
1

PMU-based Distribution System State Estimation
with Adaptive Accuracy Exploiting Local

Decision Metrics and IoT Paradigm
Paolo Attilio Pegoraro, Member, IEEE, Alessio Meloni, Member, IEEE, Luigi Atzori, Senior Member, IEEE,

Paolo Castello, Member, IEEE, Sara Sulis, Member, IEEE

Abstract—A novel adaptive distribution system state estimation
(DSSE) solution is presented and discussed, which relies on
distributed decision points and exploits the Cloud-based Internet
of Things (IoT) paradigm. Up to now, DSSE procedures have been
using fixed settings regardless of the actual values of measure-
ment accuracy, which is instead affected by the actual operating
conditions of the network. The proposed DSSE is innovative with
respect to previous literature because it is adaptive in the use of
updated accuracies for the measurement devices. The information
used in the estimation process along with the rate of the execution
are updated, depending on the indications of appropriate local
metrics aimed at detecting possible variations in the operating
conditions of the distribution network. Specifically, the variations
and the trend of variation of the rms voltage values obtained by
phasor measurement units (PMUs) are used to trigger changes in
the DSSE. In case dynamics are detected, the measurement data is
sent to the DSSE at higher rates and the estimation process runs
consequently, updating the accuracy values to be considered in
the estimation. The proposed system relies on a Cloud-based IoT
platform, which has been designed to incorporate heterogeneous
measurement devices such as PMUs and smart meters. The
results obtained on a 13-bus system demonstrate the validity of
the proposed methodology that is efficient both in the estimation
process and in the use of the communication resources.

Index Terms—Adaptive methodology, Cloud, distribution sys-
tem state estimation (DSSE), Internet of Things (IoT), phasor
measurement units (PMUs).

I. INTRODUCTION

Typical distribution systems (DSs) have a high number of
nodes but few measurement points. Because of this chronic
lack of measurement devices, the monitoring of the quantities
of interest can be obtained by means of state estimation
techniques.

The growing incidence of installations of distributed energy
resources (DERs) and non-linear loads implies the evolution
of DSs into more complex and dynamic systems. DERs are
obviously a resource, but they also may cause bi-directional

P. A. Pegoraro, A. Meloni, L. Atzori, P. Castello, S. Sulis are with
the Department of Electrical and Electronic Engineering of the University
of Cagliari, Piazza d’Armi, 09123 Cagliari, Italy (email: [paolo.pegoraro,
alessio.meloni, l.atzori, paolo.castello, sara.sulis]@diee.unica.it).

This work was supported by Regione Autonoma della Sardegna, L.R.
7/2007: Promozione della ricerca scientifica e dell’innovazione tecnologica
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power flows, over-voltages and voltage transient problems. In
such a scenario, significant changes in DS monitoring and
management systems are expected, with the aim of support-
ing safe operation of the network. It is recognized that the
presence of a number of measurement devices sufficient for
the observability is not likely to happen in DSs, for several
economical and technical reasons. It is therefore expected
that safe operations still will depend on the estimation of the
electrical quantities in the grid [1].

In order to obtain an accurate knowledge of the state of
the systems, DSs peculiarities require specific solutions, the
so-called distribution system state estimation (DSSE) tech-
niques. Several DSSE methodologies have been presented
in the literature (see [2]–[5]). A study on the performance
assessment of linear estimators is presented in [6]. Each DSSE
solution has led to a step forward in this research topic;
nonetheless several challenges are still open. In particular,
the geographical extension of the DSs and the high number
of nodes to be monitored make the estimation process quite
complex. The most advanced techniques face the problem in
a distributed manner. Solutions have been recently proposed
in the literature to split efficiently the estimation process so
that the computational cost can be limited. In this regard, it
is possible to mention Multi Area State Estimation methods
(see [7]). An efficient communication infrastructure is always
required to collect and coordinate the amount of data involved
in the monitoring process. In this regard, it is worth noting that
a sort of time tag, stating the reference time of the obtained
measurements, would be necessary as for the coordination of
the measured data.

Phasor measurement units (PMUs) and smart meters (SMs)
have gained a crucial role in protection and management
systems. PMUs accurately measure synchronized phasors of
voltages and currents, namely the synchrophasors, along with
frequency and rate of change of frequency (ROCOF) and
transmit them to phasor data concentrators (PDCs). The last
release of the standard has been presented in two parts: IEEE
C37.118.1/2-2011, [8] and [9]. An amendment, [10], now
modifies or suspends some of the performance requirements
specified in [8]. A guide for synchronization, calibration,
testing and installation of PMUs has been also published [11],
along with a guide containing the requirements for the PDC
[12]. The indications provided by the standards concerning
the performance classes and their relevant test conditions and
limits have experienced an important evolution. PMUs were
originally conceived for the monitoring requirements of power
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transmission systems in steady-state conditions. Currently,
dynamic operating conditions are also considered. For this
reason, several algorithms have been proposed in the literature
to address the challenges due to the difficulty of measuring
the corresponding dynamic signals (see [13], [14]). All of
them show the significant differences that are obtained for the
accuracies in dynamic and steady state conditions. Dynamic
conditions are expected to be particularly interesting for the
evolving DSs. The recent standards, even if designed for
transmission networks, are thus a meaningful starting point
for the application of PMUs to DSs.

SMs are intended to be intelligent instruments able to give
different measurement types and communicate the obtained
data from the locations spread across the network to the
control centers. SMs can operate several measurements based
on different time window lengths. However, information on
the time observation windows is rarely provided and a clear
standardization does not exist. Recently, several advanced SM
solutions have been proposed in the literature (see [15]).

In order to collect and to process the high volumes of
data arriving from these remote devices, the modernization
of the ICT infrastructure, or the creation of a new one, is
now required. In the presented scenario, Cloud-based solutions
are used to address the non-trivial tasks related to storage,
manipulation and management of a large amount of data.
Indeed, the Cloud ensures a reliable environment for DSSE
and every application relying on it, with massive computa-
tional and storage capabilities. Moreover, it can elastically
react to critical situations in which the need for resources
dynamically changes. Last but not least, the IoT (Internet of
Things) technologies for the inter-connection of devices in
large areas and the management of the relevant services and
data are exploited. In particular, the virtualization technologies
are put forward to create virtual measurement devices which
could be updated, controlled and accessed to in an easier and
more reliable way with respect to their physical counterpart,
of which they are the virtual representation. Exploiting these
technologies boosts reusability of gathered data and is both
evolution- and future-proof.

Recently, communication infrastructures for real time IoT
applications have been proposed in several domains, each with
its own specific needs. A survey of the enabling technologies,
protocols, and architecture for an urban IoT is presented in
[16]. As to the domain of the smart grid (SG), it is possible
to mention [17], where an infrastructure for real time DSSE
based on the publish-subscribe paradigm is presented, and the
concept of virtualization is applied to the data stream in order
to separate the control and data planes. In [18] an IoT platform
for the last meter SG is described, where a gateway is used
for virtualizing heterogeneous sensors and actuators before
interfacing to an IoT server for third-part data retrieval.

It is worth noting that, in normal operating conditions, DSs
present near-steady-state signals that do not need intensive
monitoring as in the case of dynamic conditions. For this
reason, an adaptive estimation process can address the goal
of efficiently monitor the network also in case of events.

In this context, founded on the procedure presented in
[19], the paper presents a novel adaptive DSSE architecture

based on efficiently updated data obtained by decentralized
and virtualized decision points by means of a Cloud-based
IoT platform.

Compared to [19] and previous literature, the paper presents
an innovative procedure that allows considering adaptive val-
ues of the accuracies of different measurement devices in
the estimation process. Therefore, not only measurements
from heterogeneous devices such as PMUs and SMs can be
considered, but information concerning the actual uncertainties
to be applied in the estimation process, in light of the actual
operative state of the monitored nodes, is collected and used.
To the best of our knowledge, this is the first attempt to design
a DSSE procedure that considers the quality of service of
both the monitoring system and the communication system,
by exploiting a dynamic updating of the information provided
by heterogeneous measuring devices.

In the following, the whole procedure is described and the
results obtained on a 13-bus DS are presented and discussed.

II. BACKGROUND OF THE MONITORING SYSTEM

A. Distribution System State Estimation

The DSSE estimates the state of the network, in terms
of node voltages, branch currents and power flows, starting
from a few heterogeneous instruments, which measure several
electrical quantities with different accuracies and reporting
rates (RRs). The aim is to obtain a reliable picture of the
network status so that the grid can be safely operated, be-
cause the accuracy of the measurement results is decisive
for downstream decisions. However, due to the lack of a
sufficient number of measurement devices on the field, knowl-
edge obtained from a priori information has to be added to
the measurements to make the system observable. This prior
information is commonly referred to as pseudo-measurements
in power systems literature.

The measurement model adopted for DSSE can be repre-
sented as:

z = h(x) + ε (1)

where: z = [z1 . . . zM ]
T is the vector of the M measure-

ments gathered from the network and of the chosen pseudo-
measurements; h = [h1 . . . hM ]

T is the vector of the measure-
ment functions; x = [x1 . . . xN ]

T is the vector of the N state
variables; ε is the so-called measurement noise vector, usually
assumed to be composed of independent, zero mean random
variables, with covariance matrix Σz.

The state vector x includes variables that are sufficient to
derive all the other quantities of interest. Different formula-
tions of the problem exist and efficient choices for x are as
follows:

1) Node Voltages: the state can be, for instance,
represented in polar coordinates as x =
[V1, . . . , VNb

, ϕ1, . . . , ϕNb
]
T), where Vi and ϕi are

the amplitude and phase angle of the voltage of bus i
and Nb is the number of buses.

2) Branch Currents Plus a Reference Voltage: the state
is typically adopted in rectangular coordinates as x =[
vrs , v

x
s , i

r
1 . . . i

r
Nbr

, ix1 . . . i
x
Nbr

]T
, where irk and ixk are,
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respectively, the real and imaginary parts of the current
phasor at branch k, vs = vrs + ivxs is the phasor of the
voltage assumed as a reference, and Nbr is the number
of network branches.

The above presented expressions are referred to a single
phase of the network for the sake of brevity and clearness of
notation, but it should be recalled that DSSE typically requires
a three-phase formulation.

The measurements z can generally include voltage and cur-
rent amplitude measurements, synchronized phasor measure-
ments from PMUs, active and reactive power measurements.
Due to the different measurement types and state formulations,
the measurement functions in h are in general non-linear.

Several methods have been proposed in the literature for
the solution of the DSSE. They are mostly based on a
weighted least squares (WLSs) approach, [2]–[5]. In the WLS-
DSSE approach, the state is estimated iteratively by means
of linear system solutions. In particular, the so-called normal
equations are solved at each iteration to update the state vector
computation as follows:

∆xn = xn+1 − xn = G−1n HT
nW[z− h(xn)] (2)

where: xn is the state vector at iteration n. Hn is Jacobian,
that is it contains all the measurement functions derivatives
with respect to the state variables and W is the weighting
matrix, chosen as the inverse of the covariance matrix Σz.
Gn = HT

nWHn is the so-called Gain matrix and the
covariance matrix Σx̂ of the estimated state vector can be
obtained by its inverse (see [20]). The DSSE thus gives as
outputs both the evaluation of the state and the estimation of
the corresponding uncertainty in terms of covariance matrix.
The stop condition for the algorithm convergence is given
by ‖∆xn‖∞ < δ, with an assumed small tolerance value δ,
meaning that no further updates of the state vector are needed.

It is important to underline that all the WLS estimators
can reach similar accuracy in the estimation of both the state
variables and the derived quantities (see in [21] for details).
For this reason, in the following, the formulation that allows
illustrating the concepts in the simplest way is chosen, without
loss of generality and keeping the discussion independent from
the specific implementation. It is, however, essential to recall
that to obtain an accurate estimation the measurement model
and in particular the uncertainty description (represented by
Σz) must be complete [22], [23].

Fast procedures can exploit the high rate of PMUs measure-
ments, which permits to have an up-to-date DSSE describing
the dynamic of the system with the maximum resolution.
Nevertheless, an extensive use of the maximum resolution
could easily become an issue both for the communication and
for the data storage, when economic and logistic constraints
are present. A variable resolution able to adapt to the state
of the system is thus desirable. A variable resolution poses
a main challenge: great computation flexibility is necessary,
since estimations could pass from one every few seconds, as in
SCADA systems, to one every 20ms for 50-Hz systems. This
property can be provided using a Cloud-based IoT overlay.

B. Phasor Measurement Units

PMUs are composed of hardware and software elements
and each one of them can be seen as a source of uncertainty
that contributes to the overall uncertainty of the measurement
system. The measurement algorithm is the PMU component
permitting the estimations of the synchrophasor, frequency and
ROCOF and, along with the transducers, is one of the main
contributors of the overall uncertainty of the system [24]. The
synchrophasor standard [8] and its amendments [10] specify
the indices to quantify the measurements, the test methods,
and the accuracy limits of the PMUs. Nevertheless, they do
not suggest a specific algorithm for the estimation of each
quantity of interest and, commonly, the characteristics of the
measurement algorithm are not included in the PMU data-
sheet. Data-sheets usually report only the overall accuracy of
the device in terms of Total Vector Error, TVE, and do not
include detailed information about the different performance
available in presence of both steady-state and dynamic condi-
tions.

The standard [8] defines the limits for TVE: the TVE must
be below 1% in case of steady-state conditions (1.3% in case
of strong inter-harmonic pollution), whereas it must be below
3% in case of dynamic conditions. It is worth highlighting
the significant impact that so different values can have on the
DSSE accuracy.

In [8] two performance classes, P and M, respectively, for
protection and monitoring-oriented applications, are defined.
A standard compliant PMU should meet all the requirements
at least for one class. In a number of cases, the options for
the choice of the algorithm in a commercial PMU are only
two, generally referring to the class P and M, but without
information regarding the design of the given algorithm. In few
cases it is possible to set the length and the parameters of the
acquisition window (see [25]). The choice of the appropriate
window should depend on the application (see, for details,
[14]). The performance of a measurement algorithm strongly
depends on the electrical quantities under test. Therefore, an
appropriate calibration process should consider more than one
PMU algorithm for different test cases [26]. When a full PMU
characterization is not available, the DS operators (DSOs)
should rely only on the compliance limits. In this paper,
a suitable characterization process has been performed on
different PMU algorithms, the results of which are discussed
in the Section IV.

As for the data transmission, [9] introduces a protocol for
real-time exchange of synchronized phasor measurement data
between power system equipment. All the data provided by
PMUs must be aligned by the receiver by means of the
time-tag included in the data frame, to permit the correlation
among measurements made in the same time but at different
measurement points of the network.

Required PMU RRs are: 10, 25, 50 frames/s (fps in figures
and tables) for 50-Hz systems. The actual rate should be user
selectable. Support for other reporting modes is allowed, and
higher rates, such as 100 frames/s, and rates lower than 10
frames/s (such as 1 frames/s) are encouraged by the standard.
A proper use of such different RRs can significantly improve
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Fig. 1. Monitoring System Overview.

the efficiency of the monitoring process.

C. Cloud IoT systems

In a world where anything can potentially be represented
by a cyber counterpart, the goal of IoT is to create an
overlay where any entity can be found, activated, probed,
interconnected, and updated, so that any possible interaction,
involving both cyber and/or physical entities, can take place.

The digital counterpart of any real entity in the IoT is
commonly named Virtual Object (VO). In this context, the
major goal of relevant platforms is to support the mash up of
VOs, which are also cyber entities themselves, fostering the
creation of composed and complex services which improve the
efficiency of the considered system. Moreover, virtualization
has the ability to make heterogeneous objects interoperable
through the use of semantic descriptions and enable them to
acquire, analyse and interpret information about their context,
in order to take relevant decisions and act upon the VOs.

A practical aspect linked to the creation of a cyber world
is where these digital entities should reside. IoT platforms are
more and more relying on a Cloud-based approach, since it
allows for improving reliability, always on availability, elastic
processing and memory resource provisioning. As a matter
of fact, especially, more complex cyber entities can benefit
from the intrinsic advantages of the Cloud, while for more
basic virtualization entities, like those interfacing with physical
objects, it can still make sense to reside in the local network
close to the physical world objects.

Therefore, virtualization and Cloud computing represent
the vital technologies for the future IoT solutions. For the
same reason, in this paper an IoT platform compliant to these
features has been used.

III. ADAPTIVE DISTRIBUTION SYSTEM STATE
ESTIMATION ARCHITECTURE

This paper presents an innovative adaptive DSSE solution
that exploits the major technologies and concepts used in the
IoT domain, of which a high-level functional model is depicted
in Fig. 1.

The presented solution allows considering adaptive values
of the accuracy of the measurement devices in the estimation

process. Up to now, DSSE procedures have been using fixed
values of accuracy for each measurement device, regardless of
the actual operating conditions of the network. Nevertheless,
as shown in Table I, the accuracy of the measurement devices
strictly depends on the actual operating conditions of the net-
work. For this reason, the monitoring architecture is designed
so that, along with measurement data, information about the
current accuracies is also used.

Basically, in steady-state conditions, the DSSE applica-
tion, located in the Cloud, receives data at a given slow
rate, for example once per second, and consequently runs.
In this case, the accuracies used in the estimation process
are those commonly provided by manufacturers. Meanwhile,
the measurement system monitors the operating conditions
at the highest measurement rate through the VOs. Indeed,
the virtualized decision points, located in the communication
network edge (i.e. close to the physical devices), run the local
decision metrics, monitoring the measured quantities, in order
to detect possible dynamics in the signals of interest. In the
proposed approach, the virtualization concerns not only the
control of data but also the data itself, in order to abstract
measurement information from the specific data format of
the devices. In particular, the VO provides APIs that allow
to retrieve the measurement data without the client. This
happens locally rather than at the destination server as in [18].
Local context-awareness is implemented in order to guarantee
network resource-aware data forwarding depending on the
state of the DS. In case dynamics are detected, the architecture
adapts the rate of the DSSE and the accuracy values to be
applied. In this way, an accurate estimation of the state and a
correct evaluation of the uncertainty of the estimation results
are obtained, also in a bandwidth-saving and computationally
efficient manner. In the following, the proposed procedure is
detailed.

A. Virtualized Measurement Devices
The physical measurement devices are located at the lower

layer and communicate only with their virtual counterpart,
which is then the one that sends the data to the application
level and also controls the functioning of the associated phys-
ical device. The virtual representations are software agents,
typically implemented in web services, that may run in the
Cloud or in server facilities at the edge of the telecommuni-
cation network to reduce latency in the communication with
the physical counterparts.

The considered measurement system is constituted by
PMUs (in the paper, real PMU prototypes are exploited) and
SMs. Appropriate VOs have been designed. PMU measure-
ments are sent with a GPS-synchronized timestamp to the
corresponding VOs, the vPMU. SM data are sent to the corre-
sponding VO (vSM). The VO virtualizes device capabilities,
so that any application can access or request device resources
and functionalities in a reusable way, without knowing about
the means (communication protocols and hardware primitives)
that are needed to physically reach and retrieve information
from the physical object.

It is worth recalling that in [9] the commands, for the
data collector, to control the streams of data provided by
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PMUs are basically limited to enable and disable the real time
stream. In this paper, the possibility to change the RR of the
measurements, between vPMU and the Cloud, is designed in
order to save the bandwidth of the network while using the
high RR provided by the PMU only when necessary. In detail,
each physical PMU creates a socket with the vPMU and sends
measured data according to [9].

SM data can be accessed in two ways: either the vSM
forwards them to the higher level users in the Cloud or the
users get them by polling the vSM. The vSM can be used to
create a simple interface to the SM.

vPMUs and vSMs communicate to the Cloud only necessary
information using REST APIs and the JSON format, thus
abstracting from the PMU and SM standards. Communications
can either take place in GET or PUSH mode, which means
that data can either be asked to the VO with a HTTP GET
query or be sent automatically to a given location through
HTTP POSTs at a given RR. In the latter case, an appropriate
trigger is set in the VO. In this paper, on the basis of the
specific characteristics of the considered DSSE application,
the focus is on the case of an automatic HTTP POST, for
both PMU and SM.

As to the creation and deployment of the VOs, Lysis
platform approach, hosted in the Cloud, is followed [27].
It contains various VO templates, each corresponding to
a specific physical device. In our specific case, a number
of templates are present corresponding to different physical
PMUs (e.g. PMUs using different protocols such as IEEE
1344-95, IEEE C.37-118-2005, IEEE C.37-118.2-2011), since
a different abstraction layer with the physical object is needed.
Once the right interface is selected and the address of the
VO location is given, the template is deployed in order to
enable communication with the applications implemented in
the Cloud. This procedure ensures the correctness of the VO
setup and automates the procedure linked to the installation of
new PMUs in the distribution network.

B. Local process points

Each PMU sends its measurements to the corresponding
vPMU, which works as a local decision point with context-
awareness capabilities. vPMU receives data every 20 ms, that
is the maximum RR actually prescribed by [8]. vPMU per-
forms processing in order to extract information on the state
of the part of DS that is directly measured. In particular, the
vPMU adapts its output RR towards the DSSE application
depending on the results of the adopted metrics. Basically it
is possible to impose a fixed policy for all the VOs in the
network, but it is also possible to define a per-VO logic. In any
case, the aim is to monitor possible dynamics in the signals of
interest. In this regard, the problem of distinguishing steady-
state signals from dynamic ones arises. As well discussed
in [28], assessing quasi steady-state conditions is a critical
point. The standards dealing with this issue do not follow the
same way to discriminate the transients. Different thresholds
identifying different quantities have been presented to detect
rapid or slow changes in voltages. In [15], for example, the
definition of the Rapid Voltage Change given in the last release

of the standard IEC 61000-4-30, A quick transition in RMS
voltage between two steady-state conditions, during which the
voltage does not exceed the dip/swell thresholds, is discussed.
Several papers have been presented in literature with the
aim of addressing the identification of operating conditions
different from the steady-state reference conditions, with local
and/or distributed techniques. In this regard, just to cite a
few examples, it is possible to mention [29]–[31]. It is thus
worth recalling that this paper is aimed at presenting a novel
adaptive DSSE methodology, where it is possible to apply any
kind of local decision metrics. For this reason, as examples of
detection methods of immediate understanding, the monitoring
of RMS voltage variations have been considered. The vPMU
rate can be changed according to the monitoring of the
following metrics with respect to given thresholds:

1) the variation of RMS voltages between two consecutive
input measurements (PMU measurements), α;

2) the variation of RMS voltages between the input and the
previous output measurement (vPMU measurement), β.

Each rule can be used to command both the increase of the
estimation rate and the decrease, according to the desired
monitoring process. In particular, the first rule is aimed at
detecting rapid variations in the signals, while the second
one is conceived to follow slower dynamics, monitoring the
measurements sent by the vPMU towards the application. The
choices of the detection metrics and of the threshold levels
strictly depend on the DSO needs and, among others, on the
specific application requirements, on the grid characteristics
and on the operating conditions of interest. As a general
consideration, the thresholds directly impact on the promptness
of the systems, but keeping them too low would cancel the
benefits of the detection and rate regulation.

C. Adaptive DSSE rate

The DSSE application is performed in the Cloud at the
application level 1 using the measurements received, at varying
RR, from the different VOs. By default, the output rate of the
vPMUs (and thus of the DSSE) follows a low (but sufficient
for the scope) RR. The measurements (with the corresponding
timestamps), originated by the PMUs can, depending on the
locally detected events, reach the DSSE at different rates (i.e.
50, 25, 10 and 1 frames/s). For this reason, the DSSE function
is performed, coordinating them at the highest RR among
the different measurement flows. As a consequence, a higher
vPMU rate triggers a higher DSSE update rate, thus allowing
to follow more accurately a faster event, even at nodes that
are not directly monitored.

In this paper, the DSSE is performed using the fast branch-
current state technique presented in [5], exploiting the lin-
earization of power injection pseudo-measurements to obtain
a constant Gain matrix in WLS computation. Nevertheless,
it is worth noting that the adaptive architecture can be used
for different estimation methodologies, without significant
differences.

1The application level is the highest level of an IoT architecture as described
in [32] and contextualized in [33].
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D. Adaptive PMU measurement weighting in DSSE

As aforementioned, when a dynamic condition is detected,
the PMU can not be considered to maintain the same accuracy
level available in steady-state conditions. In the literature,
the WLS-DSSE is considered to have fixed weights for each
measurement and thus, fixed W in (2). For the PMUs, the
accuracies reported in the datasheets given by the manufacturer
are considered (see, for instance, [34]). Such values, in terms
of amplitude and phase angle uncertainty, are very low and
typically correspond to the performance in steady state. No
information is commonly given about the accuracies under
dynamic conditions. The DSSE implementation can rely only
on the limits prescribed by the standards [8], [10] for the
compliance under dynamic tests (amplitude and phase angle
modulation tests, for instance).

In this paper the proposal is to adapt the weighting of the
PMU measurements to the real operating conditions, assuming
that a degradation in the uncertainty of PMU measurements
occurs in case of dynamics. When the dynamic condition
triggers the change in the rate of vPMU transmission to DSSE
application, the corresponding PMU needs to be considered
in the DSSE with a different accuracy and W is modified
accordingly.

The covariance matrix Σz change can be represented as
follows:

Σ′z = Σz + ∆Σz (3)

where ∆Σz depends on which measurement accuracies are
degraded. In particular, considering all the measurements as
uncorrelated and the occurrence of a single measurement zi
degradation, Σz is diagonal and ∆Σz has zero elements except
for ∆Σz|ii = ∆σ2

zi , corresponding to the variance change.
The weighting matrix thus becomes as follows:

W′ = W + (
1

σ′2zi
− 1

σ2
zi

) · ei · eT
i = W + ∆wi · ei · eT

i (4)

where σ′ is the updated standard deviation (σ′ > σ in the
dynamic condition implies ∆wi < 0) and ei is the ith vector
of the canonical basis in RM . Considering, for the sake of
simplicity, a voltage state vector, when the voltage amplitude
measurement zi = Vj of a specific node j degrades, from (4)
the new gain matrix becomes:

G′ = HTWH + ∆wi · uj · uT
j = G + ∆wi · uj · uT

j (5)

since the ith row of H is hi = uT
j , where uj is the jth

canonical vector of RM . As a consequence, it is possible
to see the impact of the degradation on the covariance matrix
of the estimates, as follows:

Σ′x̂ = G′−1 = (G + B)
−1

= Σx̂ − ηC (6)

where:
η =

1

1 + tr(BΣx̂)
, C = Σx̂BΣx̂ (7)

where B = ∆wi ·uj ·uT
j is a rank one matrix and tr() indicates

the trace of the matrix. By simple passages, it follows that:

Σ′x̂ = Σx̂ +
|∆wi|

1 + ∆wiσ2
x̂j

(Σx̂)∗,j(Σx̂)T
∗,j (8)

Fig. 2. Test system.

where (A)∗,j indicates the jth column of matrix A. It is clear
from (8) that the degradation affects all the estimated state
variables depending on the degree of correlation between the
degraded voltage and the other estimates. The characteristics
of the estimation covariance matrix are discussed in more
details in [35]. In this context, it is important to highlight that
the adaptive DSSE gives different estimates under dynamic
conditions and computes also their uncertainty, thus adapting
and enhancing the confidence interval associated to each
estimated quantity.

IV. TESTS AND RESULTS

A. Test System

The electric system used in the tests is composed of a
sample of a DS derived from the IEEE 13-bus (Fig. 2). The
IEEE 13 bus radial distribution test feeder [36] was proposed
as a benchmark for the analysis of harmonic propagation
in unbalanced networks. For the purposes of this study, the
topology and the loads of this network were considered as a
starting point to design a simplified test network suitable for
the proposed architecture. In particular, the grid used for the
tests is, for the sake of simplicity, a totally balanced version
of the IEEE 13 bus. In addition, a distributed generator was
placed in the network, at the node 34, so that presence of DER
can be taken into account.

The implementation of the network was carried out with
the PSCAD/EMTDC software [37], a well known design and
simulation tool to model power systems, acting as a graphical
user interface to the EMTDC simulation engine. The tool
allowed the simulation of different events and dynamics, at
different locations.

B. Monitoring System

The assumed measurement system is composed of two
PMUs, placed in two points of common coupling of the
network, and several SMs providing data on the active and
reactive powers of the loads. In particular, in all the presented
tests, phasor voltages at nodes 31 and 71 are measured and
the synchrophasors are computed, along with frequencies and
ROCOFs.

As example of decision-making process, the vPMU checks:
1) if α > 2%;
2) if β > 2%

to decide whether to increase the output rate to the maximum
rate, i.e. RR = 50 frames/s. The adopted values are intended
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TABLE I
TEST MODULATIONS RESULTS IN TERMS OF TVE %

Test

Window Configuration
Flat Top 4 cycles Triangular 6 cycles

TVE % TVE %

AM fm = 2Hz, kx = 0.1 0.0017 0.5197

AM fm = 5Hz, kx = 0.1 0.0010 2.9163

PM fm = 2Hz, ka = 0.1 0.0016 0.4687

PM fm = 5Hz, ka = 0.1 0.0035 2.6493

basically to detect dynamics in the amplitudes as commonly
required by DSO. Furthermore, the vPMU monitors if β drops
below 0.1 % to slow down the RR progressively, and with a
given inertia, to 25, 10, 1 frames/s.

Since “true” values can not be established in realistic
operating conditions, a reference PMU has been chosen by
means of a suitable characterization process. In this way, this
reference PMU gives appropriate realistic reference values to
be used for performance evaluation of the monitoring system
under any test condition. Several tests are necessary to have a
comprehensive idea of the PMU performance, especially for
dynamic conditions. For instance, some algorithms are more
suitable than others in case of low modulation frequencies
[38]. As an example of possible differences in the results of the
same PMU, Table I shows simulation results obtained applying
modulated signals as inputs to two different configurations of
a DFT algorithm available in [25].

Table I highlights how the same PMU can show significantly
different measurement accuracies in presence of steady-state
and dynamic conditions. The aim, in this context, is not to
find the “optimal” algorithm, but to highlight how PMUs
can change performance in presence of varying operating
conditions. Considering the obtained results, the algorithm
configuration “Flat Top 4 cycles” has been used in the tests
as reference PMU. The other configuration has been supposed
as applied to the devices to be placed on the field. Both the
configurations prove to be compliant with the requirements
imposed by the synchrophasor standard [8] in case of dynamic
conditions, when the fixed limit for the TVE is 3%. Never-
theless, it is worth noting how the flat top weighting function,
in this configuration and due to its larger bandpass, obtains a
level of TVE% significantly lower than the triangular window.

C. Results

As a first check of the validity of the proposed approach, test
simulations under Matlab environment have been performed.
The aim was to impose a known dynamic condition at a given
node (node 150) and verify how the adaptive DSSE performs.
In such a controlled condition, the signals at the monitored
nodes are known a priori and it is possible to check the
effects of their variations on the PMU measurements and on
the estimated state. In particular, the PMU algorithms operate
as in Table I, with the Flat Top based PMU used as a reference
(type 1 PMU). The second PMU algorithm is indicated in the
following as type 2 PMU and the DSSE results rely on its
measurements. In steady-state conditions, accuracies equal to

0.1 % and 10−3 rad are assumed for voltage amplitude and
phase angle, respectively, whereas in dynamic conditions the
accuracy is assumed to degrade down to 3 % and 3 · 10−2 rad.
Such values represent a sort of worst case condition for the
test, because the declared steady-state limits are often far
lower. It is important to highlight that a suitable characteri-
zation of the PMUs at hand under test scenarios specific for
the given network and operating conditions can help the DSO
to better tune the accuracy levels to be employed in the DSSE.
An SM is also assumed on the node 150, measuring load
power consumption. As for the SMs, different models for the
measurement accuracy can be supposed, taking into account
the uncertainty sources of the measurement process along with
the common lack of time tags in the measurements. In this
case, the accuracy of the SMs has been considered in the order
of 10 % as in [39].

Node 150 undergoes an amplitude voltage modulation with
fm = 5 Hz and kx = 0.05. The average mean absolute relative
errors (MAREs) are used as estimation performance index in
the following. It is defined as

MARE(i) =
1

N

∑
t

|V̂i,t − Vi,t|
Vi,t

(9)

where V̂i,t is the voltage amplitude estimation of node i at time
tag t, Vi,t is its reference counterpart, and N is the number of
time points. MARE is used because directly relates to relative
estimation errors. Fig. 3 reports the percent MARE values of
voltage amplitude estimations for the nodes of the principal
feeder that are downstream the primary substation transformer.
The chosen test duration is 1 minute, corresponding to 3000
measurements for each PMU. The errors are computed com-
paring the results of the DSSE with those directly obtained by
type 1 PMUs placed at each node. The adaptive DSSE results
clearly outperform the results of a fixed weights approach
(in [19] and in the classical DSSEs). Besides, and more
importantly, the estimated expanded uncertainties (coverage
factor 2) are much more useful, when adapting the considered
PMU accuracy to the occurred dynamic condition. Fig. 4
shows that the percentage of the reference values falling within
the expanded uncertainty intervals (in the following, for the
sake of brevity, actual confidence level) computed by classical
Σx̂ is indeed much lower than the one predicted by the updated
DSSE using Σ′x̂. In the presented test, node 31 always remains
in steady-state conditions and this is why the two algorithms
behave identically and the estimated uncertainty interval is
meaningful.

In general, under dynamic conditions, the PMU uncertainty
contribution is underestimated in the DSSE, thus leading to
output uncertainty intervals that can be completely incompat-
ible with the reference values.

After this preliminary validation phase, a new test series
has been performed exploiting PSCAD environment and real
PMU prototypes to evaluate the impact of the same kind of
modulated signals in a realistic environment. Each PMU proto-
type is implemented using the real-time embedded controller
NI-cRIO illustrated in [19]. The system is a reconfigurable
device and, in the adopted configuration, is composed of
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Fig. 3. Percentage MARE of node voltage amplitude estimations.
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Fig. 4. Node voltage amplitude estimations: actual confidence levels.

a real-time controller NI-9024, a Field Programmable Gate
Array (FPGA) module embedded in a chassis NI-9113, a NI
9215 16-Bit Simultaneous Analog Input Module, and a time
synchronization module NI-9467. The time synchronization
module is a GPS receiver that offers an accurate time source
(accuracy ± 100 ns) to synchronize the embedded clock of
the FPGA module and to provide the Coordinated Universal
Time (UTC) to the real time controller. For this reason,
every sample acquired by the PMU can be tagged directly
at FPGA level with the UTC timestamp while the real-time
controller is in charge of higher level phasor, frequency and
ROCOF computations, and of the data frame encapsulation
and transmission.

The PMUs can be configured to run both type 1 and type 2
algorithms at 50 frames/s. In this case, the PMU prototypes are
modified to compute synchronized measurements on the pre-
stored test signals obtained as PSCAD outputs and corrupted
by a level of noise of 70 dB, corresponding to a possible
noise level of the data acquisition stage. Such noise level can
represent a meaningful higher bound scenario considering both
the typical data acquisition stage noise of a PMU (more than
12 effective number of bits, [14], [40]) and the wideband noise
that can be found in power network signals [41].

The computed synchrophasors are sent in real-time follow-
ing the IEEE C37.118.2 message format to the vPMUs, where
metrics are applied. If dynamics are detected, then data is
sent to the DSSE application according to the rate set for
the dynamic state, along with a flag indicating the change of
conditions (it is a simple addition to the payload). The change
triggers the PMU weight variation in the DSSE that can be
customized on a per-VO basis. As in the previous test, the
DSSE application considers also the measurements obtained

TABLE II
VOLTAGE AMPLITUDE MARE [%] AND RMSE [P.U.] RESULTS

DSSE
MARE [%] RMSE [p.u.]

Node Node
31 32 71 150 31 32 71 150

Fixed weights 0.19 0.43 0.70 0.71 0.0018 0.0046 0.0072 0.0072

Variable weights 0.19 0.27 0.42 0.44 0.0018 0.0030 0.0044 0.0047

Variation [%] 0 -37 -40 -38 0 -35 -39 -35

TABLE III
ACTUAL CONFIDENCE LEVELS [%] OF THE ESTIMATED EXPANDED

UNCERTAINTY INTERVALS FOR NODE VOLTAGE AMPLITUDES

DSSE
Node

31 32 71 150

Fixed weights 19.8 19.8 0 0

Variable weights 19.8 74.4 98.7 91.9

by an SM in the node 150. Table II reports the differences
between the two DSSE approaches in terms of percentage
MARE of the voltage amplitude estimations, while Table III
shows the comparison in terms of the actual confidence levels
of the estimated uncertainty intervals. In Table II, for the sake
of completeness, the estimation performance is described also
by means of the root mean square error (RMSE) of voltage
amplitudes (in p.u. with respect to rated voltage), showing that
similar considerations can be drawn by observing relative and
absolute errors.

Table III highlights that, as aforementioned, the role of the
detection metrics for nonsteady-state conditions is delicate.
In node 31 no dynamics are detected; for this reason, the
PMU accuracy is not updated and, as a consequence, the
used steady-state value remains too low in the case at hand.
The determination of more appropriate metrics is beyond
the scope of this paper, because it is strictly related to the
adaptive application of DSSE, but it is once again evident that
keeping constant accuracies for PMU measurements in DSSE
is detrimental.

Even though the metrics in the example where intended
to detect voltage amplitude dynamics, which are particularly
important for the DS monitoring and control applications (see,
for instance, [1]), the results for phase angle estimations are
also reported in Table IV.

The results in terms of RMSE are almost the same when
using fixed and variable weights due to the small dynamics
of the phase angles in this case. The estimated expanded
uncertainty intervals are more accurate with variable weights
(for instance, for node 150, the actual confidence level is 94 %
instead of 0 %) even in this case, but this once more highlights
the importance of adopting specific metrics for phase angle
dynamics when the angles profile is of interest for the DSO.
It is also useful to recall that voltage amplitude and phase
angle measurements mainly impact on the DSSE accuracy of
the corresponding state variables [35].

Another test has been performed considering a 2-MW wind
generator. Dynamics in signals are due to the insertion of the
generator in the node 150. In this case, three SMs (nodes 34,
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TABLE IV
VOLTAGE PHASE ANGLE RMSE [CRAD] RESULTS

DSSE
Node

31 32 71 150

Fixed weights 0.26 0.34 0.46 0.45

Variable weights 0.26 0.34 0.44 0.44

TABLE V
VOLTAGE AMPLITUDE MARE [%] IN PRESENCE OF WIND GENERATOR

DSSE
Node

31 32 71 150

Fixed weights 0.23 0.53 0.80 0.91

Variable weights 0.22 0.26 0.41 0.49

Variation [%] -4 -51 -49 -46

71 and 75) are added to the previous monitoring system to
consider a more complex hybrid measurement configuration.
Table V shows the results for voltage amplitude estimation
and allows similar considerations as for Table II, whereas
the phase angle estimation results are reported in Table VI
and indicate how, when stronger dynamics are present in the
angles, the variable weight DSSE benefits from considering
the PMU accuracy changes also for phase angles.

TABLE VI
VOLTAGE PHASE ANGLE RMSE [CRAD] RESULTS IN PRESENCE OF WIND

GENERATOR

DSSE
Node

31 32 71 150

Fixed weights 0.21 0.43 0.68 0.82

Variable weights 0.19 0.18 0.27 0.32

The delay for the transmission of data from the physical
device (the PMU or the SM) to the DSSE application passing
through the VO has also been analyzed. Indeed, it is an im-
portant performance parameter of the Cloud IoT infrastructure
that has an impact on the SG applications. This parameter has
been analyzed over 2500 trials as the interval between the
timestamp of the PMU packets and the moment in which data
regarding those packets is received by the application, which
was running using the Google App Engines (a cloud-based
Platform as a Service). In particular, the location where the
application was running has been selected in the closest farm
for European users which is located in St. Ghislain, Belgium.
The VOs were instead running locally in a Raspberry Pi 2
Model B+ development board (having an 800-MHz ARMv8
processor). Table VII shows the results obtained with specific
tests at varying RR values (1, 10 and 50 frames/s). The
resulting average delay is around 50 ms, whereas the minimum
dependability is of 99 % if a threshold of 100 ms is considered.
RR affects only partially the delay, due to the increase in the
requested processing power at the Raspberry. To understand
to which extent this performance impacts on the final DSSE
application, it is useful to refer to the performance classes
defined by IEC61850 [42] for smart grid management. In this

TABLE VII
DELAY FROM DATA ACQUISITION TO STORAGE AT THE CLOUD WHERE THE

DSSE APPLICATION RUNS AT VARYING VOS RATES RR

RR Average Latency
100 ms

Dependability
500 ms

Dependability
[fps] [ms] [%] [%]

1 51 99.5 100

10 52 99 100

50 55 99 100

Time [s]
8 10 12 14 16 18 20

[k
V

]

2

2.1

2.2

2.3

2.4

DSSE with RR=50 fps

Adaptive DSSE

Fig. 5. Adaptive and full-rate DSSE techniques: voltage estimation results
for node 150.

document, for class TT3 applications (slow automatic interac-
tion), a transfer delay of 100ms is required, which could be
fulfilled by our system. Clearly, all the other applications with
less stringent requirements can be implemented in our system,
i.e., operator commands, events and alarms, and others.

As a final test, the results concerning some possible un-
expected operations on two loads are reported. Such test is
similar to those discussed in [19] and is useful to show how
the variable RR works also for the new DSSE architecture.
The events occur at given moments of the network operation:

1) breaker at node 75 opens at 15.6 s and closes at 17.6 s;
2) breaker at node 150 opens at 10.3 s and closes at 19.6 s.
Fig. 5 reports the results of the DSSE techniques in terms

of the RMS voltage estimation at node 150 when both the
maximum RR given by PMUs (full-rate DSSE) and the new
adaptive DSSE are used. As in [19], the DSSE operates at the
highest RR only under dynamic conditions, suitably following
the variations in the signals thanks to the adaptive policy of
VOs.

For this test, the saving in bandwidth obtained thanks to
the adaptivity in the RR controlled by the VOs has also
been analysed. In this case an average RR of 17 frames/s
has been observed for PMU at bus 71 (the other one works
at 1 frames/s), with a saving in the bandwidth of 66 % with
respect to the static configuration where the PMU works at the
maximum rate of 50 frames/s. Considering the lowest possible
length of each PMU data frame of 70 B (but a typical packet
at least includes additional 44 B of TCP/IP header as in [9]),
a rate of 9.52 kb/s against 28 kb/s is obtained. Clearly, these
values are both low but it is important to consider that there
will be soon networks with many PMUs and SMs and each
source generates continuously data to be stored in the cloud.
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As a final consideration, it is worth noting that also in this
case, the actual confidence levels given by new adaptive DSSE
are closer to the theoretical ones: they are 69.0%, 98.0%,
98.0% and 97.9%, respectively, for the four aforementioned
nodes.

V. CONCLUSIONS

The paper presents an innovative auto adaptive DSSE built
on an Cloud-based IoT paradigm. The new designed solution
permits considering the possible significant changes in the
actual accuracies of the measurement devices. This is a crucial
step forward in the DSSE topic, because the accuracy of a
measurement device strictly depends on the actual conditions
(steady-state or dynamic) of the monitored signals. The estima-
tion process is now adaptive both in the use of the accuracies
of the measurement devices and in the rate of execution. The
variations in the process are triggered by the indications of
appropriate local metrics, working on data provided by a dis-
tributed measurement system. The design of the local decision
logics, implemented on the virtual objects corresponding to
physical PMUs, is discussed. An appropriate Cloud based
architecture now permits to obtain updated information from
heterogeneous devices such as PMUs and SMs. The validation
of the procedure and the performance analysis are conducted
on an example of distribution network derived from the IEEE
13-bus.

The discussed results prove the validity of the approach,
since it allows enhancing the estimation results in case of
dynamics occurring in the network and tracking possible
events with an efficient management of the communication
infrastructure.
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