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Abstract

Randomization-based techniques for classifier ensemble construction, like Bag-

ging and Random Forests, are well known and widely used. They consist of

independently training the ensemble members on random perturbations of the

training data or random changes of the learning algorithm. We argue that ran-

domization techniques can be defined also by directly manipulating the param-

eters of the base classifier, i.e., by sampling their values from a given probability

distribution. A classifier ensemble can thus be built without manipulating the

training data or the learning algorithm, and then running the learning algorithm

to obtain the individual classifiers. The key issue is to define a suitable parame-

ter distribution for a given base classifier. This also allows one to re-implement

existing randomization techniques by sampling the classifier parameters from

the distribution implicitly defined by such techniques, if it is known or can be

approximated, instead of explicitly manipulating the training data and run-

ning the learning algorithm. In this work we provide a first investigation of

our approach, starting from an existing randomization technique (Bagging): we

analytically approximate the parameter distribution for three well-known clas-

sifiers (nearest-mean, linear and quadratic discriminant), and empirically show

that it generates ensembles very similar to Bagging. We also give a first example

of the definition of a novel randomization technique based on our approach.
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Randomization, Bagging

1. Introduction

Ensembles methods have become a state-of-the-art approach for classifier

design [1, 2]. Among them, ensemble construction techniques based on random-

ization are well-known and widely used, e.g., Bagging [6], Random Subspace

Method [3], Random Forests [4], and the more recent Rotation Forests [7]. Ran-

domization techniques have been formalized in [4] as independently learning

several individual classifiers using a given learning algorithm, after randomly

manipulating the training data or the learning algorithm itself. For instance,

Bagging and Random Subspace Method consist in learning each individual clas-

sifier respectively on a bootstrap replicate of the original training set, and on a

random subset of the original features; Random Forests (ensembles of decision

trees) combine the bootstrap sampling of the original training set with a random

selection of the attribute of each node, among the most discriminative ones.

The main effect of randomization techniques, and in particular Bagging, is

generally believed to be the reduction of the variance of the loss function of a

base classifier. Accordingly, they are effective especially for unstable classifiers,

i.e., classifiers that exhibit large changes in their output as a consequence of

small changes in the training set, like decision trees and neural networks, as

opposed, e.g., to the nearest neighbor classifier [6]. It is worth noting that ran-

domization techniques operate in parallel, contrary to another state-of-the-art

approach, boosting, which is a sequential ensemble construction technique [8].

In this work we propose a new approach for defining randomization tech-

niques, inspired by the fact that existing ones can be seen as implicitly inducing

a probability distribution on the parameters of a base classifier. Accordingly, we

propose that new randomization techniques can be obtained by directly defin-

ing a suitable parameter distribution for a given classifier, as a function of the

training set at hand; an ensemble can therefore be built by directly sampling

the parameter values of its members from such a distribution, without actually
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manipulating the available training data nor running the learning algorithm. In

this way, an ensemble can be obtained even without having access to the train-

ing set, but having access only to a pre-trained classifier. Some information

about the training set, such as mean and covariance matrix, is enough to apply

our method, and it could be obtained from a pre-trained classifier.

Our approach also allows a different implementation of existing randomiza-

tion techniques. If the distribution induced by a given technique on the param-

eters of a given base classifier is known or can be approximated, one could build

an ensemble as described above, instead of running the corresponding procedure

and then the learning algorithm.

As mentioned above, the key issue of our approach is to define a suitable

parameter distribution for a given base classifier, i.e., capable of providing a

trade-off between accuracy and diversity of the resulting classifiers which is ad-

vantageous in terms of ensemble performance. To our knowledge no previous

work investigated the distribution of classifier parameters induced by random-

ization techniques, which is not a straightforward problem. To take a first step

in this direction, in this work we start from the analysis and modelling of the

distribution induced by one of the most popular techniques, Bagging, on base

classifiers that can be dealt with analytically: the nearest mean, linear discrim-

inant, and quadratic discriminant classifiers. We then assess the accuracy of

our model by comparing the corresponding, empirical parameter distribution

with the one produced by Bagging. The results of our analysis, that have to

be extended in future work to other base classifiers and randomization tech-

niques, are aimed at obtaining insights on the parameter distributions induced

by existing randomization techniques, and thus hints and guidelines for the def-

inition of novel techniques based on our approach. We give a first example of

the definition of a new randomization technique, starting from our model of the

distribution induced by Bagging on the classifiers mentioned above.

The rest of this paper is structured as follows. In Sect. 2 we summarize the

main relevant concepts about randomization techniques and Bagging. We then

present our approach and describe the considered base classifiers in Sect. 3.
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In Sect. 4 we model the parameter distribution induced by Bagging on such

classifiers. In Sect. 5 we empirically evaluate the accuracy of our model, and

give an example of the definition of new randomization techniques based on our

approach. In Sect. 6 we discuss limitations and extensions of our work.

2. Background

The notation used in this paper is summarized in Table 1. We shall use

Greek letters to denote probability distribution parameters, and Roman letters

for other quantities, including estimated distribution parameters (statistics);

vectors in Roman letters will be written in bold. For a given statistic a estimated

from a training set we shall denote by a∗(j) its j-th bootstrap replicate, and

with a∗ the corresponding random variable.

Randomization techniques for ensemble construction can be formalized as

follows [4]. Given a feature space X ⊆ Rd, a set of class labels Y, a training

set T = {(xi, yi)}ni=1, where x ∈ X and y ∈ Y, a base classifier and its learn-

ing algorithm L, a randomization technique R independently learns N different

classifiers hj(·; θj), j = 1, . . . , N , by repeatedly calling L, where θ1, . . . , θN are

independent and identically distributed (i.i.d.) realizations of some random

variable ΘR. In practice, the above idea can be implemented by introducing

some randomness into the training process of the individual classifiers, by ma-

nipulating either the training data or the learning algorithm, or both.

As an example, we focus here on the popular Bagging technique. It has been

originally devised for regression tasks, with the aim of reducing the variance of

the expected error (mean squared error) of a given regression algorithm, and has

been extended to classification algorithms [6]. According to the above formal-

ization, the corresponding random variable ΘR is associated with the bootstrap

sampling procedure: its values correspond to the possible bootstrap replicates

T ∗ of the original training set T of size n, obtained by randomly drawing with re-

placement n instances from it (hence the name “Bagging”, which is an acronym

for “bootstrap aggregating”). Each base classifier hj , j = 1, . . . , N , is learned
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Table 1: Summary of the notation used in this paper

Symbol Meaning

X , Y Feature space and class label set

(xi, yi) ∈ X × Y Feature vector and label of the i-th instance

T Training set

L Learning algorithm

h : X 7→ Y Individual classifier

R Randomization technique

ΘR Random variable associated to R

Ψ(ΘR) Random variable of the classifier parameters associated to R

µ, Σ True mean and covariance matrix

m, S Sample mean and covariance matrix

on a bootstrap replicate T ∗j , and can be also denoted as hj(·;T ∗j ). The ensem-

ble prediction is usually obtained by majority voting. For base classifiers that

output a real-valued score, simple averaging can also be used [6].

As the ensemble size N increases, its output approaches the asymptotic

Bagging prediction, which, when majority voting is used, is defined as:

y∗ = arg max
y∈Y

P[h(x;T ∗) = y] . (1)

Several authors (e.g., [6, 9, 10]) have shown that ensembles of 10 to 25 “bagged”

classifiers attain a performance very similar to the one of larger ensembles,

and thus of the asymptotic Bagging. This is a useful, practical guideline to

attain a trade-off between computational (both space and time) complexity and

classification performance.

Since [6], Bagging is known to be effective especially for unstable classifiers

like decision trees and neural networks. In particular, it mainly works by reduc-

ing the variance component of the loss function (usually, the misclassification

probability) of a given base classifier [11, 12]. Other explanations have also

been proposed; for instance, in [13] it has been argued that Bagging equalizes

the influence of training instances, and thus reduces the effect of outliers; this

is due to the fact that every instance in T has a probability of about 0.632 of
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appearing in a bootstrap replicate, and thus each outlier is present on average

only in 63% of them.

A thorough analysis of the stabilizing effect of Bagging has been carried out

in [9, 14] for the Linear Discriminant and the Nearest Mean classifiers. Their

degree of instability was found to depend also on the training set size n: the

smaller the training set, the higher the instability, which in turn worsens clas-

sification performance. In particular, the above classifiers turned out to very

unstable (thus exhibiting a maximum of the generalization error) for critical val-

ues of n around the number of features d, and Bagging was capable of improving

their performance only under this condition.

In Sect. 4 we shall analyze and model the parameter distribution induced by

Bagging on some base classifiers, including the ones considered in [9, 14], as a

first step toward the development of novel randomization techniques based on

the definition of suitable parameter distributions.

3. A parameter randomization approach for ensemble construction

Consider a given classification algorithm, e.g., a parametric linear classifier

with discriminant function w> · x +w0 implemented as the linear discriminant

classifier (LDC), or a non-parametric neural network trained with the back-

propagation algorithm. Let ψ denote the parameters that are set by the chosen

learning algorithm L, e.g., the coefficients of the LDC (in this case, ψ = (w, w0)),

or the connection weights of a neural network.

Consider now any given randomization technique R (e.g., Bagging), defined

by some manipulation procedure of the training set T or of L. The classifiers

of an ensemble of size N obtained using R can be denoted as h1(x;ψ(θ1)),

. . . , hN (x;ψ(θN )), where θj , j = 1, . . . , N , denote N i.i.d. realizations of the

corresponding random variable ΘR, and the ψ(θj)’s denote the parameters of

the corresponding classifiers, where we explicitly point out their dependence on

the θj ’s. For instance, if Bagging is applied to a linear classifier, ψ(θj) denotes

the coefficients (wj , w0,j) obtained by L on a bootstrap replicate T ∗j of T . In
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the above setting, the parameters ψ(θj) can be seen as i.i.d. realizations of a

random variable Ψ = Ψ(ΘR), whose distribution is implicitly defined by R and

L, and depends on T . Accordingly, we write such a distribution as PR,L[Ψ].

Note that the ψ(θi)’s are i.i.d. because they are functions of i.i.d. realizations of

ΘR. Note also that PR,L[Ψ] is the joint distribution of the classifier parameters.

The above formalization suggests an alternative implementation of a known

technique R, in the case when the distribution PR,L[Ψ] is known or can be ap-

proximated. The traditional procedure is to run L for N times on (possibly

perturbed versions of) the training set T at hand (e.g., in the case of Bagging,

on bootstrap replicates of the original training set), or on a modified version of

L [4]. However, for given R and L the corresponding PR,L[Ψ] could be either

analytically derived or empirically modelled beforehand, as a function of T , as

we shall show in Sect. 4. Accordingly, the alternative implementation we pro-

pose is to start from the model PR,L[Ψ], computed as a function of the training

set T at hand, and then independently draw N i.i.d. realizations ψ1, . . . , ψN of

the classifier parameters by directly sampling from PR,L[Ψ], i.e., without manip-

ulating T nor running L. In practice, the distribution PR,L[Ψ] “bypasses” the

manipulation of T and the need of running L to obtain the ensemble members,

as it directly models the effects of these procedures on the classifier parameters.

The above approach can be seen as modelling and reproducing the variance

reduction effect of traditional randomization techniques on the loss function of

base classifiers, by “reverse engineering” their mechanism on the classifier pa-

rameters. In other words, it learns the parameter distribution that produces

such a variance reduction effect on the loss function, to reproduce it through

sampling the classifiers from the learned distribution, instead of learning the

classifiers on manipulated versions of the training data. Note that our approach

does not necessarily reduce the variance of the classifier parameters (which is not

its rationale), exactly as traditional randomization techniques do not necessar-

ily reduce it. A possible advantage of re-implementing existing randomization

techniques using the above approach is a lower processing time for ensemble

construction.
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More interestingly, the above formalization suggests a different approach for

developing novel randomization techniques, alternative to the manipulation of

the training data or the learning algorithm, followed by N runs of L. This

approach consists in directly defining a suitable distribution PL[Ψ], not derived

from any actual procedure R, and then in sampling from it the parameter values

of the N ensemble members. This translates the requirement of defining an ef-

fective procedure for manipulating the training data or the learning algorithm,

into defining a suitable distribution PL[Ψ], in terms of improving the ensem-

ble performance by reducing the variance of the loss function. This problem

is challenging, for several reasons. One reason is that different distributions

should be defined for different base classifiers, that are characterized by differ-

ent parameters; for instance, the distribution of the coefficients of the nearest

mean classifier induced by Bagging is likely to be different from the one of the

connection weights of a neural network induced by the same Bagging random-

ization technique. Another reason is that understanding and modelling how the

parameters of a given classifier jointly affect the variance of its loss function can

be very difficult.

Accordingly, in this work we take a first step toward a practical implementa-

tion of our approach, by analyzing and modelling the joint parameter distribu-

tion induced by existing randomization techniques on some base classifiers. To

this aim, we focus on the popular Bagging technique, and consider three base

classifiers (summarized in Sect. 4.1) that can be dealt with analytically. The

results of such an analysis can provide useful insights on the characteristics that

parameter distributions should exhibit to reproduce the variance reduction ef-

fect of existing randomization techniques on the loss function of base classifiers.

4. Joint parameter distribution of “bagged” classifiers

For the sake of simplicity, and with no loss of generality, in the following

we consider two-class problems. All the results of this section can be easily

extended to multi-class problems, as explained in Sect. 4.1.
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Let Y = {+1,−1} denote the class labels, and n1 and n2 (with n = n1 +n2)

the number of training instances from the two classes, i.e.: T = {(xi,+1)}n1
i=1

⋃
{(xi,−1)}n1+n2

i=n1+1.

We make the usual assumption of i.i.d. training instances. To make analyt-

ical derivations possible, we consider Gaussian class-conditional distributions.

The case of non-Gaussian, and even unknown distributions will be discussed in

Sect. 4.6.

We denote by mk = (mk,1, . . . ,mk,d)
> and by Sk, for k = 1, 2, the maximum-

likelihood estimates of the mean µk and covariance matrix Σk of class +1 and

−1, respectively, i.e.:

mk =
1

nk

nk∑
i=1

xi, Sk =
1

nk − 1

nk∑
i=1

(xi −mk)(xi −mk)>, k = 1, 2. (2)

In our derivations four random variables play the main role: the sample

mean m∗k and the sample covariance matrix S∗k of the bootstrap replicates of

T . Since the sample mean of n i.i.d. realizations of a multivariate Gaussian

N (µ,Σ) follows the distribution N (µ, 1
nΣ), according to [15] we approximate

the distribution of m∗k, k = 1, 2, with independent multivariate Gaussians:

N
(
µk,

1

nk
Σk

)
, k = 1, 2. (3)

The above approximation is accurate even when the data distribution is non-

Gaussian, provided that nk large enough, in virtue of the Central Limit Theorem

(CLT). According to a heuristic rule, for nk ≥ 30 the application of the CLT

is well justified. An even smaller value of nk could be enough, as shown in

Sect. 5.1.

Beside m∗k, the sample covariance matrix S∗k is a random variable, too. How-

ever, considering both mean and covariance matrix as random variables makes

the analytical derivation very difficult (especially in the computation of the in-

verse of the covariance matrix), because, as a consequence of Eq. (2), we should

consider two dependent random variables m∗k and S∗k. Therefore, to further sim-

plify our analysis we shall approximate the sample covariance matrices of any

bootstrap replicate T ∗(j) with the corresponding (constant) covariance matrix
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of the data distribution:

S∗k(j) ' Σk, j = 1, . . . , N . (4)

We shall evaluate by numerical simulations the accuracy of this approximation

in Sect. 5. Accordingly, in our analysis only the m∗k’s are random variables.

Based on the above assumptions and results, in the following we derive

the joint parameter distributions of the base classifiers mentioned above, and

summarized in Sect. 4.1, under the assumption of Gaussian class-conditional

distributions, and under different forms of the covariance matrices Σ1 and Σ2:

• Case 1: identical covariance matrices, proportional to the identity matrix:

Σ1 = Σ2 = σ2I.

• Case 2: identical covariance matrices, proportional to the identity matrix

but with different diagonal values: Σ1 = Σ2 = Σ = ~σ2I, where ~σ =

(σ2
1 , . . . , σ

2
d).

• Case 3: identical covariance matrices having a general form: Σ1 = Σ2 = Σ.

• Case 4: diagonal covariance matrices, different from each other: Σ1 = ~σ2
1I,

Σ2 = ~σ2
2I such that ~σ1 6= ~σ2, ~σ2

1 = (σ2
1,1, . . . , σ

2
1,d), ~σ

2
2 = (σ2

2,1, . . . , σ
2
2,d).

We finally consider in Sect. 4.6 the most general case of non-Gaussian or un-

known data distribution.

4.1. Base classifiers

Here we summarize the three base classifiers considered in this work, con-

sidering their “ideal” discriminant function, i.e., written in terms of the true

parameters of the underlying data distribution. All such classifiers provide the

optimal discriminant function (either asymptotically with respect to the train-

ing set size, or in the ideal case when the data distribution is known) when the

class-conditional distributions are Gaussian, under different forms of the covari-

ance matrices of the two classes. This fact allows to analytically derive the joint

parameter distributions of the corresponding “bagged” classifiers.
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To extend the following results to problems with more than two classes, it

suffices to carry out the same derivations for the discriminant function of each

class, which has the same form as in the two-class case.

Nearest-mean classifier (NMC). This is a linear classifier whose discrim-

inant function is defined as:

g(x) = w> · (x− x0) , (5)

where

w = µ1 − µ2, x0 =
1

2
(µ1 + µ2) . (6)

This is the optimal classifier, if the class-conditional distributions are Gaussian

and Σ1 = Σ2 = σ2I.

Linear Discriminant Classifier (LDC). The LDC is another well-known

linear classifier. Its discriminant function is given by (5), where:

w = Σ−1(µ1 − µ2), x0 =
1

2
(µ1 + µ2) , (7)

and Σ = 1
2 (Σ1 + Σ2). The LDC is the optimal classifier if the class-conditional

distributions are Gaussian with identical covariance matrices (of any form):

Σ1 = Σ2 = Σ.

Quadratic Discriminant Classifier (QDC). This classifier produces a

quadratic discriminant function:

g(x) = x>Wx + w>x + w0 , (8)

where

W =
1

2
(Σ−1

2 − Σ−1
1 ) ,

w = (Σ−1
1 µ1 − Σ−1

2 µ2) , (9)

w0 =
1

2
(µ>2 Σ−1

2 µ2 − µ>1 Σ−1
1 µ1) .

The QDC is the optimal classifier when the class-conditional distributions are

Gaussian, without constraints on the form of covariance matrices.
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4.2. Case 1: identical covariance matrices proportional to the identity matrix

In this section we assume

Σ1 = Σ2 = σ2I = Σ , (10)

for some value of σ ∈ R, where Σ denotes the common covariance matrix.

4.2.1. Joint parameter distribution

Due to our approximation (4), under assumption (10) the LDC and QDC

classifiers coincide with the NMC (see Sect. 4.1). Their discriminant func-

tion is given by Eq. (5), where w = (w1, . . . , wd)
> = µ1 − µ2, and x0 =

(x01, . . . , x0d)
> = 1

2 (µ1 +µ2). Such a function is a hyperplane orthogonal to the

line joining µ1 and µ2, and it is independent on Σ. A single classifier is therefore

described by means of d + 1 independent parameters, i.e. w (a d-dimensional

vector) and w0 = w> · x0 (a scalar value). Consequently, the parameter vector

is Ψ = (w, w0) ∈ Rd+1.

According to approximation (4), also the “bagged” QDC and LDC coincide

with the “bagged” NMC, which is defined by w∗ = m∗1−m∗2 and x∗0 = 1
2 (m∗1 +

m∗2), where both quantities are independent on Σ.

Our goal is to derive the joint distribution of the corresponding parameter

vector Ψ∗ = (w∗, w∗0) ∈ Rd+1. However, whereas the distribution of w∗ is

Gaussian, the one of w∗0 = (w∗)> · x∗0 = 1
2 ((m∗1)> ·m∗1 − (m∗2)> ·m∗2) is not,

and involves non-central Chi-Squared distributions which are more difficult to

treat. For this reason we consider the following, redundant parameter vector:

Ψ∗ = (w∗,x∗0) = (w∗1 , . . . , w
∗
d, x
∗
01, . . . , x

∗
0d) ∈ R2d , (11)

since also the distribution of x∗0 is Gaussian. From the above discussion, it

follows that the distribution of Ψ∗ can be approximated by a Gaussian:

N (ξ,Σξ) , (12)

where the expected value ξ ∈ R2d and the 2d× 2d covariance matrix Σξ are:

ξ = (w1, . . . , wd, x01, . . . , x0d), Σξ =

 Σw∗ Σw∗,x∗0

Σw∗,x∗0
Σx∗0

 , (13)
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and Σw∗,x∗0
is a d× d matrix whose components are the covariances among all

the w∗ and x∗0 components:

Σw∗,x∗0
= {cov(w∗i , x

∗
0j)}i,j=1,...,d . (14)

According to assumption (10), denoting
(

1
n1

+ 1
n2

)
by n, we have:

Σw∗ = σ2nId, Σx∗0
=
σ2

4
nId, Σw∗,x∗0

=
σ2

2
nId . (15)

Note that the above results follow from the following properties: i) m∗1 and m∗2

are independent random variables; ii) the components of the random vectors

m∗1 and m∗2 are independent on each other, since the features are uncorrelated

according to assumption (10); iii) the Normal distribution belongs to the Lévy

alpha-stable distribution family [19], i.e. linear combination of independent

Normal variables is a Normal variable. We also point out that the off-diagonal

terms of the sub-matrix Σw∗,x∗0
are equal to zero because the random variables

x∗0i and w∗j are independent for i 6= j. The situation is different for the diagonal

terms cov(x∗0i, w
∗
i ) because the random variables x∗0i = (µ∗1,i−µ∗2,i)/2 and w∗i =

µ∗1,i−µ∗2,i are dependent; the only exception is when both classes have the same

number of training instances, in which case also the latter terms are null.

Finally, we point out that, although the discriminant function of a single

NMC does not depend on Σ, the covariance matrix Σξ of the corresponding

parameter distribution, given by Eq. (12), does depend on Σ.

4.2.2. Confidence regions for the distribution parameters

In this section we derive the confidence regions for the parameters of the

distribution derived above. Since we deal with a finite number n = n1 + n2

of instances, the estimation of the “distance” between the true and the esti-

mated statistic is given by the confidence regions involving the Student’s t-

distribution [20] for the one-dimensional case, and the Hotelling’s T -squared

distribution [21] (which is a generalization of the former) used for multivariate

tests. We consider this kind of distributions in place of the standard confidence

intervals because generally we do not know the covariance matrix of the data
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and we use its maximum likelihood estimate (see Eq. (2)). In particular, in the

one-dimensional case (d = 1) the considered classifiers are defined only by the

parameter x0 = (µ1 + µ2)/2. In this case the confidence interval is given by:

m1 +m2

2
± t(1−α)

n−1 · s√
n
, (16)

where t
(1−α)
n−1 is the (1−α)-th percentile of the Student’s t-distribution for n− 1

degrees of freedom, m1 and m2 are the sample means, and s is the estimated

standard deviation of the data.

In the more general case of d > 1, the set of hypotheses we have to test is:H0 : ξ = ξ(0)

H1 : ξ 6= ξ(0) for some i

(17)

where ξ(0) = (ξ
(0)
1 , ξ

(0)
2 , . . . , ξ

(0)
2d ) is a known vector.

According to the T 2 Hotelling test (which generalizes the Student’s t-test

discussed above), the hypothesis H0 is accepted with probability 1− α, if:

Pr{T 2
Ψ∗ < T 2

2d(n− 1, α)} = 1− α , (18)

where T 2
Ψ∗ = (mΨ∗ − ξ(0))TS−1

Ψ∗(mΨ∗ − ξ(0)) (with mΨ∗ and SΨ∗ estimated

values of ξ and Σξ respectively) and T 2
2d(n − 1, α) is the α-th percentile of the

2d-dimensional T 2 Hotelling distribution with n−1 degrees of freedom. Eq. (18)

represents the confidence ellipsoid centered in ξ(0). Obviously, the hypothesis

H0 is refused (with the same probability), if T 2
Ψ∗ > T 2

2d(n− 1, α).

4.3. Case 2: identical, diagonal covariance matrices

We now discuss the case in which the covariance matrices of the classes are

identical and proportional to the identity matrix, but with different diagonal

values, i.e.:

Σ1 = Σ2 = Σ = ~σ2I , (19)

where ~σ = (σ2
1 , . . . , σ

2
d).

The LDC is the optimal classifier under the above assumption, and coincides

with the QDC. We analyze first these two classifiers. Their decision function
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is the one of Eq. (5), where x0 and w are given by Eq. (7), with w depending

on the matrix Σ. Accordingly, the resulting discriminant function is again a

hyperplane, but it is not orthogonal to the line joining µ1 and µ2.

In order to derive the distribution of the parameters Ψ∗ = (w∗,x∗0) of the

“bagged” classifier, we recall the following well-known property. If X ∼ N (µ,Σ)

is a p-dimensional random variable with a multivariate Normal distribution,

and A and b are respectively a non-singular matrix and a vector of proper size,

then also Y = AX + b has a multivariate Normal distribution, such that Y ∼

N (Aµ+b, AΣAT ). This implies that Ψ∗ has a multivariate Normal distribution

N (ξ,Σξ), where:

ξ =
[µ1,1 − µ2,1

σ2
1

, . . . ,
µ1,d − µ2,d

σ2
d

,
µ1,1 + µ2,1

2
, . . . ,

µ1,d + µ2,d

2

]
, (20)

and Σξ has the same structure as in Eq. (13), where:

Σw∗ =
1

~σ2
nId, Σx∗0

=
~σ2

4
nId, Σw∗,x∗0

=
1

2
nId . (21)

Note that also in this case Σw∗,x∗0
is the null matrix only if the classes exhibit

identical prior probabilities, otherwise it is a diagonal matrix.

Consider now the NMC, which is suboptimal under assumption (19). In this

case, the parameter distribution of the “bagged” NMC turns out to be the one

derived in Sect. 4.2.1, given by Eqs. (13) and (15), where σ2 =
(

1
d

∑d
i=1 σ

2
i

)
.

Consider finally the confidence regions for the distribution parameters (20)

and (21). We obtain results similar to the ones discussed in Sect. 4.2.2 where

mΨ∗ and SΨ∗ , in the T 2
Ψ∗ formula, are the estimated values of ξ and Σξ respec-

tively, given by Eqs. (20) and (21).

4.4. Case 3: identical covariance matrices

Here we discuss the case of identical, generic covariance matrices:

Σ1 = Σ2 = Σ . (22)

In this case the features are correlated, which does not allow us to analytically

derive all the elements of the covariance matrix Σξ of the parameter distribution
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of the “bagged” classifiers. Nevertheless, by performing an appropriate rotation

of the feature space, we obtain the diagonal matrix A−1ΣA (where A is the

eigenvector matrix) whose elements are the eigenvalues λ1, . . . , λd of Σ. This

leads us to the case already discussed in Sect. 4.3. The distribution of the

parameter Ψ∗, for the different classifiers considered, is therefore the one derived

in Sect. 4.3, where σ2
i is replaced by λi, i = 1, . . . , d, and w and x0 refer to

the values computed in the rotated feature space. Similarly, the same results

presented in Sect. 4.2.2 hold for the corresponding confidence regions.

4.5. Case 4: different, diagonal covariance matrices

Here we present the results when the covariance matrices of the classes are

different and have a diagonal form:

Σ1 = ~σ2
1I, Σ2 = ~σ2

2I, ~σ1 6= ~σ2 , (23)

where ~σ2
k = (σ2

k,1, . . . , σ
2
k,d), k = 1, 2.

4.5.1. Joint parameter distribution

The QDC is the optimal classifier under assumption (23). Its decision

function is given by Eqs. (8) and (9). Due to assumption (4), the quantity

W = 1
2 (Σ−1

2 − Σ−1
1 ) is a constant term. Accordingly, the parameter of the

“bagged” QDC classifier whose distribution we have to derive is Ψ∗ = (w∗, w∗0).

First, according to Eq. (9) we have:

w∗ = Σ−1
1 m∗1 − Σ−1

2 m∗2 . (24)

It is easy to see that w∗ approximately follows a multivariate Normal distribu-

tion:

N
(

Σ−1
1 µ1 − Σ−1

2 µ2,
1

n1
Σ−1

1 +
1

n2
Σ−1

2

)
. (25)

Next, to derive the distribution of w∗0 it is convenient to multiply it by the

number of training instances of each class, nk, and to rewrite the resulting

quantity (see Eq. (9)) as w∗0,1 − w∗0,2, where:

w∗0,k = nk(m∗k)>Σ−1
k (m∗k) = nk

d∑
i=1

(
m∗k,i
σk,i

)2

, k = 1, 2. (26)
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Consider now that {m∗k,i}i=1,...,d, k = 1, 2, are independent random variables,

and their distribution is approximately Gaussian; this implies:
√
nkm

∗
k,i

σk,i
∼ N (

√
nkµk,i
σk,i

, 1), i = 1, . . . , d, k = 1, 2 . (27)

It follows that the random variables w∗0,k in Eq. (26) approximately follow non-

central Chi Squared distributions with d degrees of freedom [23]:

w∗0,k ∼ χ2(d, ρk), k = 1, 2 , (28)

where ρk is given by:

ρk = nkµ
>
k Σ−1

k µk = nk

d∑
i=1

(
µk,i
σk,i

)2

, k = 1, 2. (29)

We point out that the components of the random variable w∗ = (w∗1 , . . . , w
∗
d)

are independent on each other (due to assumption (23)), but they are not in-

dependent on w∗0,1 and w∗0,2. For instance, the covariance between the first

component of w∗ and w∗0,1, calculated under the assumption of independent

features, is cov
(
w∗1 , w

∗
0,1

)
=

2µ1,1

σ2
1,1

. In the same way one obtains the covariance

between the other components of w∗ and w∗0,1 or w∗0,2.

Consider finally the “bagged” LDC and NMC, which are suboptimal un-

der assumption (23). Their parameter distribution is the one we obtained in

Sects. 4.2–4.4, where Σ = 1
2 (Σ1 + Σ2), depending on the form of Σ.

4.5.2. Confidence regions for the distribution parameters

The confidence region for the multivariate Gaussian random variable w∗

given by Eq. (24) can be computed by means of the T 2 Hotelling test, as previ-

ously discussed. The set of hypotheses that has to be tested is indeed:H0 : ω1i = ω0i ∀i = 1, . . . , d,

H1 : ω1i 6= ω0i for some i,

(30)

where ω0 = (ω01, . . . , ω0d) is a known vector. We accept the hypothesis H0 with

probability 1− α, if:

Pr{T 2
w∗ < T 2

d (n− 1, α)} = 1− α , (31)
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where T 2
w∗ = (mw∗ − ω0)>S−1

w∗(mw∗ − ω0), whereas mw∗ and Sw∗ are the

estimates of the distribution parameters of w∗ in Eq. (25). The derivation of

the confidence region for the non-central Chi-Squared variables w∗0,1 and w∗0,2 is

more difficult [16], and we omit it for the sake of simplicity.

4.6. General case: non-Gaussian or unknown data distribution

Up to now we derived the distribution of the parameters of “bagged” clas-

sifiers under the assumption that the data has a multivariate Gaussian distri-

bution with known class-conditional means µk and covariance matrices Σk. In

practice one has no access to the true values of µk and Σk. Nevertheless, in

the case of Gaussian data distribution, all the above results still hold by further

approximating the distribution (3) of the random variable m∗k by the following

Gaussian distribution, in which the sample means mk and covariance matrices

Sk (estimated from T , see Eq. (2)) are used in place of µk and Σk:1 i.e.:

N
(

mk,
1

nk
Sk

)
, k = 1, 2 . (32)

Moreover, thanks to the CLT the distribution of m∗k is approximated with good

accuracy by Eq. (32) even if the underlying data distribution is non-Gaussian,

provided that the sample size nk is sufficiently large as already mentioned above

(say, nk > 30, although in practice even a small value of nk is enough, as we will

show in Sect. 5.1). In particular, this allows the above results to be exploited

also in the practical case of unknown data distribution.

According to our approach and to the above results, we are now in the

position of presenting the procedure for constructing an ensemble of NMC,

LDC or QDC classifiers, using our approach to simulate Bagging, in a practical

setting with unknown data distribution. Given the decision functions of such

classifiers in Eqs. (5)–(9), one has to independently sample N realizations of

1Although in a boostrap replicate T ∗ of size n = n1 +n2 the number of samples from each

class can be different from nk (k = 1, 2), Eq. (32) is a good approximation for a sufficiently

large value of nk, thanks to the CLT.
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their parameters, i.e., Ψ∗(j) = (w∗(j),x∗0(j)) for NMC and LDC, and Ψ∗(j) =

(w∗(j), w∗0(j)) for the QDC, with j = 1, . . . , N .

The corresponding distributions depend on µk and Σk, that we approximate

with mk and Sk, k = 1, 2. Note that, generally, the sample covariance ma-

trices S1 and S2 are different and non-diagonal. For each base classifier, the

distributions are the following ones:

NMC : the distribution of Ψ∗ = (w∗,x∗0) is approximated by a multivariate

Gaussian N (ξ,Σξ) as in Sect. 4.2; the values of its mean ξ and covari-

ance matrix Σξ are given by Eqs. (13) and (15), where the scalar σ2 is

approximated by the mean value of the diagonal elements of 1
2 (S1 + S2).

LDC : according to Sect. 4.4, the distribution of Ψ∗ = (w∗,x∗0) is a multivariate

Gaussian N (ξ,Σξ), and the values of ξ and Σξ are given respectively by

Eqs. (20) and (21). In practice, an alternative and easier way to obtain the

parameters of the “bagged” LDC according to our approach is to sample

only the values of the random variables m∗1 and m∗2, whose distributions

are approximated by Eq. (32), and to plug them into Eq. (7), in which

the covariance matrices Σk are approximated by the corresponding Sk.

QDC : in Sect. 4.5 we derived the distribution of the parameter Ψ∗ = (w∗, w∗0).

As in the previous case, we can obtain the parameters of the “bagged”

QDC by sampling only the values of the random variables m∗1 and m∗2,

whose distributions are approximated by Eq. (32), and then plugging them

into Eq. (9).

5. Experiments

To evaluate the proposed randomization approach we carry out experiments

on 27 two-class data sets, using as base classifiers NMC, LDC and QDC. Our

first aim is to verify whether and to what extent the parameter distribution

of classifiers obtained by Bagging can be approximated by the ones we derived

in Sect. 4. Secondly, we compare the classification performance of Bagging
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Table 2: Characteristics of the data sets used in our experiments. The number of instances

in each class are shown between brackets.

Dataset Instances Features

1) Correlated Gaussian 400 (200+200) 30

2) Uncorrelated Gaussian 1000 (500+500) 10

3) Acute Inflammations 120 (70+50) 7

4) Banknote authentication 1372 (762+610) 4

5) Blood-transfusion 748 (570+178) 4

6) Climate Model Simulation Crashes 540 (46+494) 19

7) Connectionist Bench (Sonar, Mines vs. Rocks) 208 (97+111) 60

8) Daphnet Freezing of Gait 1.14 (1.03+0.11) ·106 9

9) Default of credit card clients 30000 (23364+6636) 23

10) Diabetic Retinopathy Debrecen 1151 (764+387) 19

11) EEG Eye State 14980 (8257+6723) 14

12) Bands 365 (135+230) 19

13) Cancer 699 (458+241) 9

14) German 1000 (700+300) 24

15) Pima 768 (500+268) 8

16) Spectfheart 267 (55+212) 44

17) Fertility 100 (88+12) 9

18) Haberman’s Survival 306 (225+81) 3

19) Hill Valley with noise 1212 (606+606) 100

20) Hill Valley without noise 1212 (600+612) 100

21) ILPD (Indian Liver Patient Dataset) 583 (416+167) 10

22) Ionosphere 351 (225+126) 34

23) LSVT Voice Rehabilitation 126 (42+84) 310

24) MAGIC Gamma Telescope 19020 (6688+12332) 10

25) Mesothelioma disease 324 (228+96) 34

26) Wisconsin Diagnostic Breast Cancer 569 (357+212) 30

27) Recognition of Handwritten Digits: 0 vs 1 360 (178+182) 15

28) Recognition of Handwritten Digits: 1 vs 2 359 (182+177) 15

29) Recognition of Handwritten Digits: 2 vs 3 360 (177+183) 15

30) Recognition of Handwritten Digits: 3 vs 4 364 (183+181) 15

31) Recognition of Handwritten Digits: 4 vs 5 363 (181+182) 15

32) Recognition of Handwritten Digits: 5 vs 6 363 (182+181) 15

33) Recognition of Handwritten Digits: 6 vs 7 360 (181+179) 15

34) Recognition of Handwritten Digits: 7 vs 8 353 (179+174) 15

35) Recognition of Handwritten Digits: 8 vs 9 354 (174+180) 15

with that of classifier ensembles obtained by our approach using the parameter

distributions derived for Bagging. Finally, we show an example of the definition

of a novel randomization technique according to our approach, i.e., by directly

defining a parameter distribution for the base classifier at hand. To this aim,

we modify the parameter distribution we derived for Bagging for the above base

classifiers.

The main characteristics of the data sets are reported in Table 2. We used

two artificial datasets whose distribution is known (Correlated Gaussian [14]
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and Uncorrelated Gaussian) and 25 real-world data sets from the UCI repos-

itory.2 Since Handwritten Digits is a 10-class data set, we considered nine

two-class problems which consist in discriminating digits i and i + 1; we also

used only the first 15 out of 64 features, to make the two-class problem more dif-

ficult. Both artificial data sets exhibit Gaussian class-conditional distributions;

in Uncorrelated Gaussian the covariance matrices are identical and proportional

to the identity matrix, which is the setting investigated in Sect. 4.2 (Eq. 10),

whereas in Correlated Gaussian they are diagonal matrices with the variance

of the second feature equal to 40 and the other ones equal to 1. The Corre-

lated Gaussian data set is also rotated for the first two features using a rotation

matrix

(
1 −1

1 1

)
.

We randomly subdivided each data set, using stratified sampling, into a

training set made up of 80% of the instances and a test set containing the remain-

ing instances. To evaluate the effect of the training set size on our approach, we

considered four different training sets of increasing size, n(1) < n(2) < n(3) < n(4)

where n(4) corresponds to the original training set; we then set the smallest size

n(1) equal to the number of features d, which corresponds to the “instability

region” where Bagging was found to particularly effective for the considered

classifiers in [14] (see Sect. 2); we then set the intermediate sizes n(2) and n(3)

as n(1) + 1
3

(
n(4) − n(1)

)
and n(1) + 2

3

(
n(4) − n(1)

)
. We obtained the training

sets of size lower than n(4) by a stratified sampling from the original training

set. For each base classifier and training set size we built two ensembles of

N = 31 classifiers: one using Bagging, and one using our approach, as described

in Sect. 4.6. We repeated the above procedure for ten times, and averaged the

results.

2http://archive.ics.uci.edu/ml
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5.1. Verification of the Gaussianity of the classifier parameters obtained by Bag-

ging

To evaluate the accuracy of the approximation of the distribution of classi-

fier parameters we derived in Sect. 4, we focused on two data sets: the artificial

Uncorrelated Gaussian, and the real-world Breast Cancer. The former exhibits

Gaussian class-conditional covariance matrices, whereas the distribution of the

latter is unknown and its features are correlated. In particular, we used the well-

known Jarque-Bera gaussianity test [17] to evaluate whether the distributions of

the vectors w∗ and x∗0 obtained by Bagging using the NMC and LDC are well

approximated by the derived multivariate Normal distributions. The Jarque-

Bera test is commonly used for verifying if the data comes from a Normal

distribution with unknown parameters, corresponding to the null hypothesis.

When the p-value [18] is smaller than 0.05, the test rejects the null hypothesis

at the default 5% significance level (which means that the distribution is not

Gaussian), otherwise the null hypothesis is accepted (i.e., the distribution is

considered Gaussian). We performed the test for each w∗ and x∗0 component

separately because, if a random vector follows a Gaussian distribution, its in-

dividual components are Gaussian random variables too. We also performed

the test for two different training set sizes, one corresponding to the instability

region (we chose n(1) = 10 for both data sets, since the number of features is

10 for Uncorrelated Gaussian and 9 for Breast Cancer), and one for a larger

training set size of n(2) = 300 and n(3) = 300, respectively. We did not perform

the test for the QDC, for which a different approach was used (see Sect. 4.6),

which cannot lead to Gaussian distributions.

Results are shown in Tables 3 and 4 for the Uncorrelated Gaussian and

Breast Cancer data set, respectively, obtained using NMC as the base classi-

fier, where x̄
(s)
0 and σ2

x̄
(s)
0

denote mean and covariance of each x0 component

obtained by implementing Bagging using our approach (columns 1 and 2), and

x̄∗0 and σ2
x̄∗0

denote the same quantities for the components of x0 obtained by

the original Bagging (columns 3 and 4). We point out that such means and

variances were computed over 310 values, given by 31 classifiers × 10 runs of
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the experiments. Similarly, w̄∗ and σ2
w̄∗ denote the same quantities for the

components of w obtained by our implementation of Bagging (columns 6 and

7) and by the original version (columns 8 and 9). Columns 5 and 10 show the

p-value related to each x0 and w component, respectively.

According to the test, the random variables x∗0 and w∗ obtained from Bag-

ging follow Gaussian distributions for both data sets, and for both training set

sizes. Indeed, the p-value is always greater than the default value 0.05 except

for sporadic cases in the instability region. In particular, the p-value increases

in both cases as the training set size increases, which is in agreement with the

CLT.

We point out that, for the two data sets above, in the instability region the

training set size n(1) = 10 is lower than 30, which, according to the heuristic

rule mentioned in Sect. 4, is the minimum value which justifies the application

of the CLT. This fact provides evidence that, as we mentioned in Sect. 4, the

distribution of the classifier parameters obtained by Bagging can be well ap-

proximated by a Gaussian also for a training set size lower than 30, even if the

original data distribution is not Gaussian.

We finally point out that the average parameter values obtained by our

implementation of Bagging are very close to the ones of the original Bagging.

Table 5 shows the results obtained using the LDC as base classifier (the

vector x0 is omitted, as it is identical to the one of NMC). For this classifier

it was not possible to compute the parameter w∗ for a training set size equal

to n(1), since in the instability region the covariance matrix of the data is ill-

conditioned. On the other hand, for a training set size n = 300, the random

variable w∗ (as well as x0, see above) is well approximated by a Gaussian

distribution for both data sets, as in the case of the NMC.

The above results provide evidence that Bagging can be effectively re-implemented

by our approach for the NMC and LDC classifiers using the parameter distribu-

tions we derived in Sect. 4, also in the practical cases of data sets with unknown

distribution.
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Table 3: NMC base classifier, Uncorrelated Gaussian data set. Comparison between mean

value and variance of the x∗
0 and w∗ components of the classifier parameter obtained by our

approach (columns 1-4) and by Bagging (columns 6-9), for training set sizes n(1) = 10 and

n(2) = 300. The p-value for the Normality test (see text) is shown for all the elements of the

above vectors obtained by Bagging: a value higher than 0.05 means that the corresponding

random variable has a Normal distribution, at the default 5% significance level.

n = 10

Our approach Bagging Our approach Bagging

x̄
(s)
0 σ2

x̄
(s)
0

x̄∗0 σ2
x̄∗0

p-value w̄(s) σ2
w̄(s) w̄∗ σ2

w̄∗ p-value

0.4403 0.0931 0.4400 0.0990 0.1469 0.5878 0.3842 0.6489 0.3935 0.3455

0.3857 0.0892 0.3373 0.0990 0.0266 -0.7716 0.4037 -0.6758 0.3935 0.4728

0.7065 0.0823 0.6572 0.0929 0.0834 0.4011 0.3615 0.3153 0.3331 0.0733

0.6414 0.1020 0.6813 0.0868 0.0187 0.1434 0.4264 0.0212 0.4065 0.5000

0.4841 0.1027 0.5468 0.1074 0.5000 -0.4147 0.3768 -0.2477 0.4113 0.0015

0.8863 0.1102 0.8477 0.0848 0.5000 0.4958 0.3852 0.3079 0.3650 0.5000

0.4627 0.0948 0.4830 0.0976 0.5000 -0.3146 0.3392 -0.2643 0.4209 0.2741

0.5203 0.1109 0.4764 0.1172 0.5000 0.4820 0.3945 0.4082 0.4561 0.2204

0.7066 0.1143 0.7031 0.0962 0.0867 -0.2706 0.3986 -0.4562 0.3594 0.5000

0.7450 0.0765 0.7418 0.0803 0.2839 -0.0418 0.3623 -0.0799 0.3311 0.5000

n = 300

Our approach Bagging Our approach Bagging

x̄
(s)
0 σ2

x̄
(s)
0

x̄∗0 σ2
x̄∗0

p-value w̄(s) σ2
w̄(s) w̄∗ σ2

w̄∗ p-value

0.4644 0.0069 0.4702 0.0056 0.5000 0.5435 0.0222 0.5315 0.0174 0.5000

0.3980 0.0063 0.4011 0.0056 0.5000 -0.6715 0.0252 -0.6746 0.0209 0.1695

0.6647 0.0058 0.6597 0.0052 0.3223 0.3376 0.0201 0.3591 0.0209 0.5000

0.6613 0.0051 0.6582 0.0062 0.5000 0.0868 0.0231 0.0724 0.0207 0.5000

0.5131 0.0053 0.5037 0.0070 0.3422 -0.3748 0.0244 -0.3831 0.0214 0.5000

0.8822 0.0053 0.8794 0.0057 0.1412 0.4639 0.0221 0.4495 0.0241 0.5000

0.4401 0.0053 0.4305 0.0047 0.1244 -0.3001 0.0235 -0.3033 0.0244 0.3213

0.4592 0.0070 0.4649 0.0057 0.5000 0.4066 0.0202 0.4100 0.0235 0.2833

0.7219 0.0054 0.7212 0.0057 0.5000 -0.3173 0.0276 -0.3455 0.0243 0.5000

0.7084 0.0054 0.7079 0.0048 0.4572 -0.0302 0.0206 0.0038 0.0215 0.4309

5.2. Performance comparison

In this section we compare the classification performance of the original

Bagging with the one of its implementation based on our approach (according

to Sect. 4.6).

For each base classifier and training set size we report in Tables 6–8, re-

spectively for the NMC, LDC and QDC, the average accuracy of the original

Bagging and the difference ∆A between the accuracy of our approach and the

one of the original Bagging, over the ten runs of our experiments. We did not

report the variance, since it was always very small: it ranged from 0 to 0.06 over

all classifiers and data sets, with an average value of about 4 · 10−3. In some

cases (denoted by “–” in the tables) it was not possible to compute the bagged
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Table 4: NMC base classifier, Breast Cancer data set. See caption of Table 3 for the details.

n = 10

Our approach Bagging Our approach Bagging

x̄
(s)
0 σ2

x̄
(s)
0

x̄∗0 σ2
x̄∗0

p-value w̄(s) σ2
w̄(s) w̄∗ σ2

w̄∗ p-value

0.5173 0.0046 0.5028 0.0036 0.0769 -0.4322 0.0166 -0.4295 0.0143 0.1455

0.3976 0.0034 0.3973 0.0036 0.0607 -0.5166 0.0149 -0.5266 0.0143 0.0014

0.3925 0.0035 0.4013 0.0030 0.5000 -0.5028 0.0135 -0.5095 0.0162 0.0874

0.3381 0.0042 0.3445 0.0050 0.3038 -0.3950 0.0169 -0.4313 0.0222 0.5000

0.3659 0.0035 0.3638 0.0033 0.0217 -0.2958 0.0125 -0.3086 0.0131 0.0124

0.4575 0.0051 0.4572 0.0054 0.0814 -0.6217 0.0206 -0.6151 0.0208 0.0011

0.3992 0.0041 0.4057 0.0031 0.2081 -0.3760 0.0155 -0.4008 0.0127 0.5000

0.3297 0.0048 0.3674 0.0055 0.0662 -0.4672 0.0229 -0.4702 0.0232 0.5000

0.1789 0.0035 0.1882 0.0034 0.0010 -0.1596 0.0140 -0.1542 0.0134 0.0121

n = 300

Our approach Bagging Our approach Bagging

x̄
(s)
0 σ2

x̄
(s)
0

(10−3) x̄∗0 σ2
x̄∗0

(10−3) p-value w̄(s) σ2
w̄(s)(10−3) w̄∗ σ2

w̄∗(10−3) p-value

0.5095 0.1989 0.5061 0.2030 0.5000 -0.4291 0.7989 -0.4219 0.7421 0.5000

0.3940 0.2077 0.3944 0.2030 0.3722 -0.5236 0.8155 -0.5226 0.7421 0.4137

0.4003 0.2051 0.3999 0.1650 0.4124 -0.5106 0.7703 -0.5091 0.7163 0.0411

0.3469 0.2295 0.3467 0.2569 0.5000 -0.4188 0.8968 -0.4147 0.9767 0.1936

0.3698 0.1949 0.3708 0.1782 0.5000 -0.3192 0.7778 -0.3165 0.6256 0.2785

0.4513 0.2242 0.4508 0.2821 0.4785 -0.6207 0.8866 -0.6180 0.9973 0.4089

0.4043 0.1995 0.4035 0.1798 0.1910 -0.3879 0.7424 -0.3869 0.6274 0.4889

0.3572 0.2034 0.3563 0.3057 0.4836 -0.4524 0.8493 -0.4563 1.1133 0.5000

0.1808 0.1935 0.1810 0.1453 0.5000 -0.1527 0.7895 -0.1524 0.6306 0.5000

classifier, due to the very small training set size.

Table 6 shows that our approach provided a classification performance very

close to Bagging when the NMC was used as the base classifier. ∆A is always

less than 0.05, and in most cases it equals zero or is very small. We further

checked whether these differences are statistically significant at level α = 0.05,

that is, if it is unlikely to observe them by chance. To this aim we run the paired

Wilcoxon test, as suggested in [22] for comparisons over multipler data sets.

The test gave a p-value p� α (p was between 0.21 and 0.58, depending on the

training set size). Accordingly, the difference in performance between Bagging

and its implementation using our approach is not statistically significant.

For the LDC, Table 7 shows only a partial agreement between the original

Bagging and our approach. For 26 out of 35 datasets ∆A is lower than 0.05. In

general, the original Bagging seems to perform better. The Wilcoxon test gave

a p-value p � α (p was between 10−5 and 4 · 10−3, depending on the training

set size): accordingly, the null hypothesis that the original Bagging and our
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Table 5: LDC base classifier, Uncorrelated Gaussian and Breast Cancer datasets. Comparison

between the mean value and variance of the w∗ component of the classifier parameter obtained

by our approach and by Bagging (columns 1–2 and 3–4, respectively), for a training set size

n = 300, and p-value for the Normality test (see caption of Table 3 for the details).

Uncorrelated Gaussian (n = 300)

Our approach Bagging

w̄(s) σ2
w̄(s) w̄∗ σ2

w̄∗ p-value

0.5672 0.0207 0.5795 0.0276 0.5000

-0.6781 0.0300 -0.6618 0.0276 0.5000

0.4049 0.0391 0.3656 0.0360 0.5000

0.0070 0.0262 0.0092 0.0340 0.5000

-0.4258 0.0249 -0.3602 0.0266 0.5000

0.4622 0.0188 0.4743 0.0400 0.5000

-0.4187 0.0330 -0.4022 0.0363 0.5000

0.4642 0.0186 0.4688 0.0346 0.5000

-0.3295 0.0374 -0.3102 0.0467 0.0665

-0.0178 0.0211 -0.0264 0.0273 0.5000

Breast Cancer (n = 300)

Our approach Bagging

w̄(s) σ2
w̄(s) w̄∗ σ2

w̄∗ p-value

-9.9882 10.8395 -8.7553 9.0166 0.5000

-5.7018 10.8395 -5.4385 9.0166 0.0208

-4.2521 9.5173 -3.4918 6.9907 0.5000

-1.7440 4.5151 -1.4015 4.9878 0.0277

-2.2664 7.1830 -2.2900 8.9879 0.5000

-11.3144 6.1746 -11.6187 7.0698 0.0164

-3.6291 5.9336 -4.4045 7.0778 0.0910

-4.3743 3.8106 -3.8320 4.8822 0.5000

1.2484 7.9784 0.3680 8.1049 0.5000

approach are equivalent can be rejected.

The results for the QDC, shown in Table 8, are similar. The Wilcoxon test

gave a p-value p� α (p was between 0.098 and 0.59, depending on the training

set size), which means that also in this case the difference in performance is not

statistically significant.

5.3. Defining new randomization techniques: an example

The above experiments provided evidence that, at least for the considered

base classifiers, Bagging can also be implemented using to our approach. Based

on these results, we give now an example of how a novel randomization tech-

nique can be defined according to our approach, i.e., by directly defining the

parameter distribution of a given base classifier, exploiting knowledge of param-

eter distributions induced by existing techniques. In this example we modify the
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distribution induced by Bagging for the NMC, derived in Sect. 4. In particular,

we modify the covariance matrix Σξ of Eq. (15) into a new covariance matrix

Σ
′

ξ such that:

Σx∗0
=

Σ

2
, Σw∗ = 2Σ, Σx∗0 ,w

∗ = 0d×d . (33)

In this simple example related to a linear classifier we attempt to increase di-

versity by increasing the variance of the parameter distribution, to shift the

accuracy-diversity trade-off in favour of a higher diversity. The results are re-

ported in Table 9. For comparison we also report the performance of the original

Bagging.

It can be seen that our randomization technique attained a reasonable per-

formance, in the sense that it is close to the one of an existing, traditional

randomization technique like Bagging. In particular, in our previous experi-

ments the covariance matrix of Eq. (15) (obtained by modelling the original

Bagging) lead to |∆A| ≤ 0.05 for all datasets and for all training set sizes.

Using the covariance matrix of Eq. (33), the performance increases for some

datasets and decreases for others, which can be interpreted as the effect of an

increased diversity between the individual classifiers.

These preliminary results provide some evidence of the viability of our al-

ternative approach to the implementation of randomization techniques, which

motivates further investigation on the definition of suitable distributions of clas-

sifier parameters.

6. Discussion and conclusions

We proposed a novel approach for defining and implementing randomization

techniques for classifier ensemble construction. It is based on modelling the joint

probability distribution of the parameters of a given base classifier, and then

obtaining the ensemble members by directly sampling from such a distribution

their parameter values, instead of manipulating the training data and running

the learning algorithm for each of them. This approach can also be exploited
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as an alternative implementation of existing randomization techniques, if the

parameter distribution they induce on a base classifier can be derived or ap-

proximated; in this case, a practical advantage is the reduction of processing

cost in the ensemble construction stage, as no manipulation of training data

is required, nor running the learning algorithm. We point out that our ap-

proach can be used also for one-class classifiers, for which the use of ensembles

constructed by Bagging has already been proposed by several authors.

To define new randomization techniques based on our approach, a crucial

issue is to define a joint parameter distribution capable of providing an advan-

tageous trade-off between accuracy and diversity of the resulting classifiers, in

terms of reducing the variance of their loss function and thus improving ensem-

ble performance, analogously to existing techniques. A useful way to obtain

insights on the characteristics of such a distribution is to analyze the one in-

duced by existing randomization techniques. In this paper we took a first step

in this direction, focusing on Bagging and on three well-known base classifiers

that can be dealt with analytically. We then provided a preliminary example of

the definition of a new technique, by modifying the joint parameter distribution

induced by Bagging on the same classifiers.

We finally summarize the assumptions and the main limitations of our ap-

proach. To model the joint parameter distribution induced by a given ran-

domization technique on a given base classifier, some specific assumptions and

approximations may be necessary to allow or simplify analytical derivations. In

this work we made two assumptions specific to Bagging and to the considered

nearest mean, linear and quadratic discriminant classifiers: the class-conditional

distributions are Gaussian, and the class-covariance matrices of bootstrap repli-

cates are identical to the ones of the original training set. The first assumption

turned out to be not a limitation: we empirically found that the resulting ap-

proximation of the parameter distribution can be accurate also for very small

training set sizes and for non-Gaussian class-conditional distributions. We found

instead that the second assumption can be not accurate enough in some cases;

it is, however, possible to compute also the distribution of the sample covari-
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ance matrix of bootstrap replicates, at the expense of more complex derivations.

Nevertheless, we point out that the main goal of such an analytical study is not

to accurately approximate the joint parameter distributions of randomization

techniques defined as a procedure for manipulating training data or the learning

algorithm (which can be useful to provide an alternative implementation of such

techniques), but is rather to obtain insights on the parameter distributions they

induce on base classifiers, and thus guidelines for the definition of novel tech-

niques based on our approach, which avoids explicit manipulation of training

data and of learning algorithms.

Another characteristic of our approach is that the joint parameter distribu-

tion of a base classifier depends on the training data at hand. This is reasonable,

as it reflects the fact that in traditional randomization techniques the individual

classifiers are learned on manipulated versions of the training data. For instance,

in the model derived in this paper, the joint distributions of the considered clas-

sifiers depend on the sample means and covariance matrices of training data.

However, if the training set at hand is small, or if it contains outliers, statistics

estimated from it could be not accurate. This can be a problem if our approach

is used to re-implement a traditional randomization technique, since its approx-

imation may in turn be not accurate. To address this issue, our approach could

be implemented using robust statistics [5], e.g., computing the median or the

trimmed mean instead of the simple mean of training data in feature space.

The results of this paper are limited to Bagging and to the base classifiers

mentioned above. This choice was made to allow analytical derivations of the

joint parameter distribution. For a more thorough understanding it is however

desirable to extend our analysis to other randomization techniques and other

base classifiers. The main difficulty under this viewpoint is that developing

analytical models of the joint parameter distribution can be challenging for

some kinds of classifiers. For instance, this may be the case of a non-parametric

classifier like neural networks, where the number of parameters (connection

weights) can be very high, and at the same time they are not related to statistics

of training data (e.g., sample means and covariance matrices), contrary to the
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parametric base classifiers considered in this work. Another challenging example

are decision trees, whose decision function is a structured one; for the same

reason, the Random Forest ensemble technique may be difficult to analyze, as

it uses decision trees as base classifiers. We believe that extending our analysis

and addressing the above issue are the main directions for future work.

Acknowledgement

This work has been partly supported by the project ”Computational quan-

tum structures at the service of pattern recognition: modeling uncertainty”

[CRP-59872] funded by Regione Autonoma della Sardegna, L.R. 7/2007, Bando

2012.

References

[1] L.I. Kuncheva, Combining Pattern Classifiers, Second Edition, John Wiley

& Sons, Inc, Hoboken, NJ, USA, 2014.

[2] Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms, Chapman &

Hall/CRC, 2012.

[3] T.K. Ho, The random subspace method for constructing decision forests,

IEEE Trans. Patt. Anal. Mach. Intell. 20 (1998) 832–844.

[4] L. Breiman, Random Forests, Machine Learning. 45 (2001) 5–32.

[5] P.J. Huber, Robust Statistics, John Wiley & Sons, 1981.

[6] L. Breiman, Bagging Predictors, Machine Learning. 24 (1996) 123–140.

[7] J.J. Rodriguez, L.I. Kuncheva, C.J. Alonso, Rotation Forest: A New Clas-

sifier Ensemble Method, IEEE Trans. Patt. Anal. Mach. Intell. 28 (2006)

1619–1630.

[8] Y. Freund, R.E. Schapire, Experiments with a New Boosting Algorithm, In

Int. Conf. on Machine Learning (1996), pp. 148–156.

30



[9] M. Skurichina, R.P.W. Duin, Bagging for linear classifiers, Pattern Recog-

nition. 31 (1998) 909–930.

[10] G. Fumera, F. Roli, A. Serrau, A Theoretical Analysis of Bagging as a Lin-

ear Combination of Classifiers, IEEE Trans. Pattern Anal. Machine Intell.

30, 1293–1299.

[11] R. Tibshirani, Bias, Variance and Prediction Error for Classification Rules,

Tech. Rep. 9602, University of Toronto (1996).

[12] D.H. Wolpert, W.G. Macready, An Efficient Method To Estimate Bagging’s

Generalization Error, Machine Learning 35 (1999) 41–55.

[13] Y. Grandvalet, Bagging Equalizes Influence, Machine Learning 55 (2004)

251–270.

[14] M. Skurichina, R.P.W. Duin, Bagging, Boosting and the Random Subspace

Method for Linear Classifiers, Patt. Anal. Appl. 5 (2002) 121–135.

[15] B. Efron, R.J. Tibshirani, An Introduction to the Bootstrap, Chapman &

Hall/CRC, 1993.

[16] J.T. Kent, T.J. Hainsworth, Confidence intervals for the noncentral chi-

squared distribution, J. of Stat. Planning and Inference. 46 (1995) 147–159.

[17] C.M. Jarque, A.K. Bera, A Test for Normality of Observations and Regres-

sion Residuals, Int. Stat. Rev. 55 (1987) 163.

[18] R.A. Fisher, Statistical Methods for Research Workers, (1925), Oliver &

Boyd, Edinburgh.

[19] B. Mandelbrot, The Pareto-Levy Law and the Distribution of Income, In-

ternational Economic Review 1 (1960) 79.

[20] R.V. Hogg and A. T. Craig: Introduction to Mathematical Statistics. The

Macmillan Company, New York (1978).

31



[21] H. Hotelling, The Generalization of Student’s Ratio, in: Breakthroughs in

Statistics, Springer, 1992, pp. 54–65.

[22] J. Demsar, Statistical comparisons of classifiers over multiple data sets,

Journal of Machine learning research 7 (2006) 1–30.

[23] S. Kotz, N. Balakrishnan, N.L. Johnson, Continuous Multivariate Distri-

butions, John Wiley & Sons, 2005.

32



Table 6: NMC base classifier: accuracy of the original Bagging, and difference (∆) between

the accuracy of its implementation using our approach and that of the original Bagging, for

different training set sizes.

Bagging ∆

Dataset n(1) n(2) n(3) n(4) n(1) n(2) n(3) n(4)

1) 0.55 0.57 0.60 0.60 0.01 0.00 0.00 0.00

2) 0.61 0.69 0.70 0.70 0.00 0.00 0.00 0.00

3) 0.93 0.98 1.00 1.00 -0.05 0.00 0.00 0.00

4) 0.78 0.86 0.86 0.86 0.01 0.00 0.00 0.00

5) - 0.66 0.68 0.69 - 0.01 0.00 0.00

6) - 1.00 1.00 1.00 - 0.00 0.00 0.00

7) 0.69 0.68 0.69 0.70 -0.01 0.00 0.01 0.00

8) - 0.55 0.55 0.55 - 0.00 0.00 0.00

9) 0.67 0.65 0.66 0.66 0.02 0.00 0.00 0.00

10) 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00

11) 0.52 0.56 0.56 0.56 0.01 0.00 0.00 0.00

12) 0.59 0.61 0.62 0.63 -0.02 -0.01 0.01 -0.01

13) 0.94 0.95 0.96 0.96 0.00 0.00 0.00 0.00

14) 0.69 0.70 0.69 0.69 -0.01 0.00 0.00 0.00

15) 0.71 0.74 0.73 0.74 0.00 0.00 0.00 -0.01

16) 0.69 0.68 0.69 0.69 0.03 0.03 0.00 0.01

17) - 0.75 0.73 0.71 - 0.00 0.04 0.00

18) - 0.64 0.67 0.68 - -0.03 -0.01 -0.02

19) 0.49 0.49 0.50 0.51 0.01 0.00 0.00 0.00

20) 0.51 0.51 0.52 0.52 0.01 0.00 0.01 0.01

21) 0.61 0.63 0.64 0.65 0.04 0.00 0.00 0.00

22) 0.78 0.78 0.75 0.75 -0.03 -0.01 -0.01 0.00

23) 0.78 0.79 0.76 0.78 0.02 0.01 0.04 0.03

24) 0.69 0.77 0.77 0.77 0.00 0.00 0.00 0.00

25) 0.95 1.00 1.00 1.00 -0.01 0.00 0.00 0.00

26) 0.93 0.94 0.94 0.93 0.00 0.00 0.00 0.00

27) 0.79 0.85 0.85 0.85 0.02 0.00 0.00 0.00

28) 0.82 0.84 0.85 0.85 0.00 0.00 0.00 0.00

29) 0.78 0.80 0.80 0.80 0.00 0.00 0.00 0.00

30) 0.96 0.97 0.97 0.97 0.00 0.00 0.00 0.00

31) 0.97 0.97 0.97 0.97 0.00 0.00 0.00 0.00

32) 0.97 0.97 0.97 0.97 0.00 0.00 0.00 0.00

33) 0.93 0.94 0.94 0.95 0.00 0.00 0.00 0.00

34) 0.74 0.76 0.76 0.75 0.00 -0.01 0.01 0.01

35) 0.54 0.60 0.63 0.62 0.00 0.01 -0.01 0.01
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Table 7: LDC base classifier: accuracy of the original Bagging, and difference (∆) between

the accuracy of its implementation using our approach and that of the original Bagging, for

different training set sizes.

Bagging ∆

Dataset n(1) n(2) n(3) n(4) n(1) n(2) n(3) n(4)

1) 0.54 0.90 0.93 0.93 0.09 0.00 0.00 0.00

2) 0.64 0.74 0.73 0.73 -0.13 0.00 0.00 0.00

3) 0.90 0.99 1.00 1.00 0.00 0.00 0.00 0.00

4) 0.77 0.98 0.98 0.98 0.13 0.00 0.00 0.00

5) - 0.78 0.77 0.78 - -0.16 -0.14 -0.14

6) 0.90 0.93 0.94 0.94 -0.29 -0.08 -0.10 -0.12

7) 0.74 0.63 0.72 0.74 -0.25 0.03 -0.02 0.02

8) - 0.90 0.90 0.90 - -0.38 -0.38 -0.37

9) 0.71 0.81 0.81 0.81 -0.16 -0.11 -0.12 -0.12

10) 0.67 0.73 0.73 0.73 -0.10 0.01 0.01 0.02

11) 0.56 0.64 0.64 0.64 -0.06 -0.02 -0.01 -0.01

12) 0.57 0.61 0.65 0.66 -0.04 -0.02 -0.05 -0.06

13) 0.90 0.96 0.96 0.96 -0.04 0.01 0.01 0.00

14) 0.68 0.76 0.77 0.77 -0.11 -0.05 -0.07 -0.06

15) 0.67 0.76 0.76 0.77 -0.16 -0.01 -0.01 -0.01

16) 0.70 0.66 0.74 0.76 -0.16 -0.03 -0.08 -0.05

17) 0.89 0.82 0.86 0.93 -0.37 -0.14 -0.17 -0.25

18) - 0.73 0.75 0.74 - -0.05 -0.02 -0.01

19) 0.63 0.64 0.64 0.66 -0.09 -0.05 -0.03 -0.01

20) 0.68 0.68 0.68 0.69 -0.07 -0.03 0.00 -0.03

21) 0.66 0.71 0.71 0.71 -0.13 -0.09 -0.07 -0.07

22) 0.75 0.80 0.83 0.84 -0.02 -0.01 -0.01 -0.01

23) 0.81 0.81 0.80 0.81 -0.04 -0.05 -0.05 -0.04

24) 0.67 0.78 0.78 0.78 -0.08 0.01 0.01 0.01

25) 0.66 0.65 0.68 0.70 -0.09 -0.08 -0.07 -0.07

26) 0.92 0.94 0.95 0.95 -0.21 0.01 0.01 0.02

27) 0.83 0.92 0.93 0.94 -0.05 -0.01 0.00 0.00

28) 0.84 0.91 0.92 0.92 -0.09 0.00 0.00 0.00

29) 0.66 0.75 0.76 0.77 -0.06 0.00 0.01 -0.01

30) 0.93 0.96 0.96 0.96 -0.09 0.00 0.00 0.00

31) 0.95 0.98 0.98 0.98 -0.10 0.00 0.00 0.00

32) 0.94 0.96 0.97 0.97 -0.09 0.00 0.00 0.00

33) 0.95 0.98 0.98 0.99 -0.03 0.00 0.00 0.00

34) 0.72 0.83 0.86 0.86 -0.07 0.00 -0.01 0.00

35) 0.53 0.63 0.67 0.68 0.00 0.00 0.00 0.01
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Table 8: QDC base classifier: accuracy of the original Bagging, and difference (∆) between

the accuracy of its implementation using our approach and that of the original Bagging, for

different training set sizes.

Bagging ∆

Dataset n(1) n(2) n(3) n(4) n(1) n(2) n(3) n(4)

1) 0.52 0.71 0.82 0.87 0.00 0.04 0.00 0.00

2) 0.52 0.67 0.69 0.70 0.04 0.01 0.00 0.00

3) 0.78 1.00 1.00 1.00 0.05 -0.04 -0.03 -0.02

4) - 0.99 0.99 0.99 - 0.00 0.00 0.00

5) - 0.75 0.76 0.76 - -0.08 -0.09 -0.08

6) - 0.92 0.08 0.08 - -0.17 0.83 0.84

7) 0.68 0.74 0.66 0.59 -0.02 -0.12 -0.02 0.13

8) - 0.81 0.82 0.82 - -0.06 -0.06 -0.07

9) 0.24 0.50 0.46 0.47 -0.02 0.15 0.18 0.17

10) 0.47 0.67 0.67 0.67 -0.01 0.03 0.04 0.03

11) 0.51 0.66 0.59 0.56 -0.01 0.11 0.16 0.17

12) 0.46 0.61 0.63 0.60 -0.09 0.04 0.05 0.06

13) 0.70 0.95 0.95 0.95 -0.15 -0.06 -0.04 -0.04

14) 0.31 0.69 0.72 0.73 0.00 0.00 -0.03 -0.05

15) - 0.72 0.73 0.72 - -0.02 -0.04 -0.05

16) 0.80 0.80 0.80 0.80 -0.61 -0.34 0.00 0.00

17) - 0.94 0.94 0.94 - -0.70 -0.11 -0.01

18) - 0.74 0.75 0.75 - -0.13 -0.10 -0.08

19) 0.56 0.53 0.53 0.54 -0.02 -0.02 0.02 0.00

20) 0.54 0.52 0.53 0.55 -0.02 0.01 0.02 0.02

21) - 0.63 0.60 0.59 - 0.07 0.09 0.11

22) 0.68 0.70 0.87 0.88 -0.31 0.03 -0.22 -0.24

23) 0.69 0.75 0.71 0.76 -0.35 -0.42 -0.37 -0.42

24) 0.41 0.79 0.79 0.79 0.02 -0.23 -0.23 -0.23

25) 0.71 0.99 1.00 1.00 -0.41 -0.29 -0.28 -0.27

26) 0.50 0.95 0.95 0.96 -0.06 -0.05 -0.08 -0.09

27) 0.61 0.46 0.46 0.46 0.09 0.47 0.47 0.48

28) 0.65 0.49 0.49 0.49 0.09 0.42 0.42 0.41

29) 0.57 0.53 0.53 0.53 0.08 0.22 0.26 0.27

30) 0.76 0.50 0.50 0.50 0.04 0.48 0.48 0.48

31) 0.77 0.53 0.53 0.53 0.04 0.46 0.46 0.46

32) 0.64 0.50 0.50 0.50 0.05 0.46 0.47 0.47

33) 0.72 0.51 0.51 0.51 0.00 0.44 0.45 0.45

34) 0.55 0.50 0.50 0.50 0.09 0.36 0.36 0.36

35) 0.54 0.49 0.49 0.49 0.00 0.14 0.17 0.18
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Table 9: Comparison between Bagging and our synthetic randomization technique using NMC

as base classifier and an “alternative” covariance matrix (the one given by Eq. (33)): accuracy

of Bagging and difference between Synthetic and Bagging accuracy (∆) for different training

set sizes.

Bagging ∆

Dataset n(1) n(2) n(3) n(4) n(1) n(2) n(3) n(4)

1) 0.57 0.61 0.62 0.63 -0.05 -0.06 -0.09 -0.10

2) 0.60 0.73 0.74 0.74 0.02 -0.09 -0.11 -0.11

3) 0.68 0.70 0.70 0.70 0.03 0.01 0.01 0.01

4) 0.66 0.74 0.74 0.74 0.00 -0.07 -0.08 -0.07

5) 0.95 0.95 0.95 0.95 -0.01 -0.02 -0.01 -0.01

6) - 0.66 0.67 0.69 - 0.10 0.09 0.08

7) 0.52 0.63 0.64 0.65 0.16 0.09 0.08 0.07

8) 0.55 0.59 0.62 0.63 0.10 0.06 0.03 0.02

9) 0.78 0.79 0.78 0.78 -0.13 -0.14 -0.14 -0.13

10) 0.72 0.71 0.70 0.71 0.04 0.05 0.06 0.05

11) 0.80 0.98 1.00 1.00 -0.05 -0.18 -0.14 -0.20

12) 0.73 0.85 0.85 0.85 0.01 -0.05 -0.09 -0.06

13) - 1.00 1.00 1.00 - -0.09 -0.09 -0.09

14) 0.63 0.65 0.68 0.67 -0.08 -0.09 -0.11 -0.14

15) - 0.55 0.55 0.55 - 0.35 0.35 0.35

16) 0.61 0.66 0.66 0.66 0.17 0.12 0.12 0.12

17) 1.00 1.00 1.00 1.00 0.00 -0.01 -0.01 -0.01

18) 0.54 0.57 0.56 0.57 0.02 -0.02 -0.01 -0.02

19) 0.92 0.93 0.93 0.93 -0.03 -0.03 -0.04 -0.04

20) - 0.79 0.78 0.74 - 0.10 0.11 0.15

21) - 0.61 0.64 0.61 - 0.10 0.08 0.11

22) 0.49 0.51 0.50 0.50 0.00 -0.01 0.01 0.00

23) 0.51 0.52 0.52 0.52 0.00 0.00 0.00 -0.02

24) 0.75 0.74 0.77 0.75 -0.12 -0.11 -0.13 -0.11

25) 0.69 0.76 0.76 0.76 0.00 -0.06 -0.07 -0.06

26) 0.94 1.00 1.00 1.00 -0.24 -0.30 -0.30 -0.30

27) 0.82 0.84 0.84 0.83 -0.02 -0.02 -0.01 -0.02

28) 0.85 0.87 0.86 0.86 -0.02 0.00 0.00 0.00

29) 0.73 0.75 0.75 0.76 0.00 -0.01 -0.02 -0.02

30) 0.97 0.98 0.98 0.98 -0.01 0.00 -0.01 -0.01

31) 0.97 0.98 0.98 0.98 -0.01 0.00 0.00 -0.01

32) 0.97 0.98 0.98 0.98 0.00 0.00 -0.01 -0.01

33) 0.94 0.94 0.94 0.95 -0.01 0.01 0.00 0.00

34) 0.69 0.76 0.75 0.76 -0.03 -0.07 -0.05 -0.04

35) 0.55 0.60 0.60 0.60 -0.03 -0.10 -0.08 -0.06
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