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Recent mathematical results have shown that a central assumption in the theory of
two-dimensional turbulence proposed by Batchelor (Phys. Fluids, vol. 12, 1969, p. 233)
is false. That theory, which predicts a χ2/3k−1 enstrophy spectrum in the inertial range
of freely-decaying turbulence, and which has evidently been successful in describing
certain aspects of numerical simulations at high Reynolds numbers Re, assumes that
there is a finite, non-zero enstrophy dissipation χ in the limit of infinite Re. This,
however, is not true for flows having finite vorticity. The enstrophy dissipation in fact
vanishes.

We revisit Batchelor’s theory and propose a simple modification of it to ensure
vanishing χ in the limit Re → ∞. Our proposal is supported by high Reynolds
number simulations which confirm that χ decays like 1/ ln Re, and which, following
the time of peak enstrophy dissipation, exhibit enstrophy spectra containing an
increasing proportion of the total enstrophy 〈ω2〉/2 in the inertial range as Re
increases. Together with the mathematical analysis of vanishing χ , these observations
motivate a straightforward and, indeed, alarmingly simple modification of Batchelor’s
theory: just replace Batchelor’s enstrophy spectrum χ2/3k−1 with 〈ω2〉k−1(ln Re)−1.

1. Introduction
Recently, two distinct approaches to the problem of enstrophy dissipation in

two-dimensional turbulence have reached the conclusion that, for finite vorticity,
the enstrophy dissipation vanishes in the inviscid limit, ν → 0. The approach of
Lopes Filho, Mazzucato & Nussenzveig Lopes (2006), applicable to finite times only,
has its roots in the mathematical analyses of DiPerna & Majda (1987), DiPerna &
Lions (1989) and Eyink (2001), who exploited the convergence of Navier–Stokes
solutions to their Euler counterparts under certain conditions on the vorticity
field, in particular the condition of bounded enstrophy (mean-square vorticity). The
approach of Tran & Dritschel (2006), applied basic inequalities to the evolution of
palinstrophy, or the mean-square vorticity gradient, and assumed power-law spectra
for the enstrophy inertial range. This approach provides the upper bound on the
enstrophy dissipation

ν〈|∇ω|2〉 �
||ω||∞ 〈ω2〉
(lnRe)1/2

, (1.1)

which is valid uniformly in time. Here 〈·〉 denotes the domain average, ω is the
vorticity, ||ω||∞ is its supremum, 〈ω2〉 is (twice) the enstrophy and Re is an appropriate
Reynolds number.
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This result is in apparent contradiction to the phenomenological scaling theory
of two-dimensional turbulence proposed by Batchelor (1969), as that theory uses the
anticipated finite, non-zero value of the enstrophy dissipation χ(t) in the limit Re → ∞
(or ν → 0) as a key parameter. By dimensional analysis, Batchelor concluded that the
enstrophy spectrum in fully developed turbulence will acquire the self-similar form
Ω(k) = αχ2/3k−1 (where α is a dimensionless constant) over a range of wavenumbers
k extending from the ‘energy-containing’ scales, say around wavenumber k0, to the
viscous scales, say around kν ∼ ν−1/2 – more precisely over the range k0 � k � kν , the
so-called ‘inertial range’.

Batchelor’s theory has been extensively examined (see Kida, Yamada & Ohkitani
1988, Bartello & Warn 1996, Chasnov 1997, Davidson 2004 and many others) and
recent high-resolution numerical results strongly support the k−1 form of the inertial-
range enstrophy spectrum (see Dmitruk & Montgomery 2005 and references therein).
Although there is still disagreement between theory and numerical simulations with
regard to the temporal scaling of the enstrophy decay at late times, predicted as t−2

but observed numerically as approximately t−1 (e.g. Chasnov 1997), there seems little
doubt that certain aspects of Batchelor’s theory are correct, particularly during early
stages when turbulent enstrophy dissipation is largest. Yet, what is the implication of
the false assumption of finite, non-zero enstrophy dissipation in the limit Re → ∞?
The purpose of this paper is to show that this assumption is, in fact, not crucial.
There appears to be a simple remedy.

The plan of the paper is as follows. In the next section we briefly recall the results
of Tran & Dritschel (2006), principally to clarify the role of integral quantities in
the production and dissipation of enstrophy 1

2
〈ω2〉 and palinstrophy 1

2
〈|∇ω|2〉. In

§ 3, these and other quantities are monitored in a series of high Reynolds number
numerical simulations of unforced turbulence, starting from smooth initial conditions.
Our results are consistent with our analytically-derived upper bound (1.1) as well as
with previous numerical results of Dmitruk & Montgomery (2005), who first pointed
out the tendency for the enstrophy dissipation ν〈|∇ω|2〉 to decay with Re – apparently
as (ln Re)−1. A careful analysis of other integral quantities leads us to the conclusion
that there is, in fact, no Re-independent measure of dissipation in two-dimensional
turbulence. On the other hand – and this is the important point – such a measure does
not appear to be required in Batchelor’s scaling theory. Instead, in § 4 we demonstrate
that Batchelor’s scaling arguments go through virtually unchanged if we use the
enstrophy itself in place of the enstrophy dissipation. Indeed, this modification is
already evident in the mathematical analysis presented in Tran & Dritschel (2006).
Furthermore, we propose that dissipation in two-dimensional turbulence and related
quasigeostrophic geophysical turbulence is benign – a coarse-grained sampling of
a perfectly inviscid turbulent flow would result in an apparent decay of enstrophy
similar to that observed in the Navier–Stokes equations.

2. Production and dissipation in turbulence
We begin with the vorticity-streamfunction form of the two-dimensional Navier–

Stokes equations,

ωt + J (ψ, ω) = ν�ω, �ψ = ω, (2.1)

where J (ψ, ω) = ψxωy − ψyωx and subscripts denote differentiation. We consider
a doubly-periodic domain, and importantly restrict our attention to flows having
bounded vorticity – these arguably being physically realistic. In other words, ||ω||∞, the
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supremum of vorticity, is taken to be finite and independent of ν as ν → 0. This is
not, we emphasize, a significant restriction, as there is a wide class of non-trivial Euler
flows (with ν = 0) having bounded vorticity – for instance flows having piecewise-
uniform vorticity (described by ‘contour dynamics’, see Zabusky, Hughes & Roberts
1979; Dritschel 1989 and references therein). Such Euler flows conserve ω pointwise
(following fluid ‘particles’), implying ||ω||∞ is invariant as well as the conservation of
a generally infinite number of ‘Casimirs’ 〈F (ω)〉, where F is any functional of ω (e.g.
F = 1

2
ω2 for enstrophy). Euler flows also conserve energy 1

2
〈|∇ψ |2〉.

Under the action of viscosity, ||ω||∞, the energy and all convex Casimirs (satisfying
F ′′ > 0) strictly decay in time. In particular, the enstrophy satisifies the equation

1

2

d

dt
〈ω2〉 = −ν〈|∇ω|2〉. (2.2)

The behaviour of the enstrophy dissipation therefore depends on the palinstrophy
evolution,

1

2

d

dt
〈|∇ω|2〉 = 〈�ωJ (ψ, ω)〉 − ν〈|�ω|2〉. (2.3)

Using basic inequalities, Tran & Dritschel (2006) showed that the growth of palin-
strophy is bounded by

1

2

d

dt
〈|∇ω|2〉 �

〈|�ω|2〉
〈|∇ω|2〉

(
||ω||∞ 〈ω2〉1/2 〈|∇ω|2〉

〈|�ω|2〉1/2
− ν〈|∇ω|2〉

)
. (2.4)

Note the enstrophy dissipation (see (2.2)) appears explicitly within the brackets. Since
the maximum enstrophy dissipation occurs at the end of a period of palinstrophy
growth, it follows that the enstrophy dissipation is bounded from above by the first
term in the brackets, i.e.

ν〈|∇ω|2〉 � ||ω||∞ 〈ω2〉1/2 〈|∇ω|2〉
〈|�ω|2〉1/2

. (2.5)

For flows possessing finite energy and enstrophy, Tran & Shepherd (2002) have proved
that the centroid wavenumber s ≡ 〈ω2〉1/2/〈|∇ψ |2〉1/2 decreases in time, implying that
the enstrophy spectrum cannot become shallower than Ck−1 – Batchelor’s spectrum –
in the limit Re → ∞. But for this spectrum, as well as any steeper spectrum, it is
simple to show that the right-hand side of (2.5) vanishes in this limit.

3. Numerical simulations
The results of five primary simulations of (2.1) are examined next. The numerical

method is a conventional pseudospectral one with the time step chosen for numerical
stability and the viscosity chosen to ensure that quantities in the palinstrophy evolution
equation (2.3), in particular �ω, are accurately resolved.

The time integration is performed in spectral space, using an integrating factor to
incorporate the viscous term exactly, and a fourth-order Runge–Kutta scheme. The
time step is chosen to be 0.0025(512/n), where n is the spatial resolution (number of
grid points in x and in y). This time step is less than half the CFL time step required
for stability at the initial time (and never rises above 75 % of the CFL time step
during the flow evolution). In tests using resolutions up to n= 2048, halving the time
step had no measurable impact on solution accuracy.

As in Dmitruk & Montgomery (2005), we begin with a flow having unit r.m.s.
velocity, or energy 1

2
〈|∇ψ |2〉 = 1

2
(the maximum velocity is about 2.3). Its initial energy
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spectrum takes the form E(k) = ak8 exp[−8π(k/8)2], which peaks at k =
√

32/π ≈ 3.2
and is more than 1036 times smaller by k = 32. While such a spectrum is already
peaked at low wavenumbers, no significant inverse energy cascade takes place over
the short duration of our simulations. Similarly broad initial conditions were used
previously by Kida et al. (1988) and Dmitruk & Montgomery (2005) for the purpose
of quantifying enstrophy dissipation.

The viscosity is chosen so that the approximate viscous wavenumber occurs at 3/4
of the maximum wavenumber n/2. Specifically, we take ν = 4π/(3n/8)2, where 4π is
approximately equal to the initial peak vorticity, ||ω||∞ (0) = 11.941 946. By trial and
error, this choice was found to ensure adequate dissipation at high wavenumbers to
resolve the statistics of 〈|�ω|2〉 and other fine-scale quantities.

We define the initial Reynolds number in terms of the initial energy-enstrophy
centroid wavenumber k0 = 〈ω2〉1/2/〈|∇ψ |2〉1/2 = 3.541, the root-mean-square vorticity
〈ω2〉1/2 = 3.541 and ν by the relation Re ≡ 〈ω2〉1/2/νk2

0 = 〈|∇ψ |2〉/ν〈ω2〉1/2. Then, for
the five simulations, we have Re= 8.28 × 102, 3.31 × 103, 1.33 × 104, 5.30 × 104, and
2.12 × 105.

To minimize aliasing errors, we followed the approach of Hou & Li (2006), who
have demonstrated the advantages of spectral filtering over traditional de-aliasing.
When x or y derivatives are taken in spectral space, they are multiplied by the spectral
filter ρ(2k/n) ≡ exp(−α(2k/n)m) with α = m =36, where k = kx or ky . This allows one
to retain about 12–15 % more modes than the standard 2/3 dealiasing rule. The only
observable impact of this filter is on numerical stability: without it, erroneous growth
occurs at the highest wavenumbers due to the improper account of nonlinearity
there.

We examine five spatial resolutions, n= 512, 1024, 2048, 4096 and 8192. These
appear to be high enough to examine the nature of dissipation in two-dimensional
turbulence, as the results below indicate. The five cases were integrated past the peak
in palinstrophy (at which time spectra indicate that the turbulence is fully developed,
see below) and until the palinstrophy falls to half of its peak value.

Images of the vorticity field for three of the resolutions are shown in figure 1. The
times shown correspond to when the palinstrophy is growing and is roughly half its
peak value (left), when it is at its peak value (middle), and when it is decaying and
is again half its peak value (right). As expected, with decreasing viscosity there is
substantially more fine structure, especially at and beyond the palinstrophy peak. Note
that the peak palinstrophy time increases with Reynolds number, approximately as
lnRe (see below), consistent with classical views of the enstrophy cascade (see Rhines
1975; Kida et al. 1988; Davidson 2004; Dmitruk & Montgomery 2005 and others).
This is shown more explicitly below.

We next turn to quantitative analyses. The palinstrophy spectra, k4E(k, t) =
k2Ω(k, t), for n= 1024, 2048, 4096, 8192, and at various times are shown in figure 2.
Increasingly, a range close to the classical k1 spectrum develops, but clearly a wide
range of scales is required to capture it. The spectrum has filled out completely by
the palinstrophy peak, and afterward the spectrum at moderate to high wavenumbers
decays while preserving its basic shape. In fact, at these times, the high-k end of the
spectrum is well fitted by an exponential decay of the form k2Ω(k, t) ∝ k exp(−bk/kν),
with b ≈ 5.4 and kν ≡ k0Re1/2 ( = 〈ω2〉1/4ν−1/2), where k0 is the instantaneous energy-
enstrophy centroid wavenumber – see figure 3. The same decay was found by Kida
et al. (1988) for strikingly different initial conditions, and moreover the value of b

is numerically comparable. It is meaningful, therefore, to say that the turbulence is
‘fully developed’ by the time the palinstrophy reaches its maximum.
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Figure 1. Evolution of the vorticity field ω in the simulations with n= 512 (first row), 2048
(second row) and 8192 (third row). The times shown are t = 2.2, 4.2 and 7.6 (first row); t = 3.2,
6.4 and 12.8 (second row); and t = 5.0, 9.0 and 19.0 (third row).

We now examine the evolution of various integral quantities. Figure 4 shows the
energy 1

2
〈|∇ψ |2〉, enstrophy 1

2
〈ω2〉, enstrophy dissipation ν〈|∇ω|2〉, vorticity supremum

||ω||∞ and ν〈|�ω|2〉1/2 for the four highest resolutions. The Euler invariants are
progressively better conserved with increasing Re, as expected. At n= 8192, the
energy decreases by 0.050% by the end of the simulation, and ||ω||∞ decreases
by only 0.037 %. On the other hand, 1

2
〈ω2〉 decreases by 54 %. The enstrophy

dissipation ν〈|∇ω|2〉 together with ν〈|�ω|2〉1/2 grows rapidly initially through nonlinear
interactions, reaches a peak or a double peak, then finally decays.

If we compare the different Reynolds numbers, we see that the enstrophy dissipation
does indeed diminish with Re. Figure 5(a) shows ν〈|∇ω|2〉 for the five cases versus time,
and figure 5(b) shows enstrophy dissipation sculed by a linear polynomial in lnRe,
specifically a0+a1 lnRe, versus scaled time t/(a0+a1 lnRe). The coefficients a0 = −0.440
and a1 = 0.300 were obtained by a least-square fit of the peak enstrophy dissipation in
our five simulations, and in four additional ones with half the viscosity at resolutions
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Figure 2. Palinstrophy spectra k2Ω(k, t) at t = 0 and at times when the palinstrophy is half
its peak value (and growing), at its peak, and half its peak (and decaying). The panels show
n= 1024 (a), 2048 (b), 4096 (c), 8192 (d). A reference slope of k1 is shown as a thick dashed
line (d).

512 through 4096. Note that the scaling approximately aligns the peaks in enstrophy
dissipation. These results are consistent with those of Dmitruk & Montgomery
(2005), who also found that the peak enstrophy dissipation scales as (ln Re)−1.

This decay with Re is significantly stronger than that suggested by the analytical
upper bound (2.5), which, for the classical Batchelor spectrum reduces to

ν〈|∇ω|2〉 �
||ω||∞ 〈ω2〉
(ln Re)1/2

(3.1)

(see Tran & Dritschel 2006). Of course (3.1) is an upper bound only, and the
inequalities used in its derivation could be generous. A steeper dependence on Re is
not ruled out. In fact, if we use an alternative estimate of the palinstrophy production
term in (2.3), namely

〈�ωJ (ψ, ω)〉 = −〈ωxJ (ψx, ω)〉 − 〈ωyJ (ψy, ω)〉
=

〈(
ω2

x − ω2
y

)
ψxy

〉
+ 〈ωxωy(ψyy − ψxx)〉

� 2 ||S||∞ 〈|∇ω|2〉, (3.2)
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Figure 3. Palinstrophy spectra k2Ω(k, t) for the 8192 simulation at t = 9 (thin curve) and its
least-squares fit to Ck exp(−bk/kν) over 0.2kν � k � 1.6kν (bold curve). (b) The coefficient b as
a function of time for n= 512 (dashed line plus triangles), n= 1024 (thin line plus inverted
triangles), n= 2048 (dashed line plus squares), n= 4096 (bold line plus diamonds), and n= 8192
(thin line plus crosses). Only times at and beyond the peak palinstrophy time are examined.

where S = |ψxx − ψyy |/2 + |ψxy | is the irrotational strain, then we have

1

2

d

dt
〈|∇ω|2〉 �

〈|�ω|2〉
〈|∇ω|2〉

(
2 ||S||∞

〈|∇ω|2〉2

〈|�ω|2〉 − ν〈|∇ω|2〉
)

. (3.3)

For Batchelor’s spectrum, this implies

ν〈|∇ω|2〉 �
2 ||S||∞ 〈ω2〉

lnRe
. (3.4)

This appears promising, but unfortunately we cannot bound the strain norm ||S||∞ in
terms of the Euler invariants, and furthermore our results (see figure 6) suggest that
||S||∞ increases with Re, possibly as lnRe.

Note, however, that the increasing time taken to reach the peak enstrophy
dissipation with increasing Re appears to compensate for the lower peak dissipation,
giving a finite, almost Reynolds-number-independent net dissipation by this time –
see figure 7. In figure 7, the symbols on the enstrophy curves mark the time of
peak enstrophy dissipation. If we plot the enstrophy curves versus t∗ ≡ t + ln(ν),
they cross at nearly the same point (not shown), but with a tendency for slightly
less net dissipation with increasing Re. Whether or not this dissipation ultimately
vanishes as Re → ∞ cannot yet be decided. Similar behaviour was found by Dmitruk
& Montogomery (2005) for independent initial conditions.

Figure 8 shows ν〈|�ω|2〉1/2 and the scaled quantity ν(〈|�ω|2〉(a0 +a1 lnRe))1/2 in the
same format as figure 5, and using the same values of the coefficients a0 and a1. Again,
in scaled time, the curves tend to align, but notice that their peak values (on the left)
diminish significantly less rapidly with increasing Re compared to ν〈|∇ω|2〉 in figure 5.
This is consistent with the analytical estimate (2.5) for Batchelor’s spectrum (3.1), for
which the ratio 〈|�ω|2〉1/2/〈|∇ω|2〉 diverges as Re → ∞.

On the other hand, the ratio 〈|�ω|2〉/〈|∇ω|2〉 should be proportional to k2
ν ∝ ν−1,

for enstrophy spectra shallower than k−3 (see Tran & Dritschel 2006). That is, this
ratio defines the upper limit of the ‘inertial range’, and it is expected to increase with
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Figure 4. Composite evolution of various norms for the simulations with n= 1024 (a), 2048
(b), 4096 (c), and 8192 (d). The maximum plot scales are 0.5 for 1
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2
〈ω2〉, 20 for

||ω||∞, and 1 for ν〈|∇ω|2〉 and ν〈|�ω|2〉1/2. The y axis is linear for all quantities.

Re. For Batchelor’s spectrum, including an exponential decay for large k (see figure 3
and Kida et al. 1988), namely Ω(k) ∼ Ck−1 exp(−bk/kν), elementary calculations show
that 〈|�ω|2〉/〈|∇ω|2〉 ≈ 6(kν/b)2. If we use this expression to define b, then

b2 =
6〈ω2〉1/2〈|∇ω|2〉

ν〈|�ω|2〉 , (3.5)

where we have substituted kν = 〈ω2〉1/4ν−1/2. The time-averaged values of b for the
five simulations are listed in table 1, for times at and beyond the palinstrophy peak.
These values compare well with those found by fitting the palinstrophy spectra in
figure 3(b), independently verifying the (expected) growth of the inertial range with Re.
The implication is that the effective dissipation wavenumber is kν/b, i.e. considerably
less than the order-of-magnitude estimate kν = 〈ω2〉1/4ν−1/2, yet still strongly divergent
in the limit ν → 0. For the highest resolution simulation with n= 8192, kν/b ranges
from 254 to 285, less than a tenth of the maximum wavenumber (4096) available to
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Figure 5. Enstrophy dissipation ν〈|∇ω|2〉 versus time t (a) and scaled enstrophy dissipation
ν〈|∇ω|2〉(a0 + a1 ln Re) versus scaled time t/(a0 + a1 lnRe) (b), with n= 512 (short dashed),
n= 1024 (thin), n= 2048 (long dashed), n= 4096 (bold), and n= 8192 (thin). Note, a0 = −0.440
and a1 = 0.300.
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Figure 6. Ratio of strain supremum to root-mean-square vorticity, compared across resolution
or Re: n= 512 (short dashed), n= 1024 (thin), n= 2048 (long dashed), n= 4096 (bold), and
n= 8192 (thin). The short lines on the left indicate the time averages.

the numerical simulation. While it is possible to reduce ν further while maintaining
numerical stability, accuracy is seriously compromised for values of ν more than a
factor of 2 smaller than those we have chosen.

4. Concluding remarks
In summary, we have examined a variety of quantities which might characterize

dissipation in freely-decaying two-dimensional turbulence, combinations of energy
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Figure 8. ν〈|�ω|2〉1/2 versus time t (a) and ν(〈|�ω|2〉(a0 + a1 lnRe))1/2 versus scaled time
t/(a0 + a1 lnRe) (b), with n= 512 (short dashed), n= 1024 (thin), n= 2048 (long dashed),
n= 4096 (bold), and n= 8192 (thin). Note, a0 = −0.440 and a1 = 0.300.

Resolution, n Time average, b St. dev.

512 4.6001 0.1456
1024 4.6723 0.0963
2048 4.7910 0.0866
4096 4.9048 0.0711
8192 4.9287 0.1114

Table 1. Average and standard deviation of the decay exponent b calculated from

b =
√

6kν[〈|∇ω|2〉/〈|�ω|2〉]1/2 for the five resolutions. The statistics are computed for times
at and beyond the time of peak palinstrophy.
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Figure 9. Hypothetical enstrophy spectrum Ω(k) exhibiting Batchelor’s k−1 inertial range
between the energy-enstrophy wavenumber k0 and the dissipation wavenumber kν . The
spectrum D(k) for k > kν is here only required to be steeper than k−1, but numerical simulations
indicate it has an exponential form – see figure 3(a) and Kida et al. (1988). As Re increases,
the inertial range k0 < k < kν contains an ever-increasing proportion of the total enstrophy,
while the low-wavenumber range k < k0 contains an increasing proportion of the total energy.

1
2
〈|∇ψ |2〉, enstrophy 1

2
〈ω2〉, enstrophy dissipation ν〈|∇ω|2〉, vorticity supremum ||ω||∞,

strain supremum |||ψxx − ψyy |/2 + |ψxy |||∞, and ν〈|�ω|2〉1/2, and none appears to be
Reynolds number independent. What our results and many others indicate is that an
approximately self-similar inertial range with Ω(k) ≈ Ck−1 develops shortly after the
time of peak enstrophy dissipation, as originally envisioned by Batchelor (1969). That
much appears to be solid. Batchelor then used dimensional analysis to estimate C,
and hypothesized that C, as well as the upper limit of the inertial range kν , must be
built from quantities characterizing the small-scale statistical structure of turbulence,
just as in Kolmogorov’s three-dimensional theory.

Batchelor used the viscosity ν [L2T −1] and the enstrophy dissipation χ [T −3] (the
parallel of energy dissipation in three-dimensional turbulence) to propose C ∝ χ2/3

and kν ∝ χ1/3ν−1/2. However, the fact that χ vanishes in the inviscid limit ν → 0
(subject only to reasonable constraints of bounded vorticity and finite energy) means
we need to look for a replacement for χ . In fact, nothing in Batchelor’s theory compels
one to use χ .

What we propose instead is alarmingly simple. It is based on the few solid
pieces of evidence available, namely the continued extension of the inertial range
k0 <k <kν with decreasing ν or increasing Re. Referring to figure 9, which illustrates
a hypothetical enstrophy spectrum Ω(k), it is evident that the low- and high-
wavenumber tails of the spectrum, i.e. k < k0 and k > kν , contribute negligibly to
the total enstrophy as Re → ∞. This follows because k0 does not grow with Re, and
in the dissipation range D(k) is steeper than k−1. These are reasonable assumptions. In
this case, as in Tran & Dritschel (2006), we may assign essentially all of the enstrophy
to the inertial range, leading to

1

2
〈ω2〉 ≈

∫ kν

k0

Ck−1dk = C ln(kν/k0). (4.1)

Hence, we are led to the simple result C ≈ 〈ω2〉/2 ln(kν/k0) = 〈ω2〉/lnRe using our
definition of Re. Batchelor was aware of this result (see the discussion following (9)
in Batchelor 1969), but it did not persuade him to change his scaling theory.
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Figure 10. Scaled enstrophy spectra, Ω(k) lnRe /〈ω2〉, at the peak enstrophy dissipation time
(a) and at the final time (b), for n= 512 (short dashed), n= 1024 (thin), n= 2048 (long dashed),
n= 4096 (bold), and n= 8192 (thin). A reference slope of k−1 is shown as a thick dashed line.

So, we propose just this: keep the form of Batchelor’s scaling theory, but use only
the inviscid invariants of energy and enstrophy along with ν to set C = 〈ω2〉/ln Re,
kν = 〈ω2〉1/4/ν1/2 and k0 = 〈ω2〉1/2/〈|∇ψ |2〉1/2 (here with a time-dependent Reynolds
number Re(t) ≡ k2

ν/k2
0). How does this work in practice? Figure 10 shows the scaled

enstrophy spectra Ω(k) ln Re /〈ω2〉 at two characteristic times for the five resolutions.
The curves collapse together over the common inertial ranges, and moreover are
closely comparable across the two times. There are no adjustable parameters. This
demonstrates that the proposed scaling is sensible.

Physically, the proposed form of the enstrophy spectrum, 〈ω2〉k−1(ln Re)−1, reflects
the observation that a fixed amount of enstrophy must spread itself ever more
thinly across a widening inertial range as the Reynolds number grows. Note that,
although the enstrophy is spread thinly over a wide range of wavenumbers, the
energy is dominated by wavenumbers of O(k0) and smaller. Over these wavenumbers,
there remains a finite, non-zero amount of enstrophy, even though it is a negligible
proportion of the total at large Re.

Our interpretation of this result is that dissipation is playing an increasingly benign
role as Re → ∞. In other words, perfectly inviscid turbulence governed by the Euler
equations would eventually exhibit similar behaviour if it were observed down to a
fine scale, say δ. Then, we may associate kν with 1/δ.

Finally, we do not suggest that Batchelor’s scaling theory persists for all times
beyond the peak dissipation of enstrophy, but only for times shortly after it. At much
later times, an increasingly dilute population of vortices may come to dominate,
leading to steeper spectra in at least the upper part of the inertial range (see Benzi,
Patarnello & Santangelo, 1988 and Santangelo, Benzi & Legras, 1989).

We are grateful for the wide-ranging e-mail correspondence from many colleagues.
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