
Calculemus 2005 Preliminary Version

On the Comparison of Proof Planning Systems
λCLaM, Ωmega and IsaPlanner

Louise A. Dennis 1,2

School of Computer Science and Information Technology

University of Nottingham, Nottingham, UK

Mateja Jamnik 1,3

University of Cambridge Computer Laboratory

University of Cambridge, Cambridge, UK

Martin Pollet 1,4

Fachbereich Informatik

Universität des Saarlandes, Saarbrücken, Germany

Abstract

We present a framework for describing proof planners. This framework is based
around a decomposition of proof planners into planning states, proof language,
proof plans, proof methods, proof revision, proof control and planning algorithms.

We use this framework to motivate the comparison of three recent proof planning
systems, λCLaM, Ωmega and IsaPlanner, and demonstrate how the framework
allows us to discuss and illustrate both their similarities and differences in a con-
sistent fashion. This analysis reveals that proof control and the use of contextual
information in planning states are key areas in need of further investigation.

Key words: Proof Planning

1 Introduction

Proof planning was introduced by Alan Bundy [1] as a new paradigm for
proof automation. Rather than using low level logical inference rules, the
proof construction is automated using so-called proof methods which capture
common patterns of reasoning.

1 This work was supported by EPSRC grants GR/N37314/01 and GR/S01771/01, an EP-
SRC Advanced Research Fellowship GR/R76783, SFB 378 Project grant, and European
Commission IHP Calculemus Project grant HPRN-CT-2000-00102. Thanks to Lucas Dixon
for work on an earlier version of this paper and to Ewen McLean for fruitful discussions.
2 Email: lad@cs.nott.ac.uk
3 Email: Mateja.Jamnik@cl.cam.ac.uk
4 Email: pollet@ags.uni-sb.de

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Nottingham ePrints

https://core.ac.uk/display/98128?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Dennis, Jamnik and Pollet

Proof planners search for a proof plan of a theorem. This plan can then
be executed to derive a fully formal proof in terms of the underlying logical
inference rules. The search space tends to be smaller than that at the level of
inference rules [3,8]. This is due to the more abstract nature of proof methods
appearing in the plan and, in particular, the structuring of the search space
which is made possible by this abstraction. Proof planning therefore focuses
on providing mechanisms for organising the application of these proof steps. A
salient feature of proof planning is that it generates proofs where the reasoning
patterns are transparent, and where failure can be patched.

Recent case studies have shown that proof planning provides a basis for
the integration of computational systems for both guiding the automatic proof
construction and performing proof steps [7,4]. For example, computer alge-
bra systems can be used to instantiate variables in proof steps, constraint
solvers to collect and administrate inequalities, and theory formation systems
to construct discriminating properties of algebraic structures.

These case studies show that proof planning is a suitable framework for
the integration of computational algorithms into deduction systems, but a
modern analysis of the proof planning approach (in particular, with reference
to failure recovery) is still missing. We feel it is timely to consolidate the ideas,
the progress and state-of-the-art in this field. Therefore, it is the objective
of this paper to present (in §2) clear abstract definitions of the individual
features of proof planning in order to provide a common framework for the
discussion and comparison of proof planning systems. We illustrate the use
of our framework by presenting (in §3) a comparison of three recent proof
planning systems: λCLaM, Ωmega and IsaPlanner.

2 A Framework for Proof Planning

Proof planning, as the word describes, is conceptually related to traditional
planning in Artificial Intelligence (AI). Describing a problem in traditional
AI planning consists of logical sentences about the initial state and the goal
state. The goal state is described by a logical query sentence which asks how
some situation can be achieved from the initial state. A proof problem can
be viewed as a planning problem when we identify the local assumptions of
the problem and the theory in which the problem is formulated as the initial
state. The conclusion of the proof problem corresponds to the goal state.

The planning operators describe the transformation of planning states into
new states. A planning operator is typically represented by its precondition
and effects. The precondition specifies what needs to be true in the planning
state for the operator to be applied. The effect of an operator specifies how
the situation changes after the operator has been applied. The use of proof

methods in proof planning is derived from this paradigm.

The (proof) planner searches for a sequence of operators with which the
initial state can be transformed into the goal state. The sequence of operators

2



Dennis, Jamnik and Pollet

of a successful process is a plan. Since there is no need to linearise methods,
a proof plan is a tree or a DAG (directed acyclic graph).

A proof plan is similar to an AI plan in that it represents the description
of how a planning problem (theorem) can be solved (proved), as opposed to
representing the execution of the plan (formal proof). As in AI planning,
the structuring of the planning process uses search algorithms and control
knowledge to decide which path to take at choice points.

The usage of many terms in proof planning has become somewhat over-
loaded and confused. Where possible we have sought to retain common termi-
nology, but we will endeavour to be precise about our usage. It is important
to note that the terminology used in our framework is based on function and
not on nomenclature. It is possible that some identically named feature may
appear in two proof planning systems which our framework categorises differ-
ently for each system (e.g., the compound methods of λCLaM can only loosely
be placed in the proof method category of our framework). We consider this
to be a strength since it allows differences to be more easily perceived even
when terminology is confusing.

Our framework is based on a classification into components most of which
are available in all proof planning systems.

2.1 Proof Planning State

Most literature on proof planning describes proof planners as operating on
partial proof plans. However, an important insight of Dixon and Fleuriot [5]
is to notice that proof planners operate on proof planning states.

We consider all components of the state, that is, all sources of information
and all parts that can be manipulated by proof planning. These are:

Proof goals: goals to be proved or solved.

Proof plan: a proof at some level of abstraction (can be partial).

History: a record of the proof search process, including backtracked steps
and failed operators.

Control information: used to select the next proof planning operator.

Context: a repository to store additional information. This information is
either attached to terms, to the proof plan, or is in the form of control status
attached to goals (e.g., why a goal was not solvable).

The least well-defined part of the planning state is the context. It is differ-
ent in all of the systems we considered. The context is useful for performing
search for a proof of a problem, but it is not necessary for reconstructing a
formal proof from the proof plan.

During proof planning, as in AI planning, the proof planning state is trans-
formed by proof planning operators. It is possible to derive numerous cate-
gories of operators depending upon which bits of the planning state they can
access and which they can manipulate. However, in practice the uses of plan-

3



Dennis, Jamnik and Pollet

ning operators in proof planning fall into distinct common categories:

Proof methods are descriptions how to transform goals to new subgoals;
they may also use and manipulate information from the context.

Proof revisions describe the reaction to failure. They are a global operation
on the goals, proof plan, control knowledge and context information.

Further categories of operator are associated with the following mechanisms:

Proof control is used to select the next goal and the next proof plan oper-
ator. Proof control may use proof control operators to manipulate control
knowledge, which is then analysed (potentially along with the proof plan,
history and context) to select the next operator.

Proof expansion is the transformation of the proof plan into a formal proof.

In the following we describe these operators and mechanisms in more detail.
The proof expansion is considered in the context of the hierarchical structure
of proof plans and the language used for formal proofs.

2.2 Proof Language

The proof language (object language) is the language of formulae and the
inference rules of the logical calculus within which a proof planning attempt
takes place. The proof on the object level is usually the final result of the proof
planning process, this object level proof is generated from the proof plan.

Systems differ in the expressiveness of the object language, for example,
some object languages exclude meta-variables (free variables introduced when
searching for a witness to existentially quantified variables).

2.3 Proof Plans

The term proof plan was originally used to describe both an explicit structuring
of the search space and a high level representation of the proof itself. In later
descriptions the term has generally been used to describe the latter. Therefore
we adopt this meaning: a proof plan describes the result of proof planning.
We will use the term proof control to describe search space structuring.

A proof plan is a graph which stores the result of the application of proof
methods to goals, and is the basis for the expansion of an abstract proof into a
calculus level proof. A reference to the proof method is stored and can be seen
as the justification for the node. Therefore, a proof plan can be interpreted as
an abstract proof, or rather, a proof sketch for the problem. Proof plans may
contain different, and possibly many, levels of abstraction.

The expansion of proof methods results in more detailed proof plans, with
the formal proof at the lowest level. The construction of the formal proof can
either be interleaved with proof planning steps, or implemented as a verifica-
tion phase that comes after the proof search. There are a variety of techniques
for expanding a proof plan down to a more concrete one. At present expansion

4



Dennis, Jamnik and Pollet

happens locally for each single proof method in all systems. This means that
the structure of the proof plan is determined by the logical calculus (see §3.2).

Abstraction is realised by the mechanisms that are used for proof control.
Sequences of proof methods can be contracted to a single step which is labelled
with the proof control responsible for the selection of this sequence of methods.

2.4 Proof Methods

A proof method is a description of how to transform a goal into new subgoals
and also presents a justification for this manipulation. It has no access to the
information held in the current proof plan or history, nor does it know about
other methods. Only the particular goal and the context information relevant
to that goal are available to the method.

In the literature, we find that proof methods are often defined as declara-
tive descriptions of tactics, where a tactic is a function which can be applied
to a goal to generate subgoals and which guarantees the correctness of the
derivation. The declarative nature of a method does not necessarily provide
any information about the manipulation performed by the method in advance
of its application (see §3.4.1). In this respect, a tactic and declarative method
contain the same degree of information, and the only difference is that a declar-
ative method needs an interpreter to actually perform the manipulation.

Clearly, at some level, proof methods affect changes in the planning state,
particularly the partial proof plan. The relationship between proof methods
and proof planning operators varies from system to system.

The difference between tactics and methods is a source of much debate.
Our framework allows us to observe that a tactic cannot access any contex-
tual information so tactics form a subset of methods. Every method which
acts solely on goals expressed in the proof language for formulae (i.e., on G to
produce subgoals S̄) can be emulated by a modus ponens-like tactic that in-
troduces an additional subgoal for the implication (i.e., S̄ ` G). So a method
distinguishes between subgoals required for solving the problem on an abstract
level, and subgoals (in some systems left implicit) required for a formal verifi-
cation. The primary distinguishing feature of methods with respect to tactics
therefore, is that methods have access to and are able to manipulate context
information, whereas LCF-style tactics only manipulate object level formulae.
As a secondary feature, methods often leave some subgoals implicit or at least
separately categorised to indicate they are to be solved by expansion, whereas
a tactic makes all its subgoals explicit and gives them all the same status.

2.5 Proof Revision

Proof revision is the most powerful mechanism available in proof planning.
Proof revision is triggered in all systems by failure. Failure usually means that
a goal could not be closed, either because no proof method was applicable, or
the planner looped. However, it is possible for failure to be interpreted more

5



Dennis, Jamnik and Pollet

generally as any process that determines the need for some major change
of the approach. The standard reaction to failure is backtracking: a proof
plan operator that deletes nodes from the proof plan and updates control
information appropriately to prevent that branch from being re-explored.

The abstract nature of proof planning allows very sophisticated analysis
of failures. The analysis is either based on proof methods, or the proof plan
and history. The specification of how to react includes information about
where to start again (manipulation of the proof plan) and how to continue
(manipulation of proof control information).

2.6 Proof Control

Proof control uses the control information in the planning state to determine
the selection of the next goal and the proof planning operator.

In current systems, proof control information is either expressed in form
of control rules which analyse the current proof plan and the history, or it is a
description how proof plan operators should be sequenced and combined. This
description is manipulated as proof planning proceeds and actual operators
applied. The updated description is called the continuation. In some cases
the continuation is itself treated as a proof plan operator.

Therefore, across the various systems proof control is dictated by a mixture
of control information in the planning state and proof plan operators that
modify this information. It is important to consider the control operators, the
control information, and the mechanisms for using the information to select
the next operator together in order to understand how the proof search is
controlled. Therefore, in our framework we consider all these together under
the heading of proof control rather than individually as part of the planning
state, planning operators and planning algorithm.

2.7 Planning Algorithm

The final component of a proof planning system is the planning algorithm.
The planning algorithm is responsible for performing the search for a proof
plan that solves the given problem. It has to process control information,
apply proof methods, update the proof plan, and switch to proof revision.

3 A Comparison of Three Proof Planning Systems

We now illustrate our framework by using it to compare proof planners. A
summary of the main characteristics of these systems in relation to each other
and with respect to our framework is given in Table 1 at the end of this section.

Proof planning is implemented in several systems. The first proof planner,
CLaM [1], was designed to prove theorems by mathematical induction. Its
successor, λCLaM [11], has been extended to higher order logic.

6



Dennis, Jamnik and Pollet

Another well known system is the Ωmega proof planner [9]. In Ωmega,
proof planning is viewed in the tradition of human-oriented reasoning tech-
niques for mathematical theorem proving (as opposed to logic-oriented tech-
niques such as resolution). Ωmega integrates various other mathematical
services, such as traditional automated theorem provers, a knowledge base,
computer algebra systems, etc.

Finally, the IsaPlanner system [5] is a proof planner for the interactive
theorem prover Isabelle [10]. IsaPlanner interleaves proof planning with
the proof plans’ execution and thus is able to take advantage of powerful
tactics available in Isabelle.

We use a comparison of these three proof planning systems as a case study
to illustrate how our framework from §2 can be used as a basis for discussing
the construction of proof planning systems.

3.1 Proof Planning States

In IsaPlanner the planning state is a triple consisting of a proof plan, proof
context, and control information in form of a continuation. Goals are implicitly
represented as the open nodes of the proof plan. The proof context may con-
tain arbitrary information. IsaPlanner has access to Isabelle, including
theory libraries and information on rewrite rules to be used in simplification.
A proof planning operator is a function on planning states and is called a
reasoning technique.

λCLaM’s planning state also consists of a proof plan and a continuation.
The context information λCLaM uses includes annotations attached to terms
and a number of global lists (such as theorems to be used for rewriting).

The planning state of Ωmega contains goals, the proof plan, control rules,
one or more constraint stores as context, and the history of proof search. Goals
can be proof goals, that is, formulae to be proved, or instantiation goals for
variables. The constraint store is used to collect information for the instan-
tiation goals. There exist additional constraint stores for different domains.
The history has three parts: the proof plan viewed as a history of successful
method applications, the history of backtracked steps and a strategic history.
History is an essential part of Ωmega’s proof planning state. It is used by the
proof control and we will discuss this in depth in §3.6. Ωmega also makes use
of annotations attached to terms and goals.

Our analysis of the proof planners revealed that some of the information
used by planing operators was not explicitly mentioned as part of the planning
state. For example, the global lists in λCLaM in which theorems are stored and
which are used by proof methods for rewriting. Similar types of parameters
are also present in Ωmega, but they are implicitly given within Ωmega’s
control rules. Ideally, such information should be made explicit as part of the
planning state context, which would allow reasoning with them, for example,
to start a new planning attempt with a modified list of theorems.

7



Dennis, Jamnik and Pollet

Since the different systems use different sorts of context information, and
since this information is also dependent on the proof domain, we propose the
concept of proof context as an extensible repository for information. In inter-
active theorem provers the “context information” needed to prove a theorem
is provided by the human user, in proof planning this information has to be
modelled and represented within the system.

The notion of context can cause complications. Since there are a number
of different types of context information, operators may have to be aware of
these distinctions. Mixing operators which depend and act on different types
of context information, could lead to inconsistencies between the proof plan
and the context. Further work to analyse and understand the role of proof
context in proof planning is clearly needed.

3.2 Proof Language

Ωmega uses a typed λ-calculus for formulae. The base calculus is a higher-
order version of Gentzen’s Natural Deduction Calculus (ND).

λCLaM’s object language is a sequent based typed λ-calculus. λCLaM’s
predecessors used a version of Martin-Löf constructive type theory, and λCLaM
clearly owes much to these systems. However, λCLaM adopts no clear set of
object level inference rules. As such, its object language is a syntactic entity
with a loose interpretation as a higher-order sequent calculus.

Ωmega and λCLaM treat free variables resulting from existentially quan-
tified variables as meta-variables which are not part of the proof language.

IsaPlanner uses Isabelle’s language for formulae. This means it has
access to a rich language that implements meta-variables at the object level.

3.3 Proof Plans

All three proof planning systems represent proof plans as DAGs. In the case
of IsaPlanner and λCLaM, this representation is restricted to a tree. The
nodes of these DAGs are labelled with goal formulae and hypotheses. In all
systems the nodes contain some reference to the proof operation responsible
for their creation which can be interpreted as an abstract justification of the
node. Ωmega’s use of DAGs is clearly a more general representation of the
proof plan than the trees used by λCLaM and IsaPlanner. The DAGs in
Ωmega allow nodes to be reused for the justification of several goals.

Proof plans may be expressed at different levels of abstraction. The trans-
formation to more detailed proof plans is achieved by expansion. Expansion
is used to generate a verifiable formal proof.

The verification of a proof plan in Ωmega is done in a second phase af-
ter the proof search: all meta-variables are replaced by their witness terms,
and each proof method is expanded into a subproof which may contain other
methods. The process stops when all proof steps are calculus level rules, so
that the fully expanded proof can be checked.

8



Dennis, Jamnik and Pollet

The proof plans produced by λCLaM justify individual proof steps by the
names of their corresponding proof methods. In λCLaM, there is no actual
expansion of the proof plan available. Nevertheless, a mechanism similar to
the expansion in Ωmega was envisioned. Each proof method is associated
with a tactic (for an LCF-style theorem prover), and thus the proof plan can
be viewed as a tactic tree which can be executed.

In IsaPlanner expansion is interleaved with the application of proof
methods. A method is only applicable when a formal proof for the manipu-
lation performed by the method can be constructed. The proof plan is repre-
sented as proof script in the Isar language.

In the comparison of the different systems a clear design choice emerges
between whether proof verification is interleaved with the construction process
or it is delayed. Postponing the expansion phase can allow proof search to use
efficient algorithmic methods to calculate subgoals and leave actual calculation
of the formal proof (which may be time-consuming) until it is certain that this
branch of the plan will actually appear in the final version. It also allows a
proof plan to be generated independently of any object language peculiarities.
On the other hand, interleaved expansion allows the system to use, where
appropriate, tactics that exist in the underlying system. In a two phase (i.e.,
postponed) expansion a failure in the expansion generally leads to a revision
of the whole proof plan, whereas with an interleaved verification this kind of
incorrect proof plan is ruled out during proof search. The interleaved execution
is equivalent to a two phase approach where it is possible to mark goals in the
interleaved execution as expansion goals.

The original idea behind proof planning was to construct a meta level proof
plan and only later reconstruct the underlying formal proof. This was based
on the observation of mathematical practice, where it is rarely necessary to
worry about the use of precise logic in a “pen-and-paper” proof, but where such
proofs can usually be formalised to a particular logic, if necessary. The local
expansion of methods means that the formal proof is more detailed than the
proof plan while it still preserves the same structure. This strong connection
between the formal proof and the proof plan influences the implementation
of proof operators. Some logics place more constraints on abstract proof plan
construction than others. For instance, ND is very sensitive to the order in
which proof steps are taken and this dictates the way some proof operators
are implemented. However, from the “pen-and-paper” perspective, the order
of proof steps should only depend on the problem, and not on the verification.

Proof plans can also be abstracted by folding up sequences of steps. This
is primarily used in interfaces. It allows a user to “zoom in” or “zoom out” of
parts of the DAG which may be difficult to comprehend in its entirety.

9



Dennis, Jamnik and Pollet

3.4 Proof Methods

We use the term proof method here for descriptions of how to transform a
goal into a (possibly empty) list of subgoals, and which may also manipulate
the context. These are referred to as atomic methods in λCLaM and methods
in Ωmega. They are not clearly identified in IsaPlanner, but are a subset
of the reasoning techniques available in that system.

λCLaM and Ωmega’s proof methods are expressed in a frame data struc-
ture containing input, output, parameter and precondition slots. The input
and output slots are used to match and generate goals. This frame structure
provides an interface for the users to create their own methods, either us-
ing arbitrary λProlog code in λCLaM, or a specialised interpreted language
developed for this task in Ωmega.

IsaPlanner uses a single and extensible language for encoding tech-
niques, which are functions on planning states. It is possible to identify a
subset of these techniques as proof method-like in that their primary function
is the production of new subgoals. Some of them even contain the declara-
tive information similar to method preconditions in the proof context. This
declarative information is used to enable proof revision.

In Ωmega and λCLaM the (semi-)declarative structure for proof methods
allows them to be viewed as descriptions of a proof step which the system sub-
sequently applies to create a proof planning operator. The system automati-
cally updates the proof plan and history etc. as appropriate. IsaPlanner’s
reasoning states are explicitly functions on proof planning states. Insofar as
we identify some of these as methods, it is those which extend the partial proof
plan with new goal nodes. It is also worth noting that some of IsaPlanner’s
reasoning techniques are created by applying wrappers to tactics which lift
them from functions on goals to functions on proof planning states.

In most publications on proof planning, parameters are neglected in the
description of methods. We explicitly mentioned parameters as slots in the
frame data structure used for methods, because this allows an information flow
from the proof control layer to proof methods. Parameters can be instantiated
when a method is selected by the proof control.

3.4.1 Declarativity

Of the different formalisms for the encoding of methods, Ωmega’s has the
highest degree of declarativity. The language for the input and output is fixed,
there exists an interpreted language for preconditions, and the expansion is
represented by a proof schema which contains a declarative specification of the
subproof. It was envisioned that the language for preconditions would reach
a fixpoint, but it turned out that new domains need new types of precondi-
tions. In λCLaM the preconditions are directly expressed in the programming
language. In contrast, the declaration of slots in IsaPlanner is not fixed,
and declarativity is provided only by the optional inclusion of “precondition-

10



Dennis, Jamnik and Pollet

like” statements in the proof context. So we cannot speak of fully declarative
language for proof methods in any system.

There are three primary motivations for adopting a declarative language:
the analysis of operators; easing the implementation for the system users who
wish to create their own proof planning operators; and identifying how to
introduce (and remove) steps.

The first of these reasons has not, in practice, been of much utility for
proof planning. Many methods in proof planning systems cannot be analysed.
For example, consider a method which applies a computer algebra algorithm
to do simplifications on the goals. The only way to know the effect of this
method is to apply it to a concrete goal.

Users often only need simple tools for syntactically manipulating formulae
which can be provided using input schema. More sophisticated methods seem
to require a fully flexible programming language in which to write arbitrarily
complex preconditions which expert users will need to master. The case for a
declarative language between these two levels of complexity appears thin.

Thus there remains only one reason for the use of declarative preconditions
which is their use in analysing steps for expansion or during failure reasoning.
Once again it seems likely that only the input and output schemes are really
necessary here since other information can be re-constructed (see §3.5).

3.5 Proof Revision

λCLaM has explicit proof critics [6] which are used to great effect with rip-
pling [2]. Critics are traditionally triggered when a method fails to apply,
but may also be triggered proactively, and tend to use an analysis of the
method’s preconditions to motivate a revision of the proof plan. In contrast
to methods, which only add new goals, a critic will often delete or replace
nodes. IsaPlanner’s proof planning operators can also perform this sort of
large-scale manipulation of the proof plan. They use declarative information
stored by methods in the proof context instead of explicit precondition anal-
ysis. In essence, critics are used to jump over branches of the search space
which would otherwise be explored laboriously (typically by backtracking),
and to introduce new areas into the search space.

In Ωmega there are two possible types of unsuccessful exits of a proof
planning strategy. Either there is no applicable method (called failure), or
the proof planning strategy itself can cause an interruption. The analysis of
failures at the strategy layer is called meta reasoning. Meta reasoning is based
on analysis of the current goal, the partial proof plan, and the history, rather
than on a method’s preconditions.

All systems allow detection of failures, which are not directly connected to
one method, for example, loops in the proof search.

A critic which analyses a given method’s preconditions has limitations.
Since the language for preconditions is not totally declarative, a critic depends

11



Dennis, Jamnik and Pollet

on how the precondition is expressed. Thus, the introduction of a critic can
make it necessary to change the proof method,and a change in the proof
method has consequences for the corresponding critic. This inter-dependency
between critics and proof methods can be avoided when the critic performs
its own analysis of the proof planning state, or the method stores additional
information about the failure in the proof context.

A revision usually consists of several different parts, for example, back-
tracking, changing the proof control, continue on a specific goal. In Ωmega

these steps are implemented as different strategies, but (strategic) control rules
can only select the immediate next strategy. This means, it is not possible to
express the exact combination of those steps. After each step it is necessary
to analyse what should be performed next. For this it is necessary to differen-
tiate between backtracking steps performed for different revisions so that the
intended next step of the revision is selected.

3.6 Proof Control

In λCLaM and IsaPlanner, methodicals are used to combine methods into
methodical expressions. The methodical expression then meth(M1, M2) is in-
terpreted as an application of first method M1 and then method M2, if M1

was applicable. Methodicals express the structure of a proof, for example,
then meth(rewrite, orelse meth(assumption, tautology)) controls a proof
that will attempt to rewrite a goal and then prove it using either the proof
method for assumptions or by showing the goal is a tautology. Methodicals
express a plan for how the proof search should progress from this point. Prac-
tically they restrict the possible planning operators considered at any point in
the proof search. Methodical expressions can be composed from both proof
plan operators and other methodical expressions. This allows the structuring
and reuse of both operators and these compound controls. Methodical expres-
sions can also be used to abstract a proof plan: the subtree of methods which
were introduced by a methodical expression can be contracted to an edge which
has the methodical expression as justification. Methodical expressions are
stored in planning states as a continuation, and the continuation is modified
as planning progresses (e.g., in the above example, once the rewrite method
was applied, the continuation is orelse meth(assumption, tautology). In
λCLaM the user supplies an appropriate methodical expression in a fixed lan-
guage at the start of planning, and the system interprets this as planning
progresses. IsaPlanner treats methodicals as proof planning operators that
can be programmed by users to work in a similar but completely extensible
fashion to those used in λCLaM.

In Ωmega the selection of methods is controlled by control rules. Control
rules exist for the different choice points of the planning algorithm: goals,
proof methods, and actions (instantiated methods). At these choice points,
the planner has to choose one object from a list of objects in a planning state

12



Dennis, Jamnik and Pollet

in order to continue. The control rules consist of conditions and modify the
list of objects given to it when the conditions holds. The control rules are
executed on the initial list of objects which is filtered and reordered to form
a new planning state. Later, the planner processes the list of objects in the
given order. The condition part of a control rule analyses the proof plan, and
the proof history. We can say that methodical expressions express the ‘future’
of a proof attempt. Whereas control rules look into the ‘past’ by analysing
the history and the proof plan to make a decision about the next step.

In Ωmega, there is an additional layer for strategies. Strategies were
introduced because it was inconvenient to have an unstructured set of methods
and control rules. Strategies are collections of methods and control rules, and
provide implicit proof structuring. One proof planning attempt may employ
several strategies. This serves a conceptually similar purpose to the way in
which a methodical expression can be composed of other expressions. The
choice of strategy is controlled by strategic control rules. There are also control
rules which can interrupt a strategy.

The language for expressing proof control in the form of methodicals is
equivalent to tacticals in interactive theorem proving. A methodical expression
expresses a search pattern. An instantiation of this pattern is the proof plan
for a concrete theorem. The current set of methods and control rules embodied
in a strategy clearly also encode a proof pattern, but less explicitly than is
possible with methodicals. In particular the effects of modifying and adding
control rules are hard to predict because control rules interact via the list
of options they modify. Paradoxically, it seems that while adopting a more
declarative approach for the construction of proof methods, Ωmega has used
a less declarative approach to control knowledge.

We believe the approaches have the same expressiveness in the sense that
control rules can emulate the interpretation of methodical expressions and
control rules can be emulated by methodicals when there is a conditional me-
thodical. 5 So the approaches are different only in the style in which proof
control is expressed. For instance, it is possible to express that a simplifica-
tion method should be tried after each method application with one control
rule. To express the same behaviour with methodicals requires the addition
of the simplification method to all proof methods in the methodical expres-
sion. On the other hand it is relatively cumbersome to express a sequence
of proof methods with control rules, whereas this is straightforward with the
methodical then meth. A combination of both approaches that would exploit
the respective benefits of the different styles constitutes further work.

3.6.1 Separation of Heuristic Knowledge

In Ωmega proof methods are expressed as generally as possible, while heuristic
information is delegated to control rules. This means that a method may be

5 Further work, to appear.

13



Dennis, Jamnik and Pollet

re-used in a variety of different situations by adapting these control rules. It
also means that undesired method applications are rejected on the control
level, rather than encoding this decision in the design of the method. The
consequence of this separation is that for different situations different control
rules have to be implemented for the application of the same method.

λCLaM and IsaPlanner do not make such distinctions clear. Potentially
this can lead to one proof step having several different instantiations as proof
methods with different sets of heuristic preconditions, depending on where it
is to be used in methodical expressions. It is possible that including heuristics
in methods makes the construction of methodical expressions simpler.

Placing heuristic knowledge in proof methods reduces reusability, but does
appear to allow proof control to be more declarative. It is not obvious how to
directly compare such differing approaches to the separation of heuristic and
legal knowledge, and we plan further exploration of this area.

3.7 Planning Algorithm

Of the three systems under consideration Ωmega employs the most compli-
cated planning algorithm, and the only one that is comparable to AI planning
systems. Ωmega uses a depth-first search strategy with respect to the results
of control rules, but the algorithm passes through several stages. First, rele-
vant control rules are used to select a current goal for consideration. Then,
they are used to select an appropriate method, the method is interpreted
and tested on the selected goal. If it is applicable, then the proof plan, the
constraint store and the history are updated and the process restarts.

The algorithm used by λCLaM interprets the methodical structure until
it comes to the first proof method or critic. If this is applicable, then it is
applied to create a new planning state, and the search continues according
to the proof control. The interpretation generally uses depth-first search.
The interpretation of methodicals is not very different from the interpretation
of tacticals, except that it works within a system which contains additional
contextual information for proof search and proof revision.

IsaPlanner’s algorithm is similar to λCLaM’s with the addition that the
agenda of reasoning states can be manipulated by proof planning operators
that allow the planner to switch between search strategies. This power has not
yet been properly evaluated, but it does not appear radically different from
the use of control rules to select the next appropriate goal, method or action.

4 Discussion and Future Work

Our categorisation of proof methods as operations which describe manipula-
tions of goals and the context suggests there could be proof methods which
act on the context alone. Consider representations that are not possible in the
object language, for example diagrams. These could be represented in the con-

14



Dennis, Jamnik and Pollet

Ωmega λCLaM IsaPlanner

Proof
Planning
State

goals, proof plan,
control information
(control rules), proof
context (constraint
stores), history

proof plan, control
information (contin-
uation), proof con-
text (annotations)

proof plan, control
information (contin-
uation), proof con-
text

Proof
Lan-
guage

higher order natural
deduction typed λ

calculus

sequent based λ cal-
culus

various Isabelle

logics

Proof
Plans

DAG, verification as
expansion

tree, verification in
principle postponed

tree, verification in-
terleaved

Proof
Methods

declarative objects with slots: input, out-
put, parameters, preconditions

subset of reasoning
techniques

(decla-
rativity)

slots fixed, inter-
preted language for
preconditions

slots fixed, pro-
gramming language
for preconditions

slots not fixed, op-
tional precondition-
like statements in
context

Proof
Revision

strategic control
rules decide how to
react to failure

proof critics for failing methods/proof
plans

Proof
Control

control rules, strate-
gies and strategic
control rules

fixed methodical
language to
combine methods

extensible methodi-
cal language to com-
bine methods

(heuristic
knowl-
edge)

heuristic knowledge
not in proof methods
but in control rules

heuristic knowledge in proof methods, not
in control rules

Planning
Algo-
rithm

depth first search proof methods can
change local search
strategy

Table 1
Ωmega, λCLaM and IsaPlanner at a glance.

text, and diagrammatic reasoning would correspond to proof methods which
manipulate only the context. Such use of proof context will require further
clarification of the different types of context information and the structure of
context.

Our analysis also raises questions about the extent to which declarativity is
desirable both in proof methods and in proof control, and the extent to which
the users should be encouraged to separate legal and heuristic information.

15



Dennis, Jamnik and Pollet

A key issue to resolve in further investigation of these questions is the ex-
tent to which it is possible to emulate the behaviour of one style of operator
with another. Our preliminary work in this direction indicates that this is
possible in both direction. So methodicals and control rules are two represen-
tations of the same knowledge. Our immediate intention is to explore these
questions of power and expressivity in more detail.

We have presented a framework for the discussion of proof planning in
terms of Planning State, Proof Languages, Proof Plans, Proof Methods, Proof
Revision, Proof Controls and Planning Algorithms. We showed that these
categories are both adequate for describing all the salient features of modern
proof planning systems and illuminating in that they allow like to be compared
with like (even in the face of confusing and overloaded terminology).

As a case study we have applied our framework to three modern proof
planning systems, IsaPlanner, Ωmega and λCLaM. This has revealed that
a key area in proof planner design is the nature of proof control and context
information. We hope to explore these design issues in future work.

References

[1] A. Bundy. The use of explicit plans to guide inductive proofs. E. Lusk and
R. Overbeek, eds, CADE-9, LNCS 310, pp. 111–120. 1988.

[2] A. Bundy. The Automation of Proof by Mathematical Induction. A. Robinson
and A. Voronkov, eds, Handbook of Automated Reasoning, Elsevier, 2001.

[3] A. Bundy. A critique of proof planning. A. C. Kakas and F. Sadri, eds,
Computational Logic: Logic Programming and Beyond, Essays in Honour of

Robert A. Kowalski, LNCS 2408, pp. 160–177. 2002.

[4] A. Cohen, S. Murray, M. Pollet, and V. Sorge. Certifying solutions to
permutation group problems. In F. Baader, ed, CADE-19, LNAI 2741, pp.
258–273. 2003.

[5] L. Dixon and J. D. Fleuriot. IsaPlanner: A prototype proof planner in Isabelle.
F. Baader, ed, CADE-19, LNCS 2741, pp. 279–283. 2003.

[6] A. Ireland. The use of planning critics in mechanizing inductive Proofs.
A. Voronkov, ed, LPAR, LNAI 624, pp. 178–189. 1992.

[7] A. Meier, M. Pollet, and V. Sorge. Comparing approaches to the exploration
of the domain of residue classes. JSC, Special Issue on the Integration of

Automated Reasoning and Computer Algebra Systems, 34(4):287–306, 2002. S.
Linton and R. Sebastiani, eds.

[8] E. Melis and J. H. Siekmann. Knowledge-based proof planning. Artificial

Intelligence, 115(1):65–105, 1999.

[9] Omega Group. Proof development with Ωmega. A. Voronkov, ed, CADE-18,
LNAI 2392, pp. 144–149, 2002.

[10] L. C. Paulson. Isabelle: A generic theorem prover. LNCS 828. 1994.

[11] J. D. C. Richardson, A. Smaill, and I. Green. System description: proof planning
in higher-order logic with lambdaclam. C. Kirchner and H. Kirchner, eds,
CADE-15, LNCAI 1421, pp. 129–133. 1998.

16


	Introduction
	A Framework for Proof Planning
	Proof Planning State
	Proof Language
	Proof Plans
	Proof Methods
	Proof Revision
	Proof Control
	Planning Algorithm

	A Comparison of Three Proof Planning Systems
	Proof Planning States
	Proof Language
	Proof Plans
	Proof Methods
	Proof Revision
	Proof Control
	Planning Algorithm

	Discussion and Future Work
	References

