>QBOPLK BQ >I# RPBA > ILT"@LPQ @T

SFLIBQ AFLAB I>PBO CLO @BII QO>KPCB@QFLK! TEF@E FP @ROOBKQIV QEB

PFJMIBPQ >KA JLPQ FKBUMBKPFSB JBQELA LC I>PBO"JBAF>QBA

QO>KPCB@QFLK#
%

9EBV PELTBA QE>Q TFQE PRCY@FBKQ @LKQOLI LC I>PBO

M>O>JBQBOP! @T <28 I>PBOP >OB >P BCCB@QFSB >P QEBFO CBJQLPB@"

LKA 27 @LRKQBOM>OQP# 5MQF@>I MLTBO ABKPFQFBP >P ILT >P

$%&$$ 3= !J& E>SB ?BBK PR@@BPPCRIIV RPBA CLO PR@E @BII

MELQLMLO>QFLK#
%

/OR@F>IIV CLO QEB MROMLPBP LC LRO AFP@RPPFLK!

MOBSFLRP PQRAFBP TFQE QEB SFLIBQ AFLAB AFA KLQ >@EFBSB QO>K"

PFBKQ QO>KPCB@QFLK ?RQ LKIV PQ>?IB QO>KPCB@QFLK ARB QL QEB IFJ"

FQBA J>QBOF>I QEBV @LRIA ABIFSBO QL QEB @BII# 2K PQ>?IB QO>KPCB@"

QFLK! LKIV @BIIP QE>Q E>SB FKQBDO>QBA QEB MI>PJFA 04. FKQL QEB

@BIIXP DBKBQF@ DBKLJB >OB PBIB@QBA! >KA PR@E PQ>?IB @BII IFKBP

Q>HB J>KV TBBHP QL DBKBO>QB# 9O>KPFBKQ QO>KPCB@QFLK! >P LM"

MLPBA QL PQ>?IB QO>KPCB@QFLK! OBIFBP LK QEB QO>KP@OFMQFLK >KA

QO>KPI>QFLK LC QEB MI>PJFA 04. FQPBIC! >KA QEFP LKIV Q>HBP

&( QL +& E QL ?B >@EFBSBA- PR@E >K FKBUMBKPFSB QO>KPFBKQ

)(0+%+..0'*()(')-%,&'(,)-(.'/'!*-&(( e *()( FD=9
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>Z`]YLW ZQ 6TZXPOTNLW C[_TN^ )-%,&$ (,)-(. %>`Wd'5`R`^_ *()(&

>Z`]YLW ZQ 6TZXPOTNLW C[_TN^ >`Wd'5`R`^_ *()( " IZW& )-%,&(,)-(.%)
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TL[OVK MVY WYV[LPU HUK KY\N KLSP]LY` ^V\SK IL VM NYLH[ PU[LY#

LZ[" LZWLJPHSS` MVY JSPUPJHS HWWSPJH[PVUZ$

5PVKL SHZLYZ HYL PUL_WLUZP]L HUK VMMLY H JVTWHJ[ MVV[WYPU["

PTWVY[HU[ MVY TPUPH[\YPaH[PVU HUK H\[VTH[PVU$ ?V[HIS "̀ KPVKL

SHZLYZ H[ ]PVSL[#IS\L ^H]LSLUN[OZ HYL HSYLHK` PUJVYWVYH[LK PU[V

TVZ[ JVUMVJHS TPJYVZJVWL Z`Z[LTZ HUK f\VYLZJLUJL#HJ[P]H[LK

JLSS ZVY[PUN $724C% THJOPULZ$ ;[ PZ [OV\NO[ [OH[ [OL TLJOH#

UPZT VM WOV[VWVYL NLULYH[PVU I` J^ PYYHKPH[PVU YLSPLZ VU [OL

J\T\SH[P]L [LTWLYH[\YL PUJYLHZL [OH[ VJJ\YZ ^P[OPU H ML^ TPS#

SPZLJVUKZ [V HS[LY [OL WLYTLHIPSP[` VM [OL JLSS$
."'&

2U HIZVYW#

[P]L JOLTPJHS ZWLJPLZ PU [OL ]PVSL[#IS\L YLNPVU" Z\JO HZ WOLUVS

YLK K`L" PZ \ZLK [V HPK HIZVYW[PVU HUK SVJHS PUJYLHZL PU

[LTWLYH[\YL$
.c'&

DOL HK]HU[HNL VM \ZPUN [OPZ K`L PZ [OH[ P[ PZ

UVU[V_PJ" PZ LHZPS` YLTV]LK I` ^HZOPUN" HUK PZ \IPX\P[V\ZS`

\ZLK PU JLSS J\S[\YL TLKP\T$

;U [OPZ WHWLY" ^L KLTVUZ[YH[L MVY [OL eYZ[ [PTL [OL Z\JJLZZ#

M\S \ZL VM ]PVSL[ KPVKL SHZLYZ MVY [YHUZPLU[ [YHUZMLJ[PVU VM

THTTHSPHU JLSS SPULZ PUJS\KPUN [OL 4OPULZL OHTZ[LY V]HY`

$49@#<'% HUK O\THU LTIY`VUPJ RPKUL` $96<(/)% SPULZ$

AYL]PV\ZS "̀ F;C ^H]LSLUN[O J^ SHZLYZ ^LYL ZOV^U [V [YHUZMLJ[

49@#<'"
'"'&

?;9)D) T\YPUL eIYVISHZ["
.

HUK O\THU JHYKPHJ

JLSSZ$
/

6HJO JLSS SPUL" K\L [V P[Z KPMMLYPUN JOLTPJHS M\UJ[PVUZ

HUK WYVWLY[PLZ JHU OH]L KP]LYZL YLHJ[PVUZ [V PYYHKPH[PVU MYVT H

NP]LU SHZLY$ 9LYL" ^L ZOV^ [OH[ ^L JHU YLWLH[LKS` HUK YV#

I\Z[S` [YHUZMLJ[ THTTHSPHU JLSS SPULZ \ZPUN [OPZ Z`Z[LT ^P[O

HU LMeJPLUJ` VM \W [V &*&!$ 2KKP[PVUHSS "̀ WYL]PV\Z YLWVY[Z

\ZPUN H J^ *..#UT HYNVU PVU SHZLY L_WSVYLK VUS` H ZPUNSL

VW[PJHS WV^LY KLUZP[ $̀
.c'&

;U JVU[YHZ[" PU [OPZ Z[\K` ^L ]HYPLK

[OL VW[PJHS WV^LY KLUZP[` HUK L_WVZ\YL [PTL [V KL[LYTPUL [OL

VW[PTHS WHYHTL[LYZ MVY J^ [YHUZMLJ[PVU$ ;U JVUQ\UJ[PVU ^P[O

[OPZ ^VYR" ^L WLYMVYTLK HU L_[LUZP]L Z[\K` VU JLSS ]PHIPSP[`

I` ]HY`PUN L_WVZ\YL [PTLZ MVY [^V SHZLY WV^LYZ [V LS\JPKH[L

P[Z LMMLJ[ VU JLSS KLH[O HUK WVYH[PVU$ 7\Y[OLYTVYL" ^L HSZV

WYVWVZL [OL \ZL VM [OPZ ]PVSL[ KPVKL Z`Z[LT HZ HU PUL_WLUZP]L

[VVS MVY ZWLJPeJ NLUL RUVJRKV^U L_WLYPTLU[Z$ DV KLTVU#

Z[YH[L [OPZ" ^L WOV[V[YHUZMLJ[LK H TVKPeLK 96<(/) JLSS SPUL"

^OPJO L_WYLZZLZ [OL UL^S` PKLU[PeLK NLUL [LYTLK

^PSSPU%7B>5,
')

\UKLY [OL JVU[YVS VM HU HU[PIPV[PJ PUK\JPISL

WYVTV[LY" ^P[O ZTHSS PU[LYMLYPUN B?2 $ZPB?2% HNHPUZ[ ^PSSPU0

[O\Z ZWLJPeJHSS` ISVJRPUN [OL L_WYLZZPVU VM [OL ^PSSPU NLUL

WYVK\J[$ DOPZ YLWYLZLU[Z [OL eYZ[ [PTL ZPB?2 OHZ ILLU [YHUZ#

MLJ[LK PU[V THTTHSPHU JLSSZ \ZPUN H J^ SHZLY ZV\YJL$

# %&1(/+&,0 &-' %(1*.'0

#!" %+/,)3 "+/() #*/3/0/1&3+/. $523)-

DOL SHZLY ZV\YJL ^HZ H JVTTLYJPHSS` H]HPSHISL *&+#UT KPVKL

SHZLY $DVW[PJH" ;362>#*&+#'F' ^P[O HU !($'$(% ^P[O

TH_PT\T WV^LY VM *& TG$ DOL ILHT ^HZ THNUPeLK I` [OL

[LSLZJVWL JVUZPZ[PUN VM SLUZLZ =' HUK =( $7PN$ '%$ 2 OHSM#^H]L

WSH[L HUK H WVSHYPaPUN ILHTZWSP[[LY PU [HUKLT ^LYL \ZLK [V

H[[LU\H[L [OL ILHT WV^LY$ 2 KPJOYVPJ TPYYVY H[ *+ KLN YL#

fLJ[LK [OL ILHT [V [OL YLHY LU[YHUJL W\WPS VM H OPNO#

U\TLYPJHS#HWLY[\YL $?2% ^H[LY PTTLYZPVU" ]PVSL[ JVYYLJ[LK

TPJYVZJVWL VIQLJ[P]L $?PRVU ASHU 2WV0 THNUPMPJH[PVU1,)%

?21'$(&% ^P[O TLHZ\YLK [YHUZTPZZPVU VM &.*! H[ *&+ UT$

DOL SHZLY ^HZ MVJ\ZLK [V H KPMMYHJ[PVU#SPTP[LK ZWV[ HWWYV_P#

TH[LS` &$* T PU KPHTL[LY$ DOL WV^LY H[ [OL ZHTWSL WSHUL

^HZ VI[HPULK I` [HRPUN [OL WV^LY [YHUZTPZZPVU TLHZ\YLTLU[Z

[OYV\NO [OL VW[PJZ$ DOL TH_PT\T SHZLY WV^LY KVZHNLZ MVY

LHJO JLSS ^LYL eYZ[ JOHYHJ[LYPaLK I` LTWPYPJHSS` VIZLY]PUN [OL

JLSS MVY HU` ZPNUZ VM NYHU\SH[PVU" ISLIIPUN" VY ULJYVZPZ$ 2

ILHT ZO\[[LY $?L^WVY[" EUP[LK <PUNKVT" TVKLS .*+ 9A#&(%
WSHJLK PU MYVU[ VM [OL SHZLY ^HZ \ZLK [V JVU[YVS [OL L_WVZ\YL

[PTLZ$ 2U L_WVZ\YL [PTL VM ' Z ^HZ \ZLK [V VIZLY]L [OL [YHUZ#

MLJ[PVU LMeJPLUJ` MVY LHJO WV^LY SL]LS LTWSV`LK$ 3YPNO[#eLSK

PSS\TPUH[PVU PU <VLOSLY JVUeN\YH[PVU ^HZ \ZLK [V PSS\TPUH[L

[OL ZHTWSL$ DOL PTHNL WSHUL HUK SHZLY WSHUL ^LYL THKL JV#

PUJPKLU[ I` JOHUNPUN [OL WVZP[PVUZ VM SLUZLZ =' HUK =( HUK

VIZLY]PUN [OL PTHNL HUK SHZLY MVJ\Z$ 2U "#$ Z[HNL LUHISLK \Z

[V ]HY` [OL ZHTWSL WVZP[PVU$ 7PUHSS "̀ H JVSVY 445 JHTLYH

$G2D64 (+&5% ^HZ \ZLK [V JHW[\YL [OL ]PKLVZ VM [OL WYVJLZZ$

#!# !),, !4,341) #1/')(41)

49@#<' JLSSZ HUK 96<(/) JLSSZ ^LYL J\S[\YLK PU D(+ fHZRZ

H[ )- b4 HUK +! 4@( PU TVKPeLK 6HNSLdZ TLKP\T $CPNTH"

EUP[LK <PUNKVT% ^P[O '&! ML[HS JHSM ZLY\T $8SVILAOHYT"

EUP]LYZP[` VM C\YYL "̀ EUP[LK <PUNKVT%" (& N !TS Z[YLW[VT`#

JPU $CPNTH" EUP[LK <PUNKVT%" HUK (& N !TS WLUPJPSSPU

$CPNTH" EUP[LK <PUNKVT%$
2 Z[HISL [L[YHJ`JSPUL PUK\JPISL Z`Z[LT" DBL_ ^PSSPU#87A#

96<" ^HZ JYLH[LK \ZPUN H DBL_ PUK\JPISL WSHZTPK WJ5?2*%

D@%T`J#OPZ $;U]P[YVNLU" EUP[LK <PUNKVT% TVKPeLK [V L_#

WYLZZ ^PSSPU#87A" ^OPJO ^HZ [OLU [YHUZMLJ[LK PU[V Z[HISL

96<(/) JLSSZ JVU[HPUPUN H WSHZTPK L_WYLZZPUN H [L[YHJ`JSPUL

YLWYLZZVY" WJ5?2,%DB$ DBL_ ^PSSPU#87A#96< JLSSZ ^LYL

J\S[\YLK PU D(+ fHZRZ PU [OL WYLZLUJL VM 5\SILJV TVKPeLK

6HNSLdZ TLKP\T $CPNTH" EUP[LK <PUNKVT% ^P[O '&! ML[HS

JHSM ZLY\T $8SVILAOHYT" EUP]LYZP[` VM C\YYL "̀ EUP[LK <PUN#

KVT%" ( T> =#NS\[HTH[L" '&& \UP[Z !TS WLUPJPSSPU HUK

'&& \UP[Z !TS Z[YLW[VT`JPU $CPNTH" EUP[LK <PUNKVT%$ C[HISL

JLSSZ ^LYL ZLSLJ[LK I` [OL HKKP[PVU ^P[O + N !TS ISHZ[PJPKPU

HUK (+& N !TS aLVJPU$ GPSSPU#87A L_WYLZZPVU ^HZ PUK\JLK

^P[O ' N !TS [L[YHJ`JSPUL $;U]P[YVNLU" EUP[LK <PUNKVT%$

$+)! " #=$ 8?DAI=OE? KB = LDKOKLKM=OEKJ NTNOAI PNEJC = (%)"JI @EK@A
H=NAM, 3 #3&.)% II =J@ 3'.&%% II$! LH=JK"?KJQAS HAJNAN- 708!
LKH=MEUEJC >A=INLHEOOAM- 4! IEMMKMN- 14! @E?DMKE? IEMMKM- =J@ 3<1!
HKJC"RKMGEJC"@ENO=J?A K>FA?OEQA# 9DA RDKHA NTNOAI EN IKPJOA@ KJ =
*%%+% ?I KLOE?=H >MA=@>K=M@# #>$ 8?DAI=OE? H=TKPO KB = LMAL=MA@
N=ILHA EJ = LAOME @END NDKREJC ODA H=NAM >A=I BK?PNA@ KJ = ?AHH
>=ODA@ EJ 15/ =J@ LDAJKH MA@ NKHPOEKJ#
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3LRRY ]LXL XU[ZPTLR_ VHYYHNLK ZOXLL ZPSLY H ]LLQ$

38>#;& HTK 85;'.( JLRRY ]LXL YLLKLK HZ H KLTYPZ_ UM

'$)$&%) JLRRY!SR UTZU (*#SS NRHYY#IUZZUSLK J[RZ[XL NXHKL

KPYOLY $FUXRK ?XLJPYPUT 9TYZX[SLTZY% ZU HJOPL\L )% ZU *%!

JUTd[LTJ_$ COL JLRRY ]LXL PTJ[IHZLK HZ (, a3 MUX ') O ZU

HRRU] JLRR HZZHJOSLTZ ZU ZOL IUZZUS UM ZOL NRHYY KPYOLY$ <LHT#

]OPRL" CAL^ ]PRRPT#76?#85; JLRRY ]LXL VRHZLK )- O VXPUX ZU

ZOL L^VLXPSLTZ UTZU (*#SS J[RZ[XL KPYOLY JUHZLK ]PZO RHSP#

TPT $9T\PZXUNLT" DTPZLK ;PTNKUS% ZU PSVXU\L JLRRYb HKOLXLTJL

UT ZOL KPYOLY$

#!$ )+91/</. #&! '27<7<9+6;0/-<376

6UX LHJO VOUZUZXHTYMLJZPUT L^VLXPSLTZ" PTKP\PK[HR 38>#;&

HTK 85;'.( JLRRY ]LXL L^VUYLK ZU [V ZU ($) SF UM RHYLX

VU]LX MUX & Y HZ ZOL MUJ[Y$ 2LMUXL L^VUY[XL" ZOL JLRR SUTU#

RH_LX ]HY ]HYOLK Z]PJL ]PZO >VZP<5< $9T\PZXUNLT" DTPZLK

;PTNKUS% HTK ZOLT IHZOLK ]PZO (% R UM YUR[ZPUT JUTZHPTPTN

&% N !SR VRHYSPK LTJUKPTN MUX <PZU#4YALK $3RUTZLJO% HTK

)'$' < UM VOLTUR XLK $BPNSH% PT >VZP<5<$ ?OLTUR XLK PY H

K_L JUSSUTR_ [YLK ]PZO JLRR J[RZ[XL SLKPH ZU KLZLJZ JOHTNLY

PT V8$ COL HIYUXVZPUT UM ZOL YUR[ZPUT [YLK PT ZOL VOUZUVUXH#

ZPUT L^VLXPSLTZY ]HY SLHY[XLK HTK H SURHX JULMcJPLTZ JXUYY

YLJZPUT UM &&$)$&%) JS!& <!& HZ )%* TS ]HY UIZHPTLK$

1 Z_VL %" ''#SS#KPHS JU\LXYRPV ]HY VRHJLK UT ZUV UM ZOL

JLRR SUTURH_LX HTK H XLNPUT UM PTZLXLYZ ]HY SHXQLK PT ZOL

JLTZLX PT UXKLX ZU PKLTZPM_ ZOL XLNPUT UM KUYLK JLRRY$ >T H\LX#

HNL" *% OLHRZO_ RUUQPTN JLRRY VLX KPYO ]LXL PXXHKPHZLK UT ZOL

VRHYSH SLSIXHTL PT H XLNPUT & ZU ( S H]H_ MXUS $HTK TUZ

KPXLJZR_ HIU\L% ZOL T[JRL[Y$ 1MZLX KUYHNL" ZOL JU\LXYRPV ]HY

XLSU\LK ]PZO >VZP<5< HTK VOLTUR XLK YUR[ZPUT" HTK ZOLT

Y[IYLW[LTZR_ ]HYOLK Z]PJL ]PZO ZOL YHSL SLKP[S$ COL JLRRY

]LXL ZOLT M[XZOLX PTJ[IHZLK PT MXLYO SLKP[S MUX [V ZU ,' O
HMZLX VOUZUVUXHZPUT$ 3UTZXUR JLRRY ]LXL VXLVHXLK PT ZOL YHSL

SHTTLX I[Z ]LXL TUZ L^VUYLK ZU ZOL RHYLX$ COL VOUZUVUXHZLK

JLRRY ]LXL UIYLX\LK [TKLX H d[UXLYJLTZ SPJXUYJUVL MUX L^#

VXLYYPUT UM ZOL <PZU#4YALK NLTL$ 6UX LHJO RHYLX VU]LX HTK

MUX LHJO PXXHKPHZPUT ZPSL" TPTL L^VLXPSLTZY ]LXL VLXMUXSLK"

PXXHKPHZPTN *% JLRRY VLX KPYO PT ZOL VXUJLYY$ COLXLMUXL PT ZUZHR"

MUX !0. L^VLXPSLTZY" &*%%% JLRRY ]LXL ZXLHZLK" LTHIRPTN [Y

ZU HJJ[S[RHZL XLRPHIRL YZHZPYZPJY UM ZOL VXUJLYY$

#!% "/44 *3+,343<>

85;'.( JLRRY ]LXL VRHZLK UT (*#SS NRHYY#IUZZUSLK KPYOLY

HTK ]LXL VXLVHXLK YPSPRHXR_ ZU ZXHTYMLJZPUT L^VLXPSLTZY L^#

JLVZ TU 4=1 ]HY HKKLK$ 3LRRY ]LXL L^VUYLK ZU '$&# HTK

($)#SF RHYLX VU]LX HZ L^VUY[XL ZPSLY MXUS -% SY ZU * Y$

1MZLX RHYLX L^VUY[XL" JLRRY ]LXL XLZ[XTLK PT ZOL PTJ[IHZUX MUX

HT OU[X" HMZLX ]OPJO +% R UM %$(! ZX_VHT IR[L ]HY HKKLK$

CX_VHT IR[L PY HT PTKPJHZUX UM JLRR SLSIXHTL IHXXPLX K_YM[TJ#

ZPUT$ 9T ZOL YZHZL UM TLJXUYPY" ZOL JLRRbY VXUZLJZP\L SLSIXHTL PY

UMZLT JUSVXUSPYLK" RLHKPTN ZU PTZHQL UM L^ZXHJLRR[RHX SHZL#

XPHR$ 4LHK JLRRY YZHPTLK IR[L ]LXL JU[TZLK HTK ZOL \PHIPRPZ_

]HY JHRJ[RHZLK I_ UIZHPTPTN ZOL VLXJLTZPRL XHZPU UM KLHK JLRRY

]PZO PXXHKPHZLK JLRRY$ 5HJO KHZH VUPTZ ]HY HT H\LXHNL UM ZOXLL

KPYOLY HTK *% JLRRY VLX KPYO ]LXL L^VUYLK ZU ZOL RHYLX$

#!& ;3(&! "2/53-+4 )9+6;0/-<376

FPRRPT QTUJQKU]T ]HY VLXMUXSLK [YPTN YSHRR PTZLXMLXPTN

A=1 $YPA=1%" ZU H cTHR JUTJLTZXHZPUT UM * T<" YVLJPcJHRR_

ZHXNLZPTN ZOL VXUZLPT $713171731731171D13D1#

DD1DD" 3131713D1D1D7D37711133111" 73#

3D3D1D1D711D3D731733D7D/ 9T\PZXUNLT% [YPTN

7LTL 5XHYLX $BZHXZHNLTL% HJJUXKPTN ZU ZOL SHT[MHJZ[XLbY PT#

YZX[JZPUTY$ ?XUZLPT L^VXLYYPUT ]HY HTHR_`LK I_ FLYZLXT IRUZ#

ZPTN" [YPTN HTZP#76? $BHTZH#3X[`% HTK HTZP#HJZPT $BPNSH% HY H

RUHKPTN JUTZXUR$

#!' $4=79/;-/6-/ %3-97;-78>

1RR d[UXLYJLTJL SPJXUYJUV_ ]HY VLXMUXSLK UT H C5'%%%#5"

=PQUT SPJXUYJUVL$ 3LRRY L^VXLYYPTN <PZU#4YALK ]LXL PS#

HNLK [YPTN CA9C3 8G@" =PQUT 6PRZLX J[IL $L^JPZHZPUT"

*(% ZU *+% TS/ LSPYYPUT" *.% ZU +*% TS%$ <LHT]OPRL" JLRRY

PTK[JLK HTK L^VXLYYPTN ]PRRPT#76? ]LXL PSHNLK [YPTN 69C3

8G@ =PQUT cRZLX J[IL $L^JPZHZPUT" )+% ZU *%% TS/ LSPYYPUT"

*&% ZU *+% TS%$

$ )*.0-/.

$!" #&! '27<7<9+6;0/-<376

?OUZUZXHTYMLJZPUT L^VLXPSLTZY UT 38>#;& HTK 85;'.( JLRRY

]LXL VLXMUXSLK [YPTN H \PURLZ KPUKL RHYLX$ 6UX ZOL RHYLX VH#

XHSLZLXY [YLK" HTK [TKLX IXPNOZ#cLRK PSHNPTN" TU \PYPIRL XL#

HJZPUT MXUS ZOL JLRR ]HY UIYLX\LK$ B[JJLYYM[R ZXHTYPLTZ L^#

VXLYYPUT ]HY HJOPL\LK ]PZO ZOL <PZU#4YALK VRHYSPK MUX IUZO

JLRR RPTLY" HY YOU]T PT 6PNY$ '$H% HTK '$I%$ COL ZXHTYMLJZPUT

LMcJPLTJ_ HMZLX ,' O HY H M[TJZPUT UM RHYLX VU]LX" [YPTN H &#Y
L^VUY[XL ZPSL MUX 85;'.( JLRRY" PY YOU]T PT 6PN$ '$J%$ 5HJO

VU]LX RL\LR PY YPNTPcJHTZR_ KPMMLXLTZ MXUS ZOL JUTZXUR NXU[V

$"&%$%*% ]PZO ZOL L^JLVZPUT UM %$- SF" HY KLZLXSPTLK I_ H

UTL#]H_ HTHR_YPY UM \HXPHTJL $1=>E1% MURRU]LK I_ 4[T#

TLZZbY YZHZPYZPJHR ZLYZ$ >\LXHRR" H ?UPYYUT KPYZXPI[ZPUT J[X\L ]HY

UIZHPTLK ]OLXL ZOL YZHXZ HTK ZHPR UM ZOL VRUZ ]LXL YPNTPcJHTZR_

KPMMLXLTZ MXUS LHJO UZOLX" HY KLZLXSPTLK MXUS 1=>E1 MUR#

RU]LK I_ 6PYJOLXbY VHPX]PYL ZLYZ $"&%$%*%$ 1Y PTKPJHZLK PT

6PN$ '$J% HT LTOHTJLSLTZ UM ZXHTYMLJZPUT LMcJPLTJ_ ]HY HJ#

W[PXLK ]PZO HT PTJXLHYL PT RHYLX VU]LX MXUS %$- ZU &$( SF

(,+! # 4HPKMCNACJAC GI?ECN KD OM?JNDCAOCB #?$ 159"7& ?JB #@$

537',( OM?JNDCAOCB RGOF 8GOK"2N;CB LH?NIGB! #A$ OM?JNDCAOGKJ CDU"
AGCJAT KD 537',( ACHHN ?N ? DPJAOGKJ KD H?NCM LKRCM ?O OFC DKAPN PNGJE
? &"N CSLKNPMC OGIC! ?JB #B$ OM?JNDCAOGKJ CDUAGCJAT KD 537',( ACHHN ?N
? DPJAOGKJ KD H?NCM CSLKNPMC OGIC ?O '#& I># <FC CMMKM @?MN MCLMCNCJO
NO?JB?MB BCQG?OGKJ! #6., CSLCMGICJON KD *% BKNCB ACHHN$#

<KMMCN"8?L? CO ?H#- <M?JNGCJO OM?JNDCAOGKJ KD I?II?HG?J ACHHN PNGJE ? QGKHCO BGKBC H?NCM

6KPMJ?H KD 0GKICBGA?H 9LOGAN 6PHT$/PEPNO '%&% " =KH# &*#)$%)&*%+"(
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YLVK HI^FLHPFLHU QI ($)$($) VQ '-$+$+$(!" THURHFVLXHN["

V[RLI[LPJ D RQYHT GHRHPGHPFH QP VKH RTQEDELNLV[ QI FHNN RQTD#

VLQP DPG UWEUHSWHPVN[ VTDPUIHFVLQP$ AKH QRVLOWO NDUHT RQYHT

YDU IQWPG VQ TDPJH ITQO &$( VQ '$* OC" YKLFK [LHNGHG VTDPU#

IHFVLQP HI^FLHPFLHU EHVYHHP '-$&$*$- DPG (+$+$)$-!$

CLVKLP VKLU TDPJH QI RQYHT NHXHNU" VKH HI^FLHPFLHU YHTH PQV

ULJPL^FDPVN[ GLIIHTHPV ITQO HDFK QVKHT EWV YHTH ULJPL^FDPVN[

GLIIHTHPV ITQO %$- DPG ($) OC $!%%$%*%$ /GGLVLQPDNN[" DU

VKH OLVQFKQPGTLD YHTH VDJJHG" LV YDU RQUULENH VQ QEUHTXH VKHLT

UVTHDOLPJ" YKLFK LU DP LPGLFDVQT QI VKH QXHTDNN KHDNVK QI VKH

VTHDVHG FHNNU$ 6P FQORDTLUQP" VKH KLJKHUV VTDPUIHFVLQP HI^#

FLHPF[ IQT 05=#8& YDU DV '($&$*!$ /U HUVDENLUKHG

RTHXLQWUN["
&

VKH NHXHN QI URQPVDPHQWU VTDPUIHFVLQP YDU XHT[

NQY DPG PHJNLJLENH LP FQORDTLUQP VQ VKH VTDPUIHFVLQP HI^FLHP#

FLHU YH DFKLHXHG$ @RQPVDPHQWU VTDPUIHFVLQP LU GH^PHG DU FHNNU

HZRTHUULPJ VKH RTQVHLP YLVKQWV HZRQUWTH VQ VKH NDUHT LTTDGLD#

VLQP$

AKH GHRHPGHPFH QI VTDPUIHFVLQP HI^FLHPF[ QP NDUHT HZRQ#

UWTH VLOH YDU DNUQ UVWGLHG IQT D NDUHT RQYHT QI '$& OC IQT

528'.( FHNNU$ 3LJWTH '$G% UKQYU VKH VTDPUIHFVLQP HI^FLHPF[

DU D IWPFVLQP QI LTTDGLDVLQP VLOH ITQO -% OU VQ ' U$ /P

/<=B/ IQNNQYHG E[ 1WPPHVV]U UVDVLUVLFDN VHUV UKQYHG VKDV

VTDPUIHFVLQP HI^FLHPFLHU QEVDLPHG ITQO GLIIHTHPV HZRQUWTH

VLOHU YHTH ULJPL^FDPVN[ GLIIHTHPV FQORDTHG VQ VKH FQPVTQN

$!%%$%*%$ AKQWJK ULJPL^FDPV VTDPUIHFVLQP HI^FLHPF[ FDP DN#

THDG[ EH QEVDLPHG DV D -%#OU HZRQUWTH" &$% DPG &$* U DR#

RHDTHG VQ EH QRVLODN IQT VTDPUIHFVLQP DV VKLU NDUHT RQYHT$ 6P#

FTHDULPJ VKH HZRQUWTH VLOH ITQO &$* VQ ' U THUWNVHG LP VKH

GHFNLPH QI VKH DXHTDJH VTDPUIHFVLQP HI^FLHPF[ ITQO (+$*$+$+

VQ '($)$,!" THURHFVLXHN[" YKLFK OD[ EH D FQPUHSWHPFH QI D

GHFTHDUH LP XLDELNLV[ $UHH LP VKH IQNNQYLPJ%$

#!" '/59595<0+09= 5. )052-9 #05,- '/59597*48.-+9054

0DTHIWN DUUHUUOHPV QI VKH FHNN XLDELNLV[ YDU RHTIQTOHG E[ HZ#

RQULPJ VKH FHNNU VQ VKH NDUHT DPG OQPLVQTLPJ DP[ OQTRKQNQJL#

FDN FKDPJHU LP VKH FHNNU$ 0HNNU HZRQUHG VQ '$& OC IQT

+ VQ &% U LOOHGLDVHN[ UKQYHG ULJPU QI PHFTQULU$ 6P D IWTVKHT

UVWG[" VKH XLDELNLV[ QI VKH FHNNU VTHDVHG YLVK VKH NDUHT DV UKQTVHT

HZRQUWTH VLOHU YHTH OHDUWTHG IQT VYQ NDUHT RQYHTU" '$& DPG

($) OC" DU UKQYP LP 3LJ$ ( $NDUHT HZRQUWTH TDPJHG ITQO

%$%- VQ * U% LP VKH RTHUHPFH QI VT[RDP ENWH$

6P JHPHTDN" XLDELNLV[ YDU QEUHTXHG VQ GHFTHDUH YLVK LPFTHDU#

LPJ NDUHT HZRQUWTH VLOH$ 3QT D &#U HZRQUWTH" XLDELNLV[ YDU

OHDUWTHG ITQO .+$)$&$' DPG .*$)$&$'! IQT NDUHT RQYHTU

QI '$& DPG ($) OC" THURHFVLXHN[$ 6V ODTJLPDNN[ GHFTHDUHG ITQO

-+$,$&$' VQ +*$($)$'! DV ' U" THURHFVLXHN[$ AKLU UODNN LP#

FTHDUH LP NDUHT RQYHT ITQO '$& VQ ($) OC THUWNVHG LP D ULZ#

IQNG GHFNLPH LP XLDELNLV[ DV (#U HZRQUWTH VLOHU ITQO ,'$.$'

VQ &&$($&'$&!$ 6V YDU IQWPG VKDV XLDELNLV[ HZRQPHPVLDNN[ GH#

FD[U YLVK HZRQUWTH VLOH DPG NDUHT RQYHT$ 91*%" GH^PHG DU

GQUDJH HPVDLNLPJ *%! FHNN XLDELNLV[ QFFWTU DV DP HPHTJ[ GHPULV[

QI &+$( ;7 !FO'$

<QVDEN[" YLVK NDUHT HZRQUWTHU EH[QPG VKH VKHTDRHWVLF GQU#

DJH IQT VTDPUIHFVLQP" _WQTHUFHPFH YDU QEUHTXHG DV VKH VDTJHVHG

ULVH" DP LPGLFDVLQP QI ULPJNH#RKQVQP DEUQTRVLQP" YKLFK OLJKV

NHDG VQ VKH OHNVLPJ QI VKH RNDUOD OHOETDPH$ =IVHP YKHP VKLU

RKHPQOHPQP QFFWTTHG" VKH FHNN WPGHTYHPV ENHEELPJ" JTDPWND#

VLQP" NQUU QI LPVTDFHNNWNDT ODVHTLDN" DPG PHFTQULU$ <HLJKEQTLPJ

FHNNU" KQYHXHT" YHTH PQV DIIHFVHG$

#!# "-22!(6-+0>+ %-4- &45+1,5;4 $<6-703-498

?</ LPVHTIHTHPFH $?</L% LU D VHFKPQNQJ[ GHXHNQRHG E[ 3LTH

HV DN$
&)

LP &..- VKDV HPDENHU VKH MPQFMGQYP LP HZRTHUULQP QI D

URHFL^F JHPH$ UL?</ LPVHTIHTHU YLVK PHY RTQVHLP HZRTHUULQP"

THUWNVLPJ LP ULNHPFLPJ QI VKH JHPH$ UL?</ LU ODGH ITQO D

NHPJVK QI '% VQ '* PWFNHQVLGHU VKDV ELPG URHFL^FDNN[ VQ VKH

OHUUHPJHT ?</ $O?</% QI VKH RTQVHLP QI LPVHTHUV$ AKLU NHDGU

VQ VKH IQTODVLQP QI D UL?</ FQORNHZ" YKLFK THUWNVU LP O?</

FNHDXDJH DPG LVU UWEUHSWHPV GHJTDGDVLQP$
&*

AKH DRRNLFDVLQPU QI

VKLU YLGHN[ WUHG JHPH ULNHPFLPJ VHFKPQNQJ[ LPFNWGH UVWG[LPJ D

JHPH]U IWPFVLQP" EWV DNUQ VKH RQVHPVLDN VKHTDRHWVLF OQGL^FDVLQP

QI JHPH HZRTHUULQP LP KWODP GLUHDUHU$ AKHTHIQTH" IQT VKH THD#

UQPU QWVNLPHG LP VKH LPVTQGWFVLQP" YH HZRNQTHG VKH RQUULENH WUH

QI XLQNHV GLQGH NDUHTU LP FHNN#URHFL^F JHPH MPQFMGQYP HZRHTL#

OHPVU$

A?HZ YLNNLP#43>#528 FHNNU YHTH LPGWFHG YLVK & J !ON

VHVTDF[FNLPH VQ DFVLXDVH YLNNLP#43> HZRTHUULQP$ /IVHT ') K"

* P; UL?</ ODPWIDFVWTHG VQ THFQJPL\H URHFL^FDNN[ VKH YLN#

NLP JHPH" YDU FKHOLFDNN[ VTDPUIHFVHG LPVQ VKHUH FHNNU$ CLNNLP#

43> RTQVHLP NHXHNU YHTH GHVHFVHG ')" )-" DPG ,' K DIVHT

UL?</ VTHDVOHPV$ CHUVHTP ENQV DPDN[ULU $3LJ$ )% UKQYU VKDV

YLNNLP#43> HZRTHUULQP LU ULJPL^FDPVN[ THGWFHG DIVHT

)- VQ ,' K QI UL?</ VTDPUIHFVLQP$ /FVLP YDU WUHG DU D NQDGLPJ

FQPVTQN DPG HZRTHUULQP NHXHNU THODLP WPFKDPJHG VKTQWJKQWV

UL?</ VTDPUIHFVLQP$ AKLU" VKHTHIQTH" LPGLFDVHG VKDV VKH UL?</

WUHG YHTH URHFL^F DPG HIIHFVLXH LP GHFTHDULPJ YLNNLP HZRTHU#

ULQP$

AKHTHIQTH" IQT VKH RKQVQRQTDVLQP HZRHTLOHPVU" * P; UVQFM

QI VKH UL?</ GWRNHZHU YLVK VKH ;LVQ#1U?HG#HPFQGLPJ RNDU#

OLG YDU DGGHG VQ VKH VTDPUIHFVLQP OHGLWO$ 6PLVLDNN["

&% J !ON QI ;LVQ#1U?HG YDU DNUQ DGGHG VQ LGHPVLI[ FHNNU

$&%! # #<$ 9D<=DFDMR IA 325',( >@FFL @QJIL@? MI F<L@K <M '#& <H?
(#) G; <M MC@ AI>NL <M O<KRDHB @QJILNK@ MDG@# 2KKIK =<KL
K@JK@L@HMSLM<H?<K? ?@OD<MDIH #4.( @QJ@KDG@HML IA *% ?IL@? >@FFL$#
#=$ 0KDBCM"T@F? DG<B@ IA F<L@K @QJIL@? 325',( >@FFL# 1@FFL JIDHM@? MI
=R MC@ K@? <KKIPL P@K@ DKK<?D<M@? PDMC MC@ F<L@K <H? C<O@ M<E@H NJ MC@
MKRJ<H =FN@ ?R@! < LDBH IA >@FFNF<K H@>KILDL# #1IFIK IHFDH@ IHFR#$

8IKK@L"6<J< @M <F#- 8K<HLD@HM MK<HLA@>MDIH IA G<GG<FD<H >@FFL NLDHB < ODIF@M ?DI?@ F<L@K

4INKH<F IA 0DIG@?D><F 7JMD>L 4NFR$/NBNLM '%&% " 9IF# &*#)$%)&*%+")
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XLEX LEH FIIR WYGGIWWJYPP] XVERWJIGXIH$ 2IPPW [IVI XEVKIXIH

YWMRK E ($)#QC PEWIV TS[IV EX XLI JSGYW ERH E &#W I\TSWYVI

XMQI$ 2SRXVSP HMWLIW MRGPYHIH &&' GIPPW [MXL ;MXS#3W@IH TPEW#

QMH ERH XLI WM@<0 [MXLSYX PEWIV XVIEXQIRX. &'' GIPPW [MXLSYX

XLI ;MXS#3W@IH TPEWQMH FYX [MXL WM@<0 [MXLSYX PEWIV XVIEX#

QIRX" ERH &(' GIPPW [MXLSYX FSXL XLI ;MXS#3W@IH ERH WM@<0

[MXL PEWIV XVIEXQIRX$ 4\TVIWWMSR SJ [MPPMR#65> [EW XLIR MR#

HYGIH F] XLI EHHMXMSR SJ XIXVEG]GPMRI" ERH GIPPW [IVI QSRM#

XSVIH JSV aYSVIWGIRGI SZIV XLI RI\X ' HE]W$ 5SV EPP GSRXVSP

HMWLIW" WTSRXERISYW 3<0 XVERWJIGXMSR SV ORSGOHS[R [EW RSX

SFWIVZIH$

5MKYVI * WLS[W MQEKIW SJ TLSXSTSVEXIH B@I\ [MPPMR#65>#

749 GIPPW MR XLI TVIWIRGI SJ XLI [MPPMR WTIGM`G WM@<0 ERH XLI

;MXS#3W@IH TPEWQMH$ 5MKYVI *&E' MW E WYGGIWWJYPP] XVERWJIGXIH

B@I\ [MPPMR#65>#749 GIPP" EW WLS[R F] XLI I\TVIWWMSR SJ

QMXSGLSRHVMEP XEVKIXIH VIH aYSVIWGIRX TVSXIMR GETXYVIH YWMRK

XLI B@8B2 7D?" <MOSR 5MPXIV GYFI$ 5MKYVI *&F' MW XLI WEQI

`IPH SJ ZMI[ FYX YRHIV FVMKLX#`IPH MQEKMRK$ 5MKYVI *&G'
WLS[W XLI WEQI GIPPW" FYX MQEKIH RS[ YWMRK E 58B2 7D?

<MOSR `PXIV GYFI$ 0W MRHMGEXIH F] XLI FPYI ERH VIH EVVS[W EVI

GIPPW XLEX I\LMFMX GPIEV ORSGOIH HS[R SJ [MPPMR#65> I\TVIW#

WMSR" EW MRHMGEXIH F] XLI EFWIRGI SJ KVIIR aYSVIWGIRGI$ =RI

GIPP" MRHMGEXIH F] XLI VIH EVVS[ TSMRX" [EW EPWS XVERWJIGXIH

[MXL XLI ;MXS#3W@IH IRGSHIH TPEWQMH$ BLI PEWIV_W WTIGM`GMX]

SJ EGXMSR MW MRHMGEXIH F] XLI JEGX XLEX YRXVIEXIH GIPPW LEZI RSX

FIIR ORSGOHS[RIH SV XVERWJIGXIH [MXL ;MXS#3W@IH" EW SF#

WIVZIH MR EPP GSRXVSP HMWLIW GLIGOIH YRHIV E aYSVIWGIRGI

QMGVSWGSTI ERH GSR`VQIH F] CIWXIVR FPSX EREP]WMW &HEXE RSX

WLS[R'$

"!# #'+.'/%12/' !%*&2*%1)-,0 %1 1(' "-&%* $-*2+'

1EWIH SR TVIZMSYW VITSVXW YWMRK XLI G[ ZMSPIX PEWIV JSV XVERW#

JIGXMSR" MX [EW GSRNIGXYVIH XLEX E QIPXMRK SJ XLI TLSWTLSPMTMH

FMPE]IV SGGYVW HYI XS XLI HMVIGX EFWSVTXMSR SJ XLI TLIRSP VIH MR

XLI QIHMYQ" GEYWMRK PSGEPM^IH XLIVQEP IJJIGXW SR XLI MVVEHM#

EXIH WMXI$
,"&%

BS IPYGMHEXI XLI QIGLERMWXMG TVSGIWW SJ TSVEXMSR"

ER IWXMQEXI SJ XLI XIQTIVEXYVI EX XLI FIEQ JSGYW [EW GEPGY#

PEXIH FEWIH SR QSHIPMRK XLI TLIRSP VIH EW E WTLIVI SJ VEHMYW

' MQQIVWIH MR E RSREFWSVFMRK QIHMYQ$ AMRGI XLI EFWSVTXMSR

ERH XLI GSRWIUYIRXMEP MRGVIEWI MR XIQTIVEXYVI SGGYV SRP] MR

GPSWI TVS\MQMX] XS XLI JSGYW" SRI GER EWWYQI XLEX XLI PEWIV

IRIVK] MW EFWSVFIH SRP] F] XLI TLIRSP VIH WTLIVI$ BLI VEHMYW

' SJ XLI WTLIVI GER FI QEHI IUYMZEPIRX XS XLI VEHMYW SJ XLI

FIEQ WTSX KMZIR F] '/%$+&) !<0" [LIVI )/)%* RQ ERH

<0/&$'$

AMRGI QSWX SJ XLI MRGMHIRX TS[IV SJ XLI PEWIV KSIW XLVSYKL

XLI WTLIVI SJ VEHMYW '" [I GER EWWYQI XLEX XLI WYFWXMXYXMSR SJ

JSGYWIH 6EYWWMER FIEQ [MXL E TPERI [EZI SJ MRGMHIRX MRXIR#

WMX] !/ " ! & '''(&+&%&% C !Q'" [LIVI " MW XLI TS[IV SJ

XLI PEWIV EX XLI JSGEP TPERI KSMRK XLVSYKL XLI KISQIXVMGEP

GVSWW WIGXMSR SJ XLI WTLIVI" [MPP RSX MRXVSHYGI ER] WMKRM`GERX

IVVSV XS SYV IWXMQEXI$ BLI ;MI WGEXXIVMRK TVSFPIQ GER FI

WSPZIH JSV XLI TLIRSP VIH WTLIVI WYVVSYRHIH F] XLI RSREF#

WSVFMRK QIHMYQ$ BLI MQEKMREV] TEVX SJ XLI MRHI\ SJ VIJVEGXMSR

SJ XLI TLIRSP VIH WTLIVI [EW HIXIVQMRIH F] XLI IUYEXMSR &)

/&)&! %& ) !) &'*" FEWIH SR XLI QIEWYVIH EFWSVTXMSR GSIJ#

`GMIRX" /%$+ GQ!&" RSXMRK XLEX XLI GLERKI MR XLI VIEP TEVX SJ

XLI MRHI\ SJ VIJVEGXMSR & MW RIKPMKMFPI$ BLMW ]MIPHIH ER I\TVIW#

WMSR JSV XLI MRHI\ SJ VIJVEGXMSR KMZIR F] &) /&$((! %&&$-(

+&%!+'$ BLI WSPYXMSR TVSZMHIW YW XLI EFWSVTXMSR GVSWW WIGXMSR

SJ XLI TLIRSP VIH WTLIVI" [LMGL MW /'+&%!&, Q'$ 7IRGI"

XLI LIEX EFWSVFIH # F] XLI TLIRSP VIH GER FI SFXEMRIH" [LIVI

#/ ! ((+&%!, C$

AMRGI" XLI G[ MVVEHMEXMSR YWIH JSV XLI I\TIVMQIRXW PEWXW SJ

XLI SVHIV SJ QMPPMWIGSRHW XS WIGSRHW ERH XLI XIQTIVEXYVI

GLERKI WEXYVEXIW MQQIHMEXIP] EJXIV WIZIVEP QMGVSWIGSRHW"
&'

[I QSHIPIH SRP] XLI WXIEH] WXEXI XIQTIVEXYVI MRGVIEWI"

.$ [LMGL MW KMZIR F] .$/ && !) '&# ! %''"
&+

[LIVI

%/%$+ C !Q9 MW XLI XLIVQEP GSRHYGXMZMX] SJ [EXIV$ CI EW#

WYQIH XLI WEQI XLIVQEP GSRHYGXMZMX] JSV TLIRSP VIH$ 5VSQ

XLMW" XLI GEPGYPEXIH .$ MW %$%' 9$

# %),'-,,)+*

5IQXSWIGSRH RIEV#8@ PEWIVW EVI KIRIVEPP] QYGL QSVI IJJIG#

XMZI XSSPW JSV GIPP RERSWYVKIV] GSQTEVIH XS G[ PEWIVW HYI XS

XLI QIGLERMWQW SJ XLIMV MRXIVEGXMSR [MXL FMSPSKMGEP QEXIVMEP$
&'

7S[IZIV" WMRGI FSXL [SVO [MXL E XMKLXP] JSGYWIH PEWIV FIEQ

XLEX MW X]TMGEPP] ER SVHIV SJ QEKRMXYHI WQEPPIV XLER XLI GIPP_W

HMEQIXIV &(&% XS '% Q'" XLI] QE] FSXL FI WYMXEFPI JSV

WMRKPI#GIPP XVERWJIGXMSRW WXYHMIW$ 8R TEVXMGYPEV" XLI ZMSPIX HMSHI

PEWIV GER FI E GSQTEGX ERH GSWX#IJJIGXMZI FMSPSKMGEP XVERWJIG#

XMSR XSSP [LIR GSQTEVIH XS XLI YWI SJ E JIQXSWIGSRH TYPWIH

PEWIV$

8R GSRXVEWX XS TVIZMSYW [SVO"
,"&%

[LMGL VITSVXIH WQEPP HEVO

GMVGYPEV WTSXW SR XLI GIPP XLEX HMWETTIEVIH WIZIVEP QMRYXIW

EJXIV PEWIV MVVEHMEXMSR" XLIWI HEVO WTSXW [IVI RSX SFWIVZIH HYV#

MRK SYV I\TIVMQIRXW$ ;SVI GSRGPYWMZIP]" XLIWI HEVO GMVGYPEV

WTSXW VITIEXIHP] ETTIEV JSV GIPPW MVVEHMEXIH [MXL PEWIV TEVEQ#

IXIVW FI]SRH E XLIVETIYXMG HSWEKI$ <S ZMWMFPI VIEGXMSR" LSPI"

&)(! # BHTUHSP ENQU DPDNZTLT TKQXLPJ SHGVFULQP QI XLNNLP"43= HYRSHT"
TLQP DIUHS (+ K QI ) P9 TL?;. FKHOLFDN USDPTIHFULQP# @?HY XLNNLP"43=
FHNNT XHSH LPGVFHG XLUK & J$ON UHUSDFZFNLPH UQ HYRSHTT XLNNLP"43=
'( K RSLQS UQ TL?;. USHDUOHPU# BHTUHSP ENQUT XHSH RSQEHG XLUK DPUL"
43= DPG DPUL"DFULP! XLUK UKH NDUUHS VTHG DT D NQDGLPJ FQPUSQN#

&)(! $ 4HPH MPQFMGQXP VTLPJ D WLQNHU GLQGH TZTUHO# #D$ . @?HY"
XLNNLP"43="528 FHNN \VQSHTFLPJ SHG GVH UQ UKH HYRSHTTLQP QI UKH 9LUQ"
1T?HG DPG #E$ VPGHS ESLJKU"[HNG LODJLPJ- #F$ \VQSHTFHPFH LODJH QI
UKH TDOH [HNG QI WLHX VTLPJ D 36@0 5C># @KH ?HG DSSQX RQLPUT UQ D
FHNN UKDU KDT EHHP FQUSDPTIHFUHG XLUK 9LUQ"1T?HG DPG XLNNLP TRHFL[F
TL?;.# /NVH DSSQXT RQLPU UQ FHNNT UKDU KDWH EHHP USDPTIHFUHG XLUK
TL?;. QPNZ# #0QNQS QPNLPH QPNZ#$

@QSSHT"9DRD HU DN#, @SDPTLHPU USDPTIHFULQP QI ODOODNLDP FHNNT VTLPJ D WLQNHU GLQGH NDTHS

7QVSPDN QI /LQOHGLFDN <RULFT 7VNZ$.VJVTU '%&% " AQN# &)#($%(&)%*")
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UX JH\PZHZPUT I[IIRL MXUS ZOL JLRR ]HY UIYLX\LK [YPTN ZOL

RHYLX HTK L^VUY[XL ZPSLY KLYJXPILK PT ZOPY VHVLX MUX Y[JJLYYM[R

ZXHTYMLJZPUT% GOLZOLX 5@2 ZXHTYMLJZPUT TLJLYYPZHZLY H THTU$

YP`L OURL PY TUZ _LZ JUTgXSLK# I[Z ZOL PTJXLHYL PT SLSIXHTL

VLXSLHIPRPZ_ SH_ IL LTU[NO ZU HRRU] H JPXJ[RHX 5@2 VRHYSPK

ZU LTZLX ZOXU[NO ZOL JLRR SLSIXHTL% 7[XZOLX YZ[KPLY ]PRR IL

TLJLYYHX_ ZU KPYJU\LX JOHTNLY ]PZOPT ZOL SLSIXHTL YZX[JZ[XL

HZ ZOL YPZL UM RHYLX PXXHKPHZPUT%

;T ZOPY ]UXQ# ZXHTYPLTZ ZXHTYMLJZPUT HY UVVUYLK ZU YZHIRL

ZXHTYMLJZPUT UM 49A$=( HTK 96=)0* JLRRY ]LXL HJOPL\LK%

DLRLJZPUT UM JLRRY ]PZO PTZLNXHZLK 5@2 PT ZOLPX T[JRLHX NL$

TUSL [YPTN HT HTZPIPUZPJ JHRRLK 8+(/ ]HY YZPRR HRYU VUYYPIRL

HTK ZO[Y LTHIRLK [Y ZU NLTLXHZL YZHIRL JURUTPLY MXUS U[X ZXHT$

YPLTZR_ ZXHTYMLJZLK JLRR RPTLY% 9U]L\LX# ZOL RHYLX LTLXN_ [YLK

PT ZOPY ]UXQ ]HY UM ZOL UXKLX UM )''' <# JUSVHXLK ZU UTR_

() < [YLK I_ BHZLXYUT LZ HR%
(

D[JJLYYM[R ZXHTYPLTZ ZXHTYMLJ$

ZPUT [YPTN U[X J] MUJ[YLK +',$TS RHYLX XLW[PXLK HT LTLXN_

KLTYPZ_ UM (%, ?<!JS)# PT JRUYL HNXLLSLTZ ]PZO ZOL LTLXN_

KLTYPZ_ XLVUXZLK [YPTN H MUJ[YLK +//$TS HXNUT$PUT RHYLX

&'( ?< !JS)(%('

EOL J] JLRR VUXHZPUT ]HY Y[NNLYZLK ZU IL SHPTR_ K[L ZU ZOL

RHXNL ZLSVLXHZ[XL XPYL PT ZOL HIYUXVZP\L SLKP[S RLHKPTN ZU

VUXL MUXSHZPUT UT ZOL JLRR SLSIXHTL
/#('

OU]L\LX# ZOL ZLS$

VLXHZ[XL JHRJ[RHZPUT HZ ZOL MUJ[Y PT ZOL VOLTUR XLK SLKP[S

XL\LHRY ZOHZ ZOL NXHKPLTZ ZLSVLXHZ[XL PY \LX_ YSHRR ''%') a4%

A[X L^VLXPSLTZY ]LXL VLXMUXSLK HZ ), a4% 9LTJL# ZOL JHRJ[$

RHZLK ZLSVLXHZ[XL JOHTNL PY PTY[MgJPLTZ ZU HJOPL\L ZOL XL$

VUXZLK ZLSVLXHZ[XLY UM +) ZU +, a4# ]OPJO HXL TLJLYYHX_ MUX H

SLSIXHTL VOHYL ZXHTYPZPUT#
(.

HTK PY JLXZHPTR_ ]LRR YOUXZ UM ZOL

XLW[PXLK ZLSVLXHZ[XL XPYL MUX SPJXUI[IIRL MUXSHZPUT%
()

EOPY

SH_ PSVR_ ZOHZ H VOUZUJOLSPJHR XLHJZPUT KUSPTHZLY K[XPTN

PXXHKPHZPUT I_ H MUJ[YLK +',$TS RHYLX XLRHZLK ZU HMMLJZPTN

SLSIXHTL PTZLNXPZ_% A^PKHZP\L YZXLYY PTK[JLK I_ ZOL VXUK[J$

ZPUT UM XLHJZP\L U^_NLT YVLJPLY &CAD( Y[JO HY A)
!# A9"# HTK

9)A) XHKPJHRY# PY QTU]T ZU IL LRPJPZLK I_ ZOL PXXHKPHZPUT UM

RPNOZ HZ ZOPY ]H\LRLTNZO XLNPUT#
(/c)(

]OPJO SH_ RLHK ZU Y[IYL$

W[LTZ RPVPK VLXU^PKHZPUT# JRUYLR_ XLRHZLK ZU VUYYPIRL PSVHPX$

SLTZ UM ZOL VOUYVOURPVPK IPRH_LX%
))

2Z ZOL YPZL UM PXXHKPHZPUT#

RUJHRP`LK VXUK[JZPUT UM CAD SH_ UJJ[X# RLHKPTN ZU JOHTNLY PT

SLSIXHTL VLXSLHIPRPZ_% EOL MHJZ ZOHZ U^PKHZP\L YZXLYY SH_ IL

PT\UR\LK PT ZOPY VXUJLYY ]U[RK HNXLL ]PZO U[X UIYLX\HZPUTY

ZOHZ ZOL HKKPZPUT UM VOLTUR XLK LTOHTJLK ZOL U\LXHRR ZXHTYMLJ$

ZPUT LMgJPLTJ_% BXLY[SHIR_# ILJH[YL PZ OHY ILLT VXL\PU[YR_

YOU]T ZOHZ VOLTUR XLK JHT VXUZLJZ HNHPTYZ ZOL OHXSM[R LMMLJZY

UM CAD
)*

I[Z PZY VXLYLTJL PT ZOL SLKP[S ]PRR TUZ PTOPIPZ ZOL

RUJHRP`LK CAD NLTLXHZLK HZ ZOL YPZL UM PXXHKPHZPUT% 6^VLXP$

SLTZY XL\LHRLK ZOHZ JLRR VUXHZPUT ]HY KUYL KLVLTKLTZ# \HX_PTN

HY H M[TJZPUT UM IUZO L^VUY[XL ZPSL HTK H\LXHNL VU]LX% 7[Z[XL

L^ZLTYP\L L^VLXPSLTZY ]PRR IL XLW[PXLK ZU LR[JPKHZL ZOL L^HJZ

SLJOHTPYS MUX VUXHZPUT L\LTZY JH[YLK I_ \PURLZ KPUKL RHYLX

RPNOZ%

DZ[KPLY OH\L YOU]T ZOHZ \PURLZ$IR[L RPNOZ PTK[JLY KHSHNL

ZOXU[NO HIYUXVZPUT I_ JLRR[RHX LTKUNLTU[Y VOUZU$

YLTYPZP`LXY#
)(#)+

]OPJO Y[IYLW[LTZR_ RLHKY ZU HK\LXYL JOLSPJHR

XLHJZPUTY% BUYYPIRL JLRR[RHX JOXUSUVOUXLY HIYUXIPTN PT ZOL

\PURLZ$IR[L XLNPUT PTJR[KL VUXVO_XPT XPTN YZX[JZ[XLY HTK

hH\PTY%
(/c)'

;T HKKPZPUT# 9UJQILXNLX LZ HR%
)'

XLVUXZLK PTK[JLK

KHSHNL I_ \PURLZ RPNOZ &+'' ZU +(' TS( MXUS H ^LTUT HXJ

SLXJ[X_ RHSV UT SHSSHRPHT JLRRY K[L ZU YZPS[RHZLK VXUK[J$

ZPUT UM 9)A) I_ VOUZUXLK[JZPUT UM hH\PTY HTK&UX hH\PTY JUT$

ZHPTPTN U^PKHYLY RUJHZLK ]PZOPT ZOL SPZUJOUTKXPH HTK VLXU^P$

YUSLY% CAD VXUK[JZPUT ]HY HRYU LW[P\HRLTZR_ UIYLX\LK [YPTN

TLHX$;C MLSZUYLJUTK RHYLX V[RYLY# ]OPJO ZOL_ HZZXPI[ZL ZU Z]U$

VOUZUT HIYUXVZPUT%
),

A^PKHZP\L YZXLYY SH_ RLHK ZU YL\LXHR

YZX[JZ[XHR KLMUXSHZPUTY Y[JO HY MXHNSLTZHZPUT HTK JUTKLTYH$

ZPUT UM T[JRLP# 5@2 YZXHTK IXLHQY# HTK RUYY UM SLSIXHTL

VXUZLJZP\L M[TJZPUTHRPZ_ RLHKPTN ZU JLRR HVUVZUYPY%
),

5LYVPZL

ZOPY# ]L OH\L YOU]T ZOHZ NUUK \PHIPRPZ_ '0'! JHT YZPRR IL

UIZHPTLK HZ UVZPSHR VHXHSLZLXY ]PZO JUTZXURRLK VU]LX HTK L^$

VUY[XL ZPSL UM ZOL MUJ[YLK \PURLZ KPUKL RHYLX%

D[JJLYYM[R NLTL QTUJQKU]T ]HY HRYU HJOPL\LK [YPTN ZOL

\PURLZ KPUKL RHYLX% ;TZLXLYZPTNR_# ZOLXL ]LXL SUXL UJJ[XXLTJLY

UM NLTL QTUJQKU]T ]PZO ZOL YPC@2 ZOHT ]PZO 5@2 ZXHTYMLJ$

ZPUT# HY YOU]T PT 7PN% ,&J(# ]OLXL g\L JLRRY &IR[L HXXU]Y( OHK

QTUJQKU]T UM ]PRRPT$87B L^VXLYYPUT I[Z ]LXL TUZ L^VXLYYPTN

?PZU$5YCLK% ;Z JHT IL KLK[JLK ZOHZ ZOL LMgJPLTJ_ MUX NLTL

QTUJQKU]T ]PRR IL OPNOLX JUSVHXLK ZU 5@2 ZXHTYMLJZPUT HY

YPC@2 HXL S[JO YSHRRLX JUSVHXLK ZU 5@2 VRHYSPKY )P%L%#

), IV &IHYL VHPXY( \LXY[Y ',''' ZU -''' IV*% 2YY[SPTN VHY$

YP\L KPMM[YPUT UM 5@2 UX YPC@2 MXUS HT L^ZXHJLRR[RHX SL$

KP[S ZU J_ZUYUR K[XPTN VOUZUZXHTYMLJZPUT# UTL JU[RK JUSVHXL

ZOL XHZL UM KPMM[YPUT UM VRHYSPK 5@2 HTK YPC@2% EOL KPMM[$

YPUT JULMgJPLTZ JU[RK IL UIZHPTLK [YPTN ZOL LW[HZPUT

"1 &*( !- '$(# ]OLXL * PY 3URZ`SHTTfY JUTYZHTZ# PY ZOL

\PYJUYPZ_ UM ZOL SLKP[S# HTK ( PY ZOL ZLSVLXHZ[XL PT QLR\PT%
)-

7UX YPC@2# ZOL 7RUX_ YJHRPTN RH] JU[RK HVVR_# HTK ZOL XHKP[Y

UM N_XHZPUT '$ PY NP\LT I_ '$1,%,%(!*# ]OLXL % PY ZOL T[S$

ILX UM IHYL VHPXY%
).

?LHT]OPRL# HT LYZPSHZLK XLRHZPUT UM '$

IHYLK UT % MUX Y[VLXJUPRLK 5@2 VRHYSPKY OHY ]HY KLXP\LK I_

BXH`LXLY# ]OLXL '$1'%+')(%%
)/

3HYLK UT ZOLYL XLRHZPUTY#

]L HVVXU^PSHZLK ZOHZ ZOL ),$IV YPC@2 KPMM[YLY HVVXU^P$

SHZLR_ (''( MHYZLX ZOHT H ,-''$IV VRHYSPK 5@2# LTHIRPTN

SUXL YPC@2 SURLJ[RLY ZU KPMM[YL PTZU ZOL PXXHKPHZLK YPZL ZOHT

VRHYSPK 5@2%

;T JUTJR[YPUT# ZXHTYPLTZ ZXHTYMLJZPUT UM SHSSHRPHT JLRRY

[YPTN H \PURLZ KPUKL RHYLX ]HY KLSUTYZXHZLK% A[X YZ[KPLY VH\L

ZOL ]H_ MUX H JUSVHJZ# SPTPHZ[XL Y_YZLS [ZPRP`PTN RU]$VU]LX

KPUKL Y_YZLSY MUX JLRR ZXHTYMLJZPUT# ]OPJO ]U[RK SHQL PZ PT$

L^VLTYP\L HTK HJJLYYPIRL% GL HRYU YOU]LK ZOHZ JLRR$YVLJPgJ

NLTL QTUJQKU]T L^VLXPSLTZY HXL VUYYPIRL ]PZO VOUZUVUXH$

ZPUT# UVLTPTN [V TL] \PYZHY PT JLRR IPURUN_% @UZHIR_# ZOPY PY ZOL

gXYZ ZLJOTPW[L ZOHZ ]U[RK LTHIRL ZOL QTUJQKU]T UM H YVLJPgJ

NLTL PT H YVLJPgJ JLRR ]OPRL PZ PY Y[XXU[TKLK I_ UZOLX JLRRY%

D[JO ZLJOTURUN_ ]U[RK IL UM VHXZPJ[RHX PTZLXLYZ ZU JLRR IPURU$

NPYZY L^VRUXPTN JLRR[RHX ILOH\PUX PT S[RZPJLRR[RHX ZPYY[L%

!#(+,0)%$'*%+/.

GL ZOHTQ 5X% 5H\PK DZL\LTYUT MUX [YLM[R KPYJ[YYPUTY% GL

ZOHTQ ZOL FTPZLK =PTNKUS 6TNPTLLXPTN HTK BO_YPJHR DJPLTJLY

CLYLHXJO 4U[TJPR HTK 3PUZLJOTURUN_ HTK 3PURUNPJHR DJPLTJLY

CLYLHXJO 4U[TJPR MUX M[TKPTN% ?>E HJQTU]RLKNLY ZOL Y[VVUXZ

UM H DFB2 BXP`L DZ[KLTZYOPV% =5 PY H CU_HR DUJPLZ_$GURMYUT

?LXPZ 2]HXK 9URKLX% 78? HTK =5 JUTZXPI[ZLK LW[HRR_ ZU ZOPY

]UXQ%

"%&%-%+#%.

(% >% BHZLXYUT# 3% 2NHZL# ?% 4USXPL# C% 7LXN[YUT# E% =% >HQL# <% 6%
?UXXPY# 2% 6% 4HXX[ZOLXY# 4% E% 2% 3XU]T# G% DPIILZZ# B% 6% 3X_HTZ# 7%
8[TT$?UUXL# 2% 4% CPJOLY# HTK =% 5OURHQPH# dBOUZUVUXHZPUT HTK JLRR
ZXHTYMLJZPUT [YPTN H \PURLZ KPUKL RHYLX#e &+.! #/+,)-- !"&)(# ,0,c-''
&)'',(%

0=??5@!.2>2 5A 29"* 0?2<@85<A A?2<@653A8=< =6 ;2;;2982< 3599@ B@8<7 2 C8=95A 48=45 92@5?

-=B?<29 =6 ,8=;548329 />A83@ -B9D#+B7B@A &$%$ " 1=9" %(#'$$'%($)!)
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&# 2# B\N^NW[XW! 0# /PJ\N! G# C[JVYX]UJ! ?# 4R[LQNZ! 1# C# /# 0ZX_W!
F# BRKKN\\! /# ARLQN[! 4# 5]WW"<XXZN! JWM 9# 2QXUJTRJ! j4NV\X[NL"
XWM XY\RLJU \ZJW[ONL\RXW XO LNUU[. ^RJKRUR\a JWM NOnLRNWLa!k /AD# (G"
AB8CC "%#%*$! +%&)i+%'' #&$$*$#

'# G# C[JVYX]UJ! E# 5JZLN["1QJ^Nb! <# 1XVZRN! 2# 8# B\N^NW[XW! 0#
/PJ\N! 1# C# /# 0ZX_W! 4# 5]WW"<XXZN! JWM 9# 2QXUJTRJ! j4NV\X"
[NLXWM LNUU]UJZ \ZJW[ONL\RXW ][RWP J WXWMROOZJL\RWP URPQ\ KNJV!k %AA=#

0;HC# ,8DD# *"#)$! $)'-$&i$)'-$' #&$$+$#
(# ;# 3# 0JZZN\\! 8# H# B]U! 6# CJTJWX! 3# 8# EJW 0XLT[\JNUN! ?# 5# 6Ja"

MXW! JWM 8# 6# 3KNZ_RWN! jANPRXW"MRZNL\NM YQX\X\ZJW[ONL\RXW ZN^NJU[
\QN O]WL\RXWJU [RPWRnLJWLN XO J MNWMZR\RLJUUa [aW\QN[RbNM \ZJW[LZRY\RXW
OJL\XZ!k .4D# -8D;@7C $#*$! ())i(*$ #&$$*$#

)# 1# <L2X]PJUU! 2# 8# B\N^NW[XW! 1# C# /# 0ZX_W! 4# 5]WW"<XXZN! JWM
9# 2QXUJTRJ! jCJZPN\NM XY\RLJU RWSNL\RXW XO PXUM WJWXYJZ\RLUN[ RW\X
[RWPUN VJVVJURJW LNUU[!k +# &<@A;@D@?# ##%&$! +'*i+(' #&$$-$#

*# 7# 0# 1UJZT! 3# 5# 6JWJWRJ! 8# B\N^NW[! <# 5JUURWJ! /# 4RNLT! A#
0ZJWMN[! 0# ># ?JU[[XW! JWM <# A# 9XUUNZ! j>Y\XRWSNL\RXW OXZ NOnLRNW\
\JZPN\NM MNUR^NZa XO J KZXJM ZJWPN XO LXVYX]WM[ JWM VJLZXVXUNL]UN[
RW\X MR^NZ[N LNUU \aYN[!k +# &<@>87# /AD# ""#%$! $%($'( #&$$*$#

+# F# CJX! 8# FRUTRW[XW! 3# 8# B\JWKZRMPN! JWM <# F# 0NZW[! j2RZNL\
PNWN"\ZJW[ONZ RW\X Q]VJW L]U\]ZNM"LNUU[ OJLRUR\J\NM Ka UJ[NZ VRLZX"
Y]WL\]ZN XO \QN LNUU"VNVKZJWN!k 0B@6# .4D=# %647# 26<# 3#2#%# )%#%&$!
(%,$i(%,( #%-,+$#

,# 5# ?JU]VKX! <# 1JZ][X! 3# 1ZN[LNWbR! <# 4# CNLLN! 5# AXKNZ\R! JWM
/# 1XUJ[JW\R! jCJZPN\NM PNWN \ZJW[ONZ RW N]LJZaX\RL LNUU[ Ka MaN"
J[[R[\NM UJ[NZ XY\XYXZJ\RXW!k +# 0;@D@6;8># 0;@D@5<@=#! & $'#%$!
(%i(* #%--*$#

-# /# E# =RTXU[TJaJ! E# ?# =RTXU[TR! JWM 7# A# 3nVX^! j5NWN YZRW\NZ.
UJ[NZ"[LJWWRWP \JZPN\NM \ZJW[ONL\RXW XO L]U\]ZNM LJZMRJL WNXWJ\JU ZJ\
LNUU[!k '8== %7;8C '@>>E?# "$#($! &%+i&&& #&$$*$#

%$# 6# BLQWNLTNWK]ZPNZ! /# 6NWMRWPNZ! A# BJRUNZ! F# B# ;# B\ZJ][[! JWM
<# BLQVRM\\! j;J[NZ"J[[R[\NM XY\XYXZJ\RXW XO [RWPUN LNUU[!k +# &<@>87#
/AD# (#'$! (%$i(%* #&$$&$#

%%# D# 9# CRZUJY]Z JWM 9# 9XWRP! jCJZPN\NM \ZJW[ONL\RXW Ka ONV\X[NLXWM
UJ[NZ!k .4DEB8 %")#*,-)$! &-$i&-% #&$$&$#

%&# /# EXPNU! 8# =XJLT! 5# 6]\\VJWW! JWM 5# ?J]U\J]O! j<NLQJWR[V[ XO
ONV\X[NLXWM UJ[NZ WJWX[]ZPNZa XO LNUU[ JWM \R[[]N[!k %AA=# 0;HC# &$

,4C8BC /AD# )"! %$%)i%$(+ #&$$)$#
%'# 4# 8# 5]WW"<XXZN! 5# 7# FNU[Q! ;# A# 6NZZXW! 4# 0ZJWWRPJW! 9# ENW"

TJ\N[_JZU]! B# 5RUUN[YRN! <# 0ZJWM_NRW"5NW[UNZ! A# <JMJW! 8# <#
CJ^JZc! ?# 8# 0ZXYQa! <# 0# ?Za[\X_[Ta! JWM B# 5]RUM! j/ WX^NU (#%
NbZRW ZJMR`RW VXN[RW #43A<$"LXW\JRWRWP YZX\NRW! lFRUURW!mk )(&2
,8DD# &(*#&&$! )$,-i)$-( #&$$)$#

%(# /# 4RZN! B# G]! <# 9# <XW\PXVNZa! B# /# 9X[\J[! B# 3# 2ZR^NZ! JWM 1#
1# <NUUX! j?X\NW\ JWM [YNLRnL PNWN\RL RW\NZONZNWLN Ka MX]KUN"
[\ZJWMNM A=/ RW '48?@B;457<D<C 8=894?C!k .4DEB8 $*"#***-$! ,$*i
,%% #%--,$#

%)# <# C# <L<JW][ JWM ?# /# BQJZY! j5NWN [RUNWLRWP RW VJVVJU[ Ka

[VJUU RW\NZONZRWP A=/[!k .4D# 18F# *8?8D# $#%$$! +'+i+(+ #&$$&$#
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Willin/FRMD6 expression activates the Hippo signaling pathway kinases
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