
 

Abstract--Procedures that provide detection, location and
correction of tampering in documents are known as anti-
tampering schemes. In this paper we describe how to construct an
anti-tampering scheme using a pre-computed tree of hashes. The
main problems of constructing such a scheme are its
computational feasibility and its candidate reduction process. We
show how to solve both problems by the use of secondary hashing
over a tree structure. Finally, we give brief comments on our
ongoing work in this area.

Index Terms--Computer Security, Hashing, Tamper
Correction, Trees.

INTRODUCTION

S the volume of information existing in digital form
increases, data tampering becomes a growing problem.

Current tamper protection schemes employ cryptographic hash
functions, such as SHA-1 [1], to protect data integrity. Such
functions create a digest of the data, which can be used to
determine the data's integrity at some later point in time.
Instances of tampering detected through this method result in
the data being discarded, and (in the case of transmitted data) a
request for retransmission is made.

Using cryptographic hash functions to protect against
tampering is very effective, but there are some disadvantages.
For example, assume that an e-mail has its subject field
modified. The current method of tamper protection would
identify that some form of tampering had taken place.
However, the recipient of the e-mail cannot determine which
parts of the information have been tampered with and which
parts are original: the whole e-mail is rendered suspect. The
recipient may have only been concerned with the e-mail's
content, and therefore request for retransmission is actually
unnecessary. In such a case, the ability to locate and correct
tampering would make retransmission unnecessary.

Another problem with the current method involves the
urgency or time-scale validity of information. If tampering has
occurred, then it may not be feasible to request retransmission
of information; and there are no guarantees that further
transmissions will be tamper-free. It would often be more
practical to reconstruct the original information from the data
that has already been received, similar to the situations where
error-correcting codes are used (see related work). However,
this work concerns the recovery of data subject to deliberate

This work was supported in part by British Telecom.
B. Moss is with the School of Computer Science and IT, University of

Nottingham, Nottingham, UK (e-mail: bxm@cs.nott.ac.uk).
H. L. Ashman is with the School of Computer Science and IT, University

of Nottingham, Nottingham, UK (e-mail: hla@cs.nott.ac.uk).

ICITA2002 ISBN: 1-86467-114-9

tampering, and has no links with error-correcting codes.
We first discuss anti-tampering schemes in general,

describing how they provide an alternative to normal
cryptographic hashing, but with added advantages. We then
discuss how arbitrary documents can be represented with tree
structures, before describing hash trees. The related work is
then investigated, and we conclude with a summary and report
on the further work currently in progress.

ANTI-TAMPERING SCHEMES

Tampering, like other areas of computer security, can be
divided into prevention, detection, location and correction.
Many schemes claim to prevent tampering, but in fact only
detect the presence of tampering.

This work concerns so-called anti-tampering schemes that
not only detect tampering but attempt to locate and correct it
too. Since we are interested in schemes robust enough for data
transmitted over the Internet, we do not pursue tamper
prevention, as this would involve protecting data by some
physical means. Therefore, we assume that tampering has
already occurred and attempt to solve the following problems:

1. Detection - identifying that the document has been
modified;

2. Location - locating the point(s) at which the document
has been modified;

3. Correction - restoring the modifications in the
document to their original state.

Assuming correction is done sensibly, so that only modified
parts of the document are corrected, then the three problems
are hierarchical: Locating where tampering has taken place
also implies that tampering has been detected; and correcting
the tampering also implies that tampering has been located.

The idea for an anti-tampering scheme was first postulated
by Ashman [2]. The fundamental idea is to check a document's
integrity at different levels, rather than the integrity of the
document as a whole. Tamper detection is achieved in the
same way as current systems, by hashing the entire document
using a normal cryptographic hash. Subsequent tamper
location is achieved by multiple hashing applied to subsections
of the document. Tamper correction is achieved by using small
pre-image hashing of the subsections, which allows a brute-
force search through all possible subsections to determine the
original.

Anti-tampering schemes are suitable for data at risk from
tampering, whether stored or transmitted. In particular, they
have application to data transmitted asynchronously with a
time-scale validity, where request for retransmission in the

Hash-Tree Anti-Tampering Schemes
Ben Moss and Helen Ashman

A

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Nottingham ePrints

https://core.ac.uk/display/98126?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


presence of tampering would exceed the time-scale, or would
be inconvenient.

For example, suppose that a message in a financial
transaction protocol contains an account number field. On
route to its destination, the message is tampered with and the
account number is changed. An anti-tampering scheme could:

1. Detect that the message had been tampered with;
2. Locate that the tampering had taken place in the

account number field, at the same time verifying that
other fields in the message were unchanged;

3. Correct the message by restoring the account number
field to its original state.

As with normal cryptographic tamper detection, in anti-
tampering schemes it is necessary to store and/or transmit the
file and the hashing data separately. If this were not the case,
an attacker could modify the data and then compute the hash
tree for the modified data to bypass the anti-tampering scheme.

DOCUMENT TREES AND HASH TREES

Dividing data into subsections recursively gives rise to a
hierarchical tree-structure of increasingly small subsections.
Some data is inherently tree-structured. For example, if the
document was a book, then the root node’s data is the whole
book. The book can be split into chapters, so the data of the
root's child nodes is each chapter. Each chapter can be split
into paragraphs, so the data of a chapter's child nodes is each
paragraph. This recursive decomposition process can continue
until each word is split into characters. It obviously ignores
elements such as punctuation, but the concept of recursive data
decomposition is clear.

Not all data has a natural tree-like structure, but this does
not impact on the efficacy of anti-tampering schemes, as we
are able to superimpose tree structures onto data. This can be
done in the same way that quad-trees are often superimposed
onto images and other two-dimensional data [3]. However, we
do not restrict anti-tampering schemes to quad-trees alone.
Data for such schemes can be divided into binary trees, k-trees
(where k is a constant branching factor) or even x-trees for
variable branching throughout the tree (such as the book
structure in the previous example). The application of these
structures simply provides a method for data decomposition
within anti-tampering schemes; it does not interfere with the
original data in any way.

Given that any data has a tree-like structure (whether natural
or superimposed), then any document has a document tree.
The root node’s data of the document tree is the whole
document's data. This is then broken into distinct elements
according to the document's tree structure. The data of these
distinct elements is then the data of each child node. This is
repeated recursively to an appropriate level dependent upon
the type of document. Each level in the document tree contains
all the data needed to create the entire document, but it is split
into a greater number of elements than the parent level.

The idea suggested by Ashman is to pre-compute a hash
tree (different from hash trees used in [4]), which has the same
structure as the document tree, but differs in the data stored at
each node [2]. The data stored in the nodes of a hash tree are
hashes of the data stored in the corresponding nodes of the
document tree. Therefore the hash tree is much smaller than
the document tree (although not necessarily smaller than the
document). The computation of a single cryptographic hash
(such as SHA-1) stored at the root of the hash tree is enough to
determine the legitimacy of a document. This is referred to as
the primary hash. Secondary hashes (which have a smaller
image and consequently are less cryptographically robust) can
be used below the root node, since the primary hash will
always ultimately determine fake documents. Having pre-
computed a document's hash-tree it can be used at a later stage
to detect, locate and correct any tampering.

HASH-TREE ANTI-TAMPERING SCHEMES

Tampering of a received document is detected by comparing
its computed hash with the received hash tree’s primary hash.
If the hashes are identical, then the document has not been
modified at all, otherwise tampering has occurred. This is
identical to current tamper detection methods that use
cryptographic hashing. However, anti-tampering schemes also
provide the ability to locate and correct tampering.

To locate any tampering, the next level of the received
document's document tree is calculated and the respective
hashes are computed; these can then be compared to the
original hashes in the received hash tree to detect which sub-
sections of the document have been modified. This process is
repeated down the document tree and its respective hash tree
to locate exactly which parts of the document have been
changed, until the lowest level of the hash tree has been
reached.

In order to correct any tampering we have located, we must
guess the original data at that point in the tree by brute force.
By computing the hash of each guess and comparing it with
the corresponding hash at that point in the hash tree, we can
determine the guess to be a candidate if the hashes match
(otherwise we discard the guess). As hashing at this level is
secondary hashing, it is more probable that multiple candidates
occur. After finding all possible candidates, we construct
candidates for the parent data (incorporating every
combination of remaining child candidates) and test each one
by computing its hash and comparing this to the parent hash in
the hash tree. By repeating this process recursively upward
through the tree as many times as necessary we can reduce the
set of candidates to one and thus determine the original data.
Note again that, ultimately the primary hash will determine a
correctly reconstructed document.

The use of secondary hashes keeps the size of the hash-tree
file relatively small, whilst increasing the number of guesses
which qualify as candidates during tamper correction. As such,
a tradeoff between hash-tree file size and reconstruction time
exists.



In general, it is considered computationally intractable to
guess the input that corresponds to a given cryptographic hash
by brute-force. However, in the case of hash-tree anti-
tampering schemes the data is divided into small enough
leaves (with known upper bounds) at the lowest level of the
document tree, that a brute-force search of every possibility
becomes feasible.

Part of our ongoing work is to find the optimal balance
between minimizing the hash-tree file size whilst allowing
reconstruction of the original data in reasonable time
(assuming that tampering has occurred).

There is one situation where the use of anti-tampering
schemes can take advantage of both small transmissions and
computationally lightweight file reconstruction. In some
applications, it is not necessary to transmit the entire hash tree,
but only those parts directly relevant to reconstruction. So if
tampering is detected in a file, the immediate child hashes are
requested, checked against the received file, and then only the
necessary child hashes of any tampered subsection would
subsequently be requested. Such situations have the additional
overhead of multiple transmissions, but the hash-tree file size
becomes less important as only relevant parts of it are
transmitted.

RELATED WORK

There is very little work that looks into the correction of
documents that have been deliberately tampered with. This
may be because tamper-detecting hashes need to be
cryptographically robust and, as such, are relatively large in
size, whilst at the same time they are non-deterministic, and so
there will be many other documents with the same hash. Also,
cryptographic hashes do not identify where the tampering
occurred, only the fact that a change in the document has
occurred since the hash was computed.

A. Error-Correcting Codes

Detecting where changes have occurred and reconstructing
the original data requires redundant information, a concept
familiar to practitioners of error-correction. The positioning of
the redundant data throughout the original data makes it
possible to locate the change, while the content of the
redundant data makes it possible to deterministically
reconstruct the original data.

On the other hand, error-correcting codes are not robust
enough to overcome tampering, but are optimized for
maximum correcting capability with minimum overhead. It
would be a simple matter to change the original content of the
data and to change the error-correcting data so that the
transmission appeared to be legitimate. Thus error-correcting
codes, which have been designed to detect and correct
accidental transmission errors, are not proof against deliberate
tampering.

In contrast, anti-tampering schemes do not embed the
redundant data, but create a totally separate file whose
structure mimics that of the true data. As with normal
cryptographic hashing, it is necessary to separate the hash data

from the file, so that an attacker cannot change both the file
and the hash data. Applications such as PGP do this by
digitally signing the hash data, but an alternative is to
separately transmit the hash data, for example by some form of
network diversity [5].

B. Message Recovery Schemes

Other related work is the idea of the message recovery
schemes, proposed by Nyberg and Rueppel [6]. However this
does not apply to general tamper-proofing of arbitrary files,
but provides a means for embedding a message in a digital
signature or similar cryptographically robust construct.
However, in this scheme it is not possible to actually
reconstruct a message after tampering, rather it is “recovered”
from the cryptographic data. If tampering has occurred, it
would be necessary to request a retransmission.

SUMMARY AND WORK IN PROGRESS

This paper outlines the notion of anti-tampering schemes,
which allow the reconstruction of a tampered file to its original
state from a combination of the tampered file and a pre-
computed hash tree.

A project currently underway is the use of non-recursive
document segmentation, so that the divide-and-conquer
approach operates on overlapping document sections rather
than nested sections. This project uses n-grams as document
sections, with an n-gram being a sequence of n bits from a file.
Simple hashes are calculated over each n-gram. The
overlapping of n-grams means that each individual n-gram
contains a unique sequence of bits from the file. It is possible
to detect which bit has been changed by looking at the hashes
of all n-grams containing that bit. This iterative variant allows
one to apply anti-tampering to stream data.

Additionally, we are currently constructing a generic model
for hash-tree anti-tampering schemes with the aim to optimize
storage and operation time. We encourage other work in the
area of anti-tampering schemes, particularly in the design of
secondary hash functions for use in such schemes.

REFERENCES

[1] U.S. National Institute of Standards and Technology, “Secure Hash
Standard,” NIST FIPS PUB 180-1, April 1995.

[2] H. L. Ashman, “Hashes DO Grow on Trees - Document Integrity at
Every Level,” Proceedings of Ausweb 2000
(http://ausweb.scu.edu.au/aw2k/papers/ashman2/index.html), Southern
Cross University, June 2000.

[3] Hanan Samet, “The Quadtree and Related Hierarchical Data
Structures,” Computing Surveys, Vol. 16, No. 2, June 1984, pp. 187-
257.

[4] R. Merkle, “Protocols for Public Key Cryptosystems,” Proceedings of
IEEE Symposium on Research in Security and Privacy, Oakland, April
1980.

[5] H. Ashman, and M. Gilbert, “And now for something completely
different: looking ahead to new encryption and secrecy protocols,”
Proceedings of Communications Design Conference, October 2001.

[6] K. Nyberg, and R. Rueppel, “A New Signature Scheme Based on the
DSA Giving Message Recovery,” First ACM Conference on Computer
and Communications Security, ACM Press, 1993.


