
Transforming facial images along per-
ceived dimensions (such as age, gender,

race, or health) has application in areas as diverse as
psychology, medicine, and forensics. We can use pro-
totype images to define the salient features of a partic-

ular face classification (for example,
European female adult or East-
Asian male child). We then use the
differences between two prototypes
to define an axis of transformation,
such as younger to older. By apply-
ing these changes to a given input
face, we can change its apparent
age, race, or gender. 

Psychological investigations
reveal a limitation with existing
methods that’s particularly appar-
ent when changing the age of faces.1

We relate the problem to the loss of
facial textures (such as stubble and wrinkles) in the pro-
totypes due to the blending process. In this article, we
review the existing face prototyping and transformation
methods and present a new, wavelet-based method for
prototyping and transforming facial textures.

Previous methods
Francis Galton2 first developed facial prototyping

more than 120 years ago—he made multiple exposure
photographic images of several faces after aligning the
eye positions. The modern equivalents use image warp-
ing3 to distort the component face images into the mean
shape before blending the color values. Aligning the
facial features improves the facial prototype’s clarity.

In previous work, our laboratory constructed each
prototype by averaging a set of facial images in terms of
2D shape and pixel color4 (Figure 1). In this work, we
delineate the shape of each face in the set with 179
points located along contours around the major facial
features (eyes, nose, and mouth) and the facial border.
We can place these points manually or automatically by

using Active Shape Models5 after training with a man-
ually delineated face set. We find the average shape by
averaging the position of each delineated point across
the set—for example,

(1)

where xi is the ith shape vector made from the x and y
coordinates of the n delineated face points,

(2)

andx is the mean shape vector of N delineated faces.
We find the color of each pixel in the prototype image

by warping each component image into the average
shape and calculating the mean color. For example,

(3)

where ci(x, y) is the red, green, and blue (RGB) color
vector of image i at point (x, y), (W i

x, W i
y) is the transla-

tion vector given by the warping function for image i to
the average shape, and c is the mean color over the N
images. In this work we use linear warping over the fea-
ture points’ Delaunay triangulation, which we can com-
bine with a one-to-one constraint algorithm to prevent
the warped image folding.6

We can use the facial prototypes just described to
define the typical differences between two sets of
images. We can apply these differences to a delineated
subject’s face image4 or a frame from a moving
sequence7 in two principal steps (Figure 2). The first step
calculates the face’s new shape. We normalize the posi-
tion, orientation, and scale of the two prototype’s shape
templates to the subject’s using a least-squares rigid-
body fit (translation, scaling, and rotation). We then cal-

c cx y
N

W x y W x yi x
i

y
i

i

N

, , , ,( ) = ( ) ( )( )
=
∑1

0

    
x i

i i i i
n
i

n
ix y x y x y= ( )0 0 1 1, , , , , ,L

x x=
=
∑1

0
N

i

i

N

0272-1716/01/$10.00 © 2001 IEEE

Applied Perception

42 September/October 2001

We present new, wavelet-

based methods for

prototyping facial textures

and for artificially

transforming the age of

facial images.

Bernard Tiddeman, Michael Burt, and 
David Perrett
University of St. Andrews, Scotland

Prototyping and
Transforming
Facial Textures for
Perception
Research

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/9821285?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


culate and scale (if desired) each feature point’s trans-
lation from the source prototype (usually of the same
class as the image undergoing the transform) to the des-
tination prototype and add it to the corresponding point
on the subject’s face. For example,

(4)

where xs is the original shape vector, xs′ is the trans-
formed shape vector, and xp1 and xp2 are the normalized
source and destination prototype shapes, respectively.

   
′ = + −( )x x x xs s p p2 1
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1 Constructing a shape and color
prototype. We delineate (top row)
and average the facial features of
each input face (center row) to
define the mean shape. We then
warp each component image into
the mean shape (bottom row) and
average it to produce the prototype
image.

2 An illustration of the shape and
color transformation process: 
(a) Define new shape, (b) warp
subject and prototypes into new
shape, and (c) transform colors at
each pixel. (The prototype rigid-
body normalization step isn’t
shown.)



Finally, we warp the subject’s image into the new shape.
The transformation’s second stage calculates the new

facial colors. We also warp the source and destination
prototype images into the new shape and calculate and
scale (if desired) the color shift of each pixel and add it
to the color of the subject’s pixel

(5)

where cs′ is the (new) transformed image, cs is the
warped subject’s image, and cp1 and cp2 are the warped
source and destination prototype images, respectively.
This process resembles image morphing,8 but unlike
morphing—which changes the identity of the subject
during the morph—this method maintains the identity
(or a family resemblance) across the transformation.
For example, in Figure 2 we attempt to change the sub-
ject’s apparent age from a younger adult (approximate-
ly 30 years old) to an older adult (approximately 60
years old) while maintaining identity.

Texture-enhanced facial prototyping
Experiments involving the rating of real and proto-

type faces reveal a difference between the perceived
age of facial prototypes and the age of the component
faces used to construct them.1 The perceived age rat-

ings of male and female prototypes showed an age
deficit compared to the original faces used to construct
the prototypes. It’s clear when looking at the prototype
images of older faces that wrinkles aren’t captured in
the prototypes. The facial textures appear smoother
than they do in the real faces. This is because the warp-
ing stage doesn’t align the (undelineated) wrinkles pre-
cisely. Delineating facial wrinkles is difficult, if not
impossible, due to the wide variability in their fine
structure. Even automated warping methods (for
example, as used in Blanz and Vetter9) impose a
smoothness constraint.

To improve the textures of the facial prototypes, we
propose a wavelet-based method (see Stollnitz et al.10

for an introduction on using wavelets in computer
graphics). Heeger and Bergen,11 for example, success-
fully used wavelet-based methods to synthesize new tex-
ture images from an example texture image. Also,
wavelets play an important role in early visual process-
ing in mammals,12 which implies that wavelet use
should give visually realistic results.

The aim here is to adjust the amplitude of edges
(changes in pixel intensity) in the prototype image so
that it matches the average edge amplitudes in the sam-
ple at different locations, orientations, and spatial
scales. The edges in an image can be defined using a

′ = + −( )c c c cs s p p2 1
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3 (a) Averaging a set of texture
wavelet components produces a
function with far smaller average
magnitude. (b) Averaging the
smoothed magnitudes of the
wavelet components stores addi-
tional information about the tex-
ture. (c) We divide the mean
wavelet components by their
smoothed magnitude and multiply
them by the sample’s smoothed
average magnitude to produce a
texture function more representa-
tive of the sample. The horizontal
axis indexes a range of 30 pixels in
the horizontal wavelet decomposi-
tion at the second spatial scale, and
the vertical axis shows the value of
the wavelet coefficients.



variety of different edge-detecting wavelet filters, at dif-
ferent spatial scales and with different orientations. Bio-
logical considerations, the desire for computational
efficiency, and avoiding visible reconstruction of arti-
facts after processing guides the choice of wavelets, ori-
entations, and sampling (see the “Choice of Wavelet
Analysis” sidebar for details).

Inspecting the original averaging process in the
wavelet domain reveals the source of the prototyping
texture problem (Figure 3a). If the edges of a set of func-
tions aren’t precisely aligned, their average is a function
with much smaller edge amplitudes. To overcome this

problem, we calculate a locally weighted measure of the
edge strength σ at each point (x, y) in a particular
wavelet subband w given by

(6)

where hx and hy are the 1D cubic B-spline smoothing fil-
ters, used to filter (the ∗ operator) along x and y axes,
respectively. In other words, we find the magnitude of
the edges at each point and smooth the values to give a
measure of the edge strength in a small region about
that point in each wavelet subband.

  
σ w x yx y h h w x y, ,( ) = ∗ ∗ ( )
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The choice of wavelet analysis for a particular
computer graphics application can be broken
down into the choice of filter, orientations, and
sampling. Here we explain how we selected the
wavelet analysis used in this work.

Wavelet filter choice
In this work we decompose the image using a

wavelet function (Figure A) that resembles the real
part of a Gabor function (a Gaussian function
modulated by a cosine function), which can be
implemented efficiently using finite support filters.
The attractiveness of Gabor filters for texture
analysis and synthesis is partly because they’re
optimally localized in both the spatial and
frequency domains, and also because they
approximate some of the filters used in the early
stages of mammalian visual processing.1

Choice of orientations
Using nonoriented wavelet pyramids (such as

the Laplacian pyramid) presents a relatively simple
wavelet decomposition. However, processing
based on these wavelets doesn’t let us amplify
oriented edges by different amounts—for example,
to amplify the horizontal crow’s feet lines radiating
out from the eye corners but not the circular line of
the eye orbit. The human visual system uses many
orientations separated by approximately 15
degrees, but the use of this many orientations adds
considerably to the processing time and memory
requirements. For efficiency, we use only two
orientations at each scale.

Choice of sampling
Different samplings can affect the quality of

reconstruction—even exact reconstruction
algorithms can produce artifacts after processing.
The wavelet pyramid must contain at least as
much data as the original image (such as critical
sampling) for exact reconstruction. We
encountered star-shaped artifacts after processing
when using critically sampled wavelet
decompositions and found better results when
using oversampled wavelet pyramids. In this
article we subsample only the low-pass residual at

each scale (Figure B), which produces a pyramid
8/3 times the original image’s size.

Reference
1. J.G. Daugman, “Two-Dimensional Spectral Analysis of

Cortical Receptive Field Profiles,” Vision Research, vol.
20, 1980, pp 847-856.
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B A typical image (left) and the corresponding wavelet decomposition
pyramid (right). The coefficients of the filters H and G are (1, 4, 6, 4,
1)/16 and (1, −4, 6, −4, 1)/16, respectively.

A We derived the low-pass filter (left) from H (a
cubic B-spline function) and the wavelet filter
(right) from G (an approximation to a real Gabor
function) for the forward wavelet decomposition.

Choice of Wavelet Analysis



The mean values of σ across the set of N facial images

(7)

gives a measure of the average edge size in each region
of each wavelet subband (Figure 3b). Hence we can use
these values to amplify the edges of the shape and color
prototypew to have more representative local values,
such as

(8)

where σw is the smoothed magnitude of subband w of
the shape and color prototype at pixel (x, y) and v is the
wavelet transform of the resulting texture-enhanced
prototype (Figure 3c). After processing the wavelet
magnitudes, we use an exact reconstruction algorithm
to collapse the wavelet pyramid (see the “Exact Recon-
struction” sidebar for details). Figure 4 shows the
results of the additional processing on the younger and
older, male and female prototypes used in the percep-

tual experiments described in the “Experimental vali-
dation of age prototypes” section.

Texture-enhanced facial transformations
Our previous attempts to transform the apparent age

of facial images have also had limited success,1 partly
because of the limitations in the prototypes. Age ratings
of real and age-increased facial images showed that the
original aging methods achieved only 50 percent of the
target age shift. Age reduction wasn’t attempted previ-
ously because the shape and color transformation
process didn’t remove textural cues to age (lines and
wrinkles). We confirm in the following sections that an
attempted 30-year age shift (from 55 to 25 years old)
with the original age transformation method produces
an average age reduction of only 2.6 years.

To improve aging and rejuvenating faces, we use the
textured prototypes described previously to smooth or
edge-enhance a subject’s facial image to an appropriate
amount for the destination age group (Figure 5). Again,
we’d like the smoothing or edge-enhancement to vary in
different image regions, spatial scales, and edge orien-
tations. After performing the shape and color transfor-
mation (equations 4 and 5), we calculate the wavelet
transform w′s of the transformed image c′s and rescale
the edges to have the same local magnitudes in each sub-
band as the texture-processed destination prototype p2.

  

v x y
w x y x y

x yw
,

, ,

,
( ) =

( ) ( )
( )

σ

σ

  
σ σw w

i

i

N

x y
N

x y, ,( ) = ( )
=

−

∑1

0

1

Applied Perception

46 September/October 2001

Figure C shows the process of constructing and
collapsing the wavelet pyramid. We first convolve

the image with the 1D high-pass filter G in the x
direction and keep it at full resolution. We also
convolve the original signal with G in the y
direction and keep it at full resolution. We then
filter the original signal with the 1D low-pass filter
H and subsample it by a factor of two in both the x
and y directions.

To reconstruct an image from the wavelet
pyramid, we first expand the low pass image by
inserting zeros between pixels followed by
convolution with the filter F in both x and y
directions. The reduction and subsequent
expansion of the low-pass filtered image is
equivalent to a separable convolution of the
original image with different filters at odd and
even indexed pixels. Hence we require different
reconstruction filters for odd and even pixels
when filtering the high-pass components. We use
1D filter pairs of the form (F1, F2), in which we use
the filter F1 for odd indexed pixels in the output
image and we use F2 at even indexed pixels in the
output image. We convolve the high-pass filtered
images with the filter pair (L1, L2) in the same
direction as the filter G and also with a second
filter pair (K1, K2) in the orthogonal direction.
Finally, we add the three filtered images to
produce the reconstructed image at the next
(finer) scale. Table A gives the coefficients of the
decomposition filters, H and G, and the
reconstruction filters, F, L1, L2, K1, and K2.

Gx L1
x,L2

x

Gx K1
x,K2

x

K1
y,K2

y

L1
y,L2

y

Hx HY Fx FY↓2 ↑2

Coarser scales

Analysis pyramid Synthesis pyramid

+

+

Table A. Filter coefficients for the forward and inverse wavelet
decomposition.

Index 0 ±1 ±2 ±3 ±4 ±5

H(16)* 6 4 1
G(16) 6 −4 1
F(8) 10 5 −1 −1
L1(8) 22 8 1
L2(8) 48 27 8 1
K1(256) 186 36 4 −4 −1
K2(256) 168 34 16 −1 −4 −1
*The filters are symmetrical about 0 and the values in each row are divided by
the factors shown in brackets.

Exact Reconstruction

C Diagram of a single level of the forward and reverse wavelet decomposi-
tion in 2D.



We can then independently process each wavelet sub-
band w′s of c′s using

(9)

where σ′s and σp2 are the smoothed magnitude of w′s and
wp2. We find the new transformed image by collapsing
the processed wavelet pyramid w′′s.

Experimental validation of age
prototypes

We conducted two experiments to validate the
wavelet processing methods’ ability to capture age infor-
mation. The first experiment was to validate the proto-
typing method and show that textured (shape-, color-,
and wavelet-processed) prototypes capture the age of
the sample faces more accurately than untextured (only
shape- and color-processed) prototypes. We made
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4 Example
prototypes
without (top)
and with (bot-
tom) the addi-
tional texture
processing.
From left to
right: Males 18
to 45 years old,
males over 45
years old,
females 18 to 45
years old, and
females over 45
years old.

5 The texture-enhanced transformation process. We
transform the original image using the shape and
color method (as in Figure 2) and warp the target
prototype into the new shape. We then build wavelet
pyramids from these two images and calculate their
magnitudes. After rescaling, we collapse the subject’s
pyramid to give the new image.



younger adult male and female prototypes from 23 male
and 18 female faces (aged 18 to 45 years) and older
adult prototypes from 15 male and 14 female faces (aged
over 45 years). Figure 4 shows the untextured and tex-
tured male and female prototypes for the two different
age groups.

We then presented all the face images (70 original
faces, 4 untextured prototypes, and 4 textured proto-
types) to 21 raters (10 males aged 19 to 55 years, 11
females aged 20 to 28 years) in random order, one image
at a time, and asked them to estimate the age (in years)
of each face. For each rater, we calculated the average
perceived age of the 45 original younger adult face
images, the 29 original older adult face images, and the
textured and untextured male and female prototypes
for the younger and older face groups. We compared the
average perceived age of the younger and older faces to
the average perceived age of each pair (male and
female) of textured and untextured prototypes using
Student’s matched t-tests.

The results (Figure 6) show that
the age ratings of the untextured
prototypes are significantly younger
than the average ratings of the orig-
inal faces for both the younger and
older face groups.  The younger faces
had an age difference of 6.6 years,
where t20 = 8.4, and p<0.0005. The
older faces exhibited an age differ-
ence of 4.7 years, where t20 = 3.4,
and p<0.0005. The textured proto-
types corrected this age deficit,
which the raters didn’t perceive as
significantly different from the aver-
age original of the faces in either age
group (for younger faces t20 = 1.8
and p<0.08; for older faces t20 = 0.7
and p<0.52). Thus, the additional
wavelet prototyping accurately cap-
tures age information lost in the
blending process.

Experimental validation
of age transformations

The second experiment tested the
effectiveness of the new age transfor-
mation technique. We transformed
10 female and 10 male faces evenly
divided into the two age categories
(18 to 45 and over 45 years old). We
aged the 10 faces in the younger age
group using the untextured method
(shape and color transformation
using the untextured pair of proto-
types for the younger, 18 to 45 year-
olds and older, over 45 year-olds) and
with the new textured method
(shape, color, and texture transfor-
mation using a textured destination
prototype). We also used the same
two methods to age reduce the 10
faces from the older age group. This
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7 Transforma-
tion examples:
original faces
(left), without
(center), and
with (right)
texture process-
ing. (a) Male
rejuvenation,
(b) male aging,
(c) female
rejuvenation,
and (d) female
aging.

6 Average perceived age (±1 standard error) of origi-
nal face images, with textured and untextured proto-
types. Subjects perceived the untextured prototypes as
significantly younger than the average age of the origi-
nal images in both groups (younger and older), but
perceived the textured prototypes as having an age
appropriate to the original face sample.



produced a total of 60 face images (20
of the original, 20 of the old method
transformed, and 20 of the new
method transformed). We presented
each of the 60 face images individu-
ally in random order to 16 observers
(6 males, aged 23 to 57, mean 40
years; 10 female, aged 22 to 38, mean
age 27.5 years), who we asked to rate
the age of the face to the nearest year.

Figure 7 shows age transforma-
tions for male and female subjects.
The texture-processed images
appear to reflect the desired age
change more accurately. The results
of the age rating experiment in Fig-
ure 8 confirm this. The perceived
age of the original younger adult
faces is 25 years. Applying the color
and shape aging transformation to
this younger adult group of faces
increases their apparent age by an average of 14.8 years.
Transformation with the additional texture processing
is twice as effective, aging the faces by an average of 30.0
years. The increase in age produced by transformation
with texture processing (mean 30.0 years, standard
error ±1.3 years, Figure 8) corresponds to that expect-
ed from the age difference between the younger and
older adult prototype faces (mean 27.9, standard error
±1.4 years, Figure 6). Hence, the wavelet-enhanced age
transformation projected the faces by the correct
amount and reached the target age bracket.

Applying the shape and color transform to rejuvenate
faces hardly affects the apparent age, achieving an aver-
age age reduction of only 2.6 years. Rejuvenation using
the wavelet processing methods reduced the apparent
age by 14 years. While texture-enhanced transforma-
tion is five times more effective, evidently improvements
can be made. A possible explanation is that the average
hair color change during rejuvenation isn’t always suf-
ficient to project the subject’s hair color into the normal
range for the younger age group. Any cue, such as slight-
ly gray hair, may have a disproportionate influence on
age perception.

Future work
We plan to use the new prototyping and transforma-

tion methods to investigate psychological theories of
facial attraction related to aging. For example, like other
animals humans probably learn certain key qualities
from their parents, a process known as imprinting. Chil-
dren may imprint on their parents’ age, so we can test,
for example, whether people born to older parents are
attracted to older faces. We also hope to use the texture-
enhanced age transformations to investigate how per-
ceived personality attributes (such as perceived
intelligence or perceived sociability) are affected by our
stereotypic attitudes toward age.

We’ll also investigate technical extensions to the tex-
ture processing algorithms. Our results show that pre-
vious statistical models of facial images in terms of shape
and color are incomplete. The smoothed wavelet mag-

nitude is an important additional facial image attribute,
which is necessary for a complete statistical description
of face images. We’ve started the statistical modeling of
facial textures by constructing a representation of aver-
age wavelet magnitudes. In the future we hope to extend
this model to include a description of the distribution
of facial textures within a population of faces—for
example, by employing Principal Component Analysis
on the wavelet magnitudes. �
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