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Abstract—We describe how to count the cases that arise in a family of visualization techniques, including Marching Cubes, Sweeping

Simplices, Contour Meshing, Interval Volumes, and Separating Surfaces. Counting the cases is the first step toward developing a

generic visualization algorithm to produce substitopes (geometric substitutions of polytopes). We demonstrate the method using

“GAP,” a software system for computational group theory. The case-counts are organized into a table that provides a taxonomy of

members of the family; numbers in the table are derived from actual lists of cases, which are computed by our methods. The

calculations confirm previously reported case-counts for four dimensions that are too large to check by hand and predict the number of

cases that will arise in substitope algorithms that have not yet been invented. We show how Pólya theory produces a closed-form

upper bound on the case counts.

Index Terms—Isosurface, level set, group action, orbit, geometric substitution, Marching Cubes, separating surface, Pólya counting,

substitope.

�

1 A FAMILY OF VISUALIZATION ALGORITHMS

THE Marching Cubes (MC) algorithm was presented by
Lorensen and Cline in 1987 as an exhaustive-search

technique that generates a level set (isosurface) of a scalar
function [1]. The algorithm iterates over each cube tesselat-
ing a compact subvolume of IR3 on which the function f is
defined. The sign of fðviÞ � const is evaluated at the eight
vertices vi of a cube, where const is some user-defined
constant (the isovalue). Neglecting the degenerate case
where the sign is exactly zero, each of the eight vertices can
be in one of two states: positive or negative (black or white).
These produce 28 ¼ 256 patterns. Many of these patterns
turn out to be equivalent under the symmetries of the cube
(such as rotation or mirror-reflection). Other patterns are
equivalent under reversal of colors (for example, all-black
being equivalent to all-white). Through patient brute-force
organization of the 256 patterns, one discovers there to be 14
or 15 equivalence classes of the colorings. Among the
15 cases is a chiral pair that are mirror images of each other,
so these two are equivalent if orientation is ignored.

In the MC algorithm, the pattern of a given cube is

matched to one of these 14 or 15 cases and a predetermined

arrangement of polygons is fitted to meet the constraint

fðviÞ � const ¼ 0 for points p along edges of the cube. In

other words, the cube is replaced by zero or more triangles

approximating the level set. Fig. 2 (bottom right) shows one

case of a geometric substitution that occurs in MC. The

figure illustrates how substitution proceeds in variations of

the basic MC algorithm: An n-simplex or n-cube is replaced

by a polytope. The n-cube, with 2n vertices, generalizes the
sequence point, segment, square, cube; the n-simplex, with nþ
1 vertices, generalizes the sequence point, segment, triangle,
tetrahedron; a polytope generalizes the sequence point,
segment, polygon, polyhedron [2]. Polytopes that result from
a geometric substitution are called substitopes [3]. Fig. 2
illustrates how substitution proceeds in variations on the
basic MC algorithm: In general, an n-simplex or n-cube is
replaced by a substitope. The following section surveys
several substitope algorithms that have been developed in
recent years.

1.1 Survey of Substitope Algorithms

MC has inspired numerous modifications and extensions.
These variations reveal a family of algorithms whose
members are distinguished by a few key parameters. A
selection of these substitope algorithms is surveyed below.

Variation of the shape. If a 3-simplex (tetrahedron),
rather than a 3-cube, tiles the domain, then the scalar
function is evaluated at only four vertices [4], [5]. One
advantage of using tetrahedra rather than cubes is that their
analysis is simpler: Only three cases arise for the vertex
colorings of a tetrahedron, rather than 14 for a cube. Fig. 2
(top right) shows one of these three cases.

Variation of the dimension. The two-dimensional
version of MC is popularly called “Marching Squares,”
which provides a simple motivation for the three-dimen-
sional case. Although the algorithm is unpublished, it can
be easily derived or found by searching the World Wide
Web. Fig. 2 (bottom left) shows one of its cases.

When the MC algorithm is extended to dimension n ¼ 4,
two problems arise. First, the number of vertex patterns is
large (65,536), so enumerating them all by hand is
unrealistic. Second, it is difficult to perform the mental
rotations necessary to decide when two color patterns of a
4-cube are equivalent. As Lorensen and Cline pointed out in
the case of the 3-cube, “triangulating the 256 cases is
possible but error prone. . . . [W]e reduced the problem to
14 patterns by inspection [p. 165].” Although this approach
to counting cases works for Marching Squares and MC, it
does not scale to dimensions higher than three. Recently,
several researchers have tackled the case-counting problem
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for the 4-cube in different ways, counting 496 cases
(Kirchberg [6]), 272 cases (Roberts and Hill [7]), or 222
cases (Bhaniramka et al. [8]) that arise. Section 3 confirms
these counts and explains why they are different.

Variation of the shape’s symmetry. The symmetries of a
figure are due to transformations that preserve its shape
and, perhaps, orientation. If one considers orientation
(clockwise versus counterclockwise) to be irrelevant, one
loses distinctions between certain colorings of squares. So,
the number of cases depends in part on the choice one
makes when considering symmetries of the shape. The
original MC deals with two cases that form a chiral pair:
One is the mirror image of the other. The problem reduces
to 15 cases under orientation-preserving symmetries and to
14 cases under the larger symmetry group that includes
mirror reflection.

An analogous situation exists in every dimension—the
group of orientation-preserving symmetries is, in general,
only half as large as the group of all symmetries. So, there
may be figures that are equivalent under the larger group
but not the smaller one. This is the reason that Roberts and
Hill found a larger number of cases than Bhaniramka et al.
(272 versus 222 cases)—they were employing a smaller
symmetry group.

Variation of the number of colors. MC produces a level
set by consulting a 2-colored function. But, substitope
algorithms can also employ multiple colors, as was done in
Interval Volumes [9], Contour Meshing [10], and General-
ized MC [11], [12], [13], [14]. Fig. 3 (top row) shows an
example of the geometric substitution in Interval Volumes
for a 2-simplex and a 3-simplex with three colors.

Fig. 1 (bottom row) illustrates the 13 cases that result from
extending Marching Squares from two colors to three,
corresponding to f < 0; f ¼ 0; f > 0. These cases can be
easily deduced through brute-force inspection of the 34 ¼ 81
ways that three colors canbeassigned to four vertices, thenby
organizing the colorings into equivalence classes. Until now
there has been no published case count forMCwith this third
color included, perhaps because the 38 ¼ 6; 561 colorings are

too numerous to catalog by hand. We calculate the solution
and report it in Section 3.3 as one of several new examples
of case counts.

Variation of the colors’ symmetry. Two colors may be
considered equivalent according to various choices of a
symmetry group acting on the set of colors [15]. The natural
choices for the symmetries are 1) the identity (as in
Kirchberg’s Marching Hypercubes), 2) reversal of colors
(as in MC and Interval Volumes), or 3) all permutations of
colors (as in Separating Surfaces [16], which considers all
4! permutations of colors at the four vertices of a
tetrahedron). Fig. 3 (bottom row) shows an example of the
geometric substitution in Separating Surfaces for a
2-simplex and a 3-simplex with three colors. Fig. 1 (top
row) shows the cases that would arise if Separating
Surfaces, which considers any permutation of colors to be
equivalent, were extended to operate on squares using four
colors with all 4! permutations of colors allowed.

1.2 Substitope Algorithm

The basic substitope algorithm consults a function f at each
vertex of polytopes tiling a domain; the resulting sub-
stitopes are designed to create a visualization of the
function rather than of the tiles. The substitope algorithm
considers both the tiles and their colorings. This algorithm
includes MC and all its variants. The steps of the algorithm
are sketched below.

1. Traverse tiles in a region.
2. Assign a color to each vertex of a tile.
3. Match the coloring to a representative case.
4. Substitute polytopes for the colored tile.

The algorithm can be accelerated by skipping over the
trivial substitutions [17], [18], [19], [20] rather than employ-
ing an exhaustive traversal of the domain in Step 1.

Some, but not all, of the variations on MC precompute a
look-up table in Step 3, which serves as an acceleration
technique when the geometric substitution is applied in
Step 4. But, the geometric substitution can also be
performed procedurally, for example, when the dimension
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Fig. 1. Distinct cases of colorings of a square. Top row: Seven cases result from using four colors (fluid, bone, tissue, lesion) when applying

Separating Surfaces to a square. Bottom row: Thirteen cases result from using three colors (– = +) with Marching Squares.

Fig. 2. Examples of geometric substitution rules in Marching Cubes,
generalized to the n-simplex and n-cube, for n 2 f2; 3g. The colors
correspond to sign of fðviÞ � const at each vertex, such as black for
positive and white for negative. Top row: 2-simplex replaced by line
segment; 3-simplex replaced by triangle. Bottom row: 2-cube replaced
by line segment; 3-cube replaced by triangle.

Fig. 3. Examples of substitopes. Top row (Interval Volumes): 2-simplex
replaced by polygon; 3-simplex replaced by polyhedron. Colors denote
intervals such as white for ð�infty; aÞ, gray for ða; bÞ, and black for
ðb;1Þ. Bottom row (Separating Surfaces): 2-simplex replaced by
branching line segments; 3-simplex replaced by triangles. Colors denote
membership in a set, e.g., {fluid, bone, tissue, lesion}.



is so large that the look-up table would exceed available
memory [8]. Geometric substitution is by no means
exclusive to substitope algorithms patterned after MC; it
has found many uses in computer graphics to model shapes
of plants [21], [22], complicated curves [23], and multi-
resolution surfaces [24], [25]. But, substitope algorithms are
distinct from these other geometric substitutions because of
the central role played by vertex colors.

As the variations listed in Section 1.1 suggest, there are
five key parameters that determine the number of cases for
colored polytopes, listed below.

1. The shape symmetry.
2. The color symmetry.
3. The choice of tile 2 {n-simplex, n-cube}.
4. The dimension n of the polytope.
5. The number k of colors.

The remainder of this paper explains how to count cases
using group theory. In brief, orbits of groups acting on sets
are enumerated using a computational algebra package.
Section 2 describes the aspects of group theory that are
required for solving the case-counting problem. Section 3
describes how a tool for computational group theory can be
programmed to count cases and presents case counts
organized into a taxonomy: a table with 2� 3� 2� 4� 4 ¼
192 entries corresponding to different values of the five
parameters listed above. Section 4 presents the history of
the case-counting problem, especially for the 4-cube.
Section 5 shows how Pólya theory can count the number
of cases without explicitly enumerating them.

2 ACTION OF A GROUP ON A SET

For years, mathematicians have studied problems similar to
counting cases of polytope colorings. In order for us to
apply their results, we first convert the problem of counting
cases (Step 3 of the substitope algorithm) into the appro-
priate mathematical language. This task requires the use of
group theory, which owes its name to a paper published in
1854 by Cayley [26].

A group is a set Gwith a binary operation satisfying four
criteria:

1. G is closed under the operation.
2. The operation obeys the associative law.
3. G has an identity element (denoted by the symbol 1).
4. Each element in G has an inverse.

Often the appearance of the binary operation is sup-
pressed, so a � b is written as ab and a � a is written as a2.
More details about groups can be found in textbooks on
modern algebra, such as the popular one by Fraleigh [27].
Familiar examples of groups include integers with the
addition operation and rational numbers (without zero)
under multiplication.

In creating the table forMC, Lorensen andCline produced
a set of 256 cube colorings. Then, they considered the action of
a symmetrygroupon the256 cube colorings.Agroup actsona
setX by mappingX to itself as described below.

Definition 1. A group G is said to act on a set X if 1) the
identity fixes every element ofX: 1x ¼ x and 2) the associative
law holds: ðg2g1Þx ¼ g2ðg1xÞ, where 1; g1; g2 2 G and x 2 X.
(Note: some authors apply actions from the right rather than
the left, thus writing xg1g2.)

One well-known group action is the set of all permuta-
tions of n symbols. The group Sn, commonly called the
symmetric group, contains all n! of these permutations.

Definition 2. The symmetric group S2 contains all permutations
of the symbols 1 and 2.

S2 ¼ fð1Þð2Þ; ð1 2Þg:

We can relax the requirement that the symbols literally
be “1” and “2” as long as we have symbols that come from a
specified order. For example, we can interpret x and y as 1
and 2. Thus, we may write

S2 ¼ fðxÞðyÞ; ðx yÞg:

In this notation, S2 induces an action on any point
ðx; yÞ 2 IR2. The first (identity) element leaves the x and y
coordinates fixed; the second element is a cycle that sends x
to y and y to x, producing a reflection about a diagonal line.
If ĝg ¼ ðx yÞ 2 S2, for example, then

ĝgðxÞ ¼ ðx yÞ ðxÞ ¼ y

ĝgðyÞ ¼ ðx yÞ ðyÞ ¼ x:

In the top line, the parenthetical expression ðx yÞ is the
operator; the parenthetical expression ðxÞ is its argument.
Note that both actions of S2 preserve the shape of an axis-
aligned square centered at the origin.

The usual convention when writing a permutation is to
list the cycles it induces on elements of the set. By
convention, the identity mapping is generally denoted ðÞ
rather than ðxÞðyÞ; trivial cycles like ðxÞ and ðyÞ are often
suppressed when the permutation is written. Thus, the
symmetric group on two letters is the set containing the two
permutations () and ðx yÞ.

The shapeof the square ispreservedby the actionofmirror
reflections (flips) exchanging x with �x or y with �y. These
two reflection groups are fðÞ; ðx� xÞg and fðÞ; ðy� yÞg; each
is equivalent (isomorphic) to the group S2. Their direct
product contains all four combinations of flip operations.

S2 � S2 ffi f ðÞ; ðx � xÞ; ðy � yÞ; ðy � yÞðx � xÞ g:

These four permutations correspond to the identity, a flip of
the x-axis, a flip of the y-axis, and flips (note the order, from
right to left) of the x, then y axes. In this particular example,
the elements commute, so ðy � yÞðx � xÞ ¼ ðx � xÞðy � yÞ,
but, in general, the order matters.

The following sections explain how a group acts on a
shape (the simplex or the cube) and on a set of colors, using
Marching Squares as illustration. With only 24 ¼ 16 color-
ings, eight group elements, and four equivalence classes,
Marching Squares is a natural choice for connecting the
intuitive, but eventually overwhelming, brute-force
approach together with the abstract, but more general-
izable, group-theory approach to enumerating cases.

2.1 Groups Acting on the Set of Vertices

LetFCn denote the full set of symmetries acting on an n-cube.
FCn is a group with n!2n elements; it includes all swaps and
flips of the coordinate axes. This group, sometimes referred to
in the literature as the hyperoctahedral group, is the wreath
product of a flip with the permutations of axes. The wreath
product is too complicated to describe here; for its definition,
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see the algebra textbook by Cohn [28]. Combinations of
swaps and flips are shown in Fig. 4 and Fig. 5.

The full set of symmetries FSn on the n-simplex can be
viewed as the group of all ðnþ 1Þ! possible permutations of
the nþ 1 vertices. That is, FSn ¼ Snþ1. The direct symmetry
group is the subset of the full symmetry group that preserves
orientation. It contains the rotations but not orientation-
reversing flips (mirror reflections). The direct symmetry
groupDCn for then-cube containshalf of the elementsofFCn.
Thedirect symmetrygroupDSn for then-simplex is called the
alternating group Anþ1 and contains half of Snþ1.

To apply FC2 orDC2 to the square, we first label the four
vertices of the reference square ŝs whose vertices,

v1 ¼ ð�1;�1Þ v2 ¼ ð1;�1Þ v3 ¼ ð�1; 1Þ v4 ¼ ð1; 1Þ;

form the lower left, lower right, upper left, and upper right
corners of a square centered at the origin. Squares, for the
purpose of counting cases, are the flipped and swapped
images of this reference square ŝs.

Definition 3. A standard square is the image of the reference
square ŝs under any action of shapeGroup. That is, s is a
standard square if and only if s ¼ gŝs for some g 2 shapeGroup.

Example 1. Theelement ðx� xÞof shapeGroup ¼ FC2 acts on
the square, flipping it in the x direction. So, its application
to the reference square ŝs gives ðx� xÞðŝsÞ ¼ ðv2; v1; v4; v3Þ.

Example 2. Under the action of the permutation ðx� xÞ on
the x-axis, vertex v1 in the reference square ŝs moves to
position 2 and vertex v2 moves to position 1. Likewise,
vertices v3 and v4 swap positions in the tuple. The group
element ðx� xÞ can be relabeled accordingly in terms of
its effect on the vertices of ŝs, namely, ð1 2Þð3 4Þ. This
relabeling is important in Section 3, which describes how
the computational algebra package “GAP” can create
shapeGroup automatically.

All eight actions of shapeGroup ¼ FC2 are listed in Fig. 4
and illustrated in Fig. 5. In the left-most column of Fig. 4,
element g 2 FC2 is written in terms of the coordinates x and
y it acts on. The middle column shows its action on the
reference square ŝs ¼ ðv1; v2; v3; v4Þ. The right-hand column
renames the group element as g, which acts on the vertices
of the square. Note that four of the group elements preserve
the orientation of the square; these elements comprise the

direct symmetry group DC2 that acts on the square. The
other four elements reverse the orientation of the square;
these are the squares whose labels are restored when the
page is held up to a mirror and rotated properly.

2.2 Groups Acting on the Set of Colors

In counting cases for MC, we see that one group acts on the
vertices of a square by moving them around; another group
acts on the set of colors, such as reversing black and white.
We call the second group colorGroup.

A vertex vi in a square might be assigned either of the
symbols + and – (or, equivalently, either of two colors color1
and color2) to indicate the sign of fðviÞ � const, where const
is the isovalue. The color of vertex vi is determined by a
coloring function �ðviÞ which maps vertices to colors.

If �̂� is a permutation on the colors, then colori is mapped
to the color �̂�ðcoloriÞ. The notation is simplified if we use the
permutation � that maps one color index to another color
index as shown below.

�̂�ðcoloriÞ ¼ color�ðiÞ:

Example 3. The permutation � ¼ ð1 2Þ acts as follows on the
color indices 1 and 2:

�ð1Þ ¼ ð1 2Þ ð1Þ ¼ 2
�ð2Þ ¼ ð1 2Þ ð2Þ ¼ 1:

There are three different color groups that play a crucial
(albeit unmentioned) role in the substitope algorithms
surveyed in Section 1.1. These are described below.

2.2.1 Identity Group

The identity group Idk, acting on k colors, contains the
single element (), which leaves the colors fixed. Nielson and
Sung considered the ordering of the colors to be significant
in their Interval Volumes algorithm, meaning the identity
group Idk was acting on k colors.

2.2.2 Reversal Group

The reversal group Revk acting on the numbers 1::k swaps
the first with the last element, the second with the next-to-
last element, and so forth. MC, Marching Squares, Marching
Hypercubes, Sweeping Simplices, and Contour Meshing all
use the reversal group to reorder the colors corresponding
to + and - in generating a level set. The group Revk contains
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Fig. 4. Permutations acting on axes and vertices. Column ĝg lists
permutations in terms of the x and y axes. The next column shows the
permuted vertices of the square ŝs ¼ ðv1; v2; v3; v4Þ. Column g gives
corresponding permutations in terms of vertices (not axes). Permuta-
tions are written as cycles, acting by composition from right to left.

Fig. 5. Permutations from the full symmetry group FC2 in Fig. 4 acting on
the x and y axes and thereby on the standard square ŝs (shown in the
upper left). Top row: First four permutations applied to ŝs. Bottom row:
Next four permutations applied to ŝs. Note that half of the permutations
preserve orientation: one, the identity (), on the top row and three,
corresponding to rotations by 90�, 270�, and 180� on the bottom.



only two permutations: the identity permutation () and the
permutation � defined below.

� ¼
ð1 kÞð2 k-1Þ::ðk2 kþ2

2 Þ if k is even

ð1 kÞð2 k-1Þ::ðk-12 kþ3
2 Þ if k is odd:

8<
:

2.2.3 Symmetric Group

The symmetric group Sk arbitrarily permutes k colors. In
the Separating Surfaces algorithm, Nielson and Franke
considered orderings of colors to be equivalent under any
permutations, thereby implicitly allowing the symmetric
group Sk to act on the k colors.

So, shapeGroup (namely, the direct symmetry group or
the full symmetry group) acts on the vertices of a square
and colorGroup (namely, the identity group, the reversal
group, or the symmetric group) acts on the colors. Together,
they act on the combinatorial set of all knþ1 colorings of the
n-simplex or k2

n
colorings of the n-cube. The next section

describes the group acting on colorings.

2.3 Groups Acting on the Set of Colorings

The shape group and the color group work together to act
on colorings of a polytope. It is convenient to write the
coloring function �ðviÞ as �i, suppressing the v, so that a
coloring of the square can be written in the compact form
given below.

Definition 4. A coloring of the n-tuple of vertices is the
corresponding n-tuple of colors ð�1; ::; �nÞ and its permuta-
tions by shapeGroup� colorGroup.

Example 4. A coloring of the triangle is a 3-tuple of colors
ð�1; �2; �3Þ; a coloring of the square is a 4-tuple
ð�1; �2; �3; �4Þ.

Example 5. Suppose color1 is purple and color2 is orange.
The coloring ð1; 1; 1; 1Þ is a square with all purple
vertices. The coloring ð1; 1; 2; 2Þ has purple for the bottom
two vertices and orange for the top two. The coloring
ð1; 2; 1; 2Þ has purple on the left side and orange on the
right. If shapeGroup ¼ FC2 and colorGroup ¼ Rev2, then
the colorings ð1; 1; 1; 1Þ and ð2; 2; 2; 2Þ are equivalent via
reversal of colors and ð1; 1; 2; 2; Þ ffi ð1; 2; 1; 2Þ via rotation
of the square.

The direct product shapeGroup� colorGroup acts on a
coloring in the obvious way: An element of shapeGroup
shuffles the order of the four colors and an element of
colorGroup permutes the value of the colors. We call this
product coloringGroup. An element h of coloringGroup has
the form ðg; �̂�Þ, where g acts on vertices and �̂� acts on colors.

Example 6. The action of ðð2 3Þ; �̂�Þ on a coloring
ð�1; �3; �2; �4Þ of the square is

ðð2 3Þ; �̂�Þ ð�1; �2; �3; �4Þ ¼ ð�̂�ð�1Þ; �̂�ð�3Þ; �̂�ð�2Þ; �̂�ð�4ÞÞ;

where the two middle terms get switched—the result of
permutation ð2 3Þ acting on the tuple—and the colors get
permuted.

Representing colori by its subscript i allows the action on
the coloring ð1; 1; 2; 1Þ to be written as follows, using � (to
permute indices) rather than �̂�:

ðð2 3Þ; �Þ ð1; 1; 2; 1Þ ¼ ð�ð1Þ; �ð2Þ; �ð1Þ; �ð1ÞÞ:

Again, the second and third elements in the tuple get
swapped by ð2 3Þ, while � is applied to the color indices. We
next show an example with a specific permutation from
shapeGroup and a specific permutation from colorGroup
acting on a specific coloring.

Example 7. The group element ðð2 3Þ; ð1 2ÞÞ acts on the

coloring ð1; 1; 2; 1Þ as follows:

ðð2 3Þ; ð1 2ÞÞð 1; 1; 2; 1Þ
¼ ð ð1 2Þð1Þ; ð1 2Þð2Þ; ð1 2Þð1Þ; ð1 2Þð1ÞÞ
¼ ð 2; 1; 2; 2Þ:

The second and third elements of the tuple get swapped
and all the colors get reversed. In this illustration, the
action ð1 2Þ of the coloring group happened to be applied
second, after the action of the shapegroup. The twoactions
commute, so the order of application does not matter.

Two colorings x1 and x2 are said to be equivalent if a

group action maps one into the other (by permuting the

vertices and colors). With coloringGroup ¼ FC2 �Rev2, for

example, all eight of the squares are equivalent whose

vertices are three black and one white or one black and

three white. Each of these squares can be mapped to any

other via the action of some element of coloringGroup. Each

equivalence class of colorings forms an orbit, which is

defined as follows:

Definition 5. The orbit of the coloring x under the coloring

group G is the set fgðxÞ : g 2 Gg.

Any two colorings xi and xj in the same orbit are

equivalent under the equivalence relation defined by the

action of G. Thus, the orbits form a partition of the set of all

colorings. Fig. 6 shows the six orbits (represented by

colorings 1111, 1112, 1122, 1221, 2221, and 2222) that

partition the set of 16 colorings of the 2-cube under the

action of FC2 � Id2. Each row contains an orbit, closed

under the action of rotations and flips. When color reversal

is allowed, the 0-black coloring 1111 joins the equivalence

class with the 4-black coloring 2222 and the 1-black coloring

1112 joins the equivalence class with the 3-black coloring

2221; in other words, color reversal reduces the number of

equivalence classes, thereby reducing their count from six

to four. Fig. 7 shows these four orbits for FC2 �Rev2. Each

row is closed under rotations, flips, and color reversal.
By casting the problem of counting cases in terms of

groups, we can exploit powerful computational tools to
enumerate orbits in situations where the large dimension or
large combination of colorings makes hand-enumeration
overwhelming.

3 TABLE OF SUBSTITOPE CASES

Computational group theory is concerned with the algorith-
mic solutionofproblems ingroup theory (e.g., the solutions to
Rubik’s cube). An article by Seress gives an overview of
computational group theory [29]. We investigated how a
computational group theory system can solve the problem
of counting cases for coloring groups [3].
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3.1 Computational Group Theory with GAP

GAP (Groups, Algorithms, and Programming) [30] is free
software that supports computational group theory. We
describe how to use GAP to solve the particular problem of
counting cases for a two-colored square. (Note: GAP uses
the convention of applying group actions from the right, as
mentioned in the definition of “action” in Section 2.)

Below is a transcript of an interactive session using GAP

for computing the number of cases (orbits) in Marching

Squares. The session has been lightly edited to improve

formatting. The user’s input is shown in sans-serif font and

GAP’s reply is shown in the fixed-width typewriter font.

We begin by creating shapeGroup as the wreath product

S2 o Sn, colorGroup as the reversal group, and coloringGroup

as their product for dimension n with k colors (note: the

double semicolons suppress feedback from GAP).

n := 2;;

k := 2;;

shapeGroup := WreathProductProductAction (

SymmetricGroup(2), SymmetricGroup(n));;

colorGroup := Group (PermList (Reversed ([1..k])));;

coloringGroup := DirectProduct (shapeGroup, colorGroup);;

Next, we construct projection operators to extract each

group (FC2 and Rev2) back from the direct product.

shapeProjection := Projection (coloringGroup, 1);;

colorProjection := Projection (coloringGroup, 2);;

Next, we generate the list of colors and colorings, allowing

GAP to answer back with its results. Note that all 24 ¼ 16

colorings are produced, beginning with all white and

ending with all black.

numVerts := 2^n;;

coloredVerts := ListWithIdenticalEntries (numVerts, [1..k]); }

[ [1..2], [1..2], [1..2], [1..2] ]

colorings := Cartesian (coloredVerts);

[[1,1,1,1], [1,1,1,2], [1,1,2,1], [1,1,2,2],

[1,2,1,1], [1,2,1,2], [1,2,2,1], [1,2,2,2],

[2,1,1,1], [2,1,1,2], [2,1,2,1], [2,1,2,2],

[2,2,1,1], [2,2,1,2], [2,2,2,1], [2,2,2,2] ]

Then, we define a function to perform the action of a group

element on a coloring. The projections of the element

ðg; �Þ 2 coloringGroup yield the components g and � that
shuffle the order of the tuple and that permute the colors.

action := function (coloring, groupElement)

local shapePerm, colorPerm, shuffled;

shapePerm := Image (shapeProjection, groupElement);

colorPerm := Image (colorProjection, groupElement);

shuffled := Permuted (coloring, shapePerm);

return (OnTuples (shuffled, colorPerm));

end;;

We let GAP produce the orbits and count how many there
are. Notice that these orbits agree exactly with the tuples we
computed by hand in Fig. 7.

orbits := OrbitsDomain (coloringGroup, colorings, action);

[[[1,1,1,1], [2,2,2,2]],

[[1,1,1,2], [1,1,2,1], [1,2,1,1], [2,2,2,1],

[2,1,1,1], [2,2,1,2], [2,1,2,2], [1,2,2,2]],

[[1,1,2,2], [2,2,1,1], [1,2,1,2], [2,1,2,1]],

[[1,2,2,1], [2,1,1,2]]]

Length (orbits);

4

This demonstration shows how GAP can enumerate the
orbits of a group action in Marching Squares and, thus,
determine the number of cases for polytope colorings that
arise in the two-dimensional version of Marching Cubes.
The variable names suggest how to extend this example to
handle other cases; for example, one can simply change the
value of n from 2 to 3 to enumerate the orbits and count
them for MC. One can also change the definition of
shapeGroup or colorGroup at the beginning of the GAP code
to generate the orbits for still other colorings. The next
section describes how this approach can be extended to
handle additional geometries and symmetries, constructing
a complete taxonomy of case-counts for substitopes.

3.2 Parameter Study

To build a complete taxonomy of case-counts, we wrote a
program to let GAP loop over all parameter values. The
shape groups are the direct symmetries and full symmetries
of the n-simplex and n-cube, yielding four possible choices.
The color groups include three possibilities: the identity,
reversal, and full permutation. The shape, the shape group,
and the color group are the major parameters of the
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Fig. 6. The six orbits of FC2 � Id2 acting on colorings of the 2-cube. In
each row, any coloring can be mapped to any other via rotations and
flips shown in Fig. 5. Colors 1 and 2 denote white and black; each
coloring is given in the order lower-left, lower-right, upper-left, upper-
right. Left side, top to bottom: orbits with zero black, one black, and two
adjacent black vertices. Right side, top to bottom: orbits with two
opposite black, three black, and four black vertices.

Fig. 7. The four orbits of FC2 �Rev2 acting on colorings of the 2-cube. In
each row, any coloring can be mapped to any other via rotations, flips,
and color reversal. Top to bottom: orbits with all black or all white, with
one black or one white, with two adjacent black and two adjacent white,
and with two opposite black and two opposite white vertices.



taxonomy of substitope cases, yielding 12 subtables within
the taxonomy. The dimension n and the number k of colors
are the minor parameters, in the range ½1::4�, that vary
within each subtable of Fig. 8. Each entry in the table gives
the number of cases (orbits) for the corresponding colored
polytopes. A table entry noted in boldface indicates a
combination of parameters that was at work in any of six
algorithms surveyed in Section 1.1. The GAP source code
orbitTable.gap that generated the table is freely avail-
able for download at the GAP Web site. Computational
details about generating the table are given in our previous
paper [3]. Where calculation of the case-counts (for four
colors of the 4-cube) exceeded the memory capacity of our
machines, we merely estimated a lower bound for these
entries based on the fact that no orbit can be bigger than the
order of the group or else used results from Section 5.

3.3 Discussion

The following examples illustrate the table’s predictive
utility. Entries in the table are specified by the five
parameters (shapeGroup, colorGroup, shape, n, k).

Example 8. What happens when the algorithm for Separat-

ing Surfaces is extended to 3-cubes with four colors?

Consulting the table (full, Sk, n-cube, 3, 4) we see that

124 cases arise. For the square (n ¼ 2) with four colors

only seven cases arise; they are illustrated in Fig. 1 (top

row), with a possible interpretation of colors that might
be derived from medical data.

Example 9. What happens when Marching Squares is
extended to handle the degenerate situation fðviÞ �
const ¼ 0 at vertices vi? This case would almost never
occur if the scalar function were truly real-valued. But, in
practice, integer-valued isosurfaces of integer-valued
data sets are routinely displayed, so a level set will,
with nonzero probability, pass through many grid point
degeneracies. When the set of colors is augmented so it
includes the degenerate zero value as a third color for the
square (full, Revk, n-cube, 2, 3), 13 cases arise; they are
illustrated in Fig. 1 (bottom row).

Example 10. What happens when Marching Hypercubes is
extended to handle the same degenerate situation where
fðviÞ � const ¼ 0? The table predicts that, for n ¼ 4, the
number of cases explodes from 222 with two colors to
66,524 with three colors under full symmetry and from
272 with two colors to 115,606 with three colors under
direct symmetry.

Example 11. Weigle and Banks mentioned the degenerate
situation where fðviÞ � const ¼ 0 for the n-simplex in
Contour Meshing, but did not enumerate all the cases.
How many cases would be found for the 4-simplex with
three colors? The table predicts that, for (full, Revk,
n-simplex, 4, 3), there are 12 cases.

Example 12. What happens when Interval Volumes is
applied to cubes instead of tetrahedra? The table predicts
that, for (full, Revk, n-cube, 3, 3), there are 147 cases.

Example 13. What happens when another interval is added
to Interval Volumes, creating the four “colors” ð�1; aÞ,
ða; bÞ, ðb; cÞ, and ðc;1Þ? With k ¼ 4, the table predicts
that, for the tetrahedron (full, Revk, n-simplex, 3, 4), there
are 19 cases and, for the cube (full, Revk, n-cube, 3, 4),
there are 1,036 cases in a hypothetical 4-color version of
Interval Volumes.

Example 14. When shapeGroup ¼ DC4 for the 4-cube,
496 cases arise when the colors are not permuted,
whereas there are 272 cases under color reversal. Under
full symmetry of the 4-cube, 402 cases arise when the
colors are not permuted, whereas there are 222 cases
under color reversal. Thus, 50 of the 272 cases for direct
have orientation-reversed partners among the 222 cases
for full in four-dimensional MC.

These examples illustrate how the table in Fig. 8 can be
used to determine the number of cases required to
implement substitope algorithms and how GAP can
enumerate the cases to permit deeper understanding of
how the cases occur.

4 HISTORY OF COUNTING CASES

The problem of enumerating the colorings of an n-cube with
two colors has a long history, predating Marching Cubes by
more than a century. Mathematicians in the 1870s were
considering the kinds of logical propositions that can exist.
In Boolean functions of n logical variables, each variable can
assume a value of either True or False, leading to
2n combinations in the domain of the function. If we
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Fig. 8. Table of case counts for substitopes. Each of the 12 subtables
contains the case-counts for a given shape group and color group in
dimension n with k colors. 1MC. 2Marching Hypercubes. 3Interval
volumes. 4Sweeping Simplices. 5Contour Meshing. 6Separating Sur-
faces. 7 Counting Cases.



associate a spatial dimension in IRn with each variable (True
= 1 and False = 0), then each element of the domain can be
represented as an n-vector with coordinates of 0s and 1s.
Attempts to enumerate these equivalence classes of functions
were carried out in the 1800s, apparently without theire
realizing that 2-colorings of the n-cube were also being
counted. In 1871, Jevons presented a paper that described the
cases that arise in2-coloringsof the2-cubeand the3-cube [31],
but in the guise of Boolean functions. Jevons only considered
192 of the 256 propositions corresponding to 2-colorings of
the 3-cube; he found 16 of the 22 equivalence classes.
Regarding the 4-cube, Jevons remarked that “some years of
continuous labourwould be required to ascertain the types of
laws [equivalence classes] which may govern the [65,536]
combinations of only four things” (p. 143).

In 1877, Clifford claimed a solution to Jevons’s puzzle of
counting cases for 2-colorings of the 4-cube. In geometric
terms, Clifford’s approach was to consider each coloring as
a vector with four components (one for each Boolean
variable) with values of 0 or 1. He reported that the 216 ¼
65; 536 distinct functions fell into 396 equivalence classes.
This impressive (but incorrect) result was publicized in that
same year in a work by Jevons on formal logic [32]. Our
calculation using GAP found 402 equivalence classes for 2-
colorings of the 4-cube with FC4 � Id2, not 396 [3]. (In an
unpublished manuscript fragment “Enumeration of the
Types of Compound Statements” [33], Clifford begins an
attempt to generalize to the n-cube for arbitrary n and also
attempts to determine the size of each equivalence class. For
n ¼ 4 and c ¼ 1; 2; 3, he correctly finds the distribution of
orbits to be 1, 4, and 6.)

Clifford’s results went unchallenged until 1940, when
Pólya demonstrated how his famous enumeration methods
could be applied to this problem in an automated manner.
He enumerated the 402 classes of 2-colorings of the 4-cube,
and showed where Clifford’s manual tabulations had
overcounted in some cases and undercounted in others:
“Clifford trouve, par une méthode laborieuse, les valeurs
N

ð6Þ
4 ¼ 47, N

ð7Þ
4 ¼ 55, N

ð8Þ
4 ¼ 78, tandis que je trouve les

nombres 50, 56, 74. Des vérifications variées de mes calcus
et l’uniformité de ma méthode me font croire que mes
nombres sont justes” [34].1 So, the question of how to
determine the number of cases for FC4 � Id2 dates back to
1871 and its solution dates back to 1940.

5 PóLYA COUNTING

The subtables in Fig. 8 for which colorGroup ¼ Idk can be
determined through Burnside-Pólya counting theory. The
group-theorist Burnside derived a formula for counting the
orbits of a permutation group [35, Section 145, Theorem VII]
and Pólya developed a theory that exploited Burnside’s
result to solve a vast number of counting problems in his
classic paper [36]. This work was translated into English as
Combinatorial Enumeration of Groups, Graphs, and Chemical
Compounds, with commentary and a wealth of references to
further applications of Pólya’s method, by Read [37].

Why are chemical compounds included in Pólya’s

exposition of counting cases? The reason is simple: A

molecule is a graph whose vertices are atoms. The different

kinds of atoms (e.g., carbon, hydrogen, chlorine) are the

“colors.” This is illustrated by the following example: The

organic molecule dichlorobenzene has the chemical formula

C6H4Cl2; the six carbon atoms are connected in a hexagon,

and each carbon is attached to an atom having color

“hydrogen” or color “chlorine.” The two chlorines can be

separated by 120�, 240�, or 360�; each configuration (or

stereoisomer) is an equivalence class of colorings. These

equivalence classes are illustrated in Fig. 9. Pólya realized

that Burnside’s formula could be applied to count the

number of stereoisomers of chemical compounds.
In this section, we present a brief introduction to Pólya’s

method and show how it can be used to derive some of the
numbers in Fig. 8without brute-force enumeration. A central
concept in this method is the cycle index of a permutation
group G, where G is the shapeGroup in our discussion. This
multivariable polynomial records the cycle structure of each
permutation in G. Its definition is given below.

Definition 6. The cycle index Z of a group G is the polynomial

ZðG; z1; z2; . . . ; zdÞ ¼
X
g2G

z
j1ðgÞ
1 z

j2ðgÞ
2 � � � zjdðgÞd

 !
=jGj;

where jiðgÞ is the number of cycles of length i in the

permutation g 2 G, jGj is the order of (i.e., size of) G, and d is

the degree of G (the size of the set permuted by G). Note that

jiðgÞ might happen to be zero; for example, no rigid rotation of

the square contains a 3-cycle. It is a known result in group

theory that
Pd

i¼1 i � jiðgÞ ¼ d for each g 2 G, which can serve

as a check when computing cycle indices by hand.

5.1 Pólya Applied to a 2-Cube with Full Symmetry

We illustrate the cycle index using the full symmetry group

FC2 for the square (presented in Fig. 5), also called the

dihedral group D4. This group has order jD4j ¼ 8, degree

d ¼ 4, and contains the following elements.

ð1Þð2Þð3Þð4Þ ð1 2Þð3 4Þ ð1 3Þð2 4Þ ð1 4Þð2 3Þ
ð1Þð2 3Þð4Þ ð1 2 4 3Þ ð1 3 4 2Þ ð1 4Þð2Þð3Þ:
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Fig. 9. The three stereoisomers of dichlorobenzene, whose structure is a
hexagonal benzene ring with six atoms attached. Four of these atoms
are hydrogen (light color) and two of them are chlorine (dark color). Each
row contains colorings that are equivalent under the action of the shape
group for a hexagon. Top row: ortho-dichlorobenzene, used as a paint
remover. Middle: meta-dichlorobenzene, used as a toilet deodorizer.
Bottom: para-dichlorobenzene, used as an insecticide.

1. “Clifford found, through his laborious approach, the values 47, 55, and
78 for cases 6, 7, and 8, whereas I found the numbers 50, 56, and 74. Based
on several examples that validate my calculations and based on the
generality of my method, I believe my numbers to be correct.”



Fig. 10 provides explicit details for computing the cycle
index for the dihedral group, which corresponds to the
discussion below. The second column shows the number of
cycles, within element g, of length 1, 2, 3, and 4. The third
column shows each z term, whose subscripts are the cycle
lengths and whose superscripts are the number of cycles of
that length. The right column gives the product of these
terms. When the superscript of a term is zero, that term z0i
evaluates to unity and does not contribute to the product.

One z41 term. The identity permutation in D4, denoted by
() or (1)(2)(3)(4), contains four disjoint cycles, each of length
1. Thus, according to the formula, this permutation
contributes a term of z41 to the cycle index.

Three z22 terms. There are three permutations that
contain a pair of cycles. These permutations ð1 2Þð3 4Þ,
ð1 3Þð2 4Þ, and ð1 4Þð2 3Þ each consist of two cycles of
length 2, so each contributes a term of z22 to the cycle index.

Two z21z
1
2 terms. The permutation ð1Þð2 3Þð4Þ consists of

two cycles of length 1, each of which contributes a factor of
z21 to this permutation’s term, and one cycle of length 2,
which contributes a factor of z12. Thus, this permutation is
represented by a term z21z

1
2 in the cycle index. The

permutation ð1 4Þð2Þð3Þ has the same cycle structure and
contributes the same term z21z

1
2 to the cycle index.

Two z14 terms. The two permutations ð1 2 4 3Þ and
ð1 3 4 2Þ each consist of a single cycle of length 4. Each
contributes a term of z14 to the cycle index.

Adding up these terms and dividing by the order of the
group, we have

ZðFC2; z1; z2; z3; z4Þ ¼ 1z41 þ 2z21z
1
2 þ 3z22 þ 2z14

� �
=8

as the cycle index of the shape group FC2 ffi D4. Remark-
ably, the cycle index polynomial serves as a generating
system to produce all the values in the (full symmetry, Idk,
n-cube) subtable of Fig. 8, with n ¼ 2. The details are
described below.

An elementary version of Pólya’s theorem states that,
under the identity action of the color group, the number of

inequivalent colorings of the square, with k colors, is
obtained by replacing each variable zi in the cycle index of
the shapeGroup with the integer k. Thus, for k ¼ 2 colors, the
number of inequivalent colorings of the square is

ZðFC2; 2; 2; 2; 2Þ ¼ 24 þ 2 � 22 � 21 þ 3 � 22 þ 2 � 21
� �

=8

¼ 16þ 16þ 12þ 4ð Þ=8
¼ 6;

which confirms the 2, 2 entry in the (full symmetry, Idk,
n-cube) subtable. These are the six equivalence classes of
colorings where black and white are not exchanged; for
example, the all-white coloring is considered distinct from
the all-black coloring.

More generally, we see that the number of inequivalent
k-colorings of the square is

ZðFC2; k; k; k; kÞ ¼ k4 þ 2k3 þ 3k2 þ 2k
� �

=8:

This formula can be used to confirm and extend the entire
second row of the (full, Idk, n-cube) subtable in Fig. 8. So,
for example, with k ¼ 3 colors, we have

ZðFC2; 3; 3; 3; 3Þ ¼ 34 þ 2 � 33 þ 3 � 32 þ 2 � 3
� �

=8

¼ ð81þ 54þ 27þ 6Þ=8
¼ 21:

For k ¼ 4 colors, we have

ZðFC2; 4; 4; 4; 4Þ ¼ 44 þ 2 � 43 þ 3 � 42 þ 2 � 4
� �

=8

¼ ð256þ 128þ 48þ 8Þ=8
¼ 55:

We call this polynomial in k the reduced cycle index of the
group action.

5.2 Pólya Applied to a 3-Cube with Direct Symmetry

For a more complicated example, we consider the direct
symmetry group DC3 acting on the vertices of a 3-cube. A
3-cube has eight vertices, so this shape group has degree
d ¼ 8. We number the vertices of the cube from 1 to 8, as
shown in Fig. 11 (left). We can convince ourselves that the
group has order 24 as follows: From a standard position, the
cube can be manipulated so that any of the six faces is on
the bottom. Then, the cube can be rotated about a vertical
axis to bring any of the four sides to the front. This yields a
total of 6� 4 ¼ 24 permutations, thusDC3 has order 24. The
cycle structures of each permutation in DC3 are explained
below, collected according to rotation axes.

One i d e n t i t y . Th e i d e n t i t y p e rmu t a t i o n
ð1Þð2Þð3Þð4Þð5Þð6Þð7Þð8Þ consists of eight cycles each of
length1.Thus, its contribution to the cycle index is the term z81.

Nine rotations through opposite faces. We next
consider rotations about the vertical axis passing up
through the center of the 1; 2; 3; 4 face on the bottom
and the 5; 6; 8; 7 face on the top. A 90� counterclockwise
rotation of the cube about this axis produces the
permutation ð1 2 4 3Þð5 6 8 7Þ. A 90� clockwise rotation
produces the inverse permutation ð1 3 4 2Þð5 7 8 6Þ. Each
of these permutations consists of two cycles of length 4,
so each contributes a term of z24 to the cycle index.
Moreover, the 180� rotation about this axis produces the
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Fig. 10. Constituents of the cycle index for the shape group G ¼ D4 of
full symmetries of the square. The left column contains the group
elements. The next column contains the cycle counts. In the top row, the
identity element has four cycles of length 1, so j1 ¼ 4. In the second row,
the group element has two cycles of length 1, so j1 ¼ 2. The next
column contains the z-terms of the cycle index. The value of ji becomes
the exponent of zi. The right column contains the product of the z terms.
The cycle index is the sum of these products.



permutation ð1 4Þð2 3Þð5 8Þð6 7Þ, consisting of four cycles
of length 2 and producing a contribution of z42 to the
cycle index.

There are two other axes of rotation that pass through
matching pairs of faces: one passing side-to-side through
the centers of the 1; 3; 7; 5 face on the left and the 2; 4; 8; 6
face on the right; the other passing front-to-back through
the centers of the 1; 2; 6; 5 face in front and the 3; 4; 8; 7
face in back. There are three nontrivial rotations about each
of these axes, with the same cycle structure as the three
listed above for the top-bottom faces. The total contribution
to the cycle index of the permutations resulting from
rotations about the left-right axis and top-bottom axis is
thus 6z24 þ 3z42.

Six rotations through opposite edges. Next, we consider
an axis through the middle of the 1, 5 edge and its opposite
4, 8 edge. A rotation of 180� about this axis produces the
permutation ð1 5Þð2 7Þð3 6Þð4 8Þ, for a contribution of z42.
There are a total of six such axes through opposite edges, so
the corresponding permutations contribute a total of 6z42 to
the cycle index.

Eight rotations through opposite vertices. Finally, we
consider an axis passing diagonally through the cube,
through vertices 4 and 5. A 120� rotation about this axis
fixes points 4 and 5 and spins the trio of points 1, 6, and 7
(lying in a plane perpendicular to the axis) and the trio of
points 2, 8, and 3. Thus, it produces the permutation
ð1 6 7Þð2 8 3Þð4Þð5Þ. A rotation in the opposite direction
produces the inverse permutation ð1 7 6Þð2 3 8Þð4Þð5Þ. Each
of these permutations contributes z21z

2
3 to the cycle index.

Moreover, there are three other axes of this form: one
through opposite vertices 1 and 8, one through vertices 2
and 7, and one through vertices 3 and 6. Collectively, the
eight permutations of this form contribute 8z21z

2
3 to the cycle

index.
That makes 1þ 9þ 6þ 8 ¼ 24 permutations, so the list is

complete. Adding up all the contributions and dividing by
the order of the group, we have

ZðDC3; z1; z2; z3; z4Þ ¼ z81 þ 6z24 þ 9z42 þ 8z21z
2
3

� �
=24

as the cycle index of the direct 3-cube group DC3. Note that
the longest cycle of any permutation in this group is only 4,
although the degree of the group is 8 (i.e., there are eight
vertices being acted on). Rather than include all eight of them
as parameters of the function Z, we have suppressed the four
“dummy variables” zi for i > 4 to save space below.

As with the 2-cube, we obtain the number of ways to
k-color the 3-cube by replacing each variable zi by the

integer k. Thus, for k ¼ 2 colors, the number of different
colorings of the cube, up to rotation, is

ZðDC3; 2; 2; 2; 2Þ ¼ 28 þ 6 � 22 þ 9 � 24 þ 8 � 22 � 22
� �

=24

¼ 23;

which confirms the 3, 2 entry in the upper right subtable of
Fig. 8.

Generalizing once again, we can combine like terms and
see that

ZðDC3; k; k; k; kÞ ¼ k8 þ 17k4 þ 6k2
� �

=24

gives the number of different k-colorings of the cube, up to
rotation. This formula can be used to confirm and extend
the entire third row of the upper right subtable of Fig. 8. So,
for example, with k ¼ 3 colors, we have

ZðDC3; 3; 3; 3; 3Þ ¼ 38 þ 17 � 34 þ 6 � 32
� �

=24

¼ 333:

When k ¼ 4, we have

ZðDC3; 4; 4; 4; 4Þ ¼ 48 þ 17 � 44 þ 6 � 42
� �

=24

¼ 2; 916:

Clearly the most difficult part of using Pólya’s theory to
count cube colorings is the derivation of the appropriate
cycle indices. Beyond three dimensions, the process quickly
becomes tedious, nonvisual, and error-prone. Fortunately,
the four-dimensional formulas are known and methods for
systematically deriving the higher dimensional formulas
exist. The formula for the cycle index of the full group FC4

of symmetries of the 4-cube was derived by Pólya [34]. He
used this result to count the 2-colorings of the 4-cube in the
context of counting equivalence classes of Boolean functions
of four variables. The formula is

ZðFC4; z1; z2; z3; z4; z5; z6; z7; z8Þ ¼ 1=384

z161 þ 51z82 þ 12z81z
4
2 þ 84z44 þ

�
32z41z

4
3 þ 96z22z

2
6 þ 12z41z

6
2 þ 48z21z

1
2z

3
4 þ 48z28

�
:

Pólya counted the different 2-colorings of the 4-cube, up to
rotation and reflection, by replacing each zi by 2. More
generally, we can obtain the number of k-colorings of the
4-cube by replacing each zi with the integer k, yielding

ZðFC4; z1; z2; z3; z4; z5; z6; z7; z8Þ ¼ 1=384

k16 þ 12k12 þ 12k10 þ 83k8 þ 48k6 þ 180k4 þ 48k2
� �

as the reduced cycle index.
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Fig. 11. The motion-blurred images of continuous rotations of the 3-cube suggest the discrete rotations in the full symmetry group FC3. From left to

right: identity, rotations through opposite faces, rotations through opposite edges, rotations through opposite vertices.



We can confirm Pólya’s (and GAP’s) count of 402 by

replacing k with 2 in this formula. Replacing k with 4 fills

one of the missing entries in the table that brute-force

enumeration with GAP failed to compute due to insufficient

memory [3]. It is easy to see why four colors caused trouble:

There are 42
4 ¼ 4; 294; 967; 296 4-colorings of the 4-cube to

consider via brute-force traversal. The reduced cycle index

makes the calculation easy: There are 11,756,666 cases. We

used GAP to derive

ZðDC4; z1; z2; z3; z4; z5; z6; z7; z8Þ ¼
k16 þ 12k11 þ 63k8 þ 63k4 þ 48k2
� �

=192

as the reduced cycle index for DC4. Letting k ¼ 4, we fill

another entry (22,456,756) that was missing in the pre-

viously published table [3].

5.3 Pólya Applied to a 2-Simplex with Full
Symmetry

Now, we turn our attention to symmetries of the n-simplex.

The full symmetry group acting on a triangle (2-simplexwith

three vertices) is the symmetric group S3; its elements are all

the permutations of three symbols. In the case of the triangle,

the symbols are the three vertices. The 3! ¼ 6 elements of the

group are the identity ð1Þð2Þð3Þ, the two rotations ð1 3 2Þ and
ð1 2 3Þ, and the three flips ð1Þð2 3Þ, ð1 3Þð2Þ, ð1 2Þð3Þ. Thus,
there is a term z31 arising from three cycles of length 1, there

are two terms z13 arising from one cycle of length 3, and

three terms z11z
1
2 arising from one cycle of length 1 and one

cycle of length 2.
Adding up all the contributions and dividing by the

order of the group, we have

ZðS3; z1; z2; z3Þ ¼ z31 þ 2z13 þ 3z11z
1
2

� �
=6

as the cycle index of the full 2-simplex group S3.
Letting zi ¼ k and combining like terms, we see that the

number of different k-colorings of the triangle is

ZðDC3; k; k; kÞ ¼ k3 þ 3k2 þ 2k
� �

=6:

This formula can be used to confirm and extend the entire

second row of the left-hand, full symmetry, Idk subtable of

Fig. 8. With k ¼ 2; 3; 4 colors, we have

ZðS3; 2; 2; 2Þ ¼ 23 þ 3 � 22 þ 2 � 2ð Þ=6 ¼ 4
ZðS3; 3; 3; 3Þ ¼ 33 þ 3 � 32 þ 2 � 3ð Þ=6 ¼ 10
ZðS3; 4; 4; 4Þ ¼ 43 þ 3 � 42 þ 2 � 4ð Þ=6 ¼ 20

which match GAP’s brute-force calculations.

5.4 Pólya Applied to a 3-Simplex with Direct
Symmetry

In dimension n ¼ 3, the tetrahedron (3-simplex with four

vertices) can be acted on by the full symmetry group or by

the direct symmetry group that preserves orientation. The

latter group is the alternating group A4. Like S4, A4 has

elements that permute four symbols, but each element of A4

can be expressed by an even number of even cycles, as

shown below.

ð1Þð2Þð3Þð4Þ ð1 2Þð3 4Þ ð1 3Þð2 4Þ ð1 4Þð2 3Þ
ð1Þð2 3 4Þ ð3Þð1 2 4Þ ð4Þð1 3 2Þ ð2Þð1 4 3Þ
ð1Þð243Þ ð4Þð1 2 3Þ ð2Þð1 3 4Þ ð3Þð1 4 2Þ

Thus, the cycle index includes a term z41 arising from four

cycles of length 1. It contains three terms z22 arising from two

cycles of length 2 and eight terms z11z
1
3 arising from one cycle

of length 1 and one cycle of length 3. Adding up all the

contributions anddividingby the order of the group,wehave

ZðA4; z1; z2; z3; z4Þ ¼ z41 þ 3z22 þ 8z11z
1
3

� �
=12

as the cycle index of the direct 3-simplex group A4. Letting

zi ¼ k and combining like terms, we see that the number of

different k-colorings of the tetrahedron, up to rotation, is

ZðA4; k; k; k; kÞ ¼ k4 þ 11k2
� �

=12:

This formula can be used to confirm and extend the entire

third row of the left-hand, direct symmetry, Idk subtable of

Fig. 8. With k ¼ 2; 3; 4 colors, we have

ZðA4; 2; 2; 2; 2Þ ¼ 24 þ 11 � 22
� �

=12 ¼ 5
ZðA4; 3; 3; 3; 3Þ ¼ 34 þ 11 � 32

� �
=12 ¼ 15

ZðA4; 4; 4; 4; 4Þ ¼ 44 þ 11 � 42
� �

=12 ¼ 36

which match GAP’s brute-force calculations.
For general n, the cycle index ZðAn; z1; . . . ; znÞ for the

alternating group can be computed from the cycle index of

the symmetric group by the formula

ZðAn; z1; . . . znÞ ¼ ZðSn; z1; z2; z3; z4; . . .Þ
þ ZðSn; z1;�z2; z3;�z4; . . .Þ:

For example, we can compute the cycle index of the group

A4 as follows:

ZðA4; z1; z2; z3; z4Þ ¼ ZðS4; z1; z2; z3; z4Þ
þ ZðS4; z2;�z2; z3;�z4Þ

¼ 1

24

�
z41 þ 6z21z2 þ 3z22 þ 8z1z3 þ 6z4

�
þ 1

24

�
z41 � 6z21z2 þ 3z22 þ 8z1z3 � 6z4

�
¼ 1

12

�
z41 þ 3z22 þ 8z1z3

�
:

We have illustrated the counting of colored n-simplexes
using cycle indices in order to emphasize the universal
applicability of Pólya’s theorem in the counting of equiva-
lence classes of colored objects of various sorts. However,
there is a shortcut in the case of the n-simplex. It can be
shown that

ZðSn; k; k; . . . ; kÞ ¼
nþ k� 1

n

� �
¼ ðnþ k� 1Þ!

n!ðk� 1Þ! :

For example, we have

ZðS4; k; k; k; kÞ ¼
kþ 3

4

� �

¼ kðkþ 1Þðkþ 2Þðkþ 3Þ
4!

¼ 1

24
ðk4 þ 6k3 þ 11k2 þ 6kÞ:
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In addition, it can be shown that

ZðAn; k; k; . . . ; kÞ ¼
nþ k� 1

n

� �
þ k

n

� �

¼ ðnþ k� 1Þ!
n!ðk� 1Þ! þ k!

n!ðk� nÞ! :

For example, we have

ZðA4; k; k; . . . ; kÞ ¼
kþ 3

4

� �
þ k

4

� �

¼ kðkþ 1Þðkþ 2Þðkþ 3Þ
4!

þ kðk� 1Þðk� 2Þðk� 3Þ
4!

¼ 1

24
ðk4 þ 6k3 þ 11k2 þ 6kÞ

þ 1

24
ðk4 � 6k3 þ 11k2 � 6kÞ

¼ 1

12
ðk4 þ 11k2Þ:

Unfortunately, no such simple formulas exist in the case of
n-cubes.

We used GAP to automate the task of determining the
cycle structure of the various shape groups. From the cycle
structure, we determined the cycle index and the reduced
cycle index (a polynomial in the k colors). The results are
summarized in Figs. 12 and 13. By choosing values of k

from 1 to 4, one can immediately derive the four subtables
for the n-simplex and n-cube with colorGroup Idk. We are
exploring the use of GAP to compute the cycle indices of
arbitrary groups.

5.5 Asymptotics

Compared to brute-force enumeration, Pólya’s counting
technique considerably reduces the complexity of determin-
ing sizes of orbits as n and k increase. Rather than inspect
each of the k2

n
colorings of an n-cube, one instead counts the

number of cycles in each of the 2nn! elements of the full
symmetry group FCn (each of the 2n�1n! elements of the
direct symmetry group DCn). An element permutes 2n

vertices, so counting cycles in a permutation requires
inspection of 2n symbols, a total of 2nn!2n operations.
Stirling’s approximation

n! � nne�n
ffiffiffiffiffiffiffiffi
2�n

p

for n! can be used to compare the expense of brute-force
counting versus Pólya counting. Taking the log of 2nn!2n for
Pólya, we see that logð2nn!2nÞ is dominated by the term
n logðnÞ. In a brute-force approach, all k2

n
colorings are

produced, then each is compared to previously generated
colorings (or equivalence classes thereof) to enumerate the
orbits. Let cðnÞ represent the average cost of the comparing
colorings for an n-cube. We find

logðk2ncðnÞÞ ¼ 2n logðkÞ þ logðcðnÞÞ;
which asymptotically dominates n logðnÞ. Thus, Pólya’s
counting technique provides a distinct advantage in
determining the number of colorings of a cube when n
grows large. Of course, when we make use of known

formulas for the cycle indices of the permutation groups, it
is not necessary to examine the cycle structure of every
group element. This makes the advantage enjoyed by the
Pólya method even greater.

For the n-simplex, brute-force counting requires exam-

ination of each of the knþ1 colorings, whereas Pólya

counting requires examination of nþ 1 symbols in at most

n! group elements for a total of at most ðnþ 1Þn! operations.
So, Pólya is asymptotically faster than brute-force for

counting cases of n-simplex colorings as well as for n-cube

colorings.
Although Pólya-counting is asymptotically faster than

brute-force enumeration of cases, the examples in the
previous sections show that finding the cycle index via
counting cycles of group elements is still laborious and, thus,
is error-prone. The process can be expedited using GAP.

The function cyclesInPerm defined below generates a list
of cycles in a permutation perm acting on degree vertices.

cyclesInPerm := function (perm, degree)

local cLen, x, cNumbers;

cLen := Collected(CycleLengths(perm, [1..degree]));

cNumbers := ListWithIdenticalEntries(degree, 0);

for x in cLen

do cNumbers[x[1]] := x[2]; od;

return cNumbers;

end;

The function exploits GAP’s capability of computing the
cycle lengths in a permutation. For example, the permuta-
tion ð2 3Þ ¼ ð1Þð2 3Þð4Þ, acting on four vertices, has two
cycles of length 1, one cycle of length 2, zero cycles of
length 3, and zero cycles of length 4. This is shown in the
fifth row of Fig. 10. When GAP applies the function
cyclesInPerm((2,3), 4), it produces the correct list ½2; 1; 0; 0�
of cycle counts.

Using the function cyclesInPerm to count cycles in a single

permutation, we create a function cyclesInGroup to count

cycles in all the elements of a group. This is shown below.

cyclesInGroup := function(group, degree)

local i, gList, gNumbers;

gList := List(group);

gNumbers := ListWithIdenticalEntries(Size(gList), [ ]);

for i in [1..Size(gList)]

do gNumbers[i] := cyclesInPerm(gList[i], degree); od;

return gNumbers;

end;

With FC4 denoting the full symmetry group of the 2-cube

with four vertices, GAP evaluates cyclesInGroup(FC4, 4) to

produce the list

[[4,0,0,0],[0,2,0,0],[0,2,0,0],[0,2,0,0],

[2,1,0,0],[0,0,0,1],[0,0,0,1],[2,1,0,0]]

giving the cycle structure of each of the eight elements of

FC4. This list exactly matches the list shown in the second

column of Fig. 8.
GAP’s Collected command merges duplicates together

while preserving a count of the number of identical items.
This count is precisely the coefficient of the monomial term
in the cycle index.
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List(Collected(gNumbers), Reversed);

[[2,[0,0,0,1]], [3,[0,2,0,0]],

[2,[2,1,0,0]], [1 [4,0,0,0]]]

The list after each coefficient indicates the exponents of the
zi terms. For example, the element ½2; ½0; 0; 0; 1�� corre-
sponds to the monomial term 2z01z

0
2z

0
3z

1
4 ¼ 2z4. Taken

together, the four collected terms produce the polynomial

pðz1; z2; z3; z4Þ ¼ 2z14 þ 3z22 þ 2z21z
1
2 þ 1z41

from which the cycle index Z is found using Z ¼ p=jGj.
Using GAP, one can therefore determine the cycle index for
the full symmetry group and the direct symmetry group
acting on the n-simplex or on the n-cube. The results are
given in Fig. 12. Substituting k for each zi yields the reduced
cycle indices in Fig. 13.

The asymptotic growth of each reduced cycle index
polynomial is determined by its leading term (in which k

has the largest exponent). This leading term corresponds to
the cycle structure of the identity element acting on the set
of d vertices. The identity permutation consists of d cycles,
each of length 1, which contributes zd1 to the cycle index.
There can be no term with an exponent larger than d

because d is the degree of the group action on the set. The
number of vertices is nþ 1 for an n-simplex and is 2n for an
n-cube. Hence, the reduced cycle index is dominated by the
term knþ1 for a simplex and by k2

n
for a cube. Group actions

on the set of colors, such as reversal or full permutation,
make some colorings become equivalent and thus reduce
the number of orbits compared to the action of Idk. Hence,
the largest number of equivalence classes for a simplex or

cube occurs when the color group is the identity. For any
fixed n, as k increases, we have:

ZðSnþ1; k; k; . . . ; kÞ 	
knþ1

ðnþ 1Þ!

ZðAnþ1; k; k; . . . ; kÞ 	
2knþ1

ðnþ 1Þ!

ZðFCn; k; k; . . . ; kÞ 	
k2

n

2nn!

ZðDCn; k; k; . . . ; kÞ 	
k2

n

2n�1n!
:

These approximations indicate the relative complexity of
enumerating cases for simplexes and cubes with k colors.
Note that the growth in the number of simplex cases is
dwarfed by the number of cube cases. We have not yet
computed the equations that result from applying non-
trivial color groups; we plan to present those results in a
future paper.

6 SUMMARY

Marching Cubes (MC), and algorithms like it, share the
essential feature of applying geometric substitution to
colored polytopes, producing substitopes. These algorithms
vary in the choice of symmetry groups (direct symmetry or
full symmetry) acting on vertices and permutation groups
(identity or reversal or symmetric) actingon colors. Theyvary
in the choice of polytope (n-cube or n-simplex) and in the
choice of dimension n and number of colors k. The color is
merely an abstraction of any function evaluated at a vertex.

We presented a technique for enumerating the cases of
polytope colorings, where two colorings belong to the same
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Fig. 13. Reduced cycle index polynomials. These polynomials generate

the subtables of Fig. 8 corresponding to the action of Idk on the colors.

Fig. 12. Cycle index polynomials. Replacing each zi with the number k of

colors yields the reduced cycle index summarized in Fig. 13.



equivalence class (or orbit) if a group action sends one
coloring to the other. A software tool for computational
group theory, called GAP, can enumerate all the orbits. Not
only can GAP count the number of orbits automatically, but
it can also enumerate the members of each orbit. This
capability eliminates a very difficult part of developing any
substitope algorithm. This tool workswell for small values of
n and k. One benefit of usingGAP is that it automatically and
independently confirms the resultspreviously announced for
counting the cases in four-dimensionalMC [8], [7], [6], results
that cannot reasonably be checked by hand and that have
been of interest to mathematicians since the 1871 work by
Jevons. Moreover, it permits us to predict the case-counts for
other substitope algorithms that have yet to be invented,
simply by treating the shape symmetry and the color
symmetry as parameters of the case-counting function. The
parameters impose a clear taxonomy on this collection of
algorithms where no such organization has heretofore been
suggested. This indicates that a very deep, very generic
underlying algorithm for visualization exists which can be
incarnated inmanydifferentways. The taxonomyalso shows
the intimate connection between group theory, geometry,
and visualization using substitope algorithms.
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