
Current Directions in Hyper-Programming

R. Morrison†, R.C.H. Connor¶, Q.I. Cutts¶, A. Dearle*,
A. Farkas+, G.N.C. Kirby†, R. McGettrick* & E. Zirintsis†

†School of Mathematical and Computational Sciences,
University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, Scotland

{ron, graham, vangelis}@dcs.st-and.ac.uk

¶Department of Computer Science, University of Glasgow,
Glasgow G12 8QQ, Scotland

{richard, quintin}@dcs.gla.ac.uk

*Department of Computing Science and Mathematics,
University of Stirling, Stirling, FK9 4LA, Scotland

{al, rmc}@cs.stir.ac.uk

+Vision Systems Ltd,
Adelaide, S.A., Australia

Alex.Farkas@vsl.com.au

Abstract. The traditional representation of a program is as a linear sequence of
text. At some stage in the execution sequence the source text is checked for
type correctness and its translated form is linked to values in the environment.
When this is performed early in the execution process, confidence in the cor-
rectness of the program is raised. During program execution, tools such as de-
buggers are used to inspect the running state of programs. Relating this state to
the linear text is often problematical. We have developed a technique, hyper-
programming, that allows the representations of source programs to include
direct links (hyper-links) to values, including code, that already exist in the en-
vironment. Hyper-programming achieves our two objectives of being able to
link earlier than before, at program composition time, and to represent sharing
and thus closure and through this the run-time state of a program. This paper
reviews our work on hyper-programming and proposes some current research
areas.

1 Introduction

Fig. 1, taken from [1], shows an example of a Napier88 hyper-program. The program
source, which is itself a persistent object, comprises text and hyper-links to other
objects in the persistent store.

The first hyper-link is to a persistent first-class procedure value writeString which
writes a prompt to the user. The program then calls another procedure readString to
read in a name, and then finds an address corresponding to that name. This is done by
calling a procedure lookup to find the address in a table data structure linked into the
hyper-program. The address is then written out. Note that the code objects

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/9821413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(readString, writeString and lookup) are denoted using exactly the same mechanism
as data objects (the table)1 and all of these are external to the hyper-program but
within the persistent environment.

writeString

 ("enter name: ")

let name = ()

let address = (, name)

 ("address is: ")

 (address)

hyper-program

table of names
and addresses

readString

lookup

procedure

procedure

procedure
data

structure

strongly typed
reference with
referential integrity

persistent object

Fig. 1. A Napier88 Hyper-Program

A requirement for hyper-programming is the presence of an external value space to
which bindings can be constructed during program composition. The external source
may be provided by a persistent store, a file system or any other mechanism such as
the WWW. No matter which external source is used, a fundamental change in the
nature of the source program has taken place since it now contains both text and
hyper-links to values in the environment. This non-flat representation of the program
source challenges our traditional notions of what constitutes a computer program. The
reason for the name hyper-program is the analogy with hyper-text which is also non-
flat and contains both text and hyper-links to other hyper-text.

The major issue in building hyper-programming systems concerns the semantics of
the hyper-links, such as:

• what can a hyper-link refer to?
• what guarantees can be made about a hyper-link’s referent data?
• how are hyper-links typed and when does type-checking occur?

The degrees of freedom regarding what a hyper-link can refer to depend upon the
programming language semantics and the measure of openness is the system. Nor-
mally hyper-links will be able to refer to all language first class values. Second class
entities, not in the value space such as types, may also be conveniently hyper-linked
depending on the flavour of the language. Update may be accommodated through

1 Note also that the names used in this description of the hyper-links have been associated with

the objects for clarity only, and are not part of the semantics of the hyper-program.

hyper-links by linking to locations, which may or may not be first class values. More
interesting is the extent to which hyper-links may refer to values created independ-
ently of the system, such as Web pages and DCOM objects. Furthermore the open-
ness of the system can be extended by making the hyper-program representation open
for other tools to manipulate.

Referential integrity in a hyper-programming system means that once a hyper-link
is established it is guaranteed by the system to exist and to be the same value when
the hyper-link is executed. While this guarantee may be provided by a strongly typed
persistent object store, it may also be expensive to provide in a distributed system.
Variations therefore include the hyper-link being valid but not necessarily referring to
the original value, and the hyper-link referring to a copy of the original. This may
only be a problem where object identity is important such as in sharing semantics. A
hyper-program may therefore display a range of failure modes from not failing to
failure from the hyper-link being no longer valid.

The final issue is how hyper-links are typed, if at all. We will assume that for the
present that they are. The interesting aspect of type checking is that the contract be-
tween the program and the referenced value may now take on a different agreement
procedure. Instead of the program asserting the type of the hyper-link and the type
checking system ensuring that the hyper-link has the correct type when it is used, the
reverse may be used. That is the hyper-link knows its own type and therefore when it
is used the program can be made to conform to this type. Statically this removes the
need for type specifications for hyper-links in hyper-programs and dynamically it
means that the program may be in error rather than the hyper-link.

This paper reviews our work on hyper-programming, discusses the advantages of
the technique and proposes some current research areas. These include presenting a
single representation of data and code throughout the software process; adapting
hyper-programming to persistent contexts that do not enforce referential integrity,
such as the WWW; and implementing and using hyper-programming in standardised
languages and inter-operability mechanisms.

2 Motivations & Previous Work

Our work on hyper-programming is motivated by a belief that programming language
systems could provide better support for the software engineering process than they
do at present. In particular, consider the traditional compose-compile-link-execute
cycle of program development as illustrated in Fig. 2.

 stream
 texteditor

composition

keyboard
 text

file
 text

 file/stream
 textpre-processor

pre-processing

file
 text

 file/stream
object codecompiler

compilation

linker

linkage

 file/stream
object code

 file/stream

executable code

execution engine

execution

debugger

debugging

file
data

 stream
 text

 stream
result

 stream
 text

start

end

process tool conceptual
form

interchange
form

Fig. 2. The Traditional Compose-Compile-Link-Execute Cycle

In precis, a program is composed using a text-editor; compiled using a compiler,
which may also link in other source text; linked with other pre-compiled code; and
finally executed where it may link to persistent data such as files. During execution,
other tools such as symbolic debuggers and run-time browsers may be used to inspect
the running state of the program. Thus there are four main processes: composition,
compilation, linking and execution each with their appropriate tools such as text-
editors, compilers, linkers, debuggers and browsers. Each tool operates on a particular
translated version of the program such as source text, object code or executable code.

There are two obvious questions that may be asked about the compose-compile-
link-execute cycle. They are:

• why are there so many processes and translated forms of the program? and
• what level of detail should the user see?

For the systems programmer the processes and translated forms provide the necessary
level of control over the cycle. The translated forms allow common tools, such as
optimisers, to be used even where the original forms are from disparate sources. The
processes are necessary for manipulating the translated forms.

From the applications programmer’s point of view, the processes and translated
forms often constitute noise in the execution cycle and a distraction from the task of
constructing the system. Modern programming environments, such as CodeWarrior
[2], attempt to hide this level of detail from the applications programmer. Hyper-
programming is a further step in this direction and the paper explores how effective
the concept can be in different environments.

2.1 Constructing Hyper-programs

The primary motivation for hyper-programming is to allow the user to compose pro-
grams interactively [3, 4], navigating the environment and selecting data items, in-
cluding code, to be incorporated into the programs. This removes the need to write
access specifications for extant data items that are used by a program. For example, in

a file system it may be a path name, and in a persistent object store it may be a path to
an object from a root of persistence.

Our first attempts at constructing a hyper-programming system were conducted in
the Napier88 persistent programming environment. The strongly typed persistent
object store guaranteed referential integrity of the hyper-links. Existing languages that
allow a program to link to persistent data items, including files, at any time during its
execution require it to contain code to specify the access path and type for each data
item. The access path defines how the data is found by following a particular route
through the persistent store starting from a root of persistence. The type specifies the
expected type of the data at that position. When a program is compiled the compiler
checks that subsequent use of the data is compatible with this expected type. When
the program is executed the run-time system checks that the data is present at the de-
clared position and that it does have the expected type.

This mechanism gives flexibility because a program can link to data in the store at
any time during its execution. However in many cases the programmer knows that a
particular data item is present in the store at the time the program is written and the
programming system could obtain all the information in the access specification by
inspecting the data item at that time.

In a hyper-programming system the programmer has the option of linking existing
data items into a program by pointing to graphical representations rather than writing
access specifications. There are two advantages to this early composition-time link-
ing. Firstly, errors that may occur in programs due to the access specification being
invalid at the time of execution are completely avoided. This may occur where the
store topology has changed and the access path no longer exists, even if the object
does; where the object has been deleted; or where the object has been replaced by one
of a different type. In all cases the contract between the program and the persistent
store has been broken and the program may not execute safely.

In the hyper-programming system the hyper-link is direct to the object and is guar-
anteed to be valid, at the time of the program execution, by the persistent store’s ref-
erential integrity. Thus if the topology of the store changes, the link will still be valid;
the object may not be deleted since the hyper-program still has access to it; and it may
not change its type.

Fig. 3 shows an example of the user interface that might be presented to the user by
a hyper-program editing/browsing tool. The editor window (top-left) contains em-
bedded buttons representing hyper-program links; when a button is pressed the corre-
sponding object is displayed in a browser window (lower region).

Fig. 3. User Interface to a Hyper-Program Editor

The hyper-links to persistent values are placed in the hyper-program by selecting each
value with the store browsing tool and then pressing the Link button. In Napier88, the
system asks the programmer whether to link the program to the value itself or to the
store location that currently contains the value. The editor then inserts the link at the
current text position, represented by a light-button.

2.2 Safety and Efficiency

Hyper-programming can provide improved safety in several ways. One of these is
that it allows some program checks to be performed earlier than normal, subsequently
giving increased assurance of program correctness. This is possible because data
items accessed by a program may be available for checking before run-time. Referen-
tial integrity then ensures that the checked data remains available at run-time.

Checking can be performed at several stages in the program development process
in existing systems. The principal opportunities are at compilation-time when a pro-
gram is translated into an executable program, and at run-time when the executable
program is executed. Categories of checking include checking programs for syntactic
correctness and type consistency, and checking persistent data access.

Checking Persistent Data Access. In conventional strongly typed persistent systems
a program contains an access specification for each persistent data item used. These
access specifications are checked at run-time: at that time the system verifies that
each data item is present in the store, with the previously declared access path and
type.

A program execution will fail if the store does not contain a route to a data item
corresponding to the access path specified in the program. Thus even if it is known at
the time of writing that a particular program will execute correctly, it cannot be pre-
dicted when it may fail on some future execution.

The use of hyper-programs as source representations allows the checking of access
specifications to be performed before run-time. Each link in a hyper-program denotes
a data item that exists in the store at the time the hyper-program is composed. The
process of checking the access path is moved from run-time to program composition
time. The access path is established incrementally as the programmer manipulates the
graphical representations of the data in the store to locate the required data item. Once
the path has been established the data item at the end of it is linked into the hyper-
program and the path need not be followed again at execution time. The hyper-pro-
gram will be unaffected if the access path is then removed.

The access path part of the access specification is established during hyper-pro-
gram composition. The other part, the type specification of the data item, is checked
when the type consistency of the hyper-program is verified at or before compilation-
time. The system checks that the type of the data item denoted by the link is compati-
ble with the use of the link in the program.

Creating direct links from a hyper-program to values in the store, with the atten-
dant safety benefits described above, is only applicable where values are present in
the store at hyper-program composition time. Added flexibility can be gained by
using links to denote mutable locations in the store. Linking a location into a hyper-
program involves the same processes as for linking a value, with the difference that
the value associated with the link changes when the location is updated. Updates to
the location may occur at any time after the composition of the hyper-program. Strong
typing ensures that the type of any value assigned to a location is compatible with the
type of its original contents. This allows the type checking of persistent locations to
be performed at compilation-time. The values in locations associated with the links in
a hyper-program can vary but their types will always remain compatible. Where a link
denotes a location, that location is linked directly into the executable program pro-
duced from the hyper-program, so that updates to the location also affect the executa-
ble program.

2.3 Experience

The benefits of hyper-programming described in [1, 3, 4] may be summarised as:

• being able to perform program checking early
• support for source representations of all object closures
• being able to enforce associations from executable programs to source programs
• availability of an increased range of linking times

• increased program succinctness
• increased ease of program composition

3 Current Work

3.1 Options for Further Development

Hyper-programming as described in the previous section is implemented in Napier88
[5] and using a persistent form of Java, PJama [6]. Both implementations are based on
the use of a closed-world, single-language, programming environment. The principle
advantage of this is the degree of control that can be exercised over the data and code
within the environment. In particular, a type system can be enforced over the entire
lifetime of the data and code, and referential integrity can be guaranteed by the envi-
ronment implementation. Thus, once established, a reference between two compo-
nents will never become accidentally invalid.

The use of such an environment offers various benefits, as discussed previously, at
the cost of limiting flexibility. There are thus two main avenues for further devel-
opment of the hyper-programming concept:

• to further pursue the benefits of using a closed-world system, accepting the limita-
tions that this implies; and

• to investigate how far the closed-world restrictions may be relaxed to increase
flexibility, while retaining at least some of the original benefits of hyper-program-
ming.

Sections 3.2 to 3.4 describe three areas of research based on a closed-world platform:
hyper-code, in which a single uniform representation of code and data is presented
throughout the programming life-cycle; support for application evolution based on
tracking relationships between system components using referential integrity; and
statically checkable dependant types. Some other areas in which a closed-world could
be exploited, although not discussed further here, include:

• version control, configuration management and documentation systems [1]; and
• debugging, profiling and optimisation [7].

Sections 3.5 and 3.6 examine two ways in which the hyper-program platform con-
straints may be usefully relaxed: constructing programs over an unreliable network
such as the World Wide Web; and hyper-programming using commercially signifi-
cant languages and inter-operability standards, such as C++ [8], CORBA [9], DCOM
[10] etc.

3.2 Hyper-Code

One of the original motivations for persistent programming was to remove the con-
ceptually unnecessary distinction between short-term and long-term data [11]. This
was followed by the recognition that code and data can usefully be treated in a uni-
form way [12]. Hyper-programming itself involved a further unifying step in which
source programs themselves became persistent data, along with the compilers, editors
and other tools with which they were manipulated [4]. There has thus been a progres-
sion of attempts to encompass ever more of the disparate entities that comprise a
Persistent Application System (PAS) within a unified framework.

Visual interaction with persistent data, such as that provided by generic object
browsing systems [13-19], has proved to be a convenient and natural way for database
users to address informal queries over the contents of a database. The users of such
tools can browse freely around the data structures and values of a database, avoiding
the necessity to write down algebraic expressions to perform the equivalent accesses.
Where appropriate it is also possible to perform updates or invoke more complex
methods over the objects depicted on the screen. Such tools are greatly preferred to a
traditional query-based approach for simple queries and updates to persistent data
such as held in object-oriented databases.

The advantages of this style of access are comparable to the advantages of a mod-
ern iconic operating system interface over a traditional command-line based ap-
proach. In addition, however, a more general programming algebra is required so that
more complex and longer-running queries may be handled. This rather frustratingly
gives rise to two quite separate mechanisms for manipulating the same values within
a system, with the choice of mechanism being somewhat arbitrary for tasks in the
middle ground between trivial and complex.

Current work on hyper-code aims to complete the progressive integration of PAS
entities [20], by presenting the programmer with a single representation form for all
code and data throughout all stages of the programming process. These stages include
at least object store browsing, program construction, execution, debugging and main-
tenance. The single representation form is based on source code, the argument being
that all other forms of code and data are used for pragmatic implementation-driven
reasons, rather than being conceptually necessary. Since the representation must be
able to accommodate closures, by necessity it is a hyper-program form that can in-
clude direct links.

Hyper-code provides the basis for a new style of editor that includes three unifying
concepts, the combination of which makes the editor the only mechanism that is re-
quired for interaction with the database system. The three important unifying concepts
are:

• Data of any type supported by the system may be browsed and edited in a uniform
manner. This includes a uniform treatment of procedure closures; a drawback of
previous browsers is that they could not adequately handle procedures.

• Source code is treated not as a fundamental building block within the programming
system, but instead as a transient text-based view of a value. The source does not
have a conceptual permanent existence within the system, but is apparently gener-
ated from any value that may be browsed.

• As a further consequence of the generic treatment of procedure values and source
code, the artificial distinction between source and executable values within a run-
ning system is completely removed.

The major difference between this and other browsers is therefore in the uniform
treatment of the executable and source code forms of procedures, and hence pro-
grams. Furthermore, the manipulation of code made possible by the unification strat-
egy is sufficiently general to subsume the usual process of program editing, compila-
tion and linking which is normally associated with the manipulation of code bodies
within a system. In constructing a program, the programmer writes hyper-code. Dur-
ing execution, during debugging, when a run time error occurs or when browsing
existing programs, the programmer is presented with, and only sees, the hyper-code
representation. Thus the programmer need never know about those entities that the
system may support for reasons of efficiency, such as object code, executable code,
compilers and linkers. These are maintained and used by the underlying system but
are merely artifacts of how the program is stored and executed, and as such are com-
pletely hidden from the programmer.

A consequence of the above is that the hyper-code editor is the only interfacing
tool required to perform queries of any complexity against the database, or to intro-
duce new data and program to it. The programmer may thus concentrate on the inher-
ent complexity of the application rather than on that of the support system.

Hyper-Code Operations. The previous hyper-programming implementations in
Napier88 [21] and Java [19] approach this ideal, but fall short in two ways. Firstly,
the programmer is aware of a distinction between the source and compiled versions of
code entities; and secondly, code and data entities are manipulated differently, using
an editor and an object browser respectively. Hyper-code removes these distinctions.
In the first case, the occurrence of system activities such as compilation and linking is
hidden, since they are implementation details—the view presented to the programmer
is one of source level interpretation. In the second case, all interaction with the hyper-
code system is via a single hyper-code editor that fulfils the functions of both the
browser and editor in the previous systems. The hyper-code editor supports only the
following operations:

• evaluate: this executes a selected fragment of hyper-code and returns the result, if
any, as a new hyper-code fragment;

• explode: this expands a selected link in a hyper-code fragment to show more detail,
which is itself expressed in the form of hyper-code;

• unexplode: this contracts an exploded link back to its original form;
• edit: this includes all conventional editing facilities;
• get root: this returns a selected persistent root, as a hyper-code fragment.

When composed, these operations are sufficient to support all program construction,
execution and persistent object browsing activities. Note that various system activities
are implicit in the operations. For example, the implementation of the evaluate opera-
tion involves syntax checking, compilation and invocation of the selected code repre-
sentation.

The semantics of the hyper-code operations can be defined in terms of four abstract
operations, which are reflect, reify, execute and transform. As shown in Fig. 4, these
operate on two distinct domains: the domain of persistent hyper-code entities and the
domain of hyper-code representations. The former domain contains all of the first
class values defined by the programming language, together with various non-first-
class entities for which it may be useful to have representations, such as types, classes
and executable code. Only the latter domain, that of hyper-code representations, is
made explicit to the programmer.

Reify

Reflect

Hyper-Code Entities Domain Hyper-Code Representations Domain

hyper-code
representation

1

2 4

3

TransformExecute

4
32

1

Fig. 4. Hyper-code Domains and Abstract Operations

The reflect and reify abstract operations simply map between the hyper-code entities
and their representations. The execute operation takes place within the hyper-code
entities domain: it involves the execution of an executable entity, potentially with
side-effects on the domain. Correspondingly, the transform operation takes place
within the representation domain, involving the manipulation of hyper-code repre-
sentations. The hyper-code operations can be understood in terms of the abstract
operations as follows:

• evaluate first reflects a hyper-code representation to a corresponding hyper-code
entity. If that entity is executable it is executed. If the execution produces a result
entity, or if the original entity is non-executable, that entity is reified to produce a
result representation.

• explode and unexplode both reflect a hyper-code representation to a corresponding
hyper-code entity, and then reify that entity to produce a more or less detailed re-
sult representation, respectively.

• edit involves transformation of an existing or null hyper-code representation into a
new representation.

• get root involves reification of a hyper-code entity to produce a representation.

It should be stressed that the abstract operations are purely definitional: only the hy-
per-code representations domain and the hyper-code operations are visible to the
programmer.

Hyper-Code Representations. The operations and domains described in the previous
section may be applied to an implementation of hyper-code in any suitable language.
The precise form of the hyper-code representation (HCR) will vary depending on the
syntax of the chosen language, but will be guided by the following criteria that will
apply for all languages:

• The HCR must accommodate new programs written in the normal way. This im-
plies that the representation must include pure text as a special case.

• The HCR must support hyper-program links, for the reasons already discussed.
• The HCR must support detailed views of linked entities, to arbitrary levels of de-

tail, in order that the hyper-code editor may subsume the functions of an object
browser.

• Since there must only be a single HCR, the detailed views of entities must them-
selves comprise text and hyper-program links in the same form as could be con-
structed by the programmer.

• Furthermore, the detailed views should be self-contained and syntactically valid.
Thus, for any detailed view of an entity, it should be possible to copy its represen-
tation, paste this into a new window, and evaluate it without error. The result of
this evaluation will depend on the semantics of the language.

Currently we have designed HCR forms for PJama and ProcessBase2, and have im-
plemented a prototype in PJama. Fig. 5 shows an example in ProcessBase, in which
unexploded links to values are denoted by rounded white rectangles, and unexploded
links to types by rounded black rectangles. Exploded links are denoted by shaded
rectangles, with the internal details depending on the particular entity. The example
shows the definition of a procedure newPerson, which takes a name and an age as
parameters, and returns a view (record) containing them and a unique id number. The
id is obtained by calling another procedure to increment a shared location, and then
dereferencing that location.

loc ()fun (); := ' + 1 ()

let newPerson <- fun (newName : , newAge :) ->intstring view [name : ; age, id :]string

begin

view (name <- newName; age <- newAge; id <- ')
end

Fig. 5. Example of Hyper-Code Representation in ProcessBase

Our HCR design for PJama, an example of which shown in Fig. 6, is similar to that in
Fig. 5, although it is less elegant due to the higher number of non-first-class entities to
which it must support linking, and the presence of non-public object fields.

2 A simple persistent language being developed as part of the Compliant Systems Architecture

project [22, 23].

Fig. 6. Example of Hyper-Code Representation in PJama

3.3 System Evolution

Hyper-programming is also the basis for providing new solutions to the problem of
schema editing which requires location and translation of affected queries and data
[24]. The essential elements are at hand in the hyper-programming system. The
schema may keep a record of which programs (queries) and data are associated with
particular parts of the schema via secure links. The programs always have hyper-
program source and therefore source code and data translation is possible.

The schema evolution mechanism transforms the programs and data affected by a
schema edit. This is achieved as follows:

• Locate, from the schema, all affected programs and data.
• For each program which may be affected, obtain its hyper-program.
• Locate the points in the hyper-program which access the changed part of the

schema and edit the hyper-program to reflect the new logical schema structure.
This will involve establishing new links both to and from the changed part of the
schema.

• Update the old program with the new one.
• Update the affected data with new versions.

The extent to which this process can be automated depends upon the complexity of
the schema change incurred. The essential point is that all interrogation and manipu-
lation of schema, program and data occurs within a single integrated environment,
and may therefore be represented as a meta-level program within that environment.

The mechanism relies heavily upon the self-contained nature of the persistent envi-
ronment. As all the data and code is held in the same environment as the schema, it is
possible to keep not only links from the schema to the data it describes but also re-
verse links from the schema to programs which bind to particular points of it. The
hyper-programming concept makes it possible to map between executable and source
representations. The fact that these representations are themselves values within the
persistent environment, along with the provision of a compiler in the same environ-
ment, makes this strategy possible.

3.4 Dependent Types

In addition to data access checking as described in Section 2.2, language systems also
perform other kinds of checking at run-time, some of which can be performed earlier
in a hyper-programming system. An example of this is dependent type checking [25].

A dependent type is a type that depends on a value. In general this requires dy-
namic type checking. To determine whether two dependent types are compatible, the
language’s type checker takes account of the associated values as well as their struc-
ture. An example of a dependent type is the generic type map [26], instances of which
are associations between sets of values. The type of a particular map is dependent on
the identity of the procedure that defines equality over the key set. Because of this it
is not generally possible to type-check at compilation-time a program that contains
map operations, as the map values themselves must be tested.

In a hyper-programming system the value on which a dependent type depends may
be linked directly into a program, and may thus be available for checking at compila-
tion-time. This makes it possible for the system to check operations on dependent
types at compilation-time rather than planting code in the executable program to
perform the checking at run-time. The system may also provide tools that allow the
programmer to verify the type compatibility of selected values before they are linked
into the hyper-program.

More generally the programmer may perform arbitrary checks on data values be-
fore linking them into a hyper-program, by writing and executing other programs that
compute over them. If the checks succeed, the code that performs the checking can
then be omitted from the main hyper-program, since the links to the original values
are guaranteed to remain intact.

3.5 Internet Programming

The potential association between the concept of hyper-programming, and the Web, is
obvious. The source format of hyper-programs is similar to hyper-text, and the Web
provides a well-known hyper-text system over the global autonomous network. The
clear appeal, therefore, is to somehow extend the paradigm to make it work in this
context.

This appeal, however, is fraught with serious technical difficulty, and it would be
over-ambitious and pre-emptive to attempt to document it fully in this paper. We
therefore restrict the discussion to an elaboration of the problems involved, and out-
line strategies which we believe may eventually provide solutions.

Problems exist in the following categories:

• how can program source be represented?
• how can typed data be integrated with the http protocol?
• how could data deriving from other web sources be integrated in a typed computa-

tion?
• how can the potential failure of references be made tolerable?

These topics are currently under investigation within the framework of the Hippo
project at the University of Glasgow3. Here we describe only the direction taken for
further investigation within each category.

Program Source. To be properly compatible with the Web, it is necessary to
represent hyper-programs in a standard text-based form. In the hyper-programming
prototypes that have been built, program source is represented in a proprietary format,
manipulated only by specially written editor/browser software. This allows the
presentation of the program source to the programmer to be strongly associated with
the programming language definition. However, to move to a standard internet
treatment, the program source format must be open, textual, and ideally should be
HTML itself.

One of the known (and as yet largely unaddressed) problems associated with hy-
per-programming is how standard language treatments, such as the definition of typ-
ing and semantics, can be adapted to the hypertext domain. Widely used method-
ologies for formal definitions and proofs invariably rely upon a textual source repre-
sentation; while we can claim properties for hyper-programs on a purely intuitive
level, it is not clear how to proceed with elementary proofs within a derived system,
to demonstrate beyond doubt that there is no flaw in the soundness of the derived lan-
guage.

Our proposed solution to these problems is to use a two-level language representa-
tion and definition. At a high level, humans can interact with a hypertext source,
whereas at a lower level the program is actually represented in HTML, including a
standard use of hypertext anchors to represent hyperlinks within programs. This
allows standard HTML tools, such as high-level composition tools and browsers, to
be used as a human-readable interface over the low-level representation. The low-
level representation, using standard HTML, allows text-based protocols to be used to
interpret and transport the HTML.

The difficulty with such an approach is how to define the overall system in a man-
ner which gives a clear and formal definition of its semantics. The overall system
will be relatively complex, in comparison with existing hyper-programming systems
where an intuitive semantics is relatively acceptable, given that the low-level repre-
sentation is not patent.

One approach to this problem is based on the definition of the two-level program-
ming algebra using linguistic reflection as a language definition technique. This ap-
proach is based upon the use of compile-time reflection, as defined in [27]. A subset
of HTML may be defined as the core programming algebra, making it possible to
define the semantics of both standard language features and hyper-links. A hyper-text
view of programs, as may be presented by both specialist program editors and stan-
dard browsers, can be defined (using the terminology of [28]) as a reflective sub-
language, which is used to generate the HTML-based textual form during static
analysis by the programming system implementation.

Using linguistic reflection as a definitional mechanism gives a well-defined formal
framework in which hyper-programs can be described using relatively conventional
definition techniques. Furthermore, it gives a framework wherein the core definition

3 www.hippo.org.uk

of hyper-programs is text-based, thus allowing their transportation around the various
text-based protocols of the Internet without resorting to ad-hoc translation techniques.

Typed Data. Given a persistent programming language which can be used to
program over embedded URLs, the next step is to consider how a URL can be used to
refer to typed data, even supposing that the URL refers to data generated by the same
programming system. The problem in turn decomposes into three further issues,
These are:

• unifying the global persistent namespace with those namespaces used in the Web;
• unifying the representation of the typed persistent data with that commonly used

on the Web, namely HTML;
• introducing type system mechanisms which allow the integration of remote, unreli-

able, and autonomous data with an otherwise static type system.

Each of these presents significant technical challenges, and is not further expanded in
this context. Interested readers are referred to [29] for a more detailed exposition of
the approach taken; once again, solutions to these problems are still beyond our grasp.

Importing Data. The full potential of a web-based hyper-programming system would
only be met if it were possible to include links to data which had been generated by
some system other than the particular programming language in use. Once again, this
is an enormous issue and can not be addressed in this short space. There are two
simple solutions: the first is to read the data as text or MIME, and restrict the typing
of such links according to its transmitted classification. This results in a type safe
language, assuming the consistent use of the protocol, but does not really address the
spirit of the problem. The other simple solution is to publish the format used for the
system’s own typed data, and ensure it is possible to generate that externally.
However any serious uptake of this system then requires the retrospective adoption of
a new data standard, which is unlikely to succeed.

The more ambitious goal is to attempt to analyse arbitrary data resulting from an
http request for appropriate structural content and, if it is suitable, integrate it into a
typed computation. The outline of our approach is for the programmer to specify a
required type for the binding during the composition process. The URL is duly
fetched, and translated into a semi-structured format according to a number of ad-hoc
rules.4 Having achieved a semi-structured representation of the data, the program-
mer’s asserted type is used to derive a subset of the data which corresponds to the
same structure. This data is extracted and incorporated into the ongoing computation.
An estimation of how well the data fits the expected type is also generated, and may
be either returned to the user of the program or used within the running program.

Although we have evidence that the outline given above is possible to engineer
[30, 31], and furthermore gives a viable and understandable programming system,
each of the steps described presents its own major problems and the production of
such an integrated programming system is still beyond current understanding.

4 The ad-hoc nature of this part of the process can be entirely circumvented when the document

is XML, which we perceive to be a rapidly emerging standard for Web information.

Internet Hyper-Programming? In summary, there is a clear and easy intuition that
an extension of the hyper-programming paradigm to encompass the global hyper-text
concepts of the World-Wide Web will result in a powerful distributed programming
paradigm. While we believe that this is the case, on deeper inspection the technical
issues underlying such a paradigm shift are profound. A great deal of work remains to
be done before we can be convincing that the extended concept is feasible, whilst
retaining a sound and disciplined programming system.

3.6 An Open C++/DCOM Hyper-Programming Environment

In this section we report on an attempt to apply the hyper-programming model in the
context of an open system. We chose a DCOM/C++ system for the experimentation
for a number of reasons. Firstly, both C++ [8] and DCOM [10] are being used by a
large number of programmers to build systems in the real world. Secondly, having
programmed with DCOM and C++, we felt there was a high degree of accidental
complexity associated with this style of programming that was not intrinsic in the
problem domain. We hoped that hyper-programming might be used to simplify the
construction of DCOM programs. Finally we were influenced by the HIPPO work of
Connor [29] and sought to discover if C++/DCOM programs could be written which
had the same flavour as Hippo programs. If this was possible, the power of the many
C++ libraries and environments could be used cheaply construct Web utilities. In
addition to creating a hyper-programming environment for a commercial system, a
deliberate attempt was made to maximise the use of freely available software and to
avoid writing new software whenever possible.

Hyper-Program Construction. A DCOM/C++ hyper-program is constructed using
two tools: a text editor and a binder. These are used to specify the hyper-program text
and the hyper links respectively. The output from these tools is fed into a pre-proces-
sor which unifies the source and the links into standard C++ prior to presentation to
the gnu-C++ compiler. The pre-processor also creates files and directories for cache
maintenance and in some circumstances pre-fetches Web pages.

Editing Environment. The first tool requirement was for a text editor capable of
incorporating hyperlinks and suitable for editing programs. Web editing tools such as
Netscape Composer and FrontPage do not support the editing of programs since they
are intended as HTML composition tools. Consequently Emacs [32] was used with a
(then) freely available extension called Hyperbole [33]. Hyperbole supports the inclu-
sion of hyperlinks into documents. In particular, these links can refer to Uniform
Resource Locators (URLs), i.e. web pages, and can be clicked on with the mouse. A
Hyperbole user works with buttons embedded within textual documents. These but-
tons may be created, modified, moved or deleted. Each button performs a specific
action, such as linking to a file or executing a shell command. Fig. 7 shows a C++
hyper-program being edited with the Emacs/Hyperbole environment.

Fig. 7. Emacs and Hyperbole

The Hyper-Program Source Code. The program shown in Fig. 8 contains a
C++/DCOM hyper-program that finds the telephone number of a member of the
Computer Science Department at Glasgow University. It does this by scanning an
HTML page denoted by the hyperlink telephonedirectory. The program creates a
binding denoted by h of type IHTML* to this Web page. The IHTML class shown in
Fig. 9 supports a number of operations including the find_in_line method which
searches lines of the page looking for the sub-string specified in the parameter. If a
match is found the line is returned. It also contains a predicate at_end indicating that
the end of the page has been reached.

void main (char** argv, int argc)
{

BOOL end = FALSE;
BOOL is_found = FALSE;
OLECHAR *line;
IHTML*h = <(telephonedirectory)>;
while(SUCCEEDED(h->at_end(&end)) && ! end) {

if((SUCCEEDED(h->find_in_line(
 argv[1,&line,&is_found)) &&
 is_found)) {

printf(“Details are %s \n\r”, line); break; }
if(FAILED(h->next_line())) break;

}
if(end) printf(“didn’t find %s", argv[1]);

}

Fig. 8. A C++/DCOM Hyper-Program

interface IHTML : Iunknown
{

HRESULT display_line();
HRESULT openURL([in, string] char* filename);
HRESULT next_line();
HRESULT find_in_line([in, string] char* name,

 [string, out] OLECHAR** line,[out] int* isfound);
HRESULT at_end([out] int *i);

}

Fig. 9. MIDL Definition of the IHTML Interface

The code shown in Fig. 8 is standard DCOM/C++ except for the line,

IHTML*h = <(telephonedirectory)>;

which has to be replaced with standard C++, as described above this task is performed
by the pre-processor. The code sequence into which this hyper-link is expanded de-
pends on the binding style specified in the binder. This is described the next section.

Creating Bindings. Using the Hyperbole environment, bindings can be made to any
Web based data. However, this does not address the need to specify attributes
associated with those links such as programming language type, external data type,
the location of the data being bound and binding time. To allow hyper-programmers
to specify and view bindings, a Web interface to a binder has been created and is
shown in Fig. 10.

The binder permits users to specify a name for a hyper-link. This is used to match
the hyper-links entered in the editor with bindings specified in the binder. The next
field is the type of the object in the programming language context. In the current
implementation this field contains a string which is used to specify the programming
language type of the target object. This field is strictly unnecessary since it could be
automatically generated but makes the generated code more readable. The next field,
IID, is used to specify the type (interface) of the object being linked to. In the exam-
ple shown in Fig. 10, the link is to an object of type IHTML, shown in Fig. 9. The
CLSID field is used to specify a class library containing executable code implement-
ing the class specified in the IID field. For DCOM aficionados, this is used to find by
a class moniker to locate the class object. The URL field specifies the location of the
data to which the link refers.

The last field is used to specify the time at which the binding is resolved. There are
currently two options supported: compile time and run time. These settings change
the behaviour of the pre-processor and cause different code to be generated. When the
compile-time option is chosen the pre-processor pre-fetches a copy of the target and
stores it locally. In this case the code generated contains fewer run-time checks since
the data will always be accessible. When run-time binding is employed, failure at run-
time is possible and consequently the generated code needs to be more sophisticated.
The code generated for the example program shown in Fig. 8 is given in the next
section.

Fig. 10. Entering Details into the Binder

Binding Times and Errors. The code generated depends on the binding time
specified in the binder. Fig. 11 shows a slightly simplified version of the code
generated for the hyper-program shown in Fig. 8 if construction time (eager) binding
is specified. This code assumes that the binder has loaded the Web page into the local
cache (home/sag/cache). The dynamic case is similar but requires additional code to
fetch the page across the network. The code generated is straightforward DCOM
code.

void main(int argc, char** argv)
{

OLECHAR *line = 0;
IHTML* h = 0;
IClassFactory *pcf = 0;
HRESULT res = S_OK;
IMoniker *pmk = 0;
IBindCtx *pbc = 0;
Check(CreateBindCtx(0,&pbc), “CreateBindCtx failed”);
Check(CreateClassMoniker (CLSID_CWebObject, &pmk),
 “CreateClassMoniker failed”);
Check(BindToObject(pbc,0,IID_IClassFactory,
 (void**)&pcf), “BindToObject failed”);
Check(pcf->CreateInstance(0, IID_IHTML, (void**)&h),
 “Create Instance failed”);
Check(h->openURL("/home/sag/cache/www.dcs.gla.ac.uk/
 contact/index.html"), “Open URL failed”);
BOOL end = FALSE;
BOOL is_found = FALSE;
while(SUCCEEDED(h->at_end(&end)) && ! end) {

if((SUCCEEDED(h->find_in_line(

argv[1,&line,&is_found)) && is_found)) {
printf(“Details are %s \n\r”, line); break; }

if(FAILED(h->next_line())) break;
}
if(end) printf(“didn’t find %s", argv[1]);
h->Release();
pcf->Release();

}

Fig. 11. Simplified DCOM code generated for Fig. 8

Future Directions. All the examples and screen shots discussed this far describe a
system that has been implemented at the University of Stirling. However, this code
represents the start rather than the end-point of what we are trying to achieve. We
stated earlier that we were seeking an integration of C++/DCOM with hyper-
programming and the ideas embodied in the Hippo system. We now describe how we
can use what we have implemented to date to achieve this.

void main (char** argv, int argc)
{

BOOL end;
IPersonSet *s = <(telephonedirectory)>;

while(SUCCEEDED(s->at_end(&end)) && !end) {

Person person;
if(SUCCEEDED(s->next_person(&person) &&
!strcmp(person.name,argv[1]))) {

printf("Telephone number of %s is %s\n",
 argv[1],person.phone_no);

break;
}

}

if (end) printf("didn't find %s\n",argv[1]);
}

Fig. 12. A Strongly Typed C++ Hyper-Program

The program shown in Fig. 8 treats the Web data as an HTML file not as a typed
entity. We would like to be able to re-write the hyper-program as shown in Fig. 12. In
this example, rather than treating the data as HTML text, we have typed it as a set of
objects of type Person. This requires a number of refinements to the mechanisms al-
ready implemented. First the HTML file must be typed as a set of Person. To achieve
this, a MIDL interface definition of a set of Person is created as shown in Fig. 13.
This type is structurally similar to the IHTML interface given earlier with the line type
being replaced with records of type Person. Since the IPersonSet interface inherits

from IHTML, it may use the IHTML interface to assist in the extraction of records of
type Person from the text file.

typedef struct { OLECHAR *name; OLECHAR *phone_no;
 OLECHAR *nickname; } Person;

interface IPersonSet : IHTML
{

HRESULT next_person([out] Person* current);
}

Fig. 13. MIDL Definition of Person Set Interface

Some mechanism must be provided to convert the textual data retrieved over the Web
into typed objects (in this case of type Person). This task is encoded in the library
providing the implementation of IPersonSet. Whilst this implementation could be
hand coded, a more desirable approach would be to generate it automatically from a
specification. There are two basic approaches to this: (i) use the MIDL as a specifi-
cation for the Web format and (ii) use the Web format as a specification to generate
the MIDL.

If the first approach were employed, a tool could be engineered which took the
MIDL interface and a URL as parameters and attempted to find records of the appro-
priate type in the file. In the case of the URL used in the examples in this Section, the
fields are all comma separated making this task easy. This is similar to the construc-
tion of indices in database systems and the importation of records using Wizards in
Microsoft Excel and Access. Once the index was created, generic code could be used
to traverse the data and return records each time next_person was called. An alterna-
tive approach is to generate the IDL from the Web source. This approach is particu-
larly attractive if the Web source is encoded in a structured or semi-structured man-
ner, for example, using XML [34]. In both cases, generic code needs to exist which
may be specialised to operate over records of an appropriate type. This may be
achieved using the parametric polymorphism provided by the implementation lan-
guage or using tools such as those suggested by Sheard and Stemple [35] or Kirby
[36].

4 Conclusions

Our original motivation for hyper-programming was to allow the user to compose
programs interactively, navigating the environment and selecting data items, includ-
ing code, to be incorporated into the programs. We further believed that programming
language systems could provide better support for the software engineering process
than they do at present, in particular, with regard to the traditional compose-compile-
link-execute cycle of program development.

From our early implementations of hyper-programming we summarised that the
attendant benefits of the concept are:

• being able to perform program checking early
• support for source representations of all object closures
• being able to enforce associations from executable programs to source programs
• availability of an increased range of linking times
• increased program succinctness
• increased ease of program composition

Here we have developed the hyper-programming notion to presenting a single repre-
sentation of data and code throughout the software process using hyper-code. Fur-
thermore we have explored techniques for adapting hyper-programming to persistent
contexts that do not enforce referential integrity, such as the WWW; and implement-
ing and using hyper-programming in standardised languages and inter-operability
mechanisms, such as C++ and DCOM.

5 Acknowledgements

We wish to acknowledge the work of Vivienne Dunstan on hyper-code and her con-
tribution to the concepts presented here. The outline of the global hyper-programming
challenges described in Section 3.5 relies heavily upon work done within the Hippo
project by: David Lievens, Paolo Manghi, Steve Neely, Keith Sibson, Fabio Simeoni
and Anna Stavrianou.

We also acknowledge the support of EPSRC under grant GR/L32699 “Compliant
Systems Architecture” and the EC Working Group Pastel EC22552.

References

1. Morrison R., Connor R.C.H., Cutts Q.I., Dunstan V.S., Kirby G.N.C. Exploiting Persistent
Linkage in Software Engineering Environments. Comp. J. 1995; 38,1:1-16

2. Metrowerks Inc. CodeWarrior Pro 5, 1999
3. Farkas A.M., Dearle A., Kirby G.N.C., Cutts Q.I., Morrison R., Connor R.C.H. Persistent

Program Construction through Browsing and User Gesture with some Typing. In: A.
Albano and R. Morrison (ed) Persistent Object Systems, Proc. 5th International Workshop
on Persistent Object Systems (POS5), San Miniato, Italy. Springer-Verlag, 1992, pp 376-
393

4. Kirby G.N.C., Connor R.C.H., Cutts Q.I., Dearle A., Farkas A.M., Morrison R. Persistent
Hyper-Programs. In: A. Albano and R. Morrison (ed) Persistent Object Systems, Proc. 5th
International Workshop on Persistent Object Systems (POS5), San Miniato, Italy.
Springer-Verlag, 1992, pp 86-106

5. Morrison R., Brown A.L., Connor R.C.H., Cutts Q.I., Dearle A., Kirby G.N.C., Munro
D.S. Napier88 Reference Manual (Release 2.2.1). University of St Andrews, 1996

6. Atkinson M.P., Daynès L., Jordan M.J., Printezis T., Spence S. An Orthogonally
Persistent Java™. ACM SIGMOD Record 1996; 25,4:68-75

7. Cutts Q.I., Connor R.C.H., Kirby G.N.C., Morrison R. An Execution Driven Approach to
Code Optimisation. In: Proc. 17th Australasian Computer Science Conference (ACSC'94),
Christchurch, New Zealand, 1994, pp 83-92

8. Stroustrup B. The C++ Programming Language. Addison-Wesley, 1986

9. The Common Object Request Broker: Architecture and Specification, Revision 2.2.
Object Management Group (OMG), 1998

10. Microsoft Corporation. DCOM Technical Overview. , 1996
11. Atkinson M.P., Bailey P.J., Chisholm K.J., Cockshott W.P., Morrison R. An Approach to

Persistent Programming. Comp. J. 1983; 26,4:360-365
12. Atkinson M.P., Morrison R. Procedures as Persistent Data Objects. ACM ToPLaS 1985;

7,4:539-559
13. Goldberg A., Robson D. Smalltalk-80: The Language and its Implementation. Addison

Wesley, Reading, Massachusetts, 1983
14. O’Brien P.D., Halbert D.C., Kilian M.F. The Trellis Programming Environment. ACM

SIGPLAN Notices 1987; 22,12:91-102
15. Dearle A., Brown A.L. Safe Browsing in a Strongly Typed Persistent Environment. Comp.

J. 1988; 31,6:540-544
16. Bretl B., Maier D., Otis A., Penney J., Schuchardt B., Stein J., Williams E.H., Williams

M. The GemStone Data Management System. In: W. Kim and F. Lochovsky (ed) Object-
Oriented Concepts, Databases and Applications. ACM Press and Addison Wesley, 1989,
pp 283-308

17. Cooper R.L. On The Utilisation of Persistent Programming Environments. Ph.D. thesis,
University of University of Glasgow, 1990

18. Kirby G.N.C., Dearle A. An Adaptive Graphical Browser for Napier88. University of St
Andrews Report CS/90/16, 1990

19. Zirintsis E., Dunstan V.S., Kirby G.N.C., Morrison R. Hyper-Programming in Java. In: R.
Morrison, M. Jordan and M. P. Atkinson (ed) Advances in Persistent Object Systems,
Proc. 8th International Workshop on Persistent Object Systems (POS8) and 3rd
International Workshop on Persistence and Java (PJW3), Tiburon, California, 1998.
Morgan Kaufmann, 1999

20. Connor R.C.H., Cutts Q.I., Kirby G.N.C., Moore V.S., Morrison R. Unifying Interaction
with Persistent Data and Program. In: P. Sawyer (ed) Interfaces to Database Systems,
Proc. 2nd International Workshop on User Interfaces to Databases, Ambleside, Cumbria,
1994. Springer-Verlag, 1994, pp 197-212

21. Kirby G.N.C. Reflection and Hyper-Programming in Persistent Programming Systems.
Ph.D. thesis, University of University of St Andrews, 1992

22. Morrison R., Balasubramaniam D., Greenwood M., Kirby G.N.C., Mayes K., Munro D.S.,
Warboys B.C. ProcessBase Reference Manual (Version 1.0.4). Universities of St Andrews
and Manchester, 1999

23. Morrison R., Balasubramaniam D., Greenwood M., Kirby G.N.C., Mayes K., Munro D.S.,
Warboys B.C. A Compliant Persistent Architecture. To Appear: Proc. Software—Practice
and Experience, 1999

24. Connor R.C.H., Cutts Q.I., Kirby G.N.C., Morrison R. Using Persistence Technology to
Control Schema Evolution. In: Proc. 9th ACM Symposium on Applied Computing,
Phoenix, Arizona, 1994, pp 441-446

25. Connor R.C.H., Atkinson M.P., Berman S., Cutts Q.I., Kirby G.N.C., Morrison R. The Joy
of Sets. In: C. Beeri, A. Ohori and D. E. Shasha (ed) Database Programming Languages,
Proc. 4th International Conference on Database Programming Languages (DBPL4), New
York City. Springer-Verlag, 1993, pp 417-433

26. Atkinson M.P., Lécluse C., Philbrow P., Richard P. Design Issues in a Map Language. In:
P. Kanellakis and J. W. Schmidt (ed) Bulk Types & Persistent Data. Morgan Kaufmann,
1991, pp 20-32

27. Stemple D., Fegaras L., Sheard T., Socorro A. Exceeding the Limits of Polymorphism in
Database Programming Languages. In: F. Bancilhon, C. Thanos and D. Tsichritzis (ed)
Lecture Notes in Computer Science 416, Proc. 2nd International Conference on Extending
Database Technology (EDBT'90), Venice, Italy. Springer-Verlag, 1990, pp 269-285

28. Stemple D., Stanton R.B., Sheard T., Philbrow P., Morrison R., Kirby G.N.C., Fegaras L.,
Cooper R.L., Connor R.C.H., Atkinson M.P., Alagic S. Type-Safe Linguistic Reflection:
A Generator Technology. To Appear: Proc. The FIDE Book, 1999

29. Connor R.C.H., Sibson K., Manghi P. On the Unification of Persistent Programming and
the World-Wide Web (LNCS). In: Lecture Notes in Computer Science, Proc. Workshop
on the Web and Databases (WebDB'98), Valencia, Spain. Springer-Verlag, 1998

30. Simeoni F. Extracting Typed Data from Semi-Structured Collections. MSc thesis,
University of University of Glasgow, 1998

31. Connor R.C.H., Manghi P., Simeoni F. A Kinded Approach to Extracting Typed Subsets
from Semi-Structured Data. in preparation. Please contact the authors.

32. Stallman R.M. EMACS: The Extensible, Customizable Self-Documenting Display Editor.
ACM SIGPLAN Notices 1981; 16,6:147-156

33. Altrasoft. Hyperbole , 1998
34. Bray T., Paoli J., Sperberg-McQueen C.M. Extensible Markup Language (XML) 1.0.

W3C, 1998
35. Stemple D., Sheard T., Fegaras L. Linguistic Reflection: A Bridge from Programming to

Database Languages. In: Proc. 25th International Conference on Systems Sciences,
Hawaii, 1992, pp 844-855

36. Kirby G.N.C., Connor R.C.H., Morrison R. START: A Linguistic Reflection Tool Using
Hyper-Program Technology. In: M. P. Atkinson, D. Maier and V. Benzaken (ed)
Persistent Object Systems, Proc. 6th International Workshop on Persistent Object Systems
(POS6), Tarascon, France. Springer-Verlag, 1994, pp 355-373

	Title
	Abstract
	1 Introduction
	2 Motivations & Previous Work
	2.1 Constructing Hyper-programs
	2.2 Safety and Efficiency
	Checking Persistent Data Access

	2.3 Experience

	3 Current Work
	3.1 Options for Further Development
	3.2 Hyper-Code
	Hyper-Code Operations
	Hyper-Code Representations

	3.3 System Evolution
	3.4 Dependent Types
	3.5 Internet Programming
	Program Source
	Typed Data
	Importing Data
	Internet Hyper-Programming?

	3.6 An Open C++/DCOM Hyper-Programming Environment
	Hyper-Program Construction
	Editing Environment
	The Hyper-Program Source Code
	Creating Bindings
	Binding Times and Errors
	Future Directions

	4 Conclusions
	5 Acknowledgements
	References

