
 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 1/48

© 2001 GLOSS CONSORTIUM

IST BASIC RESEARCH PROJECT
SHARED COST RTD PROJECT
THEME: FET DISAPPEARING COMPUTER
COMMISSION OF THE EUROPEAN COMMUNITIES
DIRECTORATE GENERAL INFSO
PROJECT OFFICER: THOMAS SKORDAS

Global Smart Spaces

D11: SECOND SET OF SPACES
EVANGELOS ZIRINTSIS , GRAHAM KIRBY, ALAN DEARLE, BEN ALLEN, ROB

MACINNIS , ANDREW MCCARTHY, RON MORRISON, PADDY NIXON, ANDREW
JAMIESON, CHRIS NICHOLSON, STEVEN HARRIS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/9821368?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 2/48

© 2001 GLOSS CONSORTIUM

IST Project Number IST-2000-26070 Acronym GLOSS

Full title Global Smart Spaces

EU Project officer Thomas Skordas

Deliverable Number D11 Name

Task Number T Name

Work Package Number WP Name

Date of delivery Contractual Actual

Code name Version 1.0 draft ¨ final þ

Nature Prototype ¨ Report þ Specification ¨ Tool ¨ Other:

Distribution Type Public þ Restricted ¨ to: <partners>

Authors (Partner) University of St Andrews and University of Strathclyde

Graham Kirby Contact Person

Email graham@dcs.st-
and.ac.uk

Phone Fax

Abstract
(for dissemination)

This document describes the Gloss infrastructure supporting implementation of location-aware
services. The document is in two part. The first part describes software architecture for the smart
space. As described in D8, a local architecture provides a framework for constructing Gloss
applications, termed assemblies, that run on individual physical nodes, whereas a global
architecture defines an overlay network for linking individual assemblies. The second part outlines
the hardware installation for local sensing. This describes the first phase of the installation in
Strathclyde University. A installation is planned for Trinity College Dublin – however this is
delayed due to manufacturer delays in supplying hardware elements. The Construction guidelines
for this hardware are detailed in D12.

Keywords

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 3/48

© 2001 GLOSS CONSORTIUM

1 INTRODUCTION..5
2 PART I – SOFTWARE INFRASTRUCTURE...5

3 LOCATION-AWARE SERVICES PIPELINE...7
3.1 MOBILE APPLICATION...7
3.2 GENERIC SERVER...10

3.2.1 Event Types..12
3.3 USER INTERFACE...18
3.4 DEPLOYMENT TECHNOLOGY ..20

3.4.1 Overview ..20
3.4.2 Deployment Method ...21
3.4.3 Compilation of DDD..22
3.4.4 Detail of Wiring Process ..24

3.5 EVENT MATCHING...25
4 PART II – HARDWARE INFRASTRUCTURE (SENSING).................................27

4.1 SYSTEM ARCHITECTURE..27
HCS12 SENSOR SERVER...27
ILON LONWORKS WEB SERVER ..27
DATA COLLECTION APPLICATION ..28
SERVLET AND DATABASE SERVER ..28
CLIENTS ...29

5 SENSOR HARDWARE CONNECTIONS ..30
SENSOR TYPES ..30

PIR (Passive InfraRed)..30
Ceiling Mounted Movement Detector...30
Reed Switch ...30
IR Light Beam..30

CABLE TYPES..30
CAT5 Cable...31
Alarm Cable ..31

DEVICE CONNECTION...31
HCS12 ...31
iLon 32

6 DATA COLLECTION ...33
DATA FORMATS ..33

HCS12 to Data Collection Application...33
iLON to Data Collection Application..33
Data Collection Application to Servlet ...33
Servlet to Clients...34

DATA COLLECTION EVENT SEQUENCING...34
HCS12 Data Collection...34
iLON Data Collection ...36

DATA PULL APPLICATION...37

7 HIGH LEVEL ARCHITECTURE (CLIENT) ..38
SENSOR CLIENT ..38

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 4/48

© 2001 GLOSS CONSORTIUM

SENSOR CALENDAR..38
SENSOR DATA MODELS ..38
COMMUNICATIONS ..39
SENSOR UI..39
7.1 OVERALL CLIENT STRUCTURE...40
7.2 DETAILED ARCHITECTURE...41
CALENDAR TO DATA MODEL INTERACTION ...41

PlayableCalendar and SensorCalendar classes..41
CONCLUSIONS..42

8 APPENDIX 1: WIRING DIAGRAMS...43

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 5/48

© 2001 GLOSS CONSORTIUM

1 INTRODUCTION
This document describes the Gloss infrastructure supporting implementation of

location-aware services. The document is in two part. The first part describes software
architecture for the smart space. As described in D8, a local architecture provides a
framework for constructing Gloss applications, termed assemblies, that run on
individual physical nodes, whereas a global architecture defines an overlay network
for linking individual assemblies. The second part outlines the hardware installation
for local sensing. This describes the first phase of the installation in Strathclyde
University. A installation is planned for Trinity College Dublin – however this is
delayed due to manufacturer delays in supplying hardware elements. The
Construction guidelines for this hardware are detailed in D12.

2 PART I – SOFTWARE INFRASTRUCTURE
The structure of the software is outlined in Figure 1. At the top level, among other

packages, the infrastructure package contains support for both local and global
architectures; model contains the Gloss ontology. The local infrastructure package
includes: the assembly package containing various assemblies; the component
package which includes implementations of Gloss components; the factory package
which allows users to create components using factories; the pipeline package which
provides the interfaces that the Gloss components implement; the ui package which
provides the User Interface. The model package contains implementations of different
aspects of the Gloss ontology, such as context, space, time etc.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 6/48

© 2001 GLOSS CONSORTIUM

Figure 1: Gloss Software Outline

Particular location-aware services, such as Radar, Hearsay or Trails, are
implemented as distributed pipelines of communicating assemblies. Each assembly is
a pipeline of modular components. Events flow between components as strings, XML
fragments or structured objects, as appropriate.

Using the pipeline architectural pattern has a number of advantages:

Ø Modularity: each component is independent, which eases development and
maintenance.

Ø Flexibility: the pipeline architecture allows applications to adapt to changing
requirements in a flexible manner.

Ø Software Reuse: new applications can easily be constructed using existing
software. Each component is independent and can be easily reused in multiple
assemblies.

Ø Extensibility: new components may be developed and added without
impacting an existing system.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 7/48

© 2001 GLOSS CONSORTIUM

3 LOCATION-AWARE SERVICES PIPELINE
The pipeline makes use of both hardware and software components. The hardware

components used are shown in Figure 2. A PocketPC PDA connects via Bluetooth to
a GPS device and a mobile phone. The mobile phone communicates with the Gloss
infrastructure via TCP/IP over GPRS.

Figure 2: Hardware used in the pipeline

In the rest of this section we describe a particular pipeline of software components
which are deployed within the hardware infrastructure shown above. Via this pipeline,
the user is provided with location-aware services such as Hearsay, Radar and Trails. It
consists of two communicating assemblies: the Mobile Application Assembly (MAA)
and the Generic Server Assembly (GSA).

3.1 MOBILE APPLICATION

Figure 3 shows the MAA in use.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 8/48

© 2001 GLOSS CONSORTIUM

Figure 3: Mobile assembly in use

Figure 4 shows the MAA structure; it consists of two assemblies, the User
Interface Assembly (UIA) and the GPS Assembly (GPSA).

The UIA receives events from a server and displays the corresponding graphical
components within a Display area. The Receiver processes any remote events and
distributes them to the appropriate interface layer. The current implementation
provides four different layers: Trails, Radar, Hearsay and Map. These receive
location data, hearsay events and map data respectively. Each of the layers is
displayed within an area specified by component GUI. The Controller component
receives user commands from the GUI and performs the appropriate task. The
assembly is structured such that it would be straightforward to add or modify the
interface layers.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 9/48

© 2001 GLOSS CONSORTIUM

GPS

NMEA Strings

Time / Space
Proximity Filter

Controller

Sender

Bus

Receiver

GUI

Display

Map

Trails Radar Hearsay

Layer Compositing

Server

Location Data

Draw

Draw

Status-bar / page
update etc.

User Cmds

Threshold

Location Events

Current Location

Draw Msg

Current Location

Map Data
Data Requests

� Zoom, Pan, Etc.
� Draw Layers with

coordinates
correctly positioned

Outgoing
Messages

Map
Commands
(zoom,etc)

Location Data Location Data Hearsay Event

Show Layer

Map Requests

GPS

Figure 4: The Mobile Application Assembly

The GPS Assembly, within the shaded rectangle in the previous diagram, is shown
in more detail in Figure 5. The GPS device is a component that establishes a
connection with the GPS reader. The readings from the GPS device are in the form of
NMEA strings. The NMEALocationFilter passes through only those strings
containing location information. The EventBus forwards these events to multiple
components, which convert various device-dependent NMEA strings into
Observation objects. These are then forwarded to the ObservationBuffer component
which combines location information with time of observation and GPS meta-data
such as the number of satellites visible etc. The TimeSpaceProximityFilter filters
these objects; only those which differ in time or space from the previous reading by
more than appropriate threshold values are injected into the pipeline. These are passed
to an ObjectToXML adapter for serialisation to XML representation. The final XML
message is passed to the Sender, which sits on top of various 3rd party components
that allow communication with the infrastructure over TCP/IP.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 10/48

© 2001 GLOSS CONSORTIUM

GPS

Time / Space
Proximity Filter

Sender

Bus

Map

Server

Location Events

Current Location

Current Location

Map Requests

GPS

NMEA-GGA to
Observation Adapter

Bus

NMEA-GSA to
Observation Adapter

NMEA-RMC to
Observation Adapter

NMEA Strings

NMEA Strings

NMEA Strings

NMEA Strings

Observation
Buffer

Observation

Observation

Observation

Observation

ObjectToXML
Adapter

XML Message
Constructor

XML Message

XML Message

COTS
BVPR GPRS,

Ericsson
Software,

etc

NMEA Location
Filter

NMEA Strings

Figure 5: The GPS Assembly software structure

3.2 GENERIC SERVER

Figure 6 shows the components of the Generic Server Assembly. The
IPSocketAdapter component receives string events. These are filtered by the
XMLFilter, which passes through only well-formed XML messages, and a security
checker that authenticates the origins of the message. Messages are then forwarded to
an EventBus, which sends it to five components: another EventBus component and
four modules which process map, hearsay, radar and trails events (MapModule,
HearsayModule, RadarModule, TrailsModule respectively). All of these components
generate responses in XML format which are forwarded to the EventServer, to be sent
over the network to the appropriate clients.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 11/48

© 2001 GLOSS CONSORTIUM

IPSocketAdapter EventServer

XMLFilter

SecurityChecker

MapModule

HearsayModule RadarModule TrailsModule

EventBus

EventBusXML Message

XML Message

XML Message
Hearsay, Trails, Radar, Map

locationEvent

mapRequest

mapResponse
hearsaySubmission

hearsayRequest radarRequest
locationEvent

mapResponse
trailsRequest

hearsayDelivery

RadarResponse
trailsResponse

XML Message

ClientIncoming XML

Outgoing XML

UserMap
Buffer

mapResponse

mapResponse EventBusmapResponse

mapResponse

Figure 6: The Generic Server Assembly Software structure

The MapModule accepts a mapRequest event. If there is an appropriate map, the
module generates a mapResponse which is forwarded to the UserMapBuffer
component. This caches the current map view of the user specified in the event. The
mapResponse event is also forwarded to the HearsayModule, RadarModule and
TrailsModule, which generate individual appropriate responses.

The HearsayModule accepts three kinds of events: hearsayRequest,
hearsaySubmission and mapResponse. On a hearsayRequest event, the module
records whether the user specified by the ID tag in the message wishes to receive
hearsay messages. On a hearsaySubmission event, the module matches the specified
hearsay delivery context against the context of all current users, and generates a
hearsayDelivery event for each match. On a mapResponse event, the module is
notified that a user’s view has changed, in which case it sends to the user, via
EventServer, all the previously recorded hearsayDelivery messages that are within the
new view. The information about the user’s view is retrieved from the UserMapBuffer
component.

The RadarModule accepts two kinds of events: radarRequest and locationEvent.
On a radarRequest event, the module records whether the user specified by the ID tag
in the message wishes to receive radar messages. On a locationEvent event, the
module finds the users whose current view contains the coordinates specified by the
locationEvent. It then generates radarResponse messages for these users and forwards
them to the EventServer.

The TrailsModule accepts three kinds of events: trailsRequest, trailSubmission and
mapResponse. On a trailsRequest event, the module records whether the user
specified by the ID tag in the message wishes to receive trails messages. The module
also records the IDs of the users that the particular client might be interested to

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 12/48

© 2001 GLOSS CONSORTIUM

receive trails from. If there are no users then this means that the client is interested in
all trails. On a trailsSubmission event, the module records the locations of trails
included. On a mapResponse event, the module is notified that a user’s view has
changed, in which case it sends to the user, via EventServer, all the previously
recorded trails that are within the new view.

All the response messages generated by the different modules contain an ID tag
that specifies the user. The user information is used by the EventServer which filters
the messages and sends them to the appropriate users.

3.2.1 EVENT TYPES

Several kinds of events have been mentioned in the previous section. In this
section, we give examples for each of those events.

3.2.1.1 LOCATIONEVENT

Location event messages are defined by the schema located at:

http://www-systems.dcs.st-and.ac.uk/gloss/xml/2003-07/locationEvent.xsd

An example location event is shown below:
<locationEvent>
 <ID>
 <email>vangelis@dcs.st-and.ac.uk</email>
 </ID>
 <processingSequence />
 <observation>
 <timeOfObservation>2003-8-17T18:31:59:516</timeOfObservation>
 <where>
 <physicalLocation>
 <coordinate>
 <latLongCoordinate>
 <latitude>56.340232849121094</latitude>
 <longitude>-2.808</longitude>
 </latLongCoordinate>
 </coordinate>
 </physicalLocation>
 </where>
 </observation>
</locationEvent>

3.2.1.2 HEARSAYREQUEST

Hearsay request contains the ID of the user and whether the service should be
activated or not. An example is shown below:

<hearsayRequest>
 <ID>
 <email>graham@dcs.st-and.ac.uk</email>
 </ID>
 <activate>true</ activate >
</ hearsayRequest >

3.2.1.3 HEARSAYSUBMISSION

Hearsay submission contains location information about the sender and the
receiver as well as the hearsay message itself. An example is shown below:

<hearsaySubmission>
 <sender>

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 13/48

© 2001 GLOSS CONSORTIUM

 <locationEvent>
 <ID>
 <email>al@dcs.st-and.ac.uk</email>
 </ID>
 <processingSequence />
 <observation>
 <timeOfObservation>2003-05-16T18:31:59:516</timeOfObservation>
 <where>
 <physicalLocation>
 <coordinate>
 <latLongCoordinate>
 <latitude>56.360232849121094</latitude>
 <longitude>-2.80704378657099</longitude>
 </latLongCoordinate>
 </coordinate>
 </physicalLocation>
 </where>
 </observation>
 </locationEvent>
 </sender>
 <receiver>
 <locationEvent>
 <ID>
 <email>ron@dcs.st-and.ac.uk</email>
 </ID>
 <processingSequence />
 <observation>
 <timeOfObservation>2003-8-17T18:31:59:516</timeOfObservation>
 <where>
 <physicalLocation>
 <coordinate>
 <latLongCoordinate>
 <latitude>56.340232849121094</latitude>
 <longitude>-2.808</longitude>
 </latLongCoordinate>
 </coordinate>
 </physicalLocation>
 </where>
 </observation>
 </locationEvent>
 </receiver>
 <hearsayMessage>Hello Vangelis</hearsayMessage>
</hearsaySubmission>

3.2.1.4 HEARSAYDELIVERY

Hearsay delivery contains location information about the sender and the receiver as
well as the hearsay message itself. An example is shown below:

<hearsayDelivery>
 <ID>
 <email>rob@dcs.st-and.ac.uk</email>
 </ID>
 <sender>
 <locationEvent>
 <ID>
 <email>al@dcs.st-and.ac.uk</email>
 </ID>
 <processingSequence />
 <observation>
 <timeOfObservation>2003-05-16T18:31:59:516</timeOfObservation>

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 14/48

© 2001 GLOSS CONSORTIUM

 <where>
 <physicalLocation>
 <coordinate>
 <latLongCoordinate>
 <latitude>56.360232849121094</latitude>
 <longitude>-2.80704378657099</longitude>
 </latLongCoordinate>
 </coordinate>
 </physicalLocation>
 </where>
 </observation>
 </locationEvent>
 </sender>
 <receiver>
 <locationEvent>
 <ID>
 <email>rob@dcs.st-and.ac.uk</email>
 </ID>
 <processingSequence />
 <observation>
 <timeOfObservation>2003-8-17T18:31:59:516</timeOfObservation>
 <where>
 <physicalLocation>
 <coordinate>
 <latLongCoordinate>
 <latitude>56.340232849121094</latitude>
 <longitude>-2.808</longitude>
 </latLongCoordinate>
 </coordinate>
 </physicalLocation>
 </where>
 </observation>
 </locationEvent>
 </receiver>
 <hearsayMessage>Hello Vangelis</hearsayMessage>
</hearsayDelivery >

3.2.1.5 RADARREQUEST

A radar request contains the ID of a user and whether the service should be
activated or not. An example is shown below:

<radarRequest>
 <ID>
 <email>graham@dcs.st-and.ac.uk</email>
 </ID>
 <activate>false</activate>
</radarRequest>

3.2.1.6 RADARRESPONSE

A radar response contains location information about a user. An example is shown
below:

<radarResponse>
 <ID>
 <email>vangelis@dcs.st-and.ac.uk</email>
 </ID>
 <locationEvent>
 <ID>
 <email>al@dcs.st-and.ac.uk</email>
 </ID>

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 15/48

© 2001 GLOSS CONSORTIUM

 <processingSequence />
 <observation>
 <timeOfObservation>2003-05-16T18:31:59:516</timeOfObservation>
 <where>
 <physicalLocation>
 <coordinate>
 <latLongCoordinate>
 <latitude>56.360232849121094</latitude>
 <longitude>-2.80704378657099878</longitude>
 </latLongCoordinate>
 </coordinate>
 </physicalLocation>
 </where>
 </observation>
 </locationEvent>
</radarResponse>

3.2.1.7 TRAILREQUEST

A trail request contains the ID of a user and whether the service should be
activated or not. Optionally it includes a list of IDs that correspond to the users that it
is desired to receive trails from. An example is shown below:

<trailRequest>
 <ID>
 <email>al@dcs.st-and.ac.uk</email>
 </ID>
 <activate>true</activate>
 <desiredUsers>
 <ID> <email>vangelis@dcs.st-and.ac.uk</email> </ID>
 <ID> <email>graham@dcs.st-and.ac.uk</email> </ID>
 <ID> <email>ron@dcs.st-and.ac.uk</email> </ID>
 <ID> <email>rob@dcs.st-and.ac.uk</email> </ID>
 </desiredUsers>
</trailRequest>

3.2.1.8 TRAILSSUBMISSION

A trail submission contains a sequence of locations. An example is shown below:
<trailSubmission>
 <trail>

 <observedTrail>
<locationEvent>

 <ID>
 <email>al@dcs.st-and.ac.uk</email>
 </ID>
 <processingSequence />
 <observation>
 <timeOfObservation>2003-05-16T18:31:59:516</timeOfObservation>
 <where>
 <physicalLocation>
 <coordinate>
 <latLongCoordinate>
 <latitude>56.370232849121094</latitude>
 <longitude>-2.80804378657099</longitude>
 </latLongCoordinate>
 </coordinate>
 </physicalLocation>
 </where>
 </observation>
 </locationEvent>

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 16/48

© 2001 GLOSS CONSORTIUM

<locationEvent>
 <ID>
 <email>al@dcs.st-and.ac.uk</email>
 </ID>
 <processingSequence />
 <observation>
 <timeOfObservation>2003-05-16T18:32:04:516</timeOfObservation>
 <where>
 <physicalLocation>
 <coordinate>
 <latLongCoordinate>
 <latitude>56.370232849121094</latitude>
 <longitude>-2.80804378657099</longitude>
 </latLongCoordinate>
 </coordinate>
 </physicalLocation>
 </where>
 </observation>
 </locationEvent>

 </observedTrail>
</trail>

</trailSubmission>

3.2.1.9 TRAILSRESPONSE

A trail response contains trail information about a user. An example of such a
response containing observed trails is shown below:

<trailsResponse>
 <ID>
 <email>vangelis@dcs.st-and.ac.uk</email>
 </ID>
 <trail>

<observedTrail>
<locationEvent>

 <ID>
 <email>al@dcs.st-and.ac.uk</email>
 </ID>
 <processingSequence />
 <observation>
 <timeOfObservation>2003-05-16T18:31:59:516</timeOfObservation>
 <where>
 <physicalLocation>
 <coordinate>
 <latLongCoordinate>
 <latitude>56.370232849121094</latitude>
 <longitude>-2.80804378657099</longitude>
 </latLongCoordinate>
 </coordinate>
 </physicalLocation>
 </where>
 </observation>
 </locationEvent>

<locationEvent>
 <ID>
 <email>al@dcs.st-and.ac.uk</email>
 </ID>
 <processingSequence />
 <observation>
 <timeOfObservation>2003-05-16T18:32:04:516</timeOfObservation>
 <where>

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 17/48

© 2001 GLOSS CONSORTIUM

 <physicalLocation>
 <coordinate>
 <latLongCoordinate>
 <latitude>56.370232849121094</latitude>
 <longitude>-2.80804378657099</longitude>
 </latLongCoordinate>
 </coordinate>
 </physicalLocation>
 </where>
 </observation>
 </locationEvent>

 </observedTrail >
</trail>

</trailsResponse>

3.2.1.10 MAPREQUEST

A map request contains the ID of a user, their current location and the desired
zoom level. An example is shown below:

<mapRequest>
 <ID>
 <email>vangelis@dcs.st-and.ac.uk</email>
 </ID>
 <coordinate>
 <latLongCoordinate>
 <latitude>56.340232849121094</latitude>
 <longitude>-2.808</longitude>
 </latLongCoordinate>
 </coordinate>
 <zoom>5</zoom>
</mapRequest>

3.2.1.11 MAPRESPONSE

A map response contains the ID of a user and the information necessary for them
to download an image and display it correctly on the screen. The latter information
involves: the web location, the width/height of the image, the coordinates of the top
left and bottom right corners, the width/height ratio and the zoom level. An example
is shown below:

<mapResponse>
 <ID>
 <email>vangelis@dcs.st-and.ac.uk</email>
 </ID>
 
</mapResponse>

3.3 USER INTERFACE

In this section we illustrate the user interface of the running assemblies. Each
assembly is an instantiation of the local architecture. Figure 7 shows the result of
starting the server assembly.

Figure 7: Starting the Generic Server Assembly

Figure 9 shows a mobile client in use, while Figure 9 shows a detailed screenshot
with the radar service activated. The green circled arrow denotes the current location
of the user, and the yellow arrow denotes the location of another user of interest.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 19/48

© 2001 GLOSS CONSORTIUM

Figure 8: Mobile assembly in actual use

Figure 9: A client with radar information

Figure 10 shows the reception of a hearsay message.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 20/48

© 2001 GLOSS CONSORTIUM

Figure 10: A client with hearsay information

Figure 11 shows the display of both radar and trails information.

Figure 11: A client with radar and trails information

3.4 DEPLOYMENT TECHNOLOGY

Global Ubiquitous computing environments require a large and diverse range of
inter-communicating services to be deployed at geographically appropriate locations
to support their users. Constantly changing requirements and usage patterns
necessitate the ability to introduce new components and change – at runtime – the
topology and composition of this environment. To start to address these requirements
we have developed a deployment engine and a set of associated tools.

3.4.1 OVERVIEW

We introduce several concepts which form the core of the Deployment Engine:
Mobile Code Tools and XML Control Documents.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 21/48

© 2001 GLOSS CONSORTIUM

Core components of the deployment process are mobile code tools and XML
Control Documents – “To Do Lists” and “Task Reports”. To Do Lists are composed
of a set of Tasks which detail actions a tool must attempt to perform upon arrival at a
Thin Server. Consequent Task Report documents list the outcomes of each Task and
any other associated information. When the tool completes its assigned Tasks a Task
Report is sent back to the Deployment Engine. An example To Do list and Task
Report are shown below:
<ToDoList>
 <Task guid="urn:gloss:aEcncdeEe" type="INSTALL">
 <datum id="PayloadRef">urn:gloss:a222jdjd2s</datum>
 </Task>
 <Task guid="urn:gloss:aBcbcdebe" type="INSTALL">
 <datum id="PayloadRef">urn:gloss:b333jdjd2s</datum>
 </Task>
</ToDoList>

<TaskReport>
 <TaskOutcome guid="urn:gloss:aEcncdeEe" success="TRUE">
 <!-- TaskOutcomes can have zero, one or many datum elements
 which are bindings and data this permits any application
 specific information to be sent back to the Deployment
 Engine -->
 <datum id="StoreGuid">AECJCJDKSKDLDJSUVDJD</datum>
 </TaskOutcome>
 <TaskOutcome guid="urn:gloss:aBcbcdebe" success="FALSE">
 <datum id="Error">403</datum>
 </TaskOutcome>
</TaskReport>

Mobile Code Tools are CINGAL bundles which are configurable by attaching an
appropriate To Do List to the bundle which encloses the Tool. The deployment engine
utilises three primary tools: Installers, Runners and Wirers. Installer Tools install an
arbitrary number of bundles into the store of the Thin Server they are sent to, Runner
Tools start the execution of a bundle which is already in the store of a Thin Server and
Wirer Tools are responsible for making concrete connections between pairs of
Abstract Channels.

3.4.2 DEPLOYMENT METHOD

The Deployment Engine distributes autonomous components which perform a
specific computation/function (service). The components have no knowledge of the
topology of the network of which they are a part. The system takes a deployment
specification and from this, deploys the components, starts them running and finally
connects them into the specified topology.

Deployment States:

• Deployed – corresponds to the state when all bundles have been installed
into the TSStore of their respective nodes.

• Running – corresponds to the state when all bundles have started
computation. Any read/write on abstract channels will block as they have
not been connected to a transport mechanism at this state.

• Wired – corresponds to the state when all bundles have started
computation and all abstract channels have been connected to a transport
mechanism which will carry data to their appropriate destination.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 22/48

© 2001 GLOSS CONSORTIUM

A Deployment Descriptor Document (DDD) is a static description of a distributed
graph of components. The DDD specifies where to retrieve components (Bundles),
machines available, mapping of components to machines (a deployment) and the
connections between abstract channel pairs.

Deployment Descriptor Document Multiplicities:

• Node – a physical machine is a node.

• Machine – a virtual machine running a bundle, many machines run on a
node. One bundle is running in each machine.

Figure 12 shows an example Deployment Description describing a GLOSS
infrastructure.

Nodes

Mapping
bundle to

Node

Abstract Channel named
“OutGoingMatches ” will be
connected to the Abstract

Channel named
“IncomingMatches”

Figure 12: Example DDD

The DDD is input to the Deployment Engine (this process is known as compilation
of the DDD), which retrieves bundles from a component catalogue and performs
appropriate configuration and firing of a set of Installers, Runners and Wirers to
construct and activate (run the connected graph of bundles) the graph described in the
DDD.

3.4.3 COMPILATION OF DDD

Installers are configured (by creating an appropriate To Do List) and fired (sent to
appropriate nodes and executed) to install required components onto Thin Servers
throughout the network. One installer is fired per Thin Server. Each installer sends
back a report to the deployment engine listing the TSGUID each bundle has been
installed as. Figure 13 shows an example of installation.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 23/48

© 2001 GLOSS CONSORTIUM

Node: Als machine

Node: Andrews Machine Node: Grahams machine

Stage: Installed

TSStore TSStore

TSStore

St_andrews_hearsay_infrastructure
stored into the TSStore on Andrews
Machine

St_andrews_hearsay_engine
stored into the TSStore on
Als Machine

Fife_hearsay_cache stored into the
TSStore on Grahams Machine

Figure 13: Example of installation

Runners are configured (by creating an appropriate To Do List) and fired to start
execution of all ‘dormant’ installed bundles for this deployment. One runner is fired
per Thin Server. Each runner sends back a report to the deployment engine with a
serialized TSConnector for each bundle fired. Figure 14 shows an example of
running.

Node: Als machine

Node: Andrews Machine Node: Grahams machine

St_andrews_hearsay_infrastructure

St_andrews_hearsay_engine

Fife_Hearsay_CacheAbstract
Channel
named

Incoming
Matches

Abstract
Channel
named

OutGoing
Matches

Abstract
Channel
named

Downstream
Cache

Abstract
Channel
named

Upstream
Cache

Stage: Running

If process has attempted a
read/wire on the Abstract
Channel it will block until
the abstract channel has

been connected

If process has attempted a
read/wire on the Abstract
Channel it will block until
the abstract channel has

been connected

If process has attempted a
read/wire on the Abstract
Channel it will block until
the abstract channel has

been connected

Figure 14: Example of running

Wirers are configured (by creating an appropriate ToDoList) and fired to connect
abstract channels in each machine. One wirer is used per connection. The wirer is sent
to one Thin Server which requires a connection or maintenance and produces

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 24/48

© 2001 GLOSS CONSORTIUM

‘offspring’ (other wirer bundles) which are sent to other nodes to complete the
operation of connecting Abstract Channels as required. Figure 15 shows an example
of wiring.

Node: Als machine

Node: Andrews Machine Node: Grahams machine

St_andrews_hearsay_infrastructure

St_andrews_hearsay_engine

Fife_Hearsay_CacheAbstract
Channel
named

Incoming
Matches

Abstract
Channel
named

OutGoing
Matches

Abstract
Channel
named

Downstream
Cache

Abstract
Channel
named

Upstream
Cache

Stage: Wired and Running

Socket
connected
abstract
channels

Figure 15: Example of wiring

3.4.4 DETAIL OF WIRING PROCESS

Wiring takes place once all bundles have been installed and are running. The two
nodes which hold the channels to be connected are labeled arbitrarily as the primary
and secondary nodes. The primary node is where the wiring process will begin, the
other end at which the connection is to be created is known as the secondary node.

One wirer is created and provided with configuration data describing:

1. Locations of both ends of an Abstract Channel to be connected.

2. Service name and provider (binding in PAM) of each running bundle.

3. Name used by executing bundle to reference the channel in both machines
(may be different for each machine).

4. Internet Protocol (IP) address of the primary and secondary nodes.

This wirer is sent to the primary node where it communicates with the Connection
Manager of the Machine which contains the Abstract Channel to be wired. A socket
based protocol is used for the Wirer to communicate with the Connection Manager,
the wirer signals that the Connection Manager should create a Server Socket on a free
port and when a remote client connects it should bind the connection to a named
Abstract Channel.

The wirer now configures another wirer bundle (its ‘offspring’) which is sent to the
secondary node. The purpose of this wirer is to connect the other Abstract Channel on
the secondary node to the waiting channel on the primary node. When this wirer
arrives at the secondary node, it communicates with the Connection Manager of the
machine which requires wiring and instructs it to connect the other Abstract Channel

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 25/48

© 2001 GLOSS CONSORTIUM

to the Server Socket waiting at the primary node and specified port, the connection is
now established.

3.5 EVENT MATCHING

Implementation of context-dependent services such as radar, trails and hearsay
necessitates complex event processing to detect when user and system contexts match
sufficiently to trigger service delivery. This requires a matching engine, a software
component that can interpret an input stream of events with respect to a database of
matching rules, and take action when matches are detected. The prototype
implementations described earlier contain simple specialised matching algorithms.
We are also investigating approaches to more general context matching engines.

Events, coming from different systems and sensors form an event cloud, a morass
of events which on their own are relatively meaningless but relationships between
these events, be they logical, temporal or spatial, may be relatively meaningful. This
point forms the basis of a complex event. A complex event can be seen as a virtual
event in that it does not actually physically happen within a system but signifies a
very real activity based upon the occurrence of other events.

An event pattern language (EPL) describes events, relationships between events
and complex events. An event pattern can be seen as a rule base or set of constraints
which must be satisfied in order for a complex event to be generated. The power of
this language, its flexibility and extensibility are crucial to the success of any complex
event processing infrastructure.

A matching engine can be seen as the interpreter of the EPL. This engine takes
events as its input and determines matches according to event patterns. This is
illustrated in Figure 16.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 26/48

© 2001 GLOSS CONSORTIUM

Event Cloud

Matching
Engine

Complex Event

Event
patterns

Figure 16: High level design of a Matching Engine

The EPL can be taken further by introducing a means to describe arbitrary
computation. This computation, for example, may involve evaluating and updating
the state of the matching engine. Statistical computation over sets of events will also
be a very useful feature. For example, a complex event may describe the average
increase of a particular stock over a given time period.

A number of desirable features for a general matching engine can be identified:

1. An event pattern language (EPL) capable of describing events,
relationships between the events and complex events. The EPL must be
able to capture logical and temporal relationships as well as causality (the
events that cause other events). The EPL should provide such properties as
simplicity, expressiveness, rigor and portability.

2. An execution environment within which the EPL is translatable and
executable. This environment must be able to take events as input from
heterogeneous sources and detect or match events to a given event pattern.
The engine must work within the soft real time requirements of the
location-aware services it may be applied to.

3. A graphical display allowing administrators to view events coming into the
system and the complex events that the engine has generated.

4. Dynamic event pattern evolution, allowing the rules by which matches and
complex events are determined to be changed at any time.

We have implemented a prototype hearsay matching service using the Amit
matching engine from IBM Research Labs in Haifa. We are currently developing a
new matching engine that is tailored to the needs of the Gloss infrastructure.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 27/48

© 2001 GLOSS CONSORTIUM

4 PART II – HARDWARE INFRASTRUCTURE (SENSING)

4.1 SYSTEM ARCHITECTURE

Figure 17, below, shows a high level view of the Sensor System platform.

Figure 17: High level view of Sensor System platform

HCS12 Sensor Server
The HCS12 server has been developed as an extension of a

project that involved providing network connectivity to the HCS12 general-purpose
microcontroller.

Functionality to monitor up to 50 switch-based sensors has been implemented,
with sensors being monitored either by HTTP or UDP.

iLon LonWorks Web Server
The LonWorks system, developed by Echelon, is designed to

Server running
Data Collection Application

Up to 50 Sensors
per System

4 Sensors per
Interface

mySQL and Servlet
capable Server

Periodic Poll via
HTTP

UDP Update on
Sensor Change

Database Update
via HTTP Call to
Java Servlet on
Sensor Change

Remote Database
Query via HTTP

Call to Java Servlet

HCS12 Sensor Server iLon Lonworks Web
Server

LonPoint Interface

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 28/48

© 2001 GLOSS CONSORTIUM

provide a peer-to-peer control network for application in building automation and
industrial control networks.

The Sensor System only utilises a small part of the facilities provided by
LonWorks – the ability to read the values of the sensors connected to the network.
This is accomplished by using two types of LonWorks devices, one type to make the
current sensor value available (DI-10) and one for providing access to all the readings
over a standard data network (iLon 1000 Server). The network data is accessible in
the form of Network Variables (NV), which are accessible to any device on the
network.

The iLon server also includes an IP interface and on board web server. The web
server can be configured to output the state of associated network variables in both
HTML and XML formats.

Data Collection Application
Sensor readings from the iLON and HCS12 servers have to be captured

and stored so that the Sensor System can access them at a later date. A
persistent data collection application, called DataPull, captures the sensor data from
all such devices, formats it, and sends it on to the Servlet to be stored. The DataPull
application accesses the iLON and HCS12 servers according to the network protocols
they provide. The iLON server is accessed by polling via HTTP, whereas the HCS12
is accessed via UDP and pushes updates to the DataPull application.

Servlet and Database Server
The Sensor System Servlet acts as the request broker for the Sensor

System platform, as shown in figure 18 below.

Figure 18: The Servlet is the Object Request Broker (ORB) for the Sensor System
platform.

The Sensor System Servlet runs on a Servlet enabled Web server such as Apache
Tomcat. The Servlet accepts requests and serves responses via the HTTP protocol.
The Servlet also interacts with a remote database, which may or may not reside on the
same server, to store sensor data for later retrieval. The use of the Servlet as the

ClientServlet

Database

DataPull

HCS12

iLON

ClientServlet

Database

DataPull

HCS12

iLON

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 29/48

© 2001 GLOSS CONSORTIUM

request broker for database queries decouples the client-side from the sensor-server-
side.

Clients
Client applications within the Sensor System platform

can access sensor data via the Servlet. The provision of sensor
data to clients means that many useful features can be implemented,
such as the visualisation of the sensor readings for pattern analysis.

The client application provided as part of the Sensor System platform allows
sensor data to be replayed, given a suitable time period, from the sensor readings in
the database. It also provides a mode that allows sensor readings to be displayed in
real time.

Figure 19: Screenshot of Sensor System Client

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 30/48

© 2001 GLOSS CONSORTIUM

5 SENSOR HARDWARE CONNECTIONS
This section gives details of the types of sensor hardware used within the Sensor

System Platform as well as their physical connection to the sensor servers.

Sensor Types
A number of different types of sensor have been used, all of which are relatively

inexpensive (<£25), anonymous and give an open or closed switch signal.

PIR (Passive InfraRed)
These detect movement by detecting infrared heat variations in the field of view.

The heat emitted from the human body is picked up and electronics inside the sensor
look for rapid changes in this reading to differentiate it from false events such as a
monitor cooling down after use. The range of the sensors is adjustable, the method
varying from brand to brand but is usually between 4 and 12m.

These sensors are utilised throughout the lab for a number of different purposes.
Each desk has a PIR underneath to detect the movement of legs that signifies a person
sitting at their desk. Every whiteboard has a sensor that detects if someone is writing
on the board and the printer has a sensor that detects the presence of someone waiting
for a printout.

Ceiling Mounted Movement Detector
These devices are similar to the PIRs but use microwave radar instead of heat

detection. A device of this type is used above the meeting area of Prof. Nixon’s office
to detect the presence of people sitting in that area.

Reed Switch
These devices consist of a switch and a magnet. The switch is placed on one

section of the object of interest and the magnet on the other. When the switch is in
close proximity to the magnet it closes. These switches are commonly used on doors,
windows and drawers. In this application they are used to monitor the state
(opened/closed) of the six doors in the Smartlab.

IR Light Beam
The switch on this type of device is controlled by whether or not a reflected light

beam is intact. The main unit shines a thin infrared beam towards a reflector, which
directs the beam back to the main unit. If there is something blocking the beam then
the switch closes.

Cable Types
Sensors are connected to the sensor servers by different types of cabling. In the

case of the Smartlab sensor installation the choice of cable was mainly due to what
was available rather than what was most suitable.

Most sensors require 3 wires:

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 31/48

© 2001 GLOSS CONSORTIUM

• Power supply (+12V DC). The only exception here is the reed switch sensor,
which does not require a power supply as the switch is operated by a magnetic
field;

• Ground (GND);

• Input and output signal (for sensor reading). The HCS12 sensors only require
one signal wire as a common ground is used within the sensor.

Two types of cable were used to connect the sensors to the servers. These were
CAT5 and multi-core alarm cable.

CAT5 Cable
CAT5 is an Ethernet cable standard defined by the Electronic Industries

Association and Telecommunications Industry Association. It contains four pairs of
copper wire. CAT5 cable runs are limited to a maximum recommended run rate of
100m (328 feet) for normal 100MB Ethernet connections.

Figure 20: An example of an RJ45 connector showing each of the CAT5 wire pairs

The Sensor System makes use of all of the 8 wires in the CAT5 cable. 6 of the
wires are used for sensor signals with the other 2 used to supply power to the sensors.
The wiring has been standardised with Orange carrying the +12V DC supply and the
Orange/White wire used for Ground. In cases where the sensors have their own power
supply all 8 wires are used for sensor signals. Please note that in most cases, RJ45
plugs have not been used, and the Cat5 cable has simply been stripped and wired
directly to terminals within sensors and junction boxes.

Alarm Cable
A mixture of different types of alarm cable was used, again with two cores

normally used for power, and remaining cores carrying signal values. Maximum
cable run for alarm style cables has not been fully investigated, but runs of around
50m have been used successfully within the department.

Device connection

HCS12
All sensors must have a wire returning to the microcontroller, resulting in a star

configuration. For ease of wiring, a distributed star configuration can be employed
using standard Cat5 cable. The system has been tested successfully over cable runs of
up to 30 metres per sensor.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 32/48

© 2001 GLOSS CONSORTIUM

Figure 21, below, shows a central junction box connected to three auxiliary boxes.
The configuration below allows up to 18 sensors to be connected to the system and
powered from the central point, with each Cat5 cable between the main junction box
and auxiliary boxes carrying two power signals and 6 sensor signal wires. If the
sensors are sufficiently far away from the controller it may be easier to employ a local
power supply enabling 8 sensors to be monitored with a single cat5 cable back to the
central point.

Figure 21: Star configuration of sensor connections to HCS12

If a large number of sensors need to be monitored, a number of HCS12 systems
can be deployed, each requiring a separate LAN connection.

iLon
Sensor connection to the iLon LonWorks based network is slightly different. Each

sensor must be connected to a dedicated LonWorks compatible input device by two
signal wires. The DI-10 devices used in the department support a maximum of 4
sensor devices each, creating a star configuration at each DI-10 node. Each node
must then be connected to both power and a common 2 wire LonWorks channel. If
the voltage drop across the channel is small, the whole system can be powered from
one supply, with the common bus consisting of two pairs, one for power and one for
the LonTalk channel. Again, Cat5 twisted pair can be used as a transmission medium.
If the run is too long for one supply, the power pair can be split and a second supply
used. Without a dedicated LonWorks bridge, the maximum length of a LonTalk
channel is 2700m.

HCS12 Sensor Server

Main Junction
Box

24-way Junction
Box

24-way Junction
Box

24-way Junction
Box

Multiple Cat5 /
Ribbon Cable

Cat5 CableCat5 Cable

Cat5 Cable

Up to 6 Sensors
per Junction Box

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 33/48

© 2001 GLOSS CONSORTIUM

6 DATA COLLECTION
This section discusses the format in which data is passed throughout the Sensor

System platform so that the sensor readings can be collected and stored in a
meaningful way into the database.

Data Formats
Each part of the Sensor System platform uses a different data format. It was

necessary to ensure that the information being passed between parts of the system was
minimal to ensure maximum efficiency and robustness of the platform. The Sensor
System accumulates a very large volume of data in a short space of time so it was
very important that the data interfaces be processed effectively.

HCS12 to Data Collection Application
The HCS12 sensor server is capable of pushing sensor data to the data collection

application when sensor state changes occur. It does this by polling the pins that
receive the signals from the sensors. When the server detects a change it creates a
UDP datagram packet to send to the data collection application. This datagram packet
contains a number of bytes1, each of which consists of 8 sensor states (1 bit per
sensor). The system can tell which sensor is which by determining the bit position
being read and then referring to a lookup table to find the ID of the sensor. As the
UDP packet overhead is low, each packet contains all sensor states. This builds in
some redundancy to cover the unreliable, unacknowledged nature of the UDP
protocol.

iLON to Data Collection Application
The data collection application can retrieve sensor data from the iLon server via

HTTP. Unlike the HCS12, which can push sensor data to the data collection
application, the iLON server has to be polled for sensor readings. The server
maintains an XML document, which holds the sensor names and their associated
states. The data collection application regularly polls this XML document and
performs a check to determine if any sensor readings have changed since the last time
a change was detected. Due to the volume of data traffic being sent across the network
and the fact that the data collection application has to perform a comparison every
time on all the sensor readings means this method of data retrieval is less effective
that the method used by the HCS12.

Data Collection Application to Servlet
The data collection application sends updates to the sensor readings to the Servlet

so that they can be stored into the database. It only sends updates for the sensors that
have changed state to avoid wasting network and database resources by sending
redundant sensor readings. An XML data format is used between these two

1 The first byte in the datagram packet is version information.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 34/48

© 2001 GLOSS CONSORTIUM

applications. The format is simple and includes an entry for each sensor containing
the sensor name and new state. The HTTP protocol is used to send the data to the
Servlet.

Servlet to Clients
Communication between the Servlet and Client applications in the Sensor System

platform is via XML request-response messages. The messages sent and received vary
according to the context of the query. For example, the request may be for sensor data
in real time, or it may be for location-based information about the sensors. Responses
from the Servlet may also contain object data representing images for the floor plan of
an area containing sensors or for the sensors themselves. Responses from the Servlet
to Client applications are sent via HTTP.

More information on the XML data formats used between the Client, Servlet and
data collection application can be found in the Servlet External Interface Specification
document.

Data Collection Event Sequencing
This section explains, at a high level, the sequence of events that occur from a

sensor being triggered through to the change being logged in the database.

HCS12 Data Collection
As the system can send UDP packets on sensor change, the DataPull application

must listen continuously for these updates. When an update is received, the
application checks to see what (if any) sensors have changed from the last update. If
changes are detected, these are entered in the database by a HTTP call to the Servlet,
which returns an appropriate response.

The sequence diagram, figure 22, below, illustrates the message passing that
occurs between the HCS12 system and the database.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 35/48

© 2001 GLOSS CONSORTIUM

Figure 22: Sequence diagram showing high-level interaction from HCS12 to database

To maintain backwards compatibility, the HCS12 system also contains a web
server, and can output sensor states in XML format. This allows the system to use
HTTP if, for example, UDP traffic is not carried through a firewall.

 : HCS12 : DataPull : Sensor
SystemServlet

 : Database

receive(byte[]

UDP datagram sent

read bytes and
determine which

sensors have
changed

build XML message

request sent
via HTTP

read contents of
XML data

build SQL query

execute

return rows inserted

build XML response

response sent
via HTTP

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 36/48

© 2001 GLOSS CONSORTIUM

iLON Data Collection
As already discussed, data collection for the iLon system is achieved by a periodic

HTTP poll performed by the DataPull application. Once the data has been received
and sensor changes extracted, the sequence for updating the database is exactly the
same as the case above.

Figure 23: Sequence diagram showing high-level interaction from iLON to database

 : Database : DataPull : Sensor
SystemServlet

 : iLON

Read XML.
Determine

which
sensors have

changed

build XML message

request sent
via HTTP

read contents of
XML data

build SQL query

execute

return rows inserted

build XML response

response sent
via HTTP

poll()

return XML Document

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 37/48

© 2001 GLOSS CONSORTIUM

7 DATA PULL APPLICATION
The readings from the multiple servers, whether iLon or HCS12, all have to be

centralised and stored in a database, this data collection is performed by the DataPull
application. This application listens for UDP packets from any HCS12 devices and
polls any iLon devices or HCS12’s set up for HTTP.

The application includes a thread which updates the database every second with
the latest readings. As the database only has a resolution of a second but some of the
sensors can activate and de-activate multiple times within this period, an update will
be “activity” if there is any positive (1) readings within the second. The readings are
passed to this thread from individual devices through shared hashtables. A database
entry is only updated when the reading has changed from the last submission. This
results in the database containing the transitions in the state of the sensor rather than a
list of every second the sensor was active.

The details of the devices, which are to be polled or listened to by the application,
are read from an XML configuration file. Each device is listed as an element with
attributes for its configuration and a mapping of sensor names to its inputs. The DTD
for the configuration file is given below.

<?xml version='1.0' encoding='UTF-8'?>
<!-- DTD for dataPull application configuration file -->
<!ELEMENT SensorConfig (Device+)>
<!ELEMENT Device (Mode)>
<!ATTLIST Device name CDATA #REQUIRED>

<!ELEMENT Mode (Mapping)>
<!ATTLIST Mode protocol (UDP | HTTP) #REQUIRED>
<!ATTLIST Mode address CDATA #IMPLIED>
<!ATTLIST Mode ip CDATA #IMPLIED>
<!ATTLIST Mode port CDATA #IMPLIED>
<!ATTLIST Mode pollsPerSec CDATA #IMPLIED>

<!ELEMENT Mapping (Sensor+)>
<!ELEMENT Sensor EMPTY>
<!ATTLIST Sensor name CDATA #REQUIRED>
<!ATTLIST Sensor inputID ID #REQUIRED>
<!ATTLIST Sensor inverted (true | false) #REQUIRED>

For any attributes that are implied, their inclusion is dependant on the protocol
being used by the device. The Sensor System configuration tool provides
functionality to write this file.

If any HCS12 devices are being used in UDP mode then a listener thread is started
to pick up any UDP packets. The listener holds a handler for every device it is
listening to and when it receives a packet it directs it to the correct handler according
to the IP address. If an IP address is not recognised it is discarded. The device
handler extracts the sensor readings from the UDP data and updates the shared
hashtable with the results.

For each iLon device or HCS12 in HTTP mode in the system, a thread is started to
poll the server and parse the XML to retrieve the sensor readings and add any changes
to the shared hashtable. Polling is timed by using a TimerTask, which is run at the
required period.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 38/48

© 2001 GLOSS CONSORTIUM

8 HIGH LEVEL ARCHITECTURE (CLIENT)
The main functional units that make up the Sensor System Client application are:

Figure 24: Main functional units of Sensor System Client

The Sensor System Client application was designed such that each functional unit
was loosely coupled with the other units. This allows each of the units to be removed
and replaced with another one that has similar functionality without having to change
the other parts of the application.

Sensor Client
The Sensor Client is responsible for controlling all of the message passing between

the model components, the network and the user interface. Sensor Client maintains
the link between all of the components.

Sensor Calendar
The Sensor System Client’s main concern is to show sensor data according to the

time at which a sensor state change takes place. Therefore, a calendar component is
used to control the flow of data from the underlying data models to any other
components that register an interest in the sensor data. This calendar component is
navigable, which means that the date and time the calendar is set to can be controlled
externally by the user. This allows the data to be displayed in different ways, such as
forwards, backwards and at faster playback speeds.

The Sensor Calendar component only plays a role in controlling the data flow for a
pre-defined set of data. When the Client requests that real time sensor data is
displayed the calendar is no longer navigable because it cannot read data from the
future.

Sensor Data Models
The data models used by the Client are the primary source for obtaining sensor

data when it is required to be accessed. Two models exist that reflect the two ways in
which the Client can be used to visualise sensor data. These are:

• Sensor Data Model: A model that handles historical sensor data and can be
used to retrieve the sensor states for a given time period (navigable).

Sensor Calendar

Sensor Data Models

Sensor Client

Communications

Sensor UI Sensor Calendar

Sensor Data Models

Sensor Client

Communications

Sensor UI

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 39/48

© 2001 GLOSS CONSORTIUM

• Real Time Model: A model that, once it receives sensor data, will
immediately inform any components that have registered an interest in sensor
state changes (not navigable).

Communications
The Sensor System Client obtains all of the sensor information from a remote

location accessed via the network. The communications component is responsible for
accepting data requests from the Client, sending them to the remote location and then
forwarding responses back to the Client.

Sensor UI
This component represents the graphical front end that will allow the user to

interact with the Client, send requests for sensor data and visualise the output from the
sensors.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 40/48

© 2001 GLOSS CONSORTIUM

8.1 OVERALL CLIENT STRUCTURE

Figure 25: UML Class Diagram for Sensor System Client

ClientIF

ScrollablePicture

ListInternalFrame DateInternalFrame MapArea

MainScreen

ControlInternalFrame

PlayableCalendar

DefaultSensorDataModel

CommEngine RealTimeDataModel

SensorDataModel

CalendarObserver

SensorCalendar CalendarEvent

SensorUI SensorClient

AbstractClientClientUIIF

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 41/48

© 2001 GLOSS CONSORTIUM

8.2 DETAILED ARCHITECTURE

This section explains some of the design concepts within the Sensor System Client
application that require a more detailed explanation.

Calendar to Data Model Interaction
The sensor data that is made available to the Client application for visualisation

purposes comes from a data model. In real time mode the data model is
straightforward since it simply notifies the Client of sensor data updates as soon as it
receives them. However, when playing back historical sensor data using the calendar
and sensor data model the means of obtaining the sensor data is not as
straightforward.

PlayableCalendar and SensorCalendar classes
The main premise of the PlayableCalendar and SensorCalendar classes is that they

allow play back, or navigation, of the date and time information held within their
internal Calendar objects. This calendar navigation occurs at a pre-defined speed
under normal playback conditions, which can be from real time, where the time is
updated by 1 second for every 1 second in real time, to a maximum speed where there
are many 1 second updates to the time for every 1 second in real time.

Every time the calendar is updated it notifies any observers so that they are aware
of the change in time. The calendar will then check for any events that may have
occurred at the new time. If an event has occurred then the necessary action is taken
and the observers are notified once again but this time they are notified of a calendar
event rather than a change in time.

The PlayableCalendar class does not specify any means of checking if an event
occurred. The method callTemporalEvent in this class simply updates the calendar
time by 1 second and does not perform a check on events. The reason for this is that
the PlayableCalendar does not reference any data model from which it may check to
determine if any event occurred. It was necessary to create a subclass of
PlayableCalendar that referenced a data model. This subclass could then override the
callTemporalEvent method to check for data from the data model. The class that does
this in the Sensor System is SensorCalendar.

Figure 26, below, shows the operation of the sensor calendar and how it determines
if there is new data available for the current calendar time.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 42/48

© 2001 GLOSS CONSORTIUM

Figure 26: Structure of SensorCalendar main loop

9 CONCLUSIONS
The deployment of a suitable software and hardware infrastructure to assess global

smart spaces is a development intensive task much more significant than was
envisaged in the initial stages. In this document we have shown two aspects of this
infrastructure. Firstly, a general software infrastructure for location aware systems
that implements the GLOSS architecture detailed in D8. The external location
information for this system is supplied by GPS that is translated into a general XML
format. The internal location information is provided by a low-cost sensor system
developed for the project. We have also described the operational aspects of this
system. This system is being packaged for deployment to other partners, but there has
been some delay due to limited availability of parts (low power Ethernet cards in
particular). The streamed output from the micro web server on the sensor system is
tailored to provide location information in the same general XML format. The final
stage of work to be undertaken is to deploy, once hardware is available, other
instances of the hardware infrastructure at partner sites and undertake a final

Calendar Started

Play mode
==PLAYING

Get time of next data

Is data null? Calendar Stopped

Calendar time ==
 time of next data

Get next sensor data.
Notify observers of calendar event

Update calendar time.
Notify observers of time change

YES

NO

NO

YES

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 43/48

© 2001 GLOSS CONSORTIUM

integration test across multiple geographical locations. This is planned to be between
Strathclyde and Trinity given the short timescale.

10 APPENDIX 1: WIRING DIAGRAMS
Three areas have been wired using the prototype boards for test purposes. These

having been running non-stop now for 2 months. The wiring charts for one of these
areas is provided below for reference.

SMARTLAB WIRING CHARTS

MAIN JUNCTION BOX

Bl
ock

Wire End Sensor HCS12 Port

01 A1 Uplink (G) Desk_Johnny S0 (1=movement)

02 A1 Uplink (G/W) Desk_Dave S1 (1=movement)

03 A1 Uplink (Br) Desk_Tim S2 (1=movement)

04 A1 Uplink (Br/W) WB_Tim S3 (1=movement)

05 A1 Uplink (Bl) Door_Tim S4 (1=open)

06 A1 Uplink (Bl/W) Beam_NW S5 (1=clear)

07 A2 Uplink (G) Desk_Paddy S6 (1=movement)

08 A2 Uplink (G/W) Ceiling_Paddy S7 (1=movement)

09 A2 Uplink (Br) WB_Paddy S8 (1=movement)

10 A2 Uplink (Br/W) Desk_Sotirios S9 (1=movement)

11 A2 Uplink (Bl) WB_Sotirios S10
(1=movement)

12 A2 Uplink (Bl/W) Door_Paddy S11 (1=open)

13 A3 Uplink (G) Door_E (other
door)

S12 (1=open)

14 A3 Uplink (G/W) WB_East S13 (1=open)

15 A3 Uplink (Br) Door_Sotirios S14
(1=movement)

16 A3 Uplink (Br/W) Door_W (main
door)

S15 (1=open)

17 A3 Uplink (Bl) WB_Centre S16
(1=movement)

18 A3 Uplink (Bl/W) WB_West S17
(1=movement)

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 44/48

© 2001 GLOSS CONSORTIUM

19 A4 Uplink (G) Beam_SW S18 (1=clear)

20 A4 Uplink (G/W) Desk_Richard S19
(1=movement)

21 A4 Uplink (Br) Desk_Wang S20
(1=movement)

22 A4 Uplink (Br/W) Beam_W S21 (1=clear)

23 0v (Common Ground)

24 +12v dc

GENERAL NOTES

+12v dc = Orange in Cat5, Yellow/Green in 4 core Farnell cable

0v GND = Orange/White in Cat5, Core 1 in 4 core Farnell cable

Sensor Signal Blue in Cat5 Cable, use common ground for signal return!

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 45/48

© 2001 GLOSS CONSORTIUM

JUNCTION BOX A1 (NEAR DAVE’S DESK)

Bl
ock

Wire End Sensor

01 +12v dc

02 +12v dc

03 +12v dc

04 +12v dc

05 +12v dc

06 +12v dc

07 0v (Common Ground)

08 0v (Common Ground)

09 0v (Common Ground)

10 0v (Common Ground)

11 0v (Common Ground)

12 0v (Common Ground)

13

14

15

16

17

18

19 Uplink (Bl/W) Beam_NW

20 Uplink (Bl) Door_Tim

21 Uplink (Br/W) WB_Tim

22 Uplink (Br) Desk_Tim

23 Uplink (G/W) Desk_Dave

24 Uplink (G) Desk_Johnny

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 46/48

© 2001 GLOSS CONSORTIUM

JUNCTION BOX A2 (IN PADDY’S OFFICE, ABOVE DOOR)

Bl
ock

Wire End Sensor

01 Uplink (G) Desk_Paddy

02 Uplink (G/W) Ceiling_Paddy

03 Uplink (Br) WB_Paddy

04 Uplink (Br/W) Desk_Sotirios

05 Uplink (Bl) WB_Sotirios

06 Uplink (Bl/W) Door_Paddy

07

08

09

10

11

12

13 +12v dc

14 +12v dc

15 +12v dc

16 +12v dc

17 +12v dc

18 +12v dc

19 0v (Common Ground)

20 0v (Common Ground)

21 0v (Common Ground)

22 0v (Common Ground)

23 0v (Common Ground)

24 0v (Common Ground)

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 47/48

© 2001 GLOSS CONSORTIUM

JUNCTION BOX A3 (BESIDE MAIN SMARTLAB DOOR)

Bl
ock

Wire End Sensor

01 Uplink (G) Door_W (main
door)

02 Uplink (G/W) Door_E (other
door)

03 Uplink (Br) Ceiling_Main

04 Uplink (Br/W) Door_Sotirios

05 Uplink (Bl) WB_East

06 Uplink (Bl/W) WB_West

07

08

09

10

11

12

13 +12v dc

14 +12v dc

15 +12v dc

16 +12v dc

17 +12v dc

18 +12v dc

19 0v (Common Ground)

20 0v (Common Ground)

21 0v (Common Ground)

22 0v (Common Ground)

23 0v (Common Ground)

24 0v (Common Ground)

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D11
SECOND SET OF SPACES

 PAGE 48/48

© 2001 GLOSS CONSORTIUM

JUNCTION BOX A4 (UNDER FENG WANG DESK)

Bl
ock

Wire End Sensor

01 Uplink (G) Beam_SW

02 Uplink (G/W) Desk_Richard

03 Uplink (Br) Desk_Wang

04 Uplink (Br/W) Beam_W

05

06

07

08

09

10

11

12

13 +12v dc

14 +12v dc

15 +12v dc

16 +12v dc

17 +12v dc

18 +12v dc

19 0v (Common Ground)

20 0v (Common Ground)

21 0v (Common Ground)

22 0v (Common Ground)

23 0v (Common Ground)

24 0v (Common Ground)

