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Abstract. We prove that a finite group G occurs as a maximal proper
subsemigroup of an infinite semigroup (in the terminology of Freese,
Ježek and Nation, G is a big semigroup) if and only if |G| ≥ 3. In fact,
any finite semigroup whose minimal ideal contains a subgroup with at
least three elements is big.
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1. Introduction

Let K be a class of algebraic structures of a given similarity type. Following
the extensive study [3], we say that a finite structure B ∈ K is K-big if there
exists a countably infinite structure A ∈ K such that B is a maximal proper
substructure of A. Equivalently, A is (finitely) generated by B and any single
element from A\B. In [3], Freese, Ježek and Nation studied and characterised
all big lattices: they produced a complete list consisting of 145 minimal big
lattices (there are 81 of them up to a dual isomorphism) and proved that a
finite lattice is big if and only if it contains one of these as a sublattice.

For groups, the (open) question of which finite groups are big is closely
connected to Burnside-type problems. In [6], Ol’shanskĭı constructed, for any
prime p > 1075, a 2-generated infinite group G such that each proper sub-
group of G has order p, thus exhibiting the first explicit example of a Tarski
monster group, and showing, in particular, that any cyclic group Cp is big for
a sufficiently large prime p. Later, this was improved by Adyan and Lysionok
[1]: for any odd integer n ≥ 1003 they constructed an infinite 2-generated
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group G with the property that any proper subgroup of G is contained in a
cyclic subgroup of order n. Therefore, any cyclic group C2k+1 with k ≥ 501 is
a big group; in fact, this group is even B2k+1-big, where B2k+1 is the Burnside
variety of all groups of exponent 2k + 1.

In this paper we initiate the study of big semigroups and their prop-
erties. In particular, we obtain the following full description of finite groups
that occur as maximal subsemigroups of countably infinite semigroups.

Theorem A. Let G be a finite group. Then G is big with respect to the class
of all semigroups if and only if |G| ≥ 3.

In the next section, we gather the necessary semigroup-theoretical pre-
liminaries and formulate our main result, Theorem B below, which is slightly
more general than the above statement; the backward implication in Theo-
rem A will follow as a corollary. In Sec. 3 we describe the construction utilised
in our proofs, which are presented in Sec. 4 and 5. Along the way, we provide
a few valuable pieces of information on the structure of infinite semigroups
entertaining finite semigroups as maximal subsemigroups.

2. Preliminaries

We refer to [2, 5] for a general semigroup-theoretical background; however,
we recall several key notions in order to keep the note mostly self-contained.

An ideal of a semigroup S is a non-empty subset I ⊆ S such that
ts, st ∈ I for any t ∈ I and s ∈ S. For an arbitrary element a ∈ S of a
semigroup S it is clear that the (principal) ideal generated by a, the least
ideal of S containing a, is S1aS1 = {sat : s, t ∈ S1}, where S1 denotes the
monoid obtained by extending S by a new symbol 1 acting as an identity
element. In products, such as in sat, the condition s, t ∈ S1 indicates the
possibility that some of the factors s, t may not be present (so, S1aS1 is in
fact a short-hand for {a} ∪ aS ∪ Sa∪ SaS). Naturally, the elements of S can
be classified according to the principal ideal they generate, thus giving rise
to Green’s relation J defined for a, b ∈ S by

aJ b if and only if S1aS1 = S1bS1.

The J -class of a is denoted by Ja. Furthermore, a partial order can be
defined on the set of J -classes by Ja ≤ Jb if and only if S1aS1 ⊆ S1bS1;
obviously, this does not depend on the choice of representatives a, b. The
latter condition is also equivalent to the existence of s, t ∈ S1 such that
a = sbt; so, the J -order is actually the divisibility relation in a semigroup.
Hence, any subgroup G of a semigroup S is entirely contained in a suitable
J -class, since all elements of G are divisible by each other.

A semigroup is simple if it has no proper ideals. Clearly, a simple semi-
group must consist of a single J -class. Conversely, any minimal (with respect
to the order introduced above) J -class of S is a simple subsemigroup of S;
in fact, this is the single minimal ideal of S (the kernel of S), showing that
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there can be at most one minimal J -class in a semigroup. Note that any
finite semigroup has a kernel.

If S is a finite semigroup that is (isomorphic to) a maximal proper
subsemigroup of a countably infinite semigroup T , then T will be called a
witness for S, as it certifies S as a big semigroup.

Lemma 1. Assume that S is a big semigroup, and let T be any witness for
S. Then T \ S is contained in a single J -class of T . In particular, if S is a
group, then T has at most two J -classes.

Proof. Let a, b ∈ T \ S. Since the set S ∪ {a} must generate T , there exists
a word w = w(x1, x2, . . . , xn+1) such that

b = w(a, s1, . . . , sn)

holds in T for suitable s1, . . . , sn ∈ S. Here x1 makes at least one occurrence
in w (i.e. it is not a dummy letter), for otherwise b ∈ S, which is not the
case. Therefore, a appears as a factor in the product w(a, s1, . . . , sn), and so
Ja ≤ Jb. By reversing the roles of a and b, we conclude that Jb ≤ Ja, thus
aJ b. �

An analogous fact holds for maximal subsemigroups of finite semigroups
as well, see the note of Graham et al. [4].

The notions of an ideal and the associated equivalence J can be made
one-sided. Namely, the subset I ⊆ S of a semigroup S is called a left (right)
ideal of S if st ∈ I (ts ∈ I) for all t ∈ I, s ∈ S. The left (right) ideal generated
by a ∈ S is S1a (aS1), so one can define the following equivalences on S:

aL b if and only if S1a = S1b,

aR b if and only if aS1 = bS1.

The order of left (right) principal ideals by inclusion induces an order on the
set of all L -(R-)classes La (Ra) of S. Clearly, a minimal L -(R-)class in this
order (which need not to be unique) is a minimal left (right) ideal of S.

Our main result is now as follows.

Theorem B. Let S be a finite semigroup. If the kernel of S contains a subgroup
G such that |G| ≥ 3, then S is big.

In particular, since any group G is easily seen to be simple (so G co-
incides with its kernel), the above theorem implies that any finite group G
with |G| ≥ 3 is big as a semigroup.

The observation contained in Lemma 1 will serve as an initial lead in
our construction. Namely, given a finite semigroup S satisfying the conditions
of Theorem B, we are going to construct a semigroup ΣS containing S, so
that S acts on the simple ideal of ΣS . The latter ideal will be constructed
from a 2-generated infinite periodic group (that is, a counterexample to the
Burnside conjecture).
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3. The construction

One of the fundamental concepts in semigroup theory is that of a Rees matrix
semigroup M(I,G,Λ, P ). Its parameters are: a group G (called the structure
group), two index sets I,Λ, and the sandwich matrix P = [pµ,i]Λ×I , whose
entries are from G. Its elements are triples of the form (i, g, µ), where i ∈ I,
g ∈ G and µ ∈ Λ; the multiplication is defined by

(i, g, µ)(j, h, ν) = (i, gpµ,jh, ν).

Every Rees matrix semigroup is completely simple, which means that it is
simple and contains a primitive idempotent (an idempotent that is minimal
in the so-called Rees order on the set E(S) of all idempotents of a semigroup
S defined by e ≤ f is and only if e = ef = fe). Conversely, by the Rees-
Suškevič Theorem [2, 5], every completely simple (and, in particular, every
finite simple) semigroup is isomorphic to a Rees matrix semigroup.

It follows that the kernel of a finite semigroup must be of this form
as well; a minimal left (right) ideal of such a kernel is a set of the form
I × G × {µ} for some µ ∈ Λ (resp. {i} × G × Λ for some i ∈ I), while the
maximal subgroups are formed by sets of the form Gi,µ = {i} × G × {µ},
i ∈ I, µ ∈ Λ. Thus the conditions of Theorem B postulate that in the Rees
matrix representation of the kernel of S we have |G| ≥ 3. So, let us fix one
such maximal subgroup: let e ∈ E(S) be its identity element, and let L and
R be the (unique) minimal left and right ideals of S, respectively, containing
G. One instantly has L = Se = Le and R = eS = Re; denote by Ge = L ∩R
the considered maximal subgroup of the kernel of S. Also, we fix distinct
c, d ∈ Ge \ {e}.

In our construction we will have

ΣS = S ∪M(L,H,R, P ),

with M(L,H,R, P ) being the kernel of ΣS . For the structure group H of the
newly constructed J -class we take an arbitrary but fixed infinite periodic
2-generated group, H = 〈γ1, γ2〉.

To specify the sandwich matrix P = [pa,b]R×L and the multiplication of
elements of S by the elements of M , we fix a mapping λ : L ∪ R → H with
the following properties:

(1) λ(e) = 1H ;
(2) λ(c) = γ1;
(3) λ(d) = γ2;
(4) λ(se) = λ(ese) for any s ∈ S.

Such a mapping exists because the conditions (1)–(3) define the values of
λ on three specific elements of R, while the condition (4) simply postulates
that the values of λ on L = Se are uniquely determined by the values that λ
takes on Ge = eSe.

Now define, for any a ∈ R, b ∈ L:

pa,b = λ(a)−1λ(ab)λ(b)−1. (3.1)
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For any ` ∈ L we have `e = `, and hence

pe,` = λ(e)−1λ(e`)λ(`)−1 = λ(e`e)λ(`e)−1 = 1H ,

using (1), (4). The multiplication between elements of S and M(L,H,R, P )
is defined by

s(`, h, r) = (s`, λ(s`)λ(`)−1h, r), (3.2)

(`, h, r)s = (`, hλ(r)−1λ(rs), rs), (3.3)

for all s ∈ S, ` ∈ L, r ∈ R and h ∈ H.

4. Proof of Theorem B

Lemma 2. The groupoid ΣS, defined in the previous section, is a semigroup.

Proof. Since both S and M(L,H,R, P ) are semigroups, the associativity need
only be checked in the case of a product in which two factors are from one
‘component’ of ΣS (that is, S or M(L,H,R, P )), and one is from the other.
In the following, let a, b ∈ S, `, `1, `2 ∈ L, r, r1, r2 ∈ R and h, h′ ∈ H.

First of all,

(a(`, h, r))b = (a`, λ(a`)λ(`)−1hλ(r)−1λ(rb), rb) = a((`, h, r)b).

Next,

a(b(`, h, r)) = a(b`, λ(b`)λ(`)−1h, r) = (ab`, λ(ab`)λ(b`)−1λ(b`)λ(`)−1h, r)

= (ab`, λ(ab`)λ(`)−1h, r) = (ab)(`, h, r),

and, similarly, ((`, h, r)a)b = (`, h, r)(ab). Also, we have

(a(`1, h, r1))(`2, h
′, r2) = (a`1, λ(a`1)λ(`1)−1hpr1,`2h

′, r2)

= a((`1, h, r1)(`2, h
′, r2))

and, similarly, ((`1, h, r1)(`2, h
′, r2))a = (`1, h, r1)((`2, h

′, r2)a). Finally,

((`1, h, r1)a)(`2, h
′, r2) = (`1, hλ(r1)−1λ(r1a), r1a)(`2, h

′, r2)

= (`1, hλ(r1)−1λ(r1a)pr1a,`2h
′, r2)

= (`1, hλ(r1)−1λ(r1a)λ(r1a)−1λ(r1a`2)λ(`2)−1h′, r2)

= (`1, hλ(r1)−1λ(r1a`2)λ(`2)−1h′, r2)

= (`1, hλ(r1)−1λ(r1a`2)λ(a`2)−1λ(a`2)λ(`2)−1h′, r2)

= (`1, hpr1,a`2λ(a`2)λ(`2)−1h′, r2)

= (`1, h, r1)(a`2, λ(a`2)λ(`2)−1h′, r2)

= (`1, h, r1)(a(`2, h
′, r2)),

where we have repeatedly used the form (3.1) of the entries of P and the
multiplication rules (3.2) and (3.3). Hence, the lemma is proved. �
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As an alternative approach, the fact that ΣS is a semigroup can be
derived from the general results of [7] on ideal extensions of Rees matrix
semigroups.

Proof of Theorem B. Let ` ∈ L, r ∈ R and h0 ∈ H be arbitrary; we want to
prove that the subsemigroup T generated by S ∪{(`, h0, r)} is actually equal
to the whole ΣS . Notice that there is no loss of generality in assuming that
` = r = e, for otherwise the fact that L and R are minimal left and right
ideals of S, respectively, implies that e = s` = rt for some s, t ∈ S, thus

s(`, h0, r)t = (e, λ(s`)λ(`)−1h0λ(r)−1λ(rt), e) ∈ T,
and we may continue working with this element. Now recall that we have
picked two distinct elements c, d ∈ Ge\{e} such that λ(c) = γ1 and λ(d) = γ2,
the generators of H. If m ≥ 1 is the order of h0 (recall that H is periodic),
the elements

(e, h0, e)
mc(e, h0, e)

m = (e, 1H , e)(c, λ(c), e) = (e, pe,cλ(c), e) = (e, γ1, e),

(e, h0, e)
md(e, h0, e)

m = (e, 1H , e)(d, λ(d), e) = (e, pe,dλ(d), e) = (e, γ2, e),

both belong to T . Since pe,e = 1H , the mapping H → He = {e} ×H × {e}
defined by h 7→ (e, h, e) is an isomorphism; therefore, (e, γ1, e), (e, γ2, e) ∈ T
clearly implies He ⊆ T . Furthermore, for each ` ∈ L and r ∈ R we have
`({e}×H×{e})r ⊆ T . The left-hand side of this inclusion is just {`}×H×{r},
because for any h ∈ H we have

`(e, h, e)r = (`, λ(`)hλ(r), r),

and the function x 7→ λ(`)xλ(r) is a bijection of H onto itself. So, L×H×R ⊆
T and thus T = ΣS , as required. �

5. Proof of Theorem A

As we have already remarked, Theorem B implies the backward implication
in Theorem A: any finite group with at least three elements is big in the class
of all semigroups.

To complete the proof of Theorem A we need to demonstrate that the
trivial group and the cyclic group of order 2 are not big. First we deal with
the trivial group.

Proposition 3. Let S be an infinite semigroup containing an idempotent e.
Then S has a proper subsemigroup S′ with at least two elements such that
e ∈ S′.

Proof. Suppose to the the contrary that S is a witness for {e}. Both eS and
Se are subsemigroups containing e, so that eS, Se ∈ {S, {e}}. If eS = Se =
S (respectively, eS = Se = {e}) the idempotent e is in fact the identity
(respectively, zero) of S. In either of these cases, for any s ∈ S \ {e} we have
S = 〈e, s〉 = {e, s, s2, . . . }, and {e, s2, s4, . . . } is a proper subsemigroup, a
contradiction. If eS = {e} and Se = S (respectively, eS = S and Se = {e})
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then S is a left (respectively, right) zero semigroup, and every subset is a
subsemigroup, a contradiction again. �

Before turning our attention to the cyclic group of order 2, we prove yet
another result of a general character, which refines the information supplied
by Lemma 1, and which might be quite useful in further investigations of big
semigroups.

Lemma 4. Let S be a big semigroup, and let T be any witness for S. Let J
be the unique J -class of T containing T \S. Then J contains a J-primitive
idempotent, that is, a minimal element in the restriction of the Rees order of
idempotents of T to J ∩ E(T ).

Proof. We break the proof up into the following steps:

(i) There exist a, b ∈ J such that ab ∈ J .
(ii) There exists t ∈ J such that tn ∈ J for all n ∈ N.
(iii) J contains an idempotent.
(iv) J contains a J-primitive idempotent.

(i) Let u ∈ J \ S be arbitrary. Since T is a witness for S, we must have

〈S ∪ {u}〉 =

∞⋃
n=0

S1(uS1)n = T.

From finiteness of S it follows that S1uS1 is finite, and, since J is infinite,
we have

S1uS1uS1 ∩ J 6= ∅.
If s1us2us3 is any element of this set, and if we let a = s1u, b = s2us3, we
clearly have a, b, ab ∈ J , as required.

(ii) Let t1, t2 ∈ T 1 be such that a = t1abt2. Then a = tn1a(bt2)n for all
n ∈ N, and it is easy to verify that t = bt2 satisfies the requisite property.

(iii) If t ∈ S then, since S is finite, t has an idempotent power, and we
are done. Otherwise 〈S ∪ {t}〉 = T . From t, t2 ∈ J we have t = xt2y for some
x, y ∈ T 1. Writing x and y as alternating products of elements of S and t, we
see that t can be written as t = s1tu1ts2 for some s1, s2 ∈ S1 and u1 ∈ T 1.
Substituting repeatedly this expression into itself we obtain

t = sn1 tunts
n
2 , (5.1)

for all n ∈ N and some un ∈ T 1. Since S is finite there exists n ∈ N such that
both sn1 and sn2 are idempotents. But then (5.1) yields sn1 t = tsn2 = t, and
hence t = tunt. It follows that tun is an idempotent and tun ∈ J , as required.

(iv) Aiming for contradiction, suppose that J does not contain a J-
primitive idempotent. Then J must contain an infinite descending chain of
idempotents. Since S is finite there must exist two idempotents f, f ′ ∈ J \ S
with f < f ′, i.e. ff ′ = f ′f = f . From T = 〈S∪{f}〉 it follows that f ′ = sfu,
with s ∈ S1, u ∈ T 1. But then

f ′ = sfu = sf ′fu = s2fufu = s2f ′(fu)2 = · · · = snf ′(fu)n = . . . .
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Choosing sn to be idempotent, we have f ′ = snf ′, which in turn implies

f ′snf ′(fu)n = f ′(fu)n = (fu)n,

and hence

f = ff ′ = f(fu)n = (fu)n = f ′,

a contradiction. �

Proposition 5. The cyclic group of order 2 is not a big semigroup.

Proof. Assume to the contrary, so that C2 = {e, a} (with a2 = e) has a
witness T . By Lemma 1, T \ C2 is contained in a single J -class J of T ,
so we have two possibilities: either T = J is simple, or T has precisely two
J -classes, namely C2 and J . In either case J is the kernel of T , and, by
Lemma 4, contains a J-primitive idempotent, which, in fact, must also be
T -primitive, implying that J is completely simple.

Consider first the case when T = J . Then, by the Rees-Suškevič The-
orem, T ∼= M(I,G,Λ, P ) for some group G, index sets I,Λ and a matrix P
over G. So, any subgroup of T (and thus any instance of C2) is contained in
one of the maximal subgroups Gi,µ = {i} ×H × {µ} for some i ∈ I, µ ∈ Λ,
all of them being isomorphic to G. Now if G is an infinite group, then for
any its cyclic subgroup of order 2 there is a proper subgroup G1 properly
containing that cyclic subgroup. This shows that no subgroup of Gi,µ of or-
der 2 can be a maximal subsemigroup of Gi,µ, let alone of T . So, G must
be a finite group, whence at least one of the sets I,Λ are infinite. However,
note that for each element (j, h′, ν) of T , any element of the subsemigroup of
S generated by Hi,µ ∪ {(j, h′, ν)} must belong to Hi,µ ∪Hj,µ ∪Hi,ν ∪Hj,ν ,
rendering 〈Hi,µ ∪ {(j, h′, ν)}〉 = T impossible. A contradiction.

Therefore, T must have precisely two J -classes: C2 and J , the latter
being a completely simple ideal of T . In particular, T has an idempotent
f 6= e, whence we have T = 〈a, f〉, and e can be assumed to be the identity
element of T , because otherwise eTe would be a proper subsemigroup of S
that properly contains C2 (as eJe is a non-empty subset of J). Hence, each
element of J can be expressed as an alternating product of a and f . On the
other hand, faf ∈ J , so faf J f , implying f = t1(faf)t2 = ft1faft2f
for some t1, t2 ∈ J1. The factors t1, t2 are either empty, or expressible as
alternating products of a and f , thus we have

(faf)k = faf · · · faf︸ ︷︷ ︸
k+1 times f

= f

for some k ≥ 1. Hence any alternating product of a and f of length at least
2k + 2 can be reduced to a shorter product; in other words, J is exhausted
by such alternating products of length at most 2k + 1. It follows that J is
finite, as well as T — a contradiction. �

This completes the proof of Theorem A.
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6. Concluding remarks

The finite semigroups under the scope of Theorem B are not the only big
semigroups. Indeed, for two semigroups P and Q define their ordinal sum
P [Q] on P ∪Q to be the semigroup obtained by retaining the multiplication
operations from P and Q and setting pq = qp = q for all p ∈ P , q ∈ Q. Now
if P is a big semigroup and Q is any finite semigroup, then P [Q] is big as
well, because if T is a witness for P , then T [Q] is a witness for P [Q].

Corollary 6. Let S and Q be arbitrary finite semigroups such that the kernel
of S has a subgroup with at least three elements. Then the semigroup S[Q] is
big.

The following goal seems to be distant at the moment, but we formulate
it nevertheless.

Problem. Characterise all big semigroups.
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