
Promoting Component Reuse by Separating

Transmission Policy from Implementation

Scott M. Walker

University of St Andrews

scott@dcs.st-and.ac.uk

Graham N. C. Kirby

University of St Andrews

graham@dcs.st-and.ac.uk

Alan Dearle

University of St Andrews

al@dcs.st-and.ac.uk

Stuart Norcross

University of St Andrews

stuart@dcs.st-and.ac.uk

Abstract

In this paper we present a methodology and set of

tools which assist the construction of applications from

components, by separating the issues of transmission

policy from component definition and implementation.

This promotes a greater degree of software reuse than

is possible using traditional middleware environments.

Whilst component technologies are usually

presented as a mechanism for promoting reuse, reuse

is often limited due to design choices that permeate

component implementation. The programmer has no

direct control over inter-address-space parameter

passing semantics: it is fixed by the distributed

application’s structure, based on the remote

accessibility of the components. Using traditional

middleware tools and environments, the application

designer may be forced to use an unnatural encoding

of application level semantics since application

parameter passing semantics are tightly coupled with

the component deployment topology.

This paper describes how inter-address-space

parameter passing semantics may be decided

independently of component implementation.

Transmission policy may be dynamically defined on a

per-class, per-method or per-parameter basis.

Introduction

During remote method call, different transmission

policies can be applied to components that are passed

across address space boundaries. The requirements of

each particular application dictate the parameter

passing semantics applied to particular arguments and

return values. Typically, components are either passed-

by-reference or passed-by-value though variations such

as pass-by-migrate or pass-by-visit exist. This paper

describes a methodology and set of tools that allow an

application programmer to separate the issues of

component transmission policy from component

definition and implementation. The advantage of this

separation is that it aids component reusability since

components can be used in applications in a more

flexible manner.

An environment in which transmission policy is

distinct from component implementation promotes

software reuse to a greater degree than is possible

using traditional middleware systems. A single

component can be reused in multiple applications with

different parameter passing semantics without the need

to modify the component.

Consider the following use-case: Some address

book software models each entry in the address book

as a component. The software runs on a desktop

machine and holds references to these components.

Using traditional middleware the PDA must either

obtain the components by-reference, meaning that they

are unavailable when disconnected from the network,

or by-value, meaning coherency control must be

performed on each update. Using the described

technology, the PDA can obtain components by-

reference while it is connected to the network,

obviating the need for coherency control on update.

Only when disconnecting from the network does the

PDA obtain components by-value in order that they

remain available offline. At any given moment, the

programmer can employ the most advantageous

transmission policy for the circumstances.

By allowing the specification of transmission policy

dynamically and independently of component

implementation, the roles of component programmer

and application programmer are separated. The

component programmer is concerned only with the

functional requirements of the components, not the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/9821361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

parameter passing semantics that may be applied to it

when it is deployed in an application. Components

make fewer assumptions about the environment in

which they are to be used. The application programmer

has the freedom to apply any transmission policy to

any component, thereby increasing the likelihood that

any given component will be reusable in another

context.

The technology that permits the separation of

transmission policy from component creation has been

implemented as part of a middleware system known as

the RAFDA Run Time (RRT). No special steps need be

taken during component implementation and

components can be assembled into applications in the

conventional manner. Both component programmer

and application programmer can benefit from using the

RRT without having to alter their development

process.

Typical middleware systems do not allow this

separation of transmission policy from implementation.

Transmission policy is decided statically and cannot be

changed without modifying the component. This

inflexibility hampers reuse. The application

programmer has no control over the transmission

policy applied to components – it is hard-coded by the

component programmer.

Component transmission policy is commonly based

on whether a component is remotely accessible.

Choosing transmission policy in this manner can force

the application programmer to use an unnatural

encoding of application level semantics. Either the

application programmer must create an application

within the constraints of the available components or

the component programmer must know at component

creation time the semantics of the application in which

it is to be deployed.

This paper describes several notable traits of the

RRT middleware system, namely the following:

 A single component can be passed-by-

reference or passed-by-value.

 Transmission policy and application

distribution are not tightly coupled.

 Inter-address-space parameter passing

semantics can be controlled.

Using the RRT, components are written without

regard for their transmission policy. Applications are

constructed from components in the usual manner and

an application-specific component transmission policy

is specified separately. This transmission policy can be

dynamically altered and is defined on a per-class, per-

method or per-parameter basis.

Related work

Whilst component technologies are usually

presented as a mechanism for promoting reuse, this

reuse is often limited due to design choices that

permeate component implementation. During the

creation of a distributed application, the programmer is

forced to decide statically how the application is

partitioned. Particular component classes are written to

be remotely accessible. The transmission policy

applied to components is decided statically.

Using Java RMI[1] and Microsoft .NET

remoting[2] the programmer defines special remote

classes, instances of which are remotely accessible.

During remote calls, instances of (almost
1
) any class

can be passed as arguments. Arguments that are

instances of remotely accessible classes are always

passed by-reference. Arguments that are not instances

of remotely accessible classes are always passed by-

value. The parameter passing semantics applied to

components are inflexible and tightly coupled with the

distribution of the application.

Using CORBA v2.3 or later[3], the component

programmer decides statically at component creation

time whether a component will cross network

boundaries by-reference or by-value. Initially, this

seems to offer moderately more control than RMI and

.NET remoting. However, only components specified

as CORBA components can be passed as arguments,

unlike the others which permit other classes of

component to cross network boundaries, if only by-

value.

Web Services[4] technologies permit only pass-by-

value. The RRT includes some extensions to the Web

Services model that support pass-by-reference and are

described outwith this paper[5].

In all cases, typical middleware systems restrict

reusability and application semantics in the following

ways:

 They define transmission policy statically.

A component can only be passed-by-

reference or passed-by-value for the entire

duration of the application.

 They tightly couple transmission policy

and application distribution.

 The application programmer has no direct

control over inter-address space parameter

passing semantics.

These restrictions hamper component reuse because

application level semantics are built into components at

creation time in an unalterable fashion. We have

created the RRT in order to overcome these limitations.

1
 Instances must be of a remotely accessible or serializable class

The RRT has several features that differentiate it from

typical middleware systems, namely:

 The provision of a transmission policy

framework that allows the dynamic

definition of transmission policy on a:

o Per-parameter basis

o Per-method basis

o Per-class basis

 If an application component can cross

network boundaries then the RRT can

choose whether to pass it by-reference or

by-value

The RRT is capable of deploying arbitrary

components as Web Services. These components can

be referenced from remote address-spaces using a

remote reference scheme implemented by the RRT. If a

component is to be passed by-reference, the RRT will

automatically deploy the component to make it remote

accessible and will transmit a remote reference across

the network. If the component is to be passed by-value,

the RRT will serialize the component and transmit it

across the network. This functionality is described in

detail elsewhere.

The RRT is capable of transmitting any component

by-reference and any component by-value. The RRT

dynamically decides how to treat each component

based on the transmission policy. To exploit this

mechanism, the programmer must be able to define

transmission policy in an expressive and flexible

manner.

Defining transmission policy

During remote method call, components are passed

across address space boundaries as arguments and

return values. Transmission policy dictates the manner

in which components are encoded for transmission. It

decides which parameter passing semantics will be

employed during remote method calls.

Though the transmission policy framework has been

described in the context of the RRT it is applicable

with any middleware. The RRT supports passing

parameters by-reference or by-value but the described

transmission policy framework not restricted to these

two mechanisms. It is scalable to accommodate any

parameter passing mechanisms that the underlying

middleware supports.

In order to define the transmission policy for an

application, the programmer specifies a series of policy

rules. There are three kinds of policy rule:

 Parameter policy rules

 Method policy rules

 Class policy rules

Parameter policy rules are associated with

individual method parameters. They indicate how

particular method arguments should be passed across

address-space boundaries during a call to the specified

method. They allow fine-grained control over the

transmission policy that is applied to the parameters of

a method. For example, a parameter policy rule might

specify that during a call to a particular method, the

second parameter should be passed-by-value.

Method policy rules are associated with methods as

a whole. They have a dual role. They specify how

return values from methods should be passed across

address-space boundaries. For example, a method

policy rule might specify that during a call to a

particular method, the return value should be passed-

by-reference. Additionally, they allow a single

transmission policy to be associated with all

parameters of a method, avoided the need to specify a

parameter policy rule for each. For example, a method

policy rule might specify that during a call to a

particular method, all parameters should be passed-by-

value.

Class policy rules are associated with classes. They

indicate how instances of classes should be passed

across address-space boundaries. For example, a class

policy rule might specify that all instances of a

particular class are passed-by-value. Each class policy

rule applies to exactly one class. It does not apply to

sub-classes of that class. Class policy rules are applied

based on the actual classes of the parameters, not the

those specified in the method signature.

Policy rules apply only in the address space in

which they are specified, though they apply to all

components in that address space. Policy rules can be

specified dynamically at any point during application

execution and they come into force immediately. A

component programmer can effectively specify policy

rules statically by specifying them in the component’s

initialization code. For example, in Java, policy rules

specified in the static initializer are active from class

load time.

This functionality distinguishes the RRT from

typical middleware systems and tackles the limitations

listed at the beginning of this section. The dynamic

specification of policy rules that dictate application

parameter passing semantics returns control of these

semantics to the application programmer.

Policy rules are created through the policy manager.

There is a single policy manager per address-space

which is responsible for evaluating transmission policy

in that address-space. Each policy manager stores a

database of policy rules, specified by the application

programmer.

Transmission policy is concerned with cross-

address-space communication and so is applied at

serialization time. During serialization, the policy

manager determines the transmission policy that

should be applied to each component it is asked to

serialize. When a component is serialized by-value, the

components it references are also passed into the

serializer. The policy manager will determine how

each of these components should be passed across the

network and serialize them appropriately. Method and

parameter policy rules can be specified with a depth

value. This depth indicates how far into the closure of

an argument the policy rule applies.

The policy manager provides the methods shown in

Figure 1 for the specification of policy rules. The

Policy class is not shown. It is an enumeration class

identifying all available parameter passing

mechanisms. The purpose of the isOverridable flag is

discussed later.

public static void setClassPolicy(

 String className,

 Policy policy,

 boolean isOverridable

) {...}

public static void setMethodPolicy(

 String className,

 String methodName,

 Policy policy,

 boolean isOverridable

) {...}

public static void setParamPolicy(

 String className,

 String methodName,

 int paramNumber,

 Policy policy,

 boolean isOverridable

) {...}

Figure 1: Policy manager methods used to
specify policy rules

Evaluating transmission policy

The policy manager makes all transmission policy

decisions for all components in its address space.

However, from the perspective of a single component,

the programmer may wish to control the transmission

policy that is applied to the following:

1. The arguments the component passes when

calling some remote method

2. The arguments the component receives

when a method is called on it

3. The return value the component transmits

after a method has been called on it

4. The return value the component receives

after calling some remote method

One component’s passed arguments are another’s

received arguments. For some remote method call, the

caller may wish to apply one transmission policy (case

1 above) while the callee wishes to apply another

transmission policy (case 2 above). Cases 3 and 4

exhibit the same problem.

Each policy manager has direct control over the

transmission policy applied to components outgoing

from its address space, that is, cases 1 and 3 above.

They cannot have direct control over components that

are incoming from a remote address space, that is,

cases 2 and 4 above. When evaluating transmission

policy during a remote call, a policy manager may

solicit information from the policy manager in the

remote address space about the policy rules it has

associated with this remote call.

Individual policy managers are configured to either

use this information from the remote policy manager or

to base the transmission policy decision on locally

specified rules alone. A policy manager that considers

the remote policy manager is known as a co-operative

policy manager. All policy managers, whether co-

operative or not, respond to requests for information

about their locally specified policy rules.

From the specified policy rules, the transmission

policy applicable to a particular remote method call

can be deduced. It is based on the class of the

component; the method being called; whether the

component is an argument or return value; and the

depth of the component in the argument’s closure.

Figure 2 shows the methods provided by the policy

manager that determine transmission policy.

public static TransmissionPolicy

 getTransmissionPolicy(

 String className,

 String methodName,

 int paramNumber,

 Object param,

 int depth) {...}

public static TransmissionPolicy

 getReturnTransmissionPolicy(

 String className,

 String methodName,

 Object returnValue,

 int depth) {...}

Figure 2: The policy manager methods used
to evaluate transmission policy

These methods are called by the RRT during

component serialization or by a co-operative remote

policy manager that is evaluating transmission policy.

In addition to specifying how the component should be

passed across the network, the returned

TransmissionPolicy also contains information about

the kind of policy rule that was used to make the

decision. This information is used by remote policy

managers but is ignored by the RRT.

Resolving policy rule contention

Clearly, there is scope for contention between

policy rules specified in different policy managers. A

class policy rule in one address-space can specify that

instances of X are always passed-by-value, while a

class policy rule in another address-space specifies that

instances of X are always passed-by-reference.

Similarly, contention can exist among rules

specified within a single address-space. For example, a

component of class X is passed as a parameter to

method m(). A class policy rule may indicate that

instances of X are passed-by-value while a method

policy rule simultaneously indicates that parameters to

method m() are always passed-by-reference.

The policy manager has a set of policy rules,

including some that may have been received from a

remote policy manager, and must decide which to

apply.

A hierarchy of policy rules is defined. Higher rules

are followed while lower rules are ignored. The

hierarchy is:

1. Parameter policy rule

2. Method policy rule

3. Class policy rule

4. Default policy

A parameter policy rule is followed before all

others. If none exists, then the policy manager looks

for an applicable method policy rule. If none exists,

then it looks for an applicable class policy. If no policy

rules have been defined then a default policy is

applied. The policy rule that is used to decide the

transmission policy in a particular set of circumstances

is known as the dominant rule.

This strict hierarchy is restrictive. Under some

circumstances, it is desirable that a class policy rule

take precedence over a parameter or method policy

rule. For this reason, policy rules are specified with a

flag that indicates whether the rule can be overridden.

A rule that cannot be overridden is always followed

before a rule that can be overridden, irrespective of

their hierarchical position. The hierarchy can be

revised as follow:

1. Parameter policy rule (non-overridable)

2. Method policy rule (non-overridable)

3. Class policy rule (non-overridable)

4. Parameter policy rule (overridable)

5. Method policy rule (overridable)

6. Class policy rule (overridable)

7. Default policy

It is recommended that policy rules are specified as

overridable in most circumstances. Despite specifying

a class policy rule as non-overridable, it will still be

overridden by a non-overridable method policy. The

authors suggest that it should rarely be necessary to

override a policy rule that has been specified as non-

overridable and that such an operation should be

performed with care.

The policy manager holds a series of policy rules

that are applicable during a particular method call. The

transmission policy received from a remote policy

manager also includes the dominant rule in that remote

address-space. The hierarchy can resolve contention

among this set of policy rules.

Contention can still exist occur if the dominant rule

in the remote policy manager is hierarchically

equivalent to the dominant rule in the local policy

manager. Contention of this form is resolved

differently depending on whether the transmission

policy is associated with an argument of a return value.

The callee’s policy rule is followed over the caller’s

when choosing the transmission policy for arguments.

Conversely, the caller’s policy rule is followed over the

callee’s when choosing the transmission policy for the

return value. The RRT is capable of deserializing and

using components irrespective of the transmission

policy used during serialization. The programmer is

responsible for ensuring that application transmission

policy is specified in a consistent manner that leads to

the desired application semantics.

Future Work

Initial measurements indicate that the cost of

dynamically evaluating transmission policy is

subsumed by the cost of serialization leading us to

believe that the benefits gained outweigh the expense.

We intend to perform further measurements to evaluate

the trade-off in more detail.

We hope to introduce additional features to the

transmission policy framework. Currently, policy

managers hold policy rules that apply only to

components in the local address space. Policy

managers can co-operate with each other in order to

reach a consensus but the specification of policy rules

that apply across the entire application is not

supported. We propose the introduction of a

mechanism that peers together policy managers such

that policy rules defined in any one of them apply in

all. It would be possible to peer together only a subset

of the policy managers active in a distributed system

while the remainder stay autonomous.

We propose extensions to the policy rules. It will be

possible to specify a class policy rule that applies not

just to a single class, but to the class’s entire

inheritance hierarchy. The programmer will be also

able to specify policy rules that apply only to a single

call.

Conclusion

This paper describes the transmission policy

framework provided by the RAFDA Run Time (RRT).

The RRT overcomes the limitations inherent in typical

middleware systems with respect to component

transmission policy and subsequently, their reuse. The

RRT separates the specification of the parameter

passing semantics applied to a component during inter-

address-space method call from the component’s

creation and implementation. It provides a mechanism

and framework to allow the dynamic specification of

component transmission policy on a per-class, per-

method or per-parameter basis.

Application semantics are no longer driven by

decisions made statically during component creation.

This aids component reuse since the programmer has

complete control over application semantics

independently of the component implementation.

References

[1] Sun Microsystems, Java™ Remote Method

Invocation Specification. 1996-1999.

[2] Thai, T. and Lam, H. Q., .NET Framework

Essentials. 2001: O'Reilly.

[3] OMG, Common Object Request Broker

Architecture: Core Specification. Vol. 3.0.3.

2004.

[4] Box, D, Ehnebuske, D, Kakivaya, G, Layman,

A, Mendelsohn, N, Nielsen, H F, Thatte, S,

and Winer, D, Simple Object Access Protocol

(SOAP) 1.1. 2000, W3C.

[5] Walker, S, Dearle, A, Kirby, G N C, and

Norcross, S, Exposing Application

Components as Web Services. 2004.

