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The Regulation of Type I Interferon Production 
by Paramyxoviruses
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Experimentally, paramyxoviruses are conventionally considered good inducers of type I interferons (IFN-α/β), 
and have been used as agents in the commercial production of human IFN-α. However, in the last few years 
it has become clear that viruses in general mount a major challenge to the IFN system, and paramyxoviruses 
are no exception. Indeed, most paramyxoviruses encode mechanisms to inhibit both the production of, and 
response to, type I IFN. Here we review our knowledge of the type I IFN-inducing signals (by so-called patho-
gen-associated molecular patterns, or PAMPs) produced during paramyxovirus infections, and discuss how 
paramyxoviruses limit the production of PAMPs and inhibit the cellular responses to PAMPs by interfering with 
the activities of the pattern recognition receptors (PRRs), mda-5, and RIG-I, as well as downstream components 
in the type I IFN induction cascades.

Introduction

Paramyxoviruses are small enveloped viruses with 
a single-stranded negative sense genome of 15–19 kb 

(reviewed by Lamb and Parks (2006)). The Paramyxoviridae 
family (see Fig. 1) includes a number of important disease-
causing viruses, including measles virus (MeV), mumps 
virus (MuV), the human parainfl uenza viruses (HPIV), and 
human respiratory syncytial virus (HRSV) of man, as well 
as Newcastle disease virus (NDV), bovine respiratory syn-
cytial virus (BRSV), rinderpest virus (RPV), turkey rhinotra-
cheitis virus (TRTV), and Sendai virus (SeV) of mammals 
and birds. Certain paramyxoviruses also have zoonotic 
potential (Wang and others 2001) observed during outbreaks 
of the newly emergent Hendra virus (HeV) and Nipah virus 
(NiV), which appear to have natural reservoirs in fruit bats 
but have also infected farm animals, domestic animals, and 
humans.

The life cycle of paramyxoviruses (reviewed in Lamb 
and Parks (2006)) takes place in the cytoplasm of infected 
cells after the viral nucleoprotein/genome complex has been 
introduced by a process of fusion between the cell mem-
brane and viral envelope. The 3′ terminus of genomic RNA 
has promoters for initiation of both virus transcription and 
replication whereas the 3′ terminus of antigenomic RNA 
only functions in replication. Viral transcription occurs 
when the viral polymerase binds to the 3′ promoter and 

processes along the template, producing fi rst a 5′-triphos-
phorylated leader sequence and then initiating stable tran-
scription at gene-specifi c sequences that fl ank each viral 
open-reading frame (ORF) to produce 5′-capped RNAs 
that are also polyadenylated by the polymerase (reviewed 
in Whelan and others (2004)). As expected from the small 
size of the viral genome, the paramyxoviruses have a lim-
ited genetic repertoire. All paramyxoviruses have genes 
encoding nucleoprotein (NP), phosphoprotein (P), matrix 
protein (M), fusion protein (F), attachment protein (HN for 
respiroviruses, rubulaviruses, and avulaviruses, H for mor-
billiviruses, and G for henipaviruses and members of the 
Pneumovirinae subfamily), and RNA-dependent RNA poly-
merase (L). Some of the rubulaviruses and avulaviruses, and 
all of the Pneumovirinae also encode a small protein called 
SH. Pneumoviruses and metapneumoviruses also contain 
an M2 gene, and in addition pneumoviruses have 2 genes 
that encode the nonstructural NS1 and NS2 proteins, whose 
function will be discussed later.

The number of proteins encoded by viruses within the 
subfamily Paramyxovirinae is larger than the number of genes 
contained in their genome, as their P genes have overlapping 
ORFs that give rise to multiple, distinct gene products (see 
Fig. 2). The morbilliviruses, respiroviruses, henipaviruses, 
and avulaviruses generate a primary transcript whose 
mRNA is translated authentically to generate the P protein; 
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“I.” Interestingly, in the rubulaviruses it is the V protein that 
is genomically templated, and production of the P protein 
requires an insertion of 2Gs into the mRNA by RNA editing; 
the addition of 1 or 4 Gs creates an mRNA for the I protein. In 
addition to these products, morbilliviruses, respiroviruses, 
and henipaviruses translate the P/V/W/D mRNAs using an 
alternative reading frame(s) to generate poorly conserved 
“C” protein(s); although only a single C protein is normally 
made, SeV can utilize 4 distinct start codons to generate C′, 
C, Y1, and Y2 proteins that have a different N-terminus but 

however, a unique process of “RNA editing” (also known as 
pseudo-template addition) can result in the insertion of G 
residues at an “editing site” in the middle of the transcript 
to generate mRNAs where there is a frameshift in the cod-
ing sequence downstream from this site. The insertion of a 
single G generates an mRNA that translates into a protein 
called the “V protein,” which has a common N-terminus to 
the P protein, but a unique C-terminus. The insertion of a 
second G residue creates an mRNA that encodes a protein 
with a different C-terminus called, variously, “W”, “D,” or 
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FIG. 1. Classifi cation of paramyxoviruses. The Paramyxoviridae family is divided into Paramyxovirinae and the Pneumovirinae 
subfamilies. The Paramyxovirinae subfamily contains fi ve genera: respiroviruses, rubulaviruses, henipaviruses, morbillivi-
ruses, and avulaviruses. The Pneumovirinae subfamily contains 2 genera: pneumoviruses and metapneumoviruses. This 
classifi cation is based predominantly on sequence homology and genome organization. Abbreviations: SeV, Sendai virus; 
HPIV, human parainfl uenza viruses; BPIV3, bovine parainfl uenza virus 3; MuV, mumps virus; SV5, simian virus 5; HeV, 
Hendra virus; NiV, Nipah virus; MeV, measles virus; CDV, canine distemper virus; RPV, rinderpest virus; PDV, phocine dis-
temper virus; NDV, Newcastle disease virus; APMVs, avian paramyxoviruses; HRSV, human respiratory syncytial virus; 
BRSV, bovine respiratory syncytial virus; HMPV, human metapneumovirus; TRTV, turkey rhinotrachetis virus.
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FIG. 2. Organization of the P/V/C genes of Paramyxovirinae and their relationship to their accessory proteins. (A) The 
P proteins of morbilliviruses, respiroviruses, and henipaviruses are translated from mRNAs produced as faithful copies 
of their P/V/C genes (green bar). Insertion of a single G at the RNA-editing site generates a transcript that encodes the V 
protein, and insertion of 2 G residues generates a transcript that encodes the W proteins and D proteins (HPIV3). The P, V, 
W, and D proteins share a common N-terminus (blue bar), but distinct C-termini (P = pink bar, V = light green bar, W and 
D = yellow bar). The C protein(s) (lilac bars) are generated by translation of the P/V/W/D mRNAs using alternative initi-
ation codons. Translation of the prototypical C protein begins at an AUG that resides downstream of P protein initiation 
codon, and the Y1 and Y2 proteins of Sendai virus are translated from AUGs that reside even further downstream. The C′ 
protein made by Sendai virus is translated from an ACG codon that resides 5′ to the AUG of the P protein. (B) The P proteins 
of avulaviruses are also translated from mRNAs produced as faithful copies of their P/V genes (green bar). Insertion of a 
single G at the RNA-editing site generates a transcript that encodes the V protein, and insertion of 2 G residues generates a 
transcript that encodes the I protein. (C) In contrast, the V proteins of rubulaviruses are translated from mRNAs produced 
as faithful copies of their P/V genes (green bar). Insertion of 1 or 4 G residues at the RNA-editing site generates a transcript 
that encodes the I protein, and insertion of 2 G residues generates a transcript that encodes the P protein.
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NDV. Despite this and despite the fact that the replicative 
strategies of the Paramyxoviridae are understood in detail 
(reviewed in Lamb and Parks (2006), Whelan and others 
(2004)), we know relatively little about the nature of the IFN-
inducing paramyxoviral PAMPs. Although paramyxoviruses 
effi ciently encapsidate both their genomic and antigenomic 
RNAs by linking the process of replication to encapsida-
tion, thereby “hiding” the free 5′ triphosphate on these 
molecules, they have nevertheless been shown to activate 
RIG-I (Kato and others 2006; Plumet and others 2007; Strahle 
and others 2007; Habjan and others 2008). Paramyxoviruses 
appear to generate little free dsRNA during the course of an 
infection (Weber and others 2006) and thus should also be 
poor activators of mda-5. Nevertheless, there are a number 
of reports that demonstrate that paramyxoviruses activate 
mda-5 (Andrejeva and others 2004; Yoneyama and others 
2004; Melchjorsen and others 2005; Yoneyama and others 
2005; Berghall and others 2006; Yount and others 2008) and, 
as discussed later, many paramyxoviruses encode products 
that interfere directly with mda-5.

One striking feature to emerge from studies on SeV is that 
plaque-purifi ed virus is a poor inducer of type I IFN, and that 
a good induction profi le only emerges when signifi cant lev-
els of defective interfering (DI) particles accumulate within 
the virus stock preparations (Johnston 1981; Poole and others 
2002); we have made similar observations for PIV5 and MuV 
(unpublished observations), and it has also been reported 
that vaccine strains of MeV are associated with the induc-
tion of type I IFN that correlates with DI particle production 
(Shingai and others 2007). DI particles generated by SeV are 
the best understood, and are of 2 types, internal deletion or 
copyback. The latter are generated by promoter exchange 
during replication and thus contain ssRNA with a terminal 
pan-handle of dsRNA. Internal deletion genomes lack seg-
ments of the viral genome but are otherwise normal. In a 
molecular analysis of type I IFN induction by SeV, Kolakfsky 
and colleagues have shown that induction is strongly corre-
lated to the levels of copyback genomes in their laboratory 
stocks and commercial preparations (Strahle and others 
2006); these particles have been shown to activate RIG-I 
(Strahle and others 2007). However, equivalent preparations 
of purifi ed DI particles of SeV are also strong activators of 
an mda-5-dependent antiviral innate immunity program in 
macrophages (Yount and others 2008). These studies raise 
an interesting question of what the physiological inducers 
of type I IFN really are during infections in vivo—are they 
PAMPs generated by the virus as a result of its normal repli-
cative strategy (we propose to call these “essential PAMPs”), 
or are they PAMPs generated as a result of aberrant tran-
scription or replication (“corrupted PAMPs”)? This question 
is also relevant when we consider virally encoded type I 
IFN antagonists—have these evolved to limit the action of 
“essential PAMPs,” or limit the activities of potentially more 
potent “corrupted PAMPs”? The issue about the potency of 
“essential” versus “corrupted PAMPs” also suggests that the 
strategies by which viruses control the fi delity of replication 
and transcription will have an important bearing on the 
control of type I IFN induction and viral fi tness.

Although the requirement for accessory proteins in gen-
erating fully virulent paramyxoviruses has long been appre-
ciated, a link to the IFN system was not established until 
relatively recently. Initially using PIV5 (formerly known as 
SV5), it was fi rst shown that PIV5 specifi cally blocks IFN 

a common C-terminus. The P genes of viruses within the 
Pneumovirinae subfamily do not encode more than 1 protein, 
but rather some of these viruses, including HRSV and BRSV, 
have 2 extra genes, NS1 and NS2 that, like the V and C pro-
teins, act as interferon (IFN) antagonists (see below).

The alternative products of the P gene are rarely essen-
tial for viral replication, leading to them being described 
as “luxury functions” or “accessory proteins,” but their 
deletion frequently leads to severe attenuation. Although 
this attenuation is primarily associated with a failure to 
control the host IFN response, these proteins have addi-
tional functions, as recombinant viruses that cannot make 
these accessory proteins often replicate poorly in “IFN-
compromised” cells. As discussed elsewhere in this issue 
(Ramachandran and Horvath 2009), many V and C proteins 
and the Pneumovirus NS1 and NS2 proteins have the capac-
ity to interfere with IFN signaling. However, blocking IFN 
signaling alone is not suffi cient to allow these viruses to 
fully circumvent the IFN response because if a virus only 
blocked IFN signaling, infected cells may still respond to 
infection by releasing large amounts of type I IFN. This 
would induce an antiviral state in surrounding uninfected 
cells, making it diffi cult for the virus to spread from the ini-
tial foci of infection (Andrejeva and others 2002; Carlos and 
others 2005; Precious and others 2007). Thus, paramyxovi-
ruses also attempt to limit type I IFN induction. Here we 
review this active area of research.

Paramyxoviruses and Type I IFN Induction

As discussed elsewhere in this volume (Gale and Sen 
2009), the induction of type I IFN is brought about by 
the detection of pathogen-associated molecular patterns 
(PAMPs) by pattern recognition receptors (PRRs) in infected 
cells. Viral PAMPs are usually nucleic acids with structures 
not found in uninfected cells, such as dsRNA or uncapped 
ssRNA with a 5′ triphosphate, although it has been reported 
that HRSV can induce type I IFN through TLR4 via recog-
nition of its F protein (Kurt-Jones and others 2000; Haynes 
and others 2001). Viral nucleic acids can become associated 
with PRRs present either in endosomes as a result of endo-
cytosis of virus particles/extracellular debris or autophagy 
of cytoplasmic material (dsRNA, ssRNA, or CpG DNA, rec-
ognized by TLR3, TLR7, and TLR9, respectively), or in the 
cytoplasm where they are recognized by the related RNA 
helicases, RIG-I and mda-5. Our knowledge of the nature 
of the ligands for RIG-I and mda-5 is incomplete, although 
the current consensus is that RIG-I responds to ssRNAs con-
taining uncapped 5′ triphosphorylated ends (Hornung and 
others 2006; Pichlmair and others 2006; Cui and others 2008; 
Takahasi and others 2008) and short dsRNA molecules (Kato 
and others 2008), whereas mda-5 responds to longer dsRNA 
molecules (Kato and others 2008). Once activated, RIG-I and 
mda-5 interact with a common adaptor VISA (also known 
as Cardif/MAVS/IPS-1) through an N-terminal CARD 
domain. Recruitment of VISA initiates the activation of the 
transcription factors IRF-3 and NF-κB and ultimately results 
in the transcription of proinfl ammatory cytokine genes such 
as IFN-β (reviewed in Randall and Goodbourn (2008), Gale 
and Sen (2009)).

A considerable number of studies on the regulation of 
type I IFN induction have used laboratory preparations of 
paramyxoviruses as potent inducers, especially SeV and 
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in Figure 3. Additionally, it is becoming increasingly clear 
that viral products actively limit the production of PAMPs 
by regulating viral transcription and replication.

V Proteins

The role of mda-5 as a PRR was fi rst unveiled by studies 
on the V proteins of paramyxoviruses; the V proteins of most 
paramyxoviruses are able to antagonize both the NF-κB and 
IRF-3 arms of the dsRNA signaling responses (Poole and 
others 2002; Childs and others 2007), and mda-5 was identi-
fi ed as an interacting partner for the V proteins of, initially, 
PIV5 (Andrejeva and others 2004), but subsequently HPIV2, 
MuV, SeV, MeV, HeV, NiV, Menangle virus, Mapuera virus, 
Salem virus, Porcine rubulavirus, Tioman virus, and NDV 
(Andrejeva and others 2004; Childs and others 2007). The 
interaction with mda-5 was shown to require the cysteine-
rich C-terminus of the V protein, which is the only region 
of the V protein that shows signifi cant conservation, and for 

signaling by targeting STAT1 for proteasome-mediated deg-
radation (Didcock and others 1999a, 1999b) and, later, that it 
also specifi cally blocks type I IFN production (He and oth-
ers 2002; Poole and others 2002; Wansley and Parks 2002). 
Subsequent studies have shown that these observations hold 
true for most other paramyxoviruses (effects of paramyxo-
viruses on IFN signaling are reviewed in Ramachandran 
and Horvath (2009)). The ability to regulate the produc-
tion of type I IFN also appears to be a common feature of 
paramyxoviruses, and a number of studies have demon-
strated that viruses bearing deletions of the V gene and/
or the C gene have the phenotype of enhanced type I IFN 
production (see below). These studies were often unable to 
distinguish between viral functions that controlled the gen-
eration of PAMPs from those that encoded specifi c type I IFN 
antagonists. However, analyses of the properties of individ-
ually expressed genes have demonstrated that a number of 
them possess the ability to directly interfere with type I IFN 
induction. This will be discussed later and is summarized 
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FIG. 3. Paramyxovirus acces-
sory proteins target the intracel-
lular viral pathogen-associated 
molecular patterns (PAMP) 
signaling pathways. The signal-
ing pathways leading from the 
RNA helicases mda-5 and RIG-I 
to IFN-β induction are shown 
(reviewed in Randall and 
Goodbourn (2008), Gale and Sen 
(2009)). As discussed in the text, 
paramyxovirus V proteins inter-
act with mda-5 and prevent its 
activation. Sendai virus (SeV) C 
protein targets RIG-I, although 
a specifi c molecular interaction 
has yet to be shown. The NS2 
protein of human respiratory 
syncytial virus (HRSV) directly 
binds to RIG-I and inhibits 
its activity. The V proteins of 
human parainfl uenza virus 2 
(HPIV2), simian virus 5 (PIV5, 
formerly SV5), and mumps 
virus (MuV) interact with and 
inhibit TBK1 and IKK-ε, and 
NiV V inhibits IKK-ε (although 
not TBK1). The C protein of rin-
derpest virus (RPV) and the W 
protein of Nipah virus (NiV) 
have uncharacterized nuclear 
targets that act downstream of 
transcription factors.
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V can bind directly to IRF-7 and inhibit its transactivation 
potential (Pfaller and Conzelmann 2008).

Clearly, it is important that paramyxoviruses tightly con-
trol the type, quantity, and temporal production of PAMPs 
during their replication cycle. For example, it would be 
advantageous to limit the production of PAMPs prior to the 
synthesis of specifi c antagonists. The control of virus tran-
scription and replication is complicated (reviewed in Whelan 
and others (2004), Lamb and Parks (2006)) with many pro-
teins, including NP, P, and L, being involved, and hence the 
function of any of these proteins may potentially infl uence 
the generation of PAMPs. The V proteins of paramyxovi-
ruses may also play an indirect role in controlling type I IFN 
induction. It is notable that a number of paramyxovirus V 
proteins have been shown to inhibit viral RNA synthesis in 
minireplicon systems (Curran and others 1991; Curran and 
others 1995; Horikami and others 1997; Lin and others 2005; 
Parks and others 2006; Witko and others 2006; Nishio and 
others 2008), and recombinant viruses with mutations in 
their V proteins often show increased viral RNA synthesis 
(Delenda and others 1997; Kato and others 1997; Schneider 
and others 1997; Tober and others 1998; Durbin and oth-
ers 1999; Baron and Barrett 2000; Kawano and others 2001; 
Gainey and others 2008). The V proteins may help limit the 
production of PAMPs by binding soluble NP (Precious and 
others 1995; Curran and others 1995; Horikami and others 
1997; Tober and others 1998), thereby infl uencing the control 
of virus transcription and replication, and thus helping to 
limit the amount of protein-free viral RNA in the cytoplasm. 
Additionally, PIV5 V negatively regulates the P subunit of 
the viral RNA polymerase by directly interacting with the 
kinase Akt1 and inhibiting its ability to phosphorylate the 
P protein (Sun and others 2008). The ability of the V protein 
to negatively regulate the activity of the P protein appears of 
paramount importance in controlling PIV5 viral RNA syn-
thesis (Timani and others 2008). Paramyxovirus V proteins 
may play other roles in regulating viral replication; HPIV2 V 
binds to the large RNA polymerase (L) protein (ie, the major 
RNA polymerase subunit) and inhibits replication (Nishio 
and others 2008).

C Proteins

The phenotypes of respiroviruses, morbilliviruses, and 
henipaviruses lacking the C ORF have shown that the C 
protein(s) play direct and indirect (by controlling virus 
transcription and replication—see below) roles in limiting 
type I IFN induction. SeV mutants unable to express either 
the V gene or the C gene show elevated levels of host type I 
IFN production (Strahle and others 2003; Komatsu and oth-
ers 2004; Strahle and others 2006). The product of the SeV 
C open-reading frame can directly limit type I IFN induc-
tion (Komatsu and others 2004) and it has been recently 
proposed that the C proteins of SeV can act to inhibit RIG-I 
(Strahle and others 2007), although it is not known if this 
inhibition is direct. The SeV C protein has also been shown 
to be a negative regulator of viral RNA polymerase (Curran 
and others 1991; Curran and others 1992; Cadd and others 
1996; Horikami and others 1997), as has the C protein of the 
related HPIV3 (Malur and others 2004), and again thus may 
infl uence the generation of PAMPs.

MeV that cannot express the C protein also induces more 
type I IFN than the wild-type virus (Nakatsu and others 

each of the V proteins tested, the interaction inhibits activa-
tion of mda-5 (Childs and others 2007)—see Figure 3. In con-
trast, RIG-I does not appear to be an interaction partner for 
the V proteins examined (Childs and others 2007). By anal-
ogy to RIG-I (Cui and others 2008; Takahasi and others 2008), 
the activation of mda-5 requires the binding of dsRNA to 2 
separate sites (one at the C-terminus and one in the helicase 
domain), which triggers multimerization (Childs and others 
2009) and a conformational change leading to the formation 
of an mda-5 structure that enables the N-terminal CARD 
domains to align in such a way as to permit recruitment 
of the VISA adaptor molecule. The PIV5 V protein binds to 
several sites on mda-5 within the C-terminus and helicase 
domain, thus preventing the RNA from binding and the 
activated multimer from forming (Childs and others 2009). 
Whilst most paramyxovirus V proteins bind mda-5, it is not 
a universal feature, since the V protein of RPV does not inter-
act with mda-5 (Boxer and others 2009). Furthermore, HPIV3 
does not encode a V protein as the RNA-editing event within 
the Respirovirus HPIV3 P gene generates a protein that is 
truncated before the cysteine-rich C-terminus.

As discussed earlier, there is a signifi cant body of evi-
dence that indicates that paramyxoviruses can induce type 
I IFN through the activation of RIG-I as well mda-5, and 
therefore it seems reasonable that they encode products to 
block RIG-I activation of the type I IFN induction cascade. In 
this regard it is of note that it has recently been reported that 
the V proteins of the rubulaviruses, PIV5, HPIV2, and MuV 
inhibit TBK1 and IKK-ε (Lu and others 2008), kinases which 
reside downstream of both mda-5 and RIG-I in the type I 
IFN induction cascade (see Fig. 3). The interaction between 
the V proteins and TBK1/IKK-ε appears to be direct and 
under these circumstances the V proteins become a decoy 
substrate to prevent the phosphorylation of IRF-3. However, 
these interactions may be a cell type-specifi c effect since 
V does not inhibit TLR3, TRIF, TBK1, or RIG-I signaling in 
some cell lines tested (Hilton and others 2006; Childs and 
others 2007). The V protein of NiV has also been shown to be 
able to inhibit transactivation by IKK-ε but not TBK1 (Shaw 
and others 2005), although no biochemical characterization 
of this phenomenon is available (see Fig. 3).

A recent observation suggests that the V proteins of some 
paramyxoviruses may have further functions in blocking 
type I IFN induction. MeV is highly immunotropic and 
possesses the ability to infect both plasmacytoid and con-
ventional dendritic cells (pDCs and cDCs). The former are 
a major source of systemic type I IFN during many viral 
infections and MeV has been shown to be able to profoundly 
down-regulate type I IFN production by TLR7 and TLR9 
agonists in these cells (Schlender and others 2005). pDCs 
appear to be unusual in that they constitutively express 
high levels of IRF-7, and in contrast to the signaling pathway 
described in Figure 3, pDCs activate type I IFN transcription 
through a distinct pathway that leads to the phosphoryla-
tion of IRF-7. The signaling pathway requires that ligand-
activated TLR7 or TLR9 recruits MyD88, which in turn 
recruits a complex containing TRAF3, TRAF6, IRAK1, and 
IRAK4 and leads to the activation of IKK-α that ultimately 
phosphorylates IRF-7 (see Fig. 3 in Randall and Goodbourn 
2008). Pfaller and Conzelmann have recently shown that the 
V protein of MeV can block the IKK-α-mediated activation 
of IRF-7 by directly binding to IKK-α and acting as a decoy 
substrate (Pfaller and Conzelmann 2008). Additionally, MeV 
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amounts from infected cells (Hendricks and others 1988). As 
well as its other functions (reviewed in Collins and Graham 
(2008)), the G protein also inhibits innate responses, includ-
ing infl ammatory cytokines and IFN (Polack and others 2005; 
Shingai and others 2008) by inhibiting TLR3/4-mediated 
activation. Whilst sG does not effect signaling through the 
RIG-I/mda-5 pathway, it does inhibit the TLR adaptor TRIF/
TICAM-1 pathway. The need for RSV to inhibit these path-
ways may be related to fact that, in contrast to sG, the RSV 
F protein activates TLR4 signaling (Kurt-Jones and others 
2000; Haynes and others 2001).

Conclusions

Despite their limited coding capacity, paramyxoviruses 
have had to evolve mechanisms to circumvent the IFN sys-
tem. Interestingly, the specifi c mechanisms by which even 
very closely related viruses achieve this can differ subtly and 
clearly these differences must infl uence the types of diseases 
these viruses cause. Nevertheless, the way in which paramyx-
oviruses try to circumvent the IFN response can basically be 
considered as (i) limiting the production of PAMPs, (ii) inhib-
iting specifi c cellular components in the type I IFN induc-
tion cascade (with mda-5 being a near universal target for all 
members of the Paramyxovirinae subfamily), and (iii) block-
ing IFN signaling (Ramachandran and Horvath 2009). To 
date, other than by limiting the amount of PAMPs (such as 
dsRNA) that can activate enzymes such as PKR with antiviral 
activity, there is no evidence of paramyxovirus products that 
directly inhibit IFN-induced proteins with antiviral activ-
ity. However, despite these evasion mechanisms, it is clear 
that paramyxoviruses cannot completely circumvent the IFN 
response, and the IFN system remains critical in controlling 
paramyxovirus infections, buying time for the generation of 
an adaptive immune response.

Although much has been learnt in recent years about how 
paramyxoviruses limit the production of type I IFN, there 
are still signifi cant gaps in our knowledge. For example, we 
have a poor understanding of the molecular structures of 
the PAMPs that stimulate type I IFN induction in natural 
infections, and whether they are what we term “essential 
PAMPs” or “corrupted PAMPs.” It is interesting to specu-
late that where paramyxoviruses have been used to induce 
type I IFN in experimental animals; the observed induction 
may be due to the occurrence of “corrupted PAMPs,” such 
as those produced by DI particles. Furthermore, it remains 
unclear what the main sources of IFN are within an infected 
animal, and which cells are infected by any specifi c para-
myxovirus. Hence, the knowledge gained from studies on 
the induction of type I IFN from continuous cell lines may 
be only an approximation of the situation in response to 
paramyxovirus infections in vivo.

Acknowledgment

S.G. and R.E.R. gratefully acknowledge the Wellcome 
Trust for supporting their studies on paramyxoviruses and 
the interferon response.

References

Andrejeva J, Childs KS, Young DF, Carlos TS, Stock N, Goodbourn 

S, Randall RE. 2004. The V proteins of paramyxoviruses bind the 

2006). Furthermore, C knockout MeV and RPV show reduced 
growth on cells that produce and respond to IFN, and in this 
regard are more impaired than their equivalent V-knockout 
mutants (Escoffi er and others 1999; Baron and Barrett 2000; 
Devaux and Cattaneo 2004; Takeuchi and others 2005). Like 
the SeV C protein, the MeV C protein has also been shown to 
negatively regulate viral RNA synthesis in minireplicon sys-
tems (Reutter and others 2001; Bankamp and others 2005). 
Signifi cantly, it has been recently shown that the MeV C pro-
tein lacks any detectable ability to directly block type I IFN 
induction, but rather acts entirely by blocking the produc-
tion of PAMPs (Nakatsu and others 2008). Importantly, lim-
iting the production of type I IFN by MeV has been shown 
to require both the mda-5 antagonistic function of the V pro-
tein and the RNA polymerase inhibitory functions of the C 
protein (Nakatsu and others 2008). Surprisingly, it has been 
recently shown that the V protein of RPV has no ability to 
inhibit mda-5 and is dispensable for the control of type I IFN 
production, with the C protein being entirely responsible 
for this activity (Boxer and others 2009). The RPV C protein 
appears to act downstream of IRF-3 and NF-κB (Boxer and 
others 2009)—see Figure 3. The RPV C protein is localized 
in the nucleus, and may act like the W protein of NiV, which 
also blocks the activity of IRF-3 in an uncharacterized man-
ner that depends upon its localization to the nucleus (Shaw 
and others 2005)—see Figure 3. These data suggest that the 
RPV C protein and NiV W protein are targeting a currently 
poorly characterized step in IFN-β transcription such as the 
recruitment of transcriptional components such as RNA 
polymerase II. The C proteins of HPIV1 also inhibit the acti-
vation of IRF-3 and the production of IFN-α/β (Van Cleve 
and others 2006), as does the C protein of BPIV3, although in 
these cases their mechanisms of action are unclear (Komatsu 
and others 2007). Finally, it has been shown that the C, V, and 
W proteins of NiV inhibit minigenome replication, suggest-
ing that these proteins all play a role in controlling PAMP 
generation (Sleeman and others 2008).

NS Protein and Attachment Proteins of RSV

The pneumoviruses are unique within the Paramyxoviridae 
in not producing alternative products from their P gene. 
Since these viruses are not noted for their ability to induce 
type I IFN, it can be argued that they must use other gene 
products for this function. Recombinant HRSVs lacking 
either the NS1 or NS2 genes induce more type I IFN than the 
wild-type virus, and a mutant virus lacking both NS1 and 
NS2 genes is an even better inducer of type I IFN (Spann and 
others 2004). These data, and similar data on BRSV (Bossert 
and others 2003), suggest that NS1 and NS2 independently 
antagonize type I IFN production. When expressed on their 
own NS1 and NS2 from BRSV (Bossert and others 2003), and 
NS2 from HRSV (Ling and others 2009), can indeed block 
type I IFN induction by heterologous inducers. The HRSV 
NS2 protein can block both the RIG-I and TLR3 pathways, 
and has been shown to bind directly to the N-terminal 
CARD domain of RIG-I (Ling and others 2009), preventing 
it from interacting with the downstream adaptor VISA. The 
mechanism of inhibition of TLR3, and the mechanism of 
inhibition by NS1 remain unknown.

The attachment protein (G) of RSV is known to potentiate 
disease and respiratory symptoms. As well as forming part 
of the virus envelope, it is also rapidly secreted (sG) in large 

08-JIR-2009_0071.indd   544 8/27/2009   11:25:37 AM



IFN INDUCTION AND PARAMYXOVIRUSES 545

Durbin AP, McAuliffe JM, Collins PL, Murphy BR. 1999. Mutations 

in the C, D, and V open reading frames of human parainfl u-

enza virus type 3 attenuate replication in rodents and primates. 

Virology 261:319–330.

Escoffi er C, Manie S, Vincent S, Muller CP, Billeter M, Gerlier D. 

1999. Nonstructural C protein is required for effi cient mea-

sles virus replication in human peripheral blood cells. J Virol 

73:1695–1698.

Gainey MD, Dillon PJ, Clark KM, Manuse MJ, Parks GD. 2008. 

Paramyxovirus-induced shutoff of host and viral protein syn-

thesis: role of the P and V proteins in limiting PKR activation. J 

Virol 82:828–839.

Gale M Jr, Sen GC. 2009. Viral evasion of the interferon system. J 

Interferon Cytokine Res. 29(9):475–476.

Habjan M, Andersson I, Klingstrom J, Schumann M, Martin 

A, Zimmermann P, Wagner V, Pichlmair A, Schneider U, 

Muhlberger E, Mirazimi A, Weber F. 2008. Processing of genome 

5′ termini as a strategy of negative-strand RNA viruses to avoid 

RIG-I-dependent interferon induction. PLoS ONE 3:e2032.

Haynes LM, Moore DD, Kurt-Jones EA, Finberg RW, Anderson 

LJ, Tripp RA. 2001. Involvement of toll-like receptor 4 in innate 

immunity to respiratory syncytial virus. J Virol 75:10730–10737.

He B, Paterson RG, Stock N, Durbin JE, Durbin RK, Goodbourn S, 

Randall RE, Lamb RA. 2002. Recovery of paramyxovirus sim-

ian virus 5 with a V protein lacking the conserved cysteine-rich 

domain: the multifunctional V protein blocks both interferon-

beta induction and interferon signaling. Virology 303:15–32.

Hendricks DA, McIntosh K, Patterson JL. 1988. Further character-

ization of the soluble form of the G glycoprotein of respiratory 

syncytial virus. J Virol 62:2228–2233.

Hilton L, Moganeradj K, Zhang G, Chen YH, Randall RE, McCauley 

JW, Goodbourn S. 2006. The NPro product of bovine viral diarrhea 

virus inhibits DNA binding by interferon regulatory factor 3 and 

targets it for proteasomal degradation. J Virol 80:11723–11732.

Horikami SM, Hector RE, Smallwood S, Moyer SA. 1997. The Sendai 

virus C protein binds the L polymerase protein to inhibit viral 

RNA synthesis. Virology 235:261–270.

Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, Poeck 

H, Akira S, Conzelmann KK, Schlee M, Endres S, Hartmann 

G. 2006. 5′-Triphosphate RNA is the ligand for RIG-I. Science 

314:994–997.

Johnston MD. 1981. The characteristics required for a Sendai virus 

preparation to induce high levels of interferon in human lym-

phoblastoid cells. J Gen Virol 56:175–184.

Kato A, Kiyotani K, Sakai Y, Yoshida T, Shioda T, Nagai Y. 1997. 

Importance of the cysteine-rich carboxyl-terminal half of V pro-

tein for Sendai virus pathogenesis. J Virol 71:7266–7272.

Kato H, Takeuchi O, Mikamo-Satoh E, Hirai R, Kawai T, Matsushita 

K, Hiiragi A, Dermody TS, Fujita T, Akira S. 2008. Length-

dependent recognition of double-stranded ribonucleic acids by 

retinoic acid-inducible gene-I and melanoma differentiation-

associated gene 5. J Exp Med 205:1601–1610.

Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui 

K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, 

Tsujimura T, Koh CS, Reis e Sousa C, Matsuura Y, Fujita T, Akira 

S. 2006. Differential roles of MDA5 and RIG-I helicases in the rec-

ognition of RNA viruses. Nature 441:101–105.

Kawano M, Kaito M, Kozuka Y, Komada H, Noda N, Nanba K, 

Tsurudome M, Ito M, Nishio M, Ito Y. 2001. Recovery of infec-

tious human parainfl uenza type 2 virus from cDNA clones and 

properties of the defective virus without V-specifi c cysteine-rich 

domain. Virology 284:99–112.

Komatsu T, Takeuchi K, Gotoh B. 2007. Bovine parainfl uenza virus 

type 3 accessory proteins that suppress beta interferon produc-

tion. Microbes Infect 9:954–962.

Komatsu T, Takeuchi K, Yokoo J, Gotoh B. 2004. C and V proteins 

of Sendai virus target signaling pathways leading to IRF-3 acti-

vation for the negative regulation of interferon-beta production. 

Virology 325:137–148.

IFN-inducible RNA helicase, mda-5, and inhibit its activation of 

the IFN-beta promoter. Proc Natl Acad Sci USA 101:17264–17269.

Andrejeva J, Young DF, Goodbourn S, Randall RE. 2002. Degradation 

of STAT1 and STAT2 by the V proteins of simian virus 5 and 

human parainfl uenza virus type 2, respectively: consequences 

for virus replication in the presence of alpha/beta and gamma 

interferons. J Virol 76:2159–2167.

Bankamp B, Wilson J, Bellini WJ, Rota PA. 2005. Identifi cation of 

naturally occurring amino acid variations that affect the ability 

of the measles virus C protein to regulate genome replication 

and transcription. Virology 336:120–129.

Baron MD, Barrett T. 2000. Rinderpest viruses lacking the C and 

V proteins show specifi c defects in growth and transcription of 

viral RNAs. J Virol 74:2603–2611.

Berghall H, Siren J, Sarkar D, Julkunen I, Fisher PB, Vainionpaa 

R, Matikainen S. 2006. The interferon-inducible RNA helicase, 

mda-5, is involved in measles virus-induced expression of anti-

viral cytokines. Microbes Infect 8:2138–2144.

Bossert B, Marozin S, Conzelmann KK. 2003. Nonstructural pro-

teins NS1 and NS2 of bovine respiratory syncytial virus block 

activation of interferon regulatory factor 3. J Virol 77:8661–8668.

Boxer EL, Nanda SK, Baron MD. 2009. The rinderpest virus non-

structural C protein blocks the induction of type 1 interferon. 

Virology 385:134–142.

Cadd T, Garcin D, Tapparel C, Itoh M, Homma M, Roux L, Curran J, 

Kolakofsky D. 1996. The Sendai paramyxovirus accessory C pro-

teins inhibit viral genome amplifi cation in a promoter-specifi c 

fashion. J Virol 70:5067–5074.

Carlos TS, Fearns R, Randall RE. 2005. Interferon-induced altera-

tions in the pattern of parainfl uenza virus 5 transcription and 

protein synthesis and the induction of virus inclusion bodies. J 

Virol 79:14112–14121.

Childs KS, Andrejeva J, Randall RE, Goodbourn S. 2009. Mechanism 

of mda-5 Inhibition by paramyxovirus V proteins. J Virol 

83:1465–1473.

Childs K, Stock N, Ross C, Andrejeva J, Hilton L, Skinner M, Randall 

R, Goodbourn S. 2007. mda-5, but not RIG-I, is a common target 

for paramyxovirus V proteins. Virology 359:190–200.

Collins PL, Graham BS. 2008. Viral and host factors in human respi-

ratory syncytial virus pathogenesis. J Virol 82:2040–2055.

Cui S, Eisenacher K, Kirchhofer A, Brzozka K, Lammens A, 

Lammens K, Fujita T, Conzelmann KK, Krug A, Hopfner KP. 

2008. The C-terminal regulatory domain is the RNA 5’-triphos-

phate sensor of RIG-I. Mol Cell 29:169–179.

Curran J, Boeck R, Kolakofsky D. 1991. The Sendai virus P gene 

expresses both an essential protein and an inhibitor of RNA 

synthesis by shuffl ing modules via mRNA editing. EMBO J 

10:3079–3085.

Curran J, Marq JB, Kolakofsky D. 1992. The Sendai virus nonstruc-

tural C proteins specifi cally inhibit viral mRNA synthesis. 

Virology 189:647–656.

Curran J, Marq JB, Kolakofsky D. 1995. An N-terminal domain of 

the Sendai paramyxovirus P protein acts as a chaperone for the 

NP protein during the nascent chain assembly step of genome 

replication. J Virol 69:849–855.

Delenda C, Hausmann S, Garcin D, Kolakofsky D. 1997. Normal cel-

lular replication of Sendai virus without the trans-frame, non-

structural V protein. Virology 228:55–62.

Devaux P, Cattaneo R. 2004. Measles virus phosphoprotein gene 

products: conformational fl exibility of the P/V protein amino-

terminal domain and C protein infectivity factor function. J 

Virol 78:11632–11640.

Didcock L, Young DF, Goodbourn S, Randall RE. 1999a. The V 

protein of simian virus 5 inhibits interferon signalling by tar-

geting STAT1 for proteasome-mediated degradation. J Virol 

73:9928–9933.

Didcock LJ, Young DF, Goodbourn S, Randall RE. 1999b. Sendai Virus 

and Simian Virus 5 block activation of interferon-responsive 

genes; importance for virus pathogenesis. J Virol 73:3125–3133.

08-JIR-2009_0071.indd   545 8/27/2009   11:25:37 AM



GOODBOURN AND RANDALL546

Randall RE, Goodbourn S. 2008. Interferons and viruses: an inter-

play between induction, signalling, antiviral responses and 

virus countermeasures. J Gen Virol 89:1–47.

Reutter GL, Cortese-Grogan C, Wilson J, Moyer SA. 2001. Mutations 

in the measles virus C protein that up regulate viral RNA syn-

thesis. Virology 285:100–109.

Schlender J, Hornung V, Finke S, Gunthner-Biller M, Marozin S, 

Brzozka K, Moghim S, Endres S, Hartmann G, Conzelmann KK. 

2005. Inhibition of toll-like receptor 7- and 9-mediated alpha/

beta interferon production in human plasmacytoid dendritic 

cells by respiratory syncytial virus and measles virus. J Virol 

79:5507–5515.

Schneider H, Kaelin K, Billeter MA. 1997. Recombinant measles 

viruses defective for RNA editing and V protein synthesis are 

viable in cultured cells. Virology 227:314–322.

Shaw ML, Cardenas WB, Zamarin D, Palese P, Basler CF. 2005. 

Nuclear localization of the Nipah virus W protein allows for 

inhibition of both virus- and toll-like receptor 3-triggered sig-

naling pathways. J Virol 79:6078–6088.

Shingai M, Azuma M, Ebihara T, Sasai M, Funami K, Ayata M, 

Ogura H, Tsutsumi H, Matsumoto M, Seya T. 2008. Soluble G 

protein of respiratory syncytial virus inhibits Toll-like receptor 

3/4-mediated IFN-beta induction. Int Immunol 20:1169–1180.

Shingai M, Ebihara T, Begum NA, Kato A, Honma T, Matsumoto 

K, Saito H, Ogura H, Matsumoto M, Seya T. 2007. Differential 

type I IFN-inducing abilities of wild-type versus vaccine strains 

of measles virus. J Immunol 179:6123–6133.

Sleeman K, Bankamp B, Hummel KB, Lo MK, Bellini WJ, Rota PA. 

2008. The C, V and W proteins of Nipah virus inhibit minige-

nome replication. J Gen Virol 89:1300–1308.

Spann KM, Tran KC, Chi B, Rabin RL, Collins PL. 2004. Suppression 

of the induction of alpha, beta, and lambda interferons by the 

NS1 and NS2 proteins of human respiratory syncytial virus 

in human epithelial cells and macrophages [corrected]. J Virol 

78:4363–4369.

Strahle L, Garcin D, Kolakofsky D. 2006. Sendai virus defective-

interfering genomes and the activation of interferon-beta. 

Virology 20:101–111.

Strahle L, Garcin D, Le Mercier P, Schlaak JF, Kolakofsky D. 2003. 

Sendai virus targets infl ammatory responses, as well as the 

interferon-induced antiviral state, in a multifaceted manner. J 

Virol 77:7903–7913.

Strahle L, Marq JB, Brini A, Hausmann S, Kolakofsky D, Garcin D. 

2007. Activation of the beta interferon promoter by unnatural 

Sendai virus infection requires RIG-I and is inhibited by viral C 

proteins. J Virol 81:12227–12237.

Sun M, Fuentes SM, Timani K, Sun D, Murphy C, Lin Y, August 

A, Teng MN, He B. 2008. Akt plays a critical role in replica-

tion of nonsegmented negative-stranded RNA viruses. J Virol 

82:105–114.

Takahasi K, Yoneyama M, Nishihori T, Hirai R, Kumeta H, Narita 

R, Gale M, Jr, Inagaki F, Fujita T. 2008. Nonself RNA-sensing 

mechanism of RIG-I helicase and activation of antiviral immune 

responses. Mol Cell 29:428–440.

Takeuchi K, Takeda M, Miyajima N, Ami Y, Nagata N, Suzaki Y, 

Shahnewaz J, Kadota S, Nagata K. 2005. Stringent requirement 

for the C protein of wild-type measles virus for growth both in 
vitro and in macaques. J Virol 79:7838–7844.

Timani KA, Sun D, Sun M, Keim C, Lin Y, Schmitt PT, Schmitt AP, 

He B. 2008. A single amino acid residue change in the P protein 

of parainfl uenza virus 5 elevates viral gene expression. J Virol 

82:9123–9133.

Tober C, Seufert M, Schneider H, Billeter MA, Johnston IC, Niewiesk 

S, ter Meulen V, Schneider-Schaulies S. 1998. Expression of mea-

sles virus V protein is associated with pathogenicity and control 

of viral RNA synthesis. J Virol 72:8124–8132.

Van Cleve W, Amaro-Carambot E, Surman SR, Bekisz J, Collins 

PL, Zoon KC, Murphy BR, Skiadopoulos MH, Bartlett EJ. 2006. 

Attenuating mutations in the P/C gene of human parainfl uenza 

Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP, Tripp RA, 

Walsh EE, Freeman MW, Golenbock DT, Anderson LJ, Finberg 

RW. 2000. Pattern recognition receptors TLR4 and CD14 medi-

ate response to respiratory syncytial virus. Nat Immunol 1:

398–401.

Lamb RA, Parks GD. 2006. Paramyxoviridae: the viruses and their 

replication. In: Knipe DM, Howley PM, Griffi n DE, Lamb RA, 

Martin MA, Roizman B, Straus, SE, eds. Fields’ Virology, 5th ed. 

Philadelphia: Lippincott Williams and Wilkins. pp 1449–1496.

Lin Y, Horvath F, Aligo JA, Wilson R, He B. 2005. The role of simian 

virus 5 V protein on viral RNA synthesis. Virology 338:270–280.

Ling Z, Tran KC, Teng MN. 2009. Human respiratory syncytial 

virus nonstructural protein NS2 antagonizes the activation of 

beta interferon transcription by interacting with RIG-I. J Virol 

83:3734–3742.

Lu LL, Puri M, Horvath CM, Sen GC. 2008. Select paramyxoviral 

V proteins inhibit IRF3 activation by acting as alternative sub-

strates for inhibitor of kappaB kinase epsilon (IKKε)/TBK1. J Biol 

Chem 283:14269–14276.

Malur AG, Hoffman MA, Banerjee AK. 2004. The human parainfl u-

enza virus type 3 (HPIV3) C protein inhibits viral transcription. 

Virus Res 99:199–204.

Melchjorsen J, Jensen SB, Malmgaard L, Rasmussen SB, Weber 

F, Bowie AG, Matikainen S, Paludan SR. 2005. Activation of 

innate defense against a paramyxovirus is mediated by RIG-I 

and TLR7 and TLR8 in a cell-type-specifi c manner. J Virol 79:

12944–12951.

Nakatsu Y, Takeda M, Ohno S, Koga R, Yanagi Y. 2006. Translational 

inhibition and increased interferon induction in cells infected 

with C protein-defi cient measles virus. J Virol 80:11861–11867.

Nakatsu Y, Takeda M, Ohno S, Shirogane Y, Iwasaki M, Yanagi Y. 

2008. Measles virus circumvents the host interferon response by 

different actions of the C and V proteins. J Virol 82:8296–8306.

Nishio M, Ohtsuka J, Tsurudome M, Nosaka T, Kolakofsky D. 2008. 

Human parainfl uenza virus type 2 V protein inhibits genome 

replication by binding to the L protein: possible role in promot-

ing viral fi tness. J Virol 82:6130–6138.

Parks CL, Witko SE, Kotash C, Lin SL, Sidhu MS, Udem SA. 2006. 

Role of V protein RNA binding in inhibition of measles virus 

minigenome replication. Virology 348:96–106.

Pfaller CK, Conzelmann KK. 2008. Measles virus V protein is a decoy 

substrate for IkappaB kinase alpha and prevents Toll-like recep-

tor 7/9-mediated interferon induction. J Virol 82:12365–12373.

Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F, 

Reis e Sousa C. 2006. RIG-I-mediated antiviral responses to sin-

gle-stranded RNA bearing 5′-phosphates. Science 314:997–1001.

Plumet S, Herschke F, Bourhis JM, Valentin H, Longhi S, Gerlier 

D. 2007. Cytosolic 5′-triphosphate ended viral leader transcript 

of measles virus as activator of the RIG I-mediated interferon 

response. PLoS ONE 2:e279.

Polack FP, Irusta PM, Hoffman SJ, Schiatti MP, Melendi GA, Delgado 

MF, Laham FR, Thumar B, Hendry RM, Melero JA, Karron RA, 

Collins PL, Kleeberger SR. 2005. The cysteine-rich region of 

respiratory syncytial virus attachment protein inhibits innate 

immunity elicited by the virus and endotoxin. Proc Natl Acad 

Sci USA 102:8996–9001.

Poole E, He B, Lamb RA, Randall RE, Goodbourn S. 2002. The V 

proteins of simian virus 5 and other paramyxoviruses inhibit 

induction of interferon-beta. Virology 303:33–46.

Precious BL, Carlos TS, Goodbourn S, Randall RE. 2007. Catalytic 

turnover of STAT1 allows PIV5 to dismantle the interferon-

induced anti-viral state of cells. Virology 368:114–121.

Precious B, Young DF, Bermingham A, Fearns R, Ryan M, Randall 

RE. 1995. Inducible expression of the P, V, and NP genes of the 

paramyxovirus simian virus 5 in cell lines and an examination 

of NP-P and NP-V interactions. J Virol 69:8001–8010.

Ramachandran A, Horvath CM. 2009. Paramyxovirus disruption 

of interferon signal transduction: STATus Report. J Interferon 

Cytokine Res. 29(9):531–538.

08-JIR-2009_0071.indd   546 8/27/2009   11:25:38 AM



IFN INDUCTION AND PARAMYXOVIRUSES 547

helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J 

Immunol 175:2851–2858.

Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, 

Miyagishi M, Taira K, Akira S, Fujita T. 2004. The RNA helicase 

RIG-I has an essential function in double-stranded RNA-induced 

innate antiviral responses. Nat Immunol 5:730–737.

Yount JS, Gitlin L, Moran TM, Lopez CB. 2008. MDA5 participates 

in the detection of paramyxovirus infection and is essential for 

the early activation of dendritic cells in response to Sendai Virus 

defective interfering particles. J Immunol 180:4910–4918.

Address correspondence to:
Dr. Richard E. Randall

School of Biology
University of St. Andrews

North Haugh
St. Andrews KY16 9ST

United Kingdom

E-mail: rer@st-andrews.ac.uk

Received 29 June 2009/Accepted 29 June 2009

virus type 1 (HPIV1) vaccine candidates abrogate the inhibition 

of both induction and signaling of type I interferon (IFN) by 

wild-type HPIV1. Virology 352:61–73.

Wang L, Harcourt BH, Yu M, Tamin A, Rota PA, Bellini WJ, Eaton 

BT. 2001. Molecular biology of Hendra, Nipah viruses. Microbes 

Infect 3:279–287.

Wansley EK, Parks GD. 2002. Naturally occurring substitutions in 

the P/V gene convert the noncytopathic paramyxovirus simian 

virus 5 into a virus that induces alpha/beta interferon synthesis 

and cell death. J Virol 76:10109–10121.

Weber F, Wagner V, Rasmussen SB, Hartmann R, Paludan SR. 2006. 

Double-stranded RNA is produced by positive-strand RNA 

viruses and DNA viruses but not in detectable amounts by neg-

ative-strand RNA viruses. J Virol 80:5059–5064.

Whelan SP, Barr JN, Wertz GW. 2004. Transcription and replica-

tion of nonsegmented negative-strand RNA viruses. Curr Top 

Microbiol Immunol 283:61–119.

Witko SE, Kotash C, Sidhu MS, Udem SA, Parks CL. 2006. Inhibition 

of measles virus minireplicon-encoded reporter gene expression 

by V protein. Virology 348:107–119.

Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, 

Taira K, Foy E, Loo YM, Gale M, Jr, Akira S, Yonehara S, Kato A, 

Fujita T. 2005. Shared and unique functions of the DExD/H-box 

08-JIR-2009_0071.indd   547 8/27/2009   11:25:38 AM



08-JIR-2009_0071.indd   548 8/27/2009   11:25:38 AM



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


