Metadata, citation and similar papers at core.ac.uk

Provided by Nottingham ePrints

Copyright 2006 Society of Photo-Optical I nstrumentation Engineers.

This paper was published in Proceedings of the Electronic Imaging : Digital Publishing Conference 2006
(SPIE Voal. 6076) and is made available as an electronic preprint with permission of SPIE. One print or
electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to
multiple locations via electronic or other means, duplication of any materia in this paper for a fee or for
commercia purposes, or modification of the content of the paper are prohibited.

https://core.ac.uk/display/98171?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

L aying out the future of final-form digital documents

David F. Brailsford
School of Computer Science and IT, University of Nottingham,
Jubilee Campus, NOTTINGHAM NGS8 1BB UK

ABSTRACT

Itis just over 20 years since Adobe’s PostScript opened a new era in digital documents. PostScript allows most
details of rendering to be hidden within the imaging device itself, while providing a rich set of primitives
enabling document engineers to think of final-form rendering as being just a sophisticated exercise in computer
graphics. The refinement of the PostScript model into PDF has been amazingly successful in creating a near-
universal interchange format for complex and graphically rich digital documents but the PDF format itself is nei-
ther easy to create nor to amend. In the meantime a whole new world of digital documents has sprung up centred
around XML-based technologies. The most widespread example is XHTML (with optional CSS styling) but
more recently we have seen Scalable Vector Graphics (SVG) emerge as an XML-based, low-level, rendering
language with PostScript-compatible rendering semantics. This paper surveys graphically-rich final-form render-
ing technologies and asks how flexible they can be in allowing adjustments to be made to final appearance with-
out the need for regenerating a whole page or an entire document. Particular attention is focused on the relative
merits of SVG and PDF in this regard and on the desirability, in any document layout language, of being able to
manipulate the graphic properties of document components parametrically, and at a level of granularity smaller
than an entire page.

Keywords: PostScript, PDF, SVG, PPML, DDF, COG model, variable data printing

1. INTRODUCTION

The present generation of imaging devices makes it possible to create textually and graphically rich pages in a
way that would have been unimaginable 30 years ago. Formats such as PDF gagelsdependencewhich

is to say that the graphic state of each page and the resources (e.g. fonts) that it needs are known and are guaran-
teed not to suffer any side effects from previous pages that have already been rendered. However, the story is
very different, within a page, when it comes to considering the graphical independence of sub-page components.

It can be extraordinarily difficult, for example, to extract, cleanly, a diagram, or an illustration, or even a para-
graph of text from a PDF page. Although Adobe Acrobat tries to provide just such a facility it is very common to
extract not only the desired object but a collection of unwanted material as well.

It is frustrating to reflect that design packages such as Addbe&trator andInDesign do have some internal
knowledge of the ‘objects’ they are manipulating and yet, so often, all of this knowledge is lost in an amorphous
final-form page once PostScript or PDF is exported. This means that any alterations to fonts, fill colours or page
layout requires the regeneration of a whole new page.

A new generation of colour laser printers and presses (Hewlett-Packadi(p for example) make possible
high-speed ‘variable data’ printing. Here a page may consist of advertising material that is specific to a particular
circulation area, or even to each individual customer. The ability to cut and paste cleanly-specified ‘objects’
from near-final-form page descriptions would make it much easier to re-use document components. Another
benefit would be that most objects on a page could be kept constant, and efficiently cached, during a long print
run while also allowing the insertion of different late-bound, variable-data, components on each separate page.

In the remainder of this paper we survey the reasons for the lack of encapsulated graphic objects in the code that
is typically output from page-design software. We then show how such notions can be accommodate# in PDF
using a little-known data structure present in that format. In order to show that the ideas put forward will gener-
alise beyond PDF we examine how they can be realised in the XML-based Scalable Vector Graphics (SVG)
with, arguably, a rather better facility than in PDF for parameterising the objects. SVG is used, at the moment,
for “vector graphic inserts” inside Web pages but it seems possible that it might eventually develop into a page
description language in its own right.

1.1. Bitmaps, SVG and XML.

It is natural that bitmap images for photographs etc. should feature prominently in our considerations as possible
page objects but we shall assume that such objects are embedded in a more abstract description of the page. In
other words, we exclude from consideration those pages which have, in their entirety, already been fully ren-
dered to bitmap form. Such a low-level format (useful though it is for rendering ‘problem’ pages externally
before sending them to a printer) is so final and immutable that it will generally have no abstractions allowing
the bitmap to be sub-divided into objects at the sub-page level.

Much of what follows will consist of a survey of PostScript, and then PDF, as vehicles for the model to be
described. However, in later sections of the paper we survey some possible advantages that might accrue when
SVG develops full page-description capabilities. It will also become apparent that languages such as SVG and
PPML usher in a new era where XML-based notations are used not just for highly abstract views of a document
but also at a very detailed level for controlling page appearance and layout.

The ability for a page representation, in an XML notation, to be re-shaped and transformed by an XSLT script,
followed by re-interpretation in an XML-based page layout package, means that much can be done in terms of
supplying late-bound data for pages. The final sections of the paper assesses the importance of these new possi-
bilities for creating personalized documents and for ‘variable data’ printing.

2. HISTORICAL

If we look back to the era of the early 1980s, just 25 years ago, it is now hard to recall just how difficult it was to
produce complex, graphically rich, pages. During the years from 1955 to 1985 hot metal typesetting had gradu-
ally given way to text produced from optical phototypesetters or from third-generation Cathode Ray Tube
devices like the Linotronic 202. The graphic capabilities of this generation of machine for rendering anything
other than text, were either limited or non-existent. When printing plates came to be made graphic elements had
to be laboriously prepared with pens, knives, and adhesive toned film possibly followed by airbrushing before
being ‘stripped in'.

Once the new generation of laser-driven printing devices became available there was an understandable urge, for
a time, to exploit the ability for manipulating all graphic elements —from half-tones to character outlines—at
the bitmap level. But in late 1984 and early 1985 all of that changed once PostScript came on the scene. Here
was a language that was not onlyaur de forceof two-dimensional computer graphics for character shapes,
vectors and for greyscale and colour bitmaps, but also a sophisticated interpreted language of LISP-like flexibil-
ity which also provided associatively-indexed dictionaries and a stack-based procedural model

By late 1985 the take-up of PostScript by graphics-arts professionals was enthusiastic and near total. Let us now
imagine that we are back in 1985 and that we want to design d fogdhe organisation sponsoring the current
conference. This hypothetical logo is shown in Figure 1.

This design utilises no fewer than eight separate PostScript layers. The first two of these set up the white version
of the word “Electronic” and then outline it in black. The third layer implements the preliminary laying down of

T adapted from material in reference 2,

the grey bar, which will initially obscure the type directly beneath it. Layer 4 uses the grey bar of the previous
layer as a clipping box and within that clipping rectangle it re-sets “Electronic” in a pale shade of grey (0.7 on
the PostScript scale). Layer 5 shows the pale grey type through the clipping rectangle boundary while layer 6
draws a black line around the grey box. In layer 7 the word “IMAGING” is force justified in black with bullets
between each letter. Finally, in the topmost layer, the word “IMAGING” is set again but this time with an offset
one point up and two points to the left of the previous black version of the text to act as a highlight.

|_l O

Figure 1: An 8-layer logo created using 774 bytes of PostScript

It is instructive to follow the analysis by Simon Fuffesf what would be required to create such a logo by tradi-
tional methods:

“To get such an image traditionally would cost a lot in film stripping and headaches. For one thing,
it would be extremely difficult to draw the bar with a technical pen and to get such sharp corners,
Secondly, without film stripping it would be enormously difficult to butt the line to adhesive toned
film, let alone get a clean join with the lighter portions of type cut into the bar — a join free of
Moire patterns, if you will. The only other alternative would be to airbrush the bar, risking inconsis-
tencies in tonal depth, as well as running into as highly difficult masking session on the type. In
either case, due to the halftone, you would be unable to reduce the artwork by fifty percent or any
other percent, as all the dots would probably join together on the line shot. In PostScript, however,
all you need to do to get a perfectly reduced image is to put one line at the head of theXi@es:

scale

But even more telling is the fact that this logo is just a small PostScript program of some 774 bytes. It could be
turned into a single compact PostScript procedure because just about every aspect of it is parameterisable: the
texts and typefaces for the two words in the logo; the size and shade of the grey-filled clipping box; the overall
placement of the logo and the precise shade of grey of the text, within the clip rectangle, which will optimise the
translucency illusion. And yet, despite all of this, it remains the case that only hand-written and hand-tuned
PostScript would ever deliver code that is similarly procedural in its approach. Indeed, Fuller laments that an
EPS file for a logo very similar to the one shown (which, as we have shown, needs no more than 800 bytes at
most) would occupy about 36K if produced from Adobe lllustrator.

In what follows we analyse the historical reasons why page design packages choose to output low-level
PostScript with no attempt to create identifiable objects at the sub-page level. This, in turn, leads to an analysis
of how faster computers, faster rendering devices, and new page description languages such as PDF and SVG
(both of which are ‘interpreted data structures’ rather than full-blown programming languages) now make it pos-
sible to introduce a form of modularity and configurability for graphic components on a finally rendered page.

2.1. ‘Compiling’ PostScript

The Apple LaserWriter, launched in 1985, was the first ever PostScript imaging device. With its Motorola 68000
processor, its 1.5 Mbyte of RAM and with the PostScript interpreter present in 0.5 Mbyte of masked ROM it was
far more powerful than the Macintosh computer that was intended to drive it. Even so, speed (or the lack of it)
was an issue from the very moment that the device was launched. Steve Jobs (then, as now, the Apple CEO)
wanted to have some documents that could be printed out, on stage, at the LaserWriter launch event. In those
days, prior to the release of applications such as Pagemaker, Adobe had to create hand-coded PostScript to print

out a number of documents, the most visually and politically impressive of which was to be the IRS tax form.
The co-inventor of PostScript, John Warnock, created elegant PostScript subroutines to print out these forms but
the problem was that the interpretive burden for all the language constructs used caused it to take two and a half
minutes for the LaserWriter to process the code and print the page.

Steve Jobs protested that keeping the audience’s attention for two and a half minutes, however wonderful the
final printed result, was going to stretch even his legendary presentation skills to the utmost; a dramatic speed-up
was essential. Warnock then revisited the code and using PostScript’s ability to re-define system operators, man-
aged to get the program to ‘compile itself. In doing so it replaced procedure calls with replicated in-line
procedure-body code (i.e. with all arguments fully bound into the program text) and albrth@ops were

unrolled and linearised. The net result was a much longer, static, final-form page description of the IRS tax form
but one which now printed in 12.5 seconds!

In essence the above tricks are used today by Adobe Distiller when converting arbitrary PostScript into PDF.
Although clever compression techniques mean that a PDF file is usually rather smaller than its PostScript coun-
terpart in cases such as this—where a tiny, procedural, PostScript program is distilled—one can easily find that
the file size increases dramatically, for all the reasons just outlined. Thus the PDF version of the 774 byte PDF
logo is ten times larger at 7755 bytes.

2.2. PostScript generated from front-end applications

Shortly after the release of PostScript, page layout programs such as Pagemaker and the Adobe lllustrator vector
graphics package were able to generate PostScript from interactively created page designs. However, for ease of
code generation and for reasons of speed when interpreting the PostScript output, such generated code tends to
use PostScript as a kind of macro-assembler language rather than exploiting its powerful procedural capabilities.
That is to say the generated code is a static page description very close to a fully-bound and final form. Apart
from a few housekeeping procedures there is no attempt to generate procedural code with parameters that could
be varied independently of the front-end application.

2.3. Pageindependencein page description languages

From the very outset PostScript did not have page independence although, interestingly, Xerox’s Interpress (in
many ways the forerunner of PostScript) did have. The graphic state of the PostScript interpreter can be saved
and restored at any point with expligiéave andgrestore operations but these were not performed automatically

at page boundaries. For this reason if a PostScript previewer is to show you just page 80 (say) of a document,
then it needs to interpret all of the previous 79 pages in order to be sure that the full graphic state for page 80 has
been set up correctly.

When PDF was being designed it was clear that users would wish to insert, delete and extract pages from a PDF
file. Clearly, then, page independence needed to be established within PDF and so, when the Distiller program
compiles PostScript into PDF it has to ensure that each page has the resources it needs and is independent of all
others

3. PAGE CREATION USING INDEPENDENT GRAPHIC OBJECTS

What we now need to develop is a model for graphic objects on a page that is general enough to be applicable in
any sufficiently powerful rendering language. We shall call thisGhenponenObjectGraphic (COG) model.

The ideal situation would be a world in which front-end applications generated all pages as sequences of such
COG objects, if only because subsequent extraction of a chosen COG (e.g. a paragraph, a photograph or a line
diagram) from a finished page, for re-use or replacement, then becomes much easier than is presently the case.

Some of the desirable features of such a COG model can be listed as follows:

° Each COG to be independent of all others on the page

° Each COG must declare the resources it uses

° COGs must not presume any pre-existing graphic state

° All rendering within a COG must use co-ordinates relative to a local (0,0) origin
° COGs will need external positioning information to place them on a page

Figure 2 shows a notional set of software tools for creating and manipulating pages within the COG model and
the purpose of the various tools can be summarised as follB®@$ Manipulator is an interactive tool that

reads in pre-prepared COGs (e.g. from Encapsulator, Extractor or Creator) and allows them to be placed and
fitted on a page, prior to saving the completed COG page.

COG
Manipulator

INTERACTIVE
MANIPULATION

Single COG

COG

COG compliant COG page(s)

Multi-page

Page Creation under Extractor /
"COG Creator” COG documents construction Encapsulator
Single COG Import/
/ Multi COG Export
Archived
PROGRAMMATIC - COG
MANIPULATION page(s)

Figure 2: Assembling a page from COG components

The COG Encapsulatoputs a COG PDF wrapper around free-standing images (e.g TIFF or JPEG) or a COG
wrapper around ‘clean’ PDF objects exported from lllustrator, Photoshop etc.

The COG Extractor allows for cropping out of material from arbitrary final-form pages and for saving that
material as a COG. Great care needs to be taken in determining the graphic state of this extracted material and
discovering the resources (e.g. fonts) that it uses.

COG Creatoris a generic term for any page layout software capable of creating individual COGs, or multi-page
sequences of COGs.

COG Linkeris software capable of saving a whole page of COGs in a standardised form suitable for archiving
or for re-loading into a COG page-makeup application at some later time. The idea here is that the COGs them-
selves may be in any of the popular formats such as PostScript, TIFF, JPEG, PDF or SVG but the declarative
superstructure specifying the resources needed by the various COGs, and their placement on the page, will be
XML based. A later section describes how an adapted form of PPML is suitable for this purpose.

3.1. Implementation of COGs

The implementation of COGs in a PDF framework is fully described in the paper by Bagley Brailsford and
Hardy? . The COG PDF implementation was made possible by the existence of two little-known data structures
within PDF itself. The first of these is the option of having PDF page content be described as an array of content
streams, rather than a single amorphous content stream for the whole page. The second is the existence of data
structures known aBorm XObjects which can be components in just such an array of streams.

A Form XObiject is defined in PDF as just one example of a so-called COS Strétarheader dictionary con-
tains information of the sort shown below

<< [/ Type / XObj ect

/ Subtype /Form

/ For nType 1

/BBox [0 0 1000 1000]
/Matrix [1 0 0 1 0 0]
/ Resour ces <<

/ ProcSet [/ PDF]
>>

>>
Some of the dictionary keys are obvious: figpe and Subtype keys define it as a Form XObject, B®x
sets the bounding box, and the embed&edour ces dictionary specifies the resources needed. Form XOb-

jects have the useful property that when they are executed they make no change to the graphic state; their execu-
tion is implicitly wrapped up between graphical save and restore operations.

We now see that a COG PDF page consists of nothing more than an array of Form Xobject COGs, interleaved
with spacer objects that position the COGs on the page.

3.2. PDF COG tools

All the tools shown in Figure 2 are now complete, or nearly so, for PDF COGs. Extractor, Encapsulator and
Manipulator are all implemented as plugins for Adobe Acrobat 7.0; COG Linker is a standalone XML applica-

tion to be described later. A proof of concept has been completed for COG Creator via the development of a
post-processor for output from the UNIX device-independent versidrofif This post-processor is capable of

creating an entire document such as a report, or an academic paper, as a sequence of COGs and a sample page
from just such a paper, created in PDF-COG form, is shown in Figure 3. By viewing such a document with the
COG Manipulator plugin it is very clear that individual items such as the table, the mathematical formula or the

line diagram could readily be extracted for use elsewhere.

However, this happy state of affairs does not apply if COG Manipulator is asked to extract material from a PDF
page that has not been prepared with COG-compatible software. The difficulties encountered prompted the
development of COG Extractor and they merit a sub-section of their own because they highlight the problems
faced when a page layout language fails to encourage an ‘object oriented’ view of page components.

3.3. Problemsencountered in PDF-COG Extractor

To understand the problems in extracting material from amorphous and unstructured pages, let us take PostScript
and PDF as an example. We have already noted the distinct performance advantages if page creation software
generates PostScript which is close to final form and which has no procedural abstractions corresponding to
objects on the page. Furthermore, there is nothing at all in PostScript to require that material on a page be laid
down in anything like a logical order —the approach has always been that if the final page looks correct then the
rendering order is irrelevant.

Once the PostScript is distilled to PDF, optimisations are effected to keep file size down using various compres-
sion techniques and by subsetting embedded fonts to contain only the characters that are actually used. However,
it is not generally safe for Adobe Distiller to alter the rendering order of the text and graphic items it encounters
from that established in the original PostScript.

The quality of the PDF, therefore, with regard to the clean extraction of material is determined very much by the
quality of the original PostScript From Acrobat 4.0 onwards Toeich Up facility has been enhanced to allow
graphic objects, as well as text objects, to be selected and moved around the page. The aim is to allow adjust-
ments to the detailed layout of a page without having to revert to the software that initially created the PDF. The
problem is that the underlying lack of a proper object model means that Touch Up tends to select what it knows
it can safely manipulate rather than what the user might actually want.

COG Extractor works very hard to try and identify which objects lie within the selected area and to select the
minimum possible material from the page.

3.4. COG Linker

The flexibility provided by COGs can only be fully exploited if COGs from multiple, disparate, sources can be
combined programmatically to form a composite document. Although the COGs themselves have to be in some
specific format, such as PDF or SVG, it helps greatly if the script that places them, and which specifies their
properties, can be in a format that is amenable to processing by a variety of other programs. In effect we want is
something similar to a program languatijeker that takes COGs from a variety of sources and links them
together to form a single document. In a program language linker object modules are created using a local base
address of zero; the linker places these modules and alters their addresses so that they sit within a new, merged,
address space. In a similar manner our COGs all have a local (0,0) origin but the COG linker needs to know
which COGs appear on which page, and at which positions.

Rather than developing our own linking language we investigated the XML-Rsebnalized Print Markup
Language(PPML) developed by a consortium of digital press manufacturers (FORPML seemed promis-

ing not the least because it is a standardized method for describing personalized or ‘variable data’ dotuments
in such a way that blocks of material can be Raster Image Processed (RIPped) just once and then cached in a
RIPped form for reuse. PPML has XML elements such <tBJECT>, <REUSABLE OBJECT> and
<OCCURRENCE LI ST> to allow for object specification and re-use, together with optional
<SUPPLI ED_RESOURCES>, <REQUI RED RESOURCES> and<REQUI RED RESOURCE_REF> elements. It

was disappointing to find that PPML'’s inheritance and scoping rules for resources could be restricted no further
than the entire page (though, to be fair, this is a very plausible unit of interest for digital press manufacturers).
Fortunately, it has proved relatively easy to adapt PPML into a form we have calledAPAMI (Adapted for
COGS) so that we now have a language which fully satisfies our need for a COG link-editing lahguage

[
Ll o I | Aath
e P B e e e s
P T e o "
A ekt B g e 01 g P
. e - - L o A ']
— ety
vt B gl i e
e 1 | Wi
taren Soaan
peimien

F—ry
Jipee | Processing WTEX o FOF |

[Tursing o the questeon of the size of the Departascet of Cotigater Scieace 8 hpaahctical UK
paiverady, in L5, thee Nilhweng table will be of Ecica

Fulll Time Foguivalend Simdenis

LHs
. Hionee + EC Orvetsens
e
i Ciraduied O Cirachumied
p | Course 1948 Cimarss: 1568
L] F A F .1 F | F
Computer Sowence LG &Y | 0S| 2w 1 @

Compeser Science Stattics G| 1 |osjes|jos) o L1} o a

Mlulenialacs Coinguner Scwnee | LG 35 | 0 1 0 Jos| 1 yos|0s

Computer Schence Uy hamatics UGis|os 45 (058 0 | @ o | @

Seepiics may eonpeciee ihat the shove iable does nod show real shadesi pembers bei e they
by, inakead. heen ! frons ihe Sormesls

“-._q,i_q._'."_

“h.."'...'d"...
u

WLk, '|'J=£'l[—[.,l'l.l'lplq—d'|l

COG boundarles are highlighted

Figure 4 shows an extract from a PaC script corresponding to a page of a scientific paper. The extract shows
the declaration of one of the resources (the Times Roman font), a reusable COG object for the page header
“INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY” which, in turn, contains a statement of the
font(s) it needs followed by the PDF for this COG and, in an occurrence list, the unique COG identifier by which
this object will be referenced. Finally, there is a page layout section where this particular COG is placed via a
<MARK> operation and called out via atOCCURRENCE REF>.

3.5. Recent developments

The development of the COG tools already described has led to the start 6QBeScrapbook project in

which visitors to museums, or other buildings of interest, can download pre-existing COGs, or create their own,
for subsequent placement in a montage that records their visit. This project makes heavy use of MS-Windows
versions of COG Encapsulator (for wrapping JPEG photographs from digital cameras as PDF COGSs) together
with COG manipulator for creating the montage.

4. SVG ASA PAGE DESCRIPTION LANGUAGE AND A FORMAT FOR COGS

In 1998 the World Wide Web Consortium (W3C), set up a working group to draw up draft proposals for Scal-
able Vector Graphics (SVG). The perceived need at the time was for improved rendering, in Web browsers, of
material such as line diagrams, schematics, and maps. For the most part popular browsers such as Internet
Explorer need to install an SVG plug-in supplied by Adobe Systems Inc. but recently an Open Source SVG
browser calledSquiggle has been released by the Apache pr8jecBVG is an application of XML and this

allows it to participate, via hamespaces, in general XML documents and to be transformed by XML parsers, by
ECMAscript inside Web browsers or by scripts writtenXML Stylesheel. anguagel ransformations (XSLT).

The semantics of SVG’s graphics model are similar to those of PostScript and PDF. In common with these two
languages, SVG combines graphical sophistication with the ability to place text strings accurately. It is tempting
to imagine, therefore, that an extension of SVG to take on board the notion of pages, via the ppaEsats

in SVG 1.2, would be relatively straightforward to bring about. Sadly, this is not the case. A paper by Danilo and
Fujiisawal0 surveys just some of the features that are missing such as filters, ICC colour spaces and sophisti-
cated font handling and embedding. These, and a host of other necessary features, are already present in PDF.

At the time of writing the release of SVG 1.2 does not seem imminent and, for the moment at least, Acrobat’s
increasing ability to render SVG (used®hotoshop Albuincoupled with an ever-expanding use of XML nota-

tion inside PDF itself might seem the best way forward for creating an SVG-friendly Page Description Language
(PDL).

However, it seems certain, one way or another, that SVG will eventually emerge as a viable PDL and it is inter-
esting, therefore, to see what it might offer in the area of variable data documents. Much of SVG’s potential
arises from the fact that it is an XML application and, like all XML applications, it is therefore a tree structure
that can be suitably interpreted. This is a sufficiently important point to warrant an explanatory sub-section.

4.1. Thenatureof XML

One of the most common misconceptions about XML is the failure to realise that iheta@syntaxin which a
potentially infinite number of XML ‘languages’ can be expressed. The standardised features of XML are such
things as the ‘pointy bracket’ notation for the defined tags (more properly oalbedent$, the specification of

the various character sets that can be used, the syntax aftthmites that can be attached to elements and so

on. Perhaps most important of all is that the specification of a set of XML elements, via a Document Type
Definition or an XML Schema, will set out the allowed ways in which the elements may form sequences and the
ways in which the elements can nest inside one another. All in all the most general data structure that an XML
document defines is a tree, and one whose nodes are the various XML elements which occur in a particular doc-
ument. These nodes themselves can optionally be decorated with attributes.

<?xm version="1.0" encodi ng="utf-8" ?>

<PPM. xm ns="http://ww. podi . org/ ppm / ppm 210. xsd" ><DOCUMENT_SET><DOCUMENT>

<SUPPLI ED_RESOURCES>

<SUPPL| ED_RESOURCE Nane="840f edla- 70b3- 11da- 9d9f - c82689080901"
Format ="pdf/font" Type="Font">

<| NTERNAL_DATA><PDF><DI CT DEFI NE="1/0">

<NAME KEY="Subtype" VAL="Typel"></ NAVE>

<NAME KEY="Nane" VAL="R'></ NAMVE>

<NAME KEY="BaseFont" VAL="Ti nes- Ronan"></ NAVE>

<NAME KEY="Encodi ng" VAL="MacRomanEncodi ng" ></ NAVE>

<NAME KEY="Type" VAL="Font"></ NAVE>

<NAME KEY="UU D' VAL="840f edla- 70b3- 11da- 9d9f - c82689080901" ></ NAME>

</ SUPPLI ED_RESOURCE>

</ SUPPLI ED_RESOURCES>

<REUSABLE_OBJECT>

<REQUI RED_RESOURCES>

<FONT Font Nanme="1840f edla- 70b3- 11da- 9d9f - c82689080901" For mat =" pdf/font"
Resour ceNane=" R"'></ FONT>

</ REQUI RED_RESOURCES>

<OBJECT Position="0 0">

<SOQURCE Di nensi ons="306. 579987 8.649994" For mat ="application/cog">

<I| NTERNAL_DATA>

q

0.125000 0 0 0.125000 0 0 cm

BT

/IR 1 Tf

64. 000000 0 O 64.000000 0.000000 14.160000 Tm

(I NTERNATI ONAL JOURNAL OF QUANTUM CHEM STRY, VOL. V,) Tj

80. 000000 0 O 80.000000 1907.000000 14.160000 Tm (657) Tj

80. 000000 0 O 80.000000 2053.000000 14.160000 Tm (?) Tj

80. 000000 0 O 80.000000 2099.000000 14.160000 Tm (688 71)) Tj

ET

Q

</ | NTERNAL_DATA>

</ SOURCE>

</ OBJECT>

<OCCURRENCE_LI ST>

<OCCURRENCE Nane="Cogc38dc814- 707b- 11da- 9f dd- bce2766de247" ></ OCCURRENCE>

</ OCCURRENCE_LI| ST>

</ REUSABLE_OBJECT>

<PACE Di nensi ons="595. 000000 841.000000">

<MARK Posi tion="72. 000000 786. 119995" >

<OCCURRENCE_REF Ref =" Cogc38dc814- 707b- 11da- 9f dd- bce2766de247" >
</ OCCURRENCE_REF>

</ MARK>

</ PAGE> </ DOCUMENT> </ DOCUMENT_SET>
</ PPM.>

Figure 4: Portion of a PaC script for a scientific paper containing embedded PDF COGs

4.2. SVG COGs

The ability of SVG to implement the COG model has been investigated recently by Macdonald, Brailsford and
Bagley'! . It turns out that COG model can indeed be implemented in SVG but the manner in which this is
achieved is rather different than for PDF. The first point to note, in achieving the encapsulation that COGs
require, is that properties at a given point in the SVG tree tend to be inherited from higher layers in the tree. To
some extent this can be overcome by specifying graphic state properties explicitly in a grouping &lgment
Thus if we typeset a simple ‘Hello World’ example, in Times Roman, in SVG, the coding might be:

<text x="100" y="100" font-fam|y="Ti mes"
font-size="12pt">

Hello Wrld

</text>

but if we enclose this within a grouping we can enforce arbitrary scalings and translations:

<g transform="scal e(2)">

<text x="100" y="100" font-fam |y="Ti nes" font-size="12pt">
Hello World

</text>

</ g>

Here the text will be appear twice as big as before and the positioning coordinates will also double, so that the
text is now placed at (200,200).

By careful use of groupings one can gather together all the graphical content for an SVG COG «gidela-

ment labelled with a unique identifier (in a similar spirit to the unique ID of a PDF COG). We can then display
this COG later on by means of<use> element. Now, if this COG exists as an immediate child of the SVG
tree’s root node then it will be rendered even if it is never referred to, because the SVG renderer traverses the
SVG document tree in a depth-first left-to-right fashion. To stop the COG definition from being rendered too
early it can be placed insidesalef s> element. The SVG renderer knows that any SVG located within such an
element should not be rendered until it is explicitly called out and used.

To complete the picture we note thedvg> elements can be nested inside each other and this gives us an extra
layer of encapsulation and protection. By additionally wrapping the COGs irsigig> elements they can

then exist as a separate document fragments. This also means that SVG COGs become explicitly clipped to their
bounding box, and so more closely match the behaviour of PDF COGs. Another benefit is that resources such as
gradients and embedded fonts can be stored irsvey> wrapper.

5. VARIABLE DATA DOCUMENTSUSING DDF

There is a widespread perception, in some parts of the digital printing community, that XML-based tag sets are
either used on the Web, in the form of XHTML, or else are likely to be employed in metadata or in other rarefied
areas of document description totally unrelated to hard-copy printing. If this ever was true then, increasingly, it
is no longer the case. The fact that XML notation is such a popular standard means that there are plenty of soft-
ware tools for developing new XML tag sets and for manipulating documents marked up in them. This, in turn,
means that there is every incentive to standardise on XML notation for as many aspects of digital documents as
possible.

Arguably the single most important transformational tool is X&& Twhich is currently at the level of version

2.0. XSLT is itself an XML application and it is much used for transforming an input XML tree into some other
form. This output format may be yet another XML tree or it could be some other format with no resemblance to
XML and with no vestiges of a tree structure. The very flexibility of XSLT is what makes it so attractive and its
behaviour bears many resemblances to that of a functional programming language. Under the guidance of the
XSLT script the entire XML input tree can be traversed in breadth-first or depth-first ways; its nodes and their

attributes can be examined and code can be output dependent on what is found in the input tree.

For all of these reasons it becomes appealing to tackle the problem of variable data printing by inventing an
XML-based language designed with this very application in mind. Just such a language is DDF, developed by
Lumley, Gimson and Reé% 14, DDF holds application data, logical document structure and presentational
information all together in a single unified XML container. By exploiting XSLT’s ‘functional’ capabilities it is
possible to create objects corresponding to blocks of material in a catalogue (say) which can be parameterised
with arguments such as prices, fill colours, fonts and so on. Moreover, these function arguments can be fully
bound or partly bound with some values provided very late indeed —if at all.

By combining DDF with a constraint-based layout system it is possible to generate flexible, dynamic catalogues
and other configured advertising material. And it is certainly a bonus that the recent availability of SVG as an
output format means that DDF can now offer an ‘all XML’ solution to variable data printing. Although the
transformation of a DDF document may initially appear complex (and it can require more than one stage of
XSLT processing) there is a certain transparency in having everything in XML when compared to more ‘closed’
formats such as PDF. Work is under way to investigate whether some aspects of the COG model could usefully
be exploited by DDF.

6. CONCLUSION

Document preparation systems have evolved in such a way that most of them are still inflexible when it comes to
variable data printing. As we have seen PostScript has much power but is not easy to control, particularly in
variable data situations where entire functions, or some of the arguments to them, would need to be ignored
without causing calamitous crashes. Moreover, for reasons of interpreter speed in the early days, and for ease of
code generation, page creation applications tend to produce PostScript which is essentially final form and with
everything bound in place.

This strategy has persisted in PDF, where one has a well-defined data structure that is sequentially interpreted.
The problem is that PDF’s structures were not generally designed to have clearly visible parameter slots thereby
enabling late-bound data to be inserted. Furthermore its structures are emphatitd#gigned to be internally
reformatted at run time, via some form of script, prior to re-interpretation to achieve a rather different page
appearance. One of the few PDF features to attain true object status and re-usability is the Form XObject and
without its existence COG PDF would have been impossible.

The advantage of XML notation is that it reflects tree data structures, which are almost universal in computer
science. XML attributes resemble procedural parameters and scripting systems, such as ECMAscript and XSLT,
enable the tree to be reshaped and re-interpreted. These features alone give SVG some important advantages
over PDF in terms of flexibility: the attributes on its nodes are clearly visible and it is commonplace for
ECMAscript or XSLT to be able to create dynamic SVG documents. SVG'’s clear interpretation semantics make

it possible to envisage genuinely parameterisable, variable-data, SVG COGs as opposed to the static encapsula-
tion of PDF COGs.

The message seems to be (and this is particularly apparent in the COG and DDF work) that we need our modern
digital documents to remain dynamic and malleable until very close to the moment that they are rendered. This
kind of flexibility is certainly provided (albeit with some loss of performance at times) by adopting XML-based
solutions. As XML-based solutions propagate ever closer to final-form document layout it seems clear that the
world of digital documents and digital printing is set to change out of all recognition over the next few years.

ACKNOWLEDGEMENTS

Thanks are due to my two colleagues at Nottingham, Steven Bagley and Alex Macdonald, for many animated
discussions and for help in providing COG-based material for this paper. Conrad Taylor’s helpful report of John
Warnock's Lovelace Medal talkhftp://ww. epsg. or g. uk/ pub/ war nock/ war nock_0O1. ht m)

filled in many historical details. It's a pleasure also to record our collaborative work with John Lumley and his
colleagues at HP (UK) resulting from an initial interest in COGs by Hui Chao at HP (Palo Alto).

10.

11.

12.

13.

14.

REFERENCES

Adobe Systems Incorporated®DF Reference (Third Edition) version 1.4SBN 0-201-75839-3,
Addison-Wesley, December 2001.

Simon Fuller, “PostScript as a Design Tool,” Real World PostScripted. Stephen F. Roth, Addison-
Wesley, 1988.

Steven Bagley, David Brailsford, and Matthew Hardy, “Creating reusable well-structured PDF as a
sequence of Component Object Graphic (COG) elementsPrisceedings of the ACM Symposium on
Document Engineering (DocEng’03)pp. 58-67, ACM Press, 20-22 November 2003. ISBN
1-58113-724-9

PODi, Print markup language functional specification version ,2.1June 23 2003.
http://ww. podi .org

Felipe R. Meneguzzi, Leonardo L. Meirelles, Fernando T. M. Mano, Ana Cristina B. da Silva,am@é.Jo"”
S. de Oliveira, “Strategies for Document Optimization in Digital Publishing, Piroceedings of the ACM
Symposium on Document Engineering (DocEngBOM Press, October 2004. Milwaukee, Wisconsin

Steven Bagley and David Brailsford, “Page Composition using PPML as a link-editing scripBfoin
ceedings of the ACM Symposium on Document Engineering (DocEngip4)134-136, ACM Press,
27-31 October 2004. ISBN: 1-58113-938-1

Steven R, Bagley and David F. Brailsford, “The COG Scrapbook,Pinceedings of the ACM Sympo-
sium on Document Engineering (DocEng’0p) 31, ACM Press, 2—4 November 2005. Bristol, UK

Squiggle—the SVG browser ht t p: / / xm . apache. or g/ bati k/ svgvi ewer . ht m

SVG 1.2—Multiple Page http://ww. w3. or g/ TR/ 2004/ WDSVGL 2-
20041027/ mul ti page. ht m

Alex Danilo and Jun Fujisawa, SVG as a Page Description Language See:
http: //ww. svgopen. or g/ 2002/ paper s

Alexander J. Macdonald, David Brailsford, and Steven Bagley, “Encapsulating and Manipulating Compo-
nent Object Graphics (COGSs) using SVG,” Rroceedings of the ACM Symposium on Document Engi-
neering (DocEng’05)pp. 61-63, ACM Press, 2—4 November 2005. Bristol, UK

W3C, World Wide Web Consortium, XSL Transformations (XSLT) Version 2.0
http://ww. w3. org/ TR/ xsl t 20/

John Lumley, Roger Gimson, and Owen Rees, “A Framework for Structure, Layout and Function in Doc-
uments,” in Proceedings of the ACM Symposium on Document Engineering (DocEngQaBJ Press,
2—-4 November 2005. Bristol, UK

John Lumley, Roger Gimson, and Owen Rees, “Extensible Layout in Functional Documenis,2006
Digital Publishing Conferencel6-17 January 2006.

