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Abstract—This paper addresses a subset of Wireless Sensor
Network (WSN) applications in which data is produced by
a set of resource-constrained source nodes and forwarded to
one or more sink nodes. The performance of such applications
is affected by the connectivity of the WSN, since nodes must
remain connected in order to transfer data from sources to
sinks. Designers use metrics to measure and improve the
efficacy of WSN applications. We aim to facilitate the choice
of connectivity-based metrics by introducing a classification of
WSN applications based on their data collection behaviour
and indicating the metrics best suited to the evaluation of
particular application classes. We argue that no suitable metric
currently exists for a significant class of applications with the
following characteristics: 1) application data is periodically
routed or disseminated from source nodes to one or more sink
nodes, and 2) the application can continue to function with
the loss of source nodes although its useful network lifetime
diminishes as a result. We present a new metric, known as
Connectivity Weighted Transfer, which may be used to evaluate
WSN applications with these characteristics.

Keywords-sensor networks; life estimation; system analysis
and design

I. INTRODUCTION

A Wireless Sensor Network (WSN) may be considered as
a collection of small, battery-operated, resource-constrained
nodes, each containing a low power radio. The collection
may include a number of:

1) source nodes, which typically contain sensors capable
of measuring environmental factors such as tempera-
ture or humidity, and may additionally act as interme-
diate nodes (defined below),

2) sink nodes, which receive the data generated by the
sources, and,

3) intermediate nodes, which aid the transmission of data
from sources to sinks.

Due to the energy constraints of nodes, the efficacy of
a WSN application is often measured in terms of network
lifetime [1]. We limit our consideration in this paper to useful
network lifetime, which reflects the duration for which a
WSN is alive and functional according to a user-defined set
of criteria, rather than merely alive. The criteria may include
the requirements of a specific application as well as network
assumptions and configurations.

Many WSN applications benefit from having data from
a diversity of sources. For example, if the aim of an

application is to detect the boundary of a forest fire, increas-
ing the number of sources may provide greater accuracy.
However, doing so might cause sources that also act as
intermediate nodes to quickly expire, leading to a reduction
in the total data transferred as will be shown in Section
IV-A. Application requirements determine whether such a
reduction is an acceptable trade-off for increased diversity
of data.

Application designers use metrics to measure and optimise
their WSN deployments. The motivation for our work is
to aid their choice of metrics by providing a mapping
between suitable metrics and application classes based on
data collection behaviour. For example, the selection of a
routing protocol may improve (according to some metric) the
application’s useful network lifetime. The choice of metric
is important, since it must accurately reflect the duration for
which the application remains useful. We have focused on
connectivity-based metrics, since networks with a (source,
sink) architecture only remain useful as long as the sources
and sinks remain connected. A number of connectivity-
based metrics that measure useful network lifetime have
been described in the literature. We review the pertinent
metrics from the comprehensive survey provided by Dietrich
and Dressler in [1].

The contributions of this paper are twofold. Firstly, we
define a set of characteristics that may be used to classify
applications based on their data collection behaviour in order
to provide a mapping that indicates which metric will yield
the most appropriate measure of useful network lifetime
for each WSN application class. We note that the reviewed
metrics do not accurately reflect the useful network lifetime
of applications that meet the following criteria:

• Data is periodically produced at several source nodes
and either routed or disseminated through the network
to one or more sink nodes.

• The application remains functional, although its useful-
ness decreases, when source nodes expire.

We address this important and sizeable class of WSN
applications with our second contribution, which is a new
metric, known as Connectivity Weighted Transfer. This met-
ric is designed to gauge the useful network lifetime of
applications that gather data from many sources.
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II. WSN APPLICATION DEPLOYMENTS

In this section, we discuss a number of WSN application
deployments that feature prominently in the literature. The
deployments discussed will form the basis of the application
classification in Section III.

One of the best-known WSN deployments is the habitat
monitoring of Great Duck Island (GDI) [2]. 150 source
nodes were placed on the island and periodically routed
data to a local gateway node (sink). The application was not
dependent upon all sources being active; sources were shown
to expire at various points during the 120-day deployment.

ZebraNET [3] used a WSN to track the locations of
zebras in Kenya. The deployment of nodes called for 30
specially built collars to be attached to zebras and act as
source nodes. GPS data was periodically gathered and stored
at each source. When a pair of sources came into contact,
their data was shared. All data was disseminated through the
network in this manner. Since the application gathered the
positional data of each zebra, we infer that loss of individual
sources would not cause the application to become unusable.
However, the number of correlations between zebra positions
would be reduced.

Wisden [4] is a proposed system for structural monitoring
in which source nodes are manually placed on a structure,
such as a bridge, to monitor vibration levels. The authors
note that Wisden is data loss intolerant and therefore, all
sources must remain active. Sources route data through the
network to the sink and store it locally to prevent its loss.

CenseMe [5] is a social-networking WSN application,
which is designed to operate on mobile phones. The ap-
plication infers what a user is doing (and with whom) by
means of the microphone, GPS receiver, accelerometer and
bluetooth receiver. For example, the bluetooth receiver and
accelerometer may allow the inference that the user is “walk-
ing with Bob”. Simple conclusions (known as primitives) are
uploaded to a database via GPRS or 802.11 where they can
be analysed further. CenseMe was run by 22 users in its test
deployment. Since users could simply switch their phones
off at any time, it is concluded that CenseMe is capable of
operating with source loss, albeit with reduced functionality.

A system for analysing the microclimates surrounding
redwood trees has been produced by Tolle [6]. In Tolle’s
deployment, 33 source nodes were placed on a tree. Each
source generated and stored periodic data based on temper-
ature, humidity and radiation readings before routing it to a
sink at the bottom of the tree. The application was resistant
to source loss as it continued to operate despite a number
of failures.

NAWMS [7] is a proposed system to provide fine granu-
larity detail regarding water usage in homes. In NAWMS, the
sink node is attached to the water meter. By automatically
calibrating vibration levels of a pipe and the water travelling
through the meter, the system can display water usage for

devices. It is estimated that a house with 3 bedrooms and
2 bathrooms may require 17-21 source nodes. All sources
must remain active in order to perform calibration.

PermaSense [8] is a project that aims to gather envi-
ronmental data regarding permafrost in the Alps for at
least 3 years. Approximately 25 sources periodically gather
environmental data, which is both stored and routed to a
sink. The project has tight constraints regarding the loss of
data; consequently, the failure of even a single source would
render the application unusable.

Volcano monitoring [9] has been carried out by Werner-
Allen at the Reventador volcano in Ecuador. Each of 16
source nodes buffered its last 20 minutes of sensor readings.
Any event of interest detected by a source was reported to
the sink. If the sink received several simultaneous events of
interest, it would query all sources for their buffered data
from the previous 60 seconds. A small number of sources
were lost during the operation of the network, leading to
the conclusion that the application remains operational with
source node loss.

III. APPLICATION CLASSIFICATION

A novel classification of applications is now presented
to facilitate the choice of metrics. Unlike existing work
[10] [11], it considers the data collection behaviour of each
application, which enables designers to choose a metric
appropriate to the nature of the (source, sink) interaction.
The following criteria are considered:

• action on data,
• data generation method, and
• resilience to source loss.
Action on data refers to the action taken by a source when

it produces data. The source must either route, disseminate
or upload data. It may optionally also store, buffer or
actuate. Routing refers to the forwarding of data, possibly
through multiple hops, towards one or more destinations.
Disseminating is the process in which data is flooded
throughout the network to all nodes. Uploading sends the
data directly from the source node to a sink without the
source making any routing decisions. Since it is assumed
that data is sent from sources to sinks, one of these three
actions must take place. Of the remaining actions, storage
refers to the process in which a source node records data
on a local non-volatile medium for collection at a later date.
Buffering involves the temporary storage of data for some
(possibly undefined) period. Actuation refers to a physical
action taken by the source, such as activating a motor.

Data generation method describes the way in which data
is generated at source nodes. Possible methods are periodic,
query-based and event-based. With periodic generation, data
is produced by a source at regular intervals. In a query-based
system, requests for data are sent to source nodes by an
external agent such as a sink. With an event-based method,



the source responds to some external phenomena of interest
as defined by the user.

The final criterion is that of resilience to source loss,
which models the lifetime of the application as a function
of source loss. The application may have no resilience to
source loss. It may be able to tolerate the loss of a specific
number of sources. The resilience may also be performance
dependent in which case the application’s usefulness de-
pends on the number of sources remaining, thus requiring a
high source diversity for as long as possible.

The classification of applications described in Section II
using the above set of criteria can be found in Table I.

IV. COMMON METRICS

Dietrich and Dressler [1] have recently carried out a
comprehensive review of metrics which are categorised into
one of the following groups:

1) number of live nodes,
2) sensor coverage,
3) connectivity,
4) sensor coverage and connectivity,
5) application quality of service requirements, and,
6) triple of (connectivity, number of live nodes, coverage)

which is considered as “the definition provided by
Blough and Santi” in [1].

In this paper, we are only concerned with those metrics
that are connectivity-based. We therefore focus on those
metrics that fall under categories 3, 4 and 6, all of which
take connectivity into account:

1) total data transfer, which is considered a sub-category
of connectivity in [1],

2) k-of-n lifetime, which is considered as a sub-category
of number of live nodes and of connectivity in [1],

3) sink connectivity, which is covered as a metric of
connectivity in [1],

4) triple of (connectivity, number of live nodes, cover-
age), and,

5) sensor coverage and connectivity.

A. Total data transfer

Several authors have considered measuring lifetime in
terms of the total data transferred by the network. Baydere
[13] considers network lifetime “in terms of total messages
transmitted”. Other authors consider a more general mea-
surement, as in the case of Giridhar [14] who measures
lifetime in terms of “the maximum number of times a certain
data collection function or task can be carried out without
any node running out of energy”.

An advantage of this metric is that it is possible to mea-
sure the data transferred across a single node or in response
to a specific event. Thus it is possible to measure the effect of
an event or how specific nodes are used. However, the data
transfer metric suffers from two disadvantages. Firstly, as
reported by Dietrich and Dressler [1], it may be ineffective

where data aggregation occurs. Secondly, the metric may
be of limited use in networks where sources forward data
on behalf of other sources. These situations are discussed
below:

Data aggregation is a technique intended to reduce energy
expenditure in routing protocols. It combines data from
multiple sources into a single, smaller piece of data. Since
the data transfer metric only measures the quantity of data
received by sink nodes and data aggregation reduces the
amount of data transmitted, the metric does not accurately
reflect the quantity of information received.

When sources forward data on behalf of other sources,
they may expend more energy than they would if they
had generated the data themselves. Consequently, to reduce
the energy consumption of sources, the optimal solution
is for sources to refuse to forward data that originates
elsewhere. However, this approach may lead to a loss of
source diversity, since some sources may be unable to send
their data towards a sink. We refer to this as the source
forwarding problem. Attempting to increase source diversity
by forcing sources to forward all data may be insufficient. A
poor application or routing protocol may cause sources that
rely on source forwarding to expire. Thus, the application
may appear to be near optimal according to the data transfer
metric even though the source diversity would be reduced.

For example, consider a scenario in which the inefficient
maximum-hop routing protocol is employed within the net-
work shown in Figure 1. The network consists of nine nodes,
including two sinks and seven sources (A-G). A subset of
sources B-F is referred to as group Z for convenience. The
source nodes generate data and send it towards one of the
sink nodes. A directed edge from a node X to a node Y
indicates that Y receives every transmission made by X.
Note that not all edges are bidirectional.

Sink
1

Src 
A

Src 
C

Src 
B

Src 
F

Src 
D

Src
E

Group Z

Src 
G

Sink
2

Figure 1. An example network in which maximum hop routing is applied

In maximum-hop routing, data is routed from a source
node to a sink node through as many distinct intermediate
nodes as possible. Maximum-hop routing is used here as
an example of a poor routing protocol. Note that in the
network of Figure 1, there exists a path from every source
in Z that travels through all the other sources of group Z.



Table I
CLASSIFICATION OF APPLICATIONS

Application Nodes Sources Sinks Action on data Generation Resilience
GDI 152 150 2 Route Periodic Performance dependent

ZebraNET 31 30 1 Disseminate Periodic Performance dependent
Wisden Tens Tens 1 Route/store Event No

CenseMe 23 22 1 Upload Periodic Performance dependent
Redwoods 34 33 1 Route/store Periodic Performance dependent
NAWMS 18-22 17-21 1 Upload/actuate Periodic No

PermaSense 26 25 1 Route/store Periodic No
Volcano 17 16 1 Route/buffer Event/query Performance dependent

Consequently, any data generated by a node in Z will be
transmitted and received five times before it reaches either
A or G. Every transmission made by a source in Z is
overheard by sources B and F, which connect Z to the sinks.
Thus, every piece of data generated by a node in Z will be
received/overheard four times and transmitted once by both
B and F. Consequently, sources B and F expend significantly
more energy than nodes A and G, and will quickly expire,
disconnecting group Z from the sinks. The optimal data
transfer solution then remains, since the sources that are
still connected to the sinks (A and G) need only expend
energy to produce and transmit their own data. Thus, a high
data transfer can be achieved. In this example, no source has
refused to forward data on behalf of another source. Due to
the use of maximum-hop routing the optimal data transfer
solution quickly emerges due to the inhibition of source
forwarding. Thus, as measured by the data transfer metric,
the inefficient maximum-hop routing protocol performs well,
even though the received data is from a small variety of
sources.

B. k-of-n lifetime

k-of-n lifetime measures “the time during which at least
k out of n nodes are alive”. However, Dietrich and Dressler
[1] note that it may be difficult to predict how many nodes
must expire for the application to become unusable, making
the metric hard to use as a measurement of useful network
lifetime.

A variant of the k-of-n lifetime is the n-of-n lifetime,
which is “the time until the first node depletes its energy”
[15]. Such a metric is ideally suited to measuring the lifetime
of applications that treat all nodes as critical. However,
redundancy is particularly important in WSN applications
due to unreliable communication and nodes that are prone to
failure. Since a system with redundancy would not become
unusable with the loss of a single node, the n-of-n lifetime
metric is of questionable usefulness in real-world WSN
deployments.

C. Sink connectivity

Carbunar [16] measures “the percentage of nodes able
to route to the collection point” (i.e. the sink). Carbunar’s

approach very precisely reflects (source, sink) connectivity.
However, there are two limitations to this metric.

Firstly, it only provides a representation of connectivity
at a particular instant in time. It is unclear how multiple
readings should be combined to provide an overall view
of connectivity over, e.g. the lifetime of the network. Thus
it is difficult to compare two executions of a particular
application. It may be tempting to consider the average
connectivity of the sources over the required period of time.
However, using such a measurement involves the assumption
that high average connectivity is the goal.

Secondly, in some scenarios, such as when the application
has a periodic data generation, the sink connectivity is
proportional to data transfer, with the consequent limitations
discussed in Section IV-A.

D. Triple of (connectivity, number of live nodes, coverage)

The metric of Blough and Santi [12] returns the first time
until one of the following three conditions drops below user-
defined thresholds:

1) the number of active nodes in the network,
2) the volume being sensed by the sources (coverage),

and,
3) the largest number of connected nodes (connectivity).
This metric has the advantage that it allows the required

sensor coverage to be specified either in terms of volume
sensed or source diversity (i.e. number of active nodes).
However, as noted by Dietrich and Dressler [1], consider-
ing the largest number of connected nodes is not a good
measurement of connectivity for (source, sink) architectures
since many nodes (or sources) being connected together
may be unrelated to sources being connected to sinks. This
measurement of connectivity is therefore inappropriate to the
(source, sink) architecture that we are concerned with.

E. Sensor coverage and connectivity

Sensor coverage and connectivity considers the duration
for which a network is both connected and has coverage
(as previously defined). Specific metrics that consider both
coverage and connectivity can be trivially emulated by the
Sink Connectivity metrics discussed in Section IV-C or
Blough and Santi’s lifetime triple discussed in Section IV-D.



Sensor coverage and connectivity metrics are therefore not
examined any further.

V. MATCHING APPLICATION CLASSES TO METRICS

Having considered some of the more commonly used
connectivity-based metrics for measuring the useful network
lifetime of WSN applications, we now derive a mapping of
application behaviour to metrics.

If an application requires a specific number of sources
to remain active in order to be considered useful, then,
irrespective of the action on data and the generation method,
the k-of-n lifetime metric is most appropriate. Similarly, if
the application has no resilience to source loss, the n-of-n
lifetime metric is most appropriate. Wisden, NAWMS and
PermaSense fall into this class of applications.

We now consider the class of applications for which
access to data from a variety of sources is beneficial but not
critical. An application of this class in which source nodes
directly upload their data to sinks can be measured by a
data transfer metric. Since sources upload data rather than
route or disseminate it through other sources, the problems
associated with source forwarding and data aggregation
(described in Section IV-A) do not occur. CenseMe is the
only examined application that falls into this category.

If data is not uploaded and the application is event-based
then individual measurements can be taken by using the sink
connectivity metric. Since data is not sent periodically, sink
connectivity may not be proportional to data transfer (which
has been ruled out). The volcano monitoring project is a
suitable application for this metric, provided that there is
no need to measure sink connectivity over the application’s
lifetime.

The remaining applications are GDI, ZebraNET and the
redwoods microclimate project. The only metric that has not
been ruled out is Blough and Santi’s triple. However, this
metric is unsuitable since its definition of connectivity is
inappropriate, as discussed in Section IV-D.

Thus, there exists a class of application for which no
suitable connectivity-based metric exists. These applications
require a large number of sources to remain connected for
as long as possible. A suitable metric for these applications
must therefore reward high source connectivity for long
periods of time. However, the metric must also compensate
for the source forwarding problem and ideally the data
aggregation problem as discussed in Section IV-A.

VI. CONNECTIVITY WEIGHTED TRANSFER

We propose a new metric, Connectivity Weighted Transfer
(CWT), for measuring useful network lifetime. The metric
measures the (source, sink) connectivity as defined below. In
order to overcome the source forwarding problem explained
in Section IV-A, there is a non-linear relationship between
the result of the CWT metric and the number of connected
sources. For example, the connection of 100 sources for

10 seconds scores more highly than having 10 sources
connected for 100 seconds, even though the total data
transferred may be the same.

The CWT metric considers the quantity of data transferred
rather than time connected, so as to allow comparison of
different application scenarios.

A. Definition of connection

A source is connected while it is active and a sink is
receiving the data it generates. WSNs typically transmit
discrete data packets rather than continual streams of data.
Therefore, an abstraction must be used to represent the
discrete data packets as streams of data. The operational
time of the network is split up into non-contiguous frames.
A source is connected to a sink for the entirety of a frame F
if any sink receives a packet from that source during frame
F. When one frame ends, another does not begin until a sink
receives a packet from a source.

B. Formal description

Formally, the Connectivity Weighted Transfer metric for
a network may be expressed as:

f∑
i=1

nx
i (bi · ni) (1)

• f is the number of frames from activation of the
network until all sources expire

• i is the frame number
• ni is the number of connected sources in frame i
• bi is the average number of bytes transferred per source

in frame i
• x is a weighting factor which is discussed further in

the next section.
The CWT metric for a single frame is equal to the total

data transfer during that frame, multiplied by an enhance-
ment function, nx

i . The CWT metric for the network is the
sum of CWT scores across all frames.

Many choices were available for the enhancement func-
tion. The function nx was selected due to its versatility and
scalability.

The function nx is versatile, since it can be made to
encourage connectivity as required by the user by vary-
ing the value of x. Thus, a large range of application
behaviours can be examined, including those for which
improved connectivity is irrelevant, desirable, essential or
even undesirable. Other enhancement functions such as nx
provide a fixed concept of how desirable connectivity is and
have no flexibility.

The proposed enhancement function is also scalable, since
its growth rate is relatively slow. Consequently, a single
weighting factor may allow the comparison of both large
and small networks for a single application. Conversely,
functions such as xn grow very quickly and it may be



impossible to find a weighting factor which would allow the
analysis of an application in networks whose size varied.

C. Weighting Factor

The weighting factor x is used to bias having more
sources connected for shorter periods of time rather than
fewer sources connected for longer. Depending on the value
assigned to it, the metric can be made to operate in different
ways.

For values of x > 0, the bias is in favour of having many
sources connected for a short period.

For values of x < 0, the bias is in favour of having a
small number of sources connected for a long period.

For x = 0, no bias is applied. In this case, CWT simplifies
to the data transfer metric.

For an example of weight assignment, consider a scenario
in which the number of connected sources and the data
transfer are the same in each frame. The user indicates that
it is c times more preferable to have n sources connected for
one second rather than one source connected for n seconds.
Using the formal description of CWT, the user can determine
the weighting factor as follows:

1∑
i=1

nx(b · n) = c

n∑
i=1

1x(b · 1) (2)

nx(b · n) = cn · 1x · (b · 1) (3)

nx = c (4)

x =
ln(c)

ln(n)
(5)

For example, if the user wishes to set the weighting
such that having 10 sources connected for one second is
50% more desirable than having 1 source connected for 10
seconds, then the value of x = ln(1.5)/ln(10) = 0.18. The
weighting may be best determined by a domain expert for
whom the data is being collected.

D. Operational concerns

Some operational concerns of using the CWT metric are
now discussed.

1) Effect of frame length: The length of each frame
dictates the granularity of the connectivity calculation. Large
frame lengths potentially introduce error, since a source
may be considered connected for a long period even if it
immediately expires after sending one message at the start of
a frame. However, setting very low values for frame lengths
makes it unlikely that many sources will be perceived as
being connected simultaneously. The recommended frame
length is equal to the data generation rate of source nodes
so that sources are considered to be continuously connected
from activation until expiration or disconnection.

If each source has a different data generation rate, the
greatest common factor of those rates is used as the frame
length. When a sink receives a packet from a source, that
source is considered to be connected for a number of frames
equal to its data generation rate divided by the frame length.
For example, if source A sends one packet every second and
source B sends one packet every five seconds, then the frame
length is 1 second. When a packet is received from source
A, it remains connected for that single frame. When a packet
of b bytes is received from source B it is treated as having
transferred b/5 bytes every frame for five frames.

2) Delay tolerant networks: In a delay tolerant network,
the path between source nodes and sink nodes may only be
intermittently available. Data may be accumulated at some
intermediate node, which is only periodically connected to
a sink. For example, in ZebraNET which was discussed
in Section II, data is disseminated throughout the network
to all nodes. When one of the nodes eventually comes in
contact with the sink, all its data is downloaded. Therefore,
a sink may receive a packet multiple times. It may also
instantaneously receive packets from a single source that
correspond to multiple frames. Thus, the previous definition
of connection must be changed to the following: A source A
is connected to a sink for the entirety of a frame F if source
A generates any data during frame F that is subsequently
received by a sink. Thus, each source must be able to attach
a timestamp to the data it generates. Essentially, the network
disregards any propagation delay experienced in routing data
from sources to sinks.

3) Event and query-based systems: In an event or query-
based system, sources may not periodically produce data
and send it to a sink. Instead, data may only be sent to a
sink when some interesting sensor reading occurs, as defined
by the user. Since data is not regularly sent from sources
to sinks, it is not possible to detect the connection of a
source node in a particular frame. However, it is assumed
that sources must periodically notify a sink that they are
still active, otherwise there is no means to determine that
the network is still operational. It is therefore proposed that
these periodic notifications are used to measure CWT and
that the frame length should be equal to the rate at which
notifications are sent to the sink.

4) Data aggregation: It is assumed that a network utilis-
ing data aggregation contains a number of aggregator nodes
that forward data either to additional aggregator nodes or
to the sink. Modifying CWT to handle such an application
requires an adjustment to the connection definition: A source
A is connected to a sink for the entirety of a frame F if
any sink receives any data (or its derivative) from source A
during frame F.

It is also important to address the issues surrounding
variable bi which refers to the average number of bytes
transferred per source in frame i. Due to data aggregation,
the sum of the bytes sent by each source may differ from



the sum of the bytes received by the sink. Since it is
desirable for the CWT metric to measure the quantity of
information rather than the quantity of data, variable bi
must be changed to refer to the average number of bytes
transferred per source, before aggregation. This information
may be provided by offline analysis or may be provided as
part of the aggregation process.

5) Continuous data streams: If sources send continuous
streams of data, the duration for which each source is
connected is precisely known. For example, in an application
that sends live video streams across a WSN, data may
be continuously sent from sources to sinks. As such, a
more precise measurement of source connectivity can be
made. To handle this variant, frames are permitted to have
different durations. The beginning of a new frame is used to
represent a change in the number of simultaneous (source,
sink) streams in the network.

If the network uses multiple sinks, they must coordinate
among themselves to determine when new frames begin or
end. A simple solution to this is for each source to log the
times at which each of their incoming streams starts and
ends so that the metric calculation can be performed offline.

VII. EXAMPLE

This section uses an example to illustrate the limitations
of common metrics as well as demonstrate the effectiveness
of the CWT metric in networks where it is desirable to have
a diversity of sources for as long as possible. We considered
the network shown in Figure 2a, which contained one sink
node (Z) and nine source nodes (A-I). For convenience, it
was assumed that communication between nodes was perfect
and bidirectional. Thus, an edge between two nodes in the
diagram indicates that those nodes could communicate with
each other.
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Figure 2. Two example networks with and without source J

The proposed application mimicked that of Tolle’s red-
woods microclimate project [6], discussed in Section II.
The aim of the application was to calculate a temperature
gradient over the height of the tree for as long as possible.
Thus, the application benefited from having more sources
connected for as long as possible and may have accepted
higher source connectivity for a short time rather than low
source connectivity for a long time. Every five seconds,
sources generated a piece of data, and sent it via minimum-
hop towards the sink. The data size was randomly deter-
mined between 2 and 100 bytes.

The application was simulated using the Castalia 1.3
simulator [17]. The nodes were based on the TMote sky
[18]. The sink was given a near-infinite supply of energy
and other nodes were given 14.58 J of energy. Experimental
observations are shown in Table II.

Table II
SIMULATION OF EXPERIMENT 1

Time Event
32539 (9 hours) Source C expires

33905 (9.4 hours) Source D expires
103735 (28.8 hours) Source A expires
125923 (35 hours) Source B expires

Source C was the first node to expire. However, its loss is
unlikely to have rendered the network unusable since source
D could be used in place of source C for routing. When
source D expired, only sources A and B remained connected
to the sink. However, it may have been possible to estimate
the temperature gradient at future times using only A and
B. If the network could remain usable with only sources A
and B, then its useful network lifetime (35 hours) is almost
four times greater than n-of-n lifetime suggests.

The network was then modified to that shown in Figure
2b by inserting an additional source J to the void between
sources E and F in order to obtain a higher resolution
temperature gradient. The observations are shown in Table
III.

Table III
SIMULATION OF EXPERIMENT 2

Time Event
28511 (8 hours) Source C expires

29450 (8.2 hours) Source D expires
105538 (29.3 hours) Source A expires
122628 (34 hours) Source B expires

By adding source J, source C was required to forward
additional data originating from other sources (the source
forwarding problem). Sources C and D expired 13% more
quickly than in the initial scenario. However, during that
time the temperature gradient was more precise due to
the presence of source J. Over the entire experiment, the
introduction of J caused data transfer to drop from 4.39
MB to 4.35 MB. Thus, the data transfer metric may be



ineffective at representing the usefulness of the network.
Conversely, the CWT metric with x = 2 increased from
2.45 × 108 to 2.93 × 108 (19.6%). Thus, the CWT metric
correctly reflected the improved temperature gradient that
can be achieved by the introduction of source J whereas the
data transfer metric incorrectly suggests that the addition of
source J has a negative effect on the application.

VIII. CONCLUSIONS

We have argued that current WSN metrics are inappropri-
ate for measuring applications that benefit from high source
diversity. Classical approaches such as data transfer or sink
connectivity do not compensate for the increased energy
expenditure caused by sources routing data on behalf of
other sources (the source forwarding problem) and may not
be able to handle data aggregation. Connectivity Weighted
Transfer is a new metric that is specifically designed to
reward networks that maintain high source connectivity. By
utilising a user defined weighting, an application’s perfor-
mance can be measured according to its ability to keep
numerous sources connected, as required by the user.

We are currently exploring a system based on node
reliance, which we define as the extent to which a node
is relied upon in (source, sink) routing. In particular, we
are developing a family of routing protocols based on node
reliance that maintain a high source diversity for as long as
possible.
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