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ABSTRACT 

Different computer-based simulation models, able to predict the performance of Reverse 

ElectroDialysis (RED) systems, are currently used to investigate the potentials of alternative 

designs, to orient experimental activities and to design/optimize prototypes. The simulation 

approach described here combines a one-dimensional modelling of a RED stack with a fully three-

dimensional finite volume modelling of the electrolyte channels, either planar or equipped with 

different spacers or profiled membranes. An advanced three-dimensional code was used to provide 

correlations for the friction coefficient (based on 3-D solutions of the continuity and Navier-Stokes 

equations) and the Sherwood numbers (based on 3-D solutions of a scalar transport equation), as 

well as to test simple models for the Ohmic resistances (based on 3-D solutions of a Laplace 

equation for the electrical potential). These results were integrated with empirical correlations for 

the transport properties of electrolytes and membranes, and were used as the input for the higher 

scale model. The overall model was validated by comparison with experimental data obtained in 

laboratory-scale RED stacks under controlled conditions. This combined approach constitutes a 

fully predictive, potentially very accurate, and still extremely fast-running, tool for the approximate 

simulation of all the main variables, suitable for performance prediction and optimization studies. 

Keywords: Reverse Electrodialysis; Saline Gradient Energy; Ion Exchange Membrane; 

Computational Fluid Dynamics; Mass Transfer. 
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1 INTRODUCTION: REVERSE ELECTRODIALYSIS 

1.1 Cell pairs and stacks 

Reverse ElectroDialysis (RED) is an electrochemical membrane-based process that converts the 

chemical energy associated with the salinity gradient between two solutions into electrical energy. 

A number of repeating elements named cell pairs (from some units/dozens at laboratory scale [1–2] 

to some hundreds for prototypes and industrial units [3]) are piled in order to compose a stack, 

Figure 1(a). Each cell pair, Figure 1(b), includes an anionic exchange membrane (AEM), a 

concentrate compartment (CONC), a cationic exchange membrane (CEM), and a dilute 

compartment (DIL), for a total thickness HCP typically less than 1 mm. 

 

 
 

Figure 1. Schematic representation of a RED stack (a) and of an individual cell pair (b). 
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The channels for the fluid flows are created either by spacers or by profiled membranes [4], and 

their typical thickness is 100300 μm. Typical fluid velocities are of the order of 1 cm/s. A plate 

and frame configuration is usually adopted, and parallel-, counter-, and cross-flow arrangements 

are possible. In principle, counter-flow is preferable since it does not suffer from the axial 

reduction of the driving force (concentration difference) typical of parallel flow, but it causes larger 

pressure differences between the concentrate and dilute compartments, which may result in leakage 

and excessive membrane deformation. The cross-flow arrangement has been shown to perform 

almost as well as counter-flow [5], and allows more efficient flow distribution strategies which 

reduce singular pressure losses. The parallel-flow configuration, however, remains the most 

common, at least at laboratory scale, and thus will be assumed in the present paper. 

In the generic channel “SOL” (SOL=either CONC or DIL), of thickness HSOL, the 

corresponding solution enters with a volume flow rate QSOL, an inlet bulk concentration SOL
iC  and a 

mean inlet velocity  /SOL SOL SOL
iU Q W H  , where W is the stack width in the direction 

orthogonal to the plane of Figure 1 (necessarily shared by the two solutions in the cases of parallel- 

or counter-flow). This definition of mean velocity (superficial velocity) is independent of the 

presence of spacers or profiled membranes in the channels. The hydraulic diameter of the generic 

channel will be identified in all cases with 2HSOL, i.e., with the hydraulic diameter of a void, 

laterally indefinite, plane channel. The Reynolds number will be defined as 

ReSOL=USOL∙2HSOL/SOL. Note that flow rates and mean velocities may vary along the channel, 

partly because of density variations (caused by concentration variations) and partly because of 

osmotic trans-membrane water fluxes. 

The co-ion exclusion from each ion exchange membrane “IEM” (IEM=either AEM or CEM), 

or Donnan exclusion, gives rise to an electrical double layer at each IEM-solution interface. Here 

the chemical potential gradient is counterbalanced by an electrical potential gradient (Donnan 

potential), so that, for open circuit conditions and perfectly permselective membranes, the net ion 

flux would be nil [6]. An electrical potential difference (membrane potential) is established over 

each IEM, and the sum of the contributions of all the IEM’s in the stack is the open circuit voltage 

(OCV).  

Figure 2 shows qualitative concentration profiles along an arbitrary line crossing a cell pair 

filled with NaCl solutions. Double layer phenomena result in sudden jumps of concentration at 

each IEM-solution interface. Because of the electroneutrality condition, in the solutions the 

concentrations of Na+ and Cl- are the same, while in the membranes they differ by a quantity equal 
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to the concentration of fixed charges. Figure 2 shows also concentration polarization phenomena in 

boundary layers within the fluid domains.  

 

 

 

Figure 2. Transversal concentration profiles within a cell pair under closed circuit conditions. 

 

The end compartments are fed by electrode rinse solutions containing an ionic couple [7] and are 

provided with electrodes which can be connected through an external circuit to an electrical load. 

When the circuit is closed the voltage at the electrodes causes redox reactions, with release of 

electrons at the anode and consumption of electrons at the cathode, so that an electrical current 

flows through the load. As a consequence, cations move through CEM’s and anions through 

AEM’s, from each concentrate channel towards the two neighbouring dilute ones. The voltage over 

the stack, and thus over the external load, will be given by OCV less the voltage loss due to 

different phenomena, collectively indicated as the internal resistance of the stack. 

 

1.2 Net power density 

The net power density which can be provided by a RED stack is determined by the following main 

aspects: (i) theoretical (maximum) electromotive force, or OCV; (ii) Ohmic losses; (iii) non-Ohmic 

phenomena; and (iv) pumping power consumption [8]. 

OCV depends mostly on the ratio between the ion activities of the two solutions, but also on 

the membranes permselectivity. This last parameter is often close to 1, but, when concentrated 

solutions are adopted, it can undergo a non-negligible reduction [9]. 
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Ohmic losses  are contributed by all the stack elements (membranes, solutions and 

electrodic compartments). When the dilute channels are fed by a low concentration solution such as 

riverwater, they give the main contribution to the Ohmic resistance [10, 11]. When more 

concentrated solutions are used, the membranes’ resistance is the dominant contribution [9]. 

Spacers may cause a significant increase of the compartment’s Ohmic resistance [9-12]; profiled 

membranes offer a path for the ionic flow through the conducting profiles, so that the electrical 

resistance may remain unchanged or even decrease, depending on the relative electrical 

conductivity of membrane and solution. Vermaas et al. [4] reported a reduction of 30% of the 

Ohmic resistance in a stack using profiled membranes with respect to a stack provided with 

spacers; similar findings emerged from a subsequent study [13]. 

The ion transport across IEMs from the concentrate to the dilute channel causes concentration 

changes that result in a reduction of driving force and thus in a further voltage drop. This can be 

split into two contributions: (i) the streamwise concentration change in the bulk of the solution 

(∆C), and (ii) the transverse concentration change across the diffusion boundary layers (BL) [7]. 

The two phenomena are often collectively called “non-Ohmic losses”, by analogy with the Ohmic 

losses. However, the term is misleading because these phenomena do not imply the dissipation of 

the solutions’ chemical potential energy into heat (as “true” losses do), but only its missed 

conversion into electrical energy (the unconverted energy remains in the solutions). This distinction 

may be immaterial in “open” RED, performed with naturally occurring solutions, but may be 

significant in closed-loop systems such as the proposed RED “heat engine” [14]. 

In regard to ∆C, under ideal conditions it depends only on the ion balance within the channels, 

but in real stacks it is also affected by the osmotic and electro-osmotic flux of water and by the 

diffusive flux of co-ions through the membranes [6, 15, 16]. If seawater - riverwater are used, at the 

flow rates that maximize the net power ∆C is comparable with the Ohmic resistances [4, 9, 13]. 

In regard to BL, when an electrical current passes through the stack, a concentration boundary 

layer develops between each membrane surface and the fluid bulk [6]. The increased salt 

concentration at the membrane surface in the dilute channel and, conversely, the decreased salt 

concentration at the membrane surface in the concentrate channel reduce the actual electromotive 

force [17]. The phenomenon is generally called concentration polarization, although it has been 

argued that this term should be reserved to ED, while in RED one should speak of concentration 

depolarization. When the couple seawater – riverwater is used, the contribution of BL to the stack 

resistance is not negligible [4, 11, 17, 18], though usually lower than axial and Ohmic voltage 

drops. Convective motions affect mixing and thus the concentration field within the channel; 

therefore, concentration polarization depends strongly on the channel geometry (size and shape) 
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and flow rate [19-21]. A spacer-filled channel may reduce BL with respect to an empty channel 

[12] and to simple profiled membranes [4, 13]. Moreover, BL decreases with the inter-membrane 

distance (channel thickness) [13, 17]. Both ∆C and BL may become negligible for highly 

concentrated solutions [9, 19].  

Finally, the obtainable net power may be significantly reduced by the energy consumption for 

pumping the feed solutions. At the flow rate that maximizes the net power this reduction is 

typically ~10-20% [1, 4, 13, 17]. The total pressure drop through the stack is due to (i) the 

distribution/collection system (manifolds) and (ii) the channels [20]. A properly designed geometry 

of the manifolds can drastically reduce their contribution to the hydraulic loss [13, 21]; on the other 

hand, the channel features (inter-membrane distance and shape) may have a weighty effect on the 

net power. Traditional net spacers may lead to pressure drops much higher than in empty channels 

[13, 19], while profiled membranes may enhance only slightly the hydraulic friction [4, 13]. 

Further phenomena may occur in a RED stack, such as parasitic currents [15, 22], fouling [23], 

and leakages [24]. Their effects depend on the actual constructive details of a stack, are difficult to 

characterize quantitatively, and thus were not included in the present model. 

 

1.3 Mathematical modelling of RED 

The mathematical modelling of a complex, multi-physics and multi-scale, process such as RED can 

be based on different approaches.  

On one hand, one may simultaneously take into account all the relevant variables and 

phenomena and their interaction, including the geometric configuration of the stack, with a 

minimum of simplifying assumptions. Such a multi-physics approach is made possible, for 

example, by advanced codes such as COMSOL [25] and is indeed the most complete. The 

drawback is that each choice of the independent variables calls for a separate simulation, which 

may require hours of computing time; moreover, a fully 3-D simulation may require a large amount 

of memory and become computationally prohibitive. Therefore, this approach remains confined to 

the accurate simulation of few selected test cases, but is not suitable for parametrical and 

optimization studies, when a very large amount of different cases (ideally, a continuous 

configuration space) is to be considered. 

An alternative approach, which offers great advantages in terms of computational speed at the 

price of some loss of accuracy, consists of using a simplified overall model of the stack which, 

however, incorporates local results (e.g. friction coefficients, mass transfer coefficients or 

polarization factors, and Ohmic resistances) computed by fully three-dimensional models.  

In several previous studies [19, 26-28] we applied Computational Fluid Dynamics to the 
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prediction of concentration polarization and frictional pressure losses in channels for Reverse 

ElectroDialysis, identifying these phenomena as obviously detrimental to the performance of real 

RED stacks. In particular, refs. [19], [27] and [28] concentrated on the influence of overlapped and 

woven spacers while ref. [26] considered profiled membranes, bearing pillar protrusions of either 

square or circular cross section. 

However, CFD studies alone can only give qualitative indications on the relative merits and 

demerits of different configurations (e.g. net spacers versus profiled membranes). A quantitative 

appreciation of the relative importance of fluid dynamics-dependent quantities in affecting 

performance parameters (e.g. the maximum obtainable net power density or the minimum solution 

consumption for a given output) can only come from a proper coupling of CFD with a complete, 

albeit simplified, model of the RED process. 

In this paper, we presented such a coupled strategy, based on combining a one-dimensional 

model of a RED stack with fully three-dimensional finite volume simulations of the electrolyte 

channels, including complex configurations (spacers or profiled membranes). An advanced CFD 

code was used to provide Sherwood numbers and friction coefficients, related, in their turn, to 

polarization voltage losses and pumping power losses, respectively. Finite-volume 3-D 

computations were also used to provide areal Ohmic resistances. This last feature is a novelty with 

respect to the few previous efforts towards the same direction presented in the literature, such as a 

recent paper by Pawlowski et al. [29], who used the OpenFOAM software package to predict 

pressure drop and concentration polarization in the presence of membranes with chevron 

corrugations.  

 

2 THE ONE-DIMENSIONAL MODEL 

 

2.1 General aspects 

In the present model, the variation of bulk concentrations along the flow direction is explicitly 

simulated by treating them as functions of an axial coordinate (y), while the concentration variation 

in the direction orthogonal to the membranes is modelled by appropriate polarization coefficients. 

Note that polarization coefficients  and boundary layer voltage drops , see Eqs. (14)-(20) below, 

are themselves functions of bulk concentrations and salt flux, and thus vary along the stack. 

Figure 3 is a flow chart of the combined approach, which will be presented in details in the 

following sections. In particular, Section 2 illustrates the one-dimensional model of a cell pair 

(representative of a whole stack); Section 3 discusses how a number of quantities required by the 

above models can be extracted from fully three-dimensional CFD simulations; Section 4 presents 



 

8 

examples of RED stack performance predictions obtained by the above approach; Section 5 

discusses the model validation against experimental data.  

 

 

 

Figure 3. Schematic flow chart of the combined approach to RED performance prediction. 

 

In the following, the number nCP of cell pairs in the stack is left undetermined, and all quantities 

which are additive with respect to the cell pairs (namely, electrical potential differences) are 

referred to a single cell pair. Corresponding total quantities can be obtained multiplying by nCP. In 

particular, the areal Ohmic resistance Rblank of the electrode compartments was distributed among 

all cell pairs as an areal Ohmic resistance rblank= Rblank/nCP, see also Eq. (13). 

In the present model, each ion exchange membrane is characterized by its thickness (and, if 

appropriate, its shape) and by macroscopic, experimentally accessible, properties (permselectivity, 

Ohmic areal resistance, salt diffusivity and osmotic permeability). These properties could be 

derived, in their turn, from more primitive quantities such as the fixed charge density or the matrix-

water friction coefficients, taking account of Donnan’s equilibria, Maxwell-Stefan’s equation and 

other fundamental laws. Examples can be found in recent papers [30-32], which, on the other hand, 

adopt a highly simplified treatment of the hydrodynamics and mass transfer in the solution 

compartments.  

 

2.2 Modelling assumptions 

As anticipated in Section 1, parallel flow will be assumed in the concentrate and dilute channels. 



 

9 

The case of counter flow can be dealt with by relatively simple model modifications, while the case 

of cross flow requires, in principle, a two-dimensional approach. The various electric potential 

differences in the stack are schematically represented in Figure 4 (profiles are purely qualitative). 

 

 

 
Figure 4.  Electric potentials in a cell pair. i=inlet, o=outlet, y=flow direction, OCV=open circuit voltage, 

E=local electromotive force, c=voltage drop due to concentration changes along y, BL=voltage 
drop due to concentration polarization, =i(r+rblank)=Ohmic voltage loss, vLOAD=electric 
potential difference across the external load divided by the number of cell pairs. 

 

The generic solution SOL can be characterized either by the two quantities QSOL (volume flow rate 

in m3/s) and CSOL (bulk salt concentration in mol/m3), or by the two quantities SOL
WG  and SOL

SG  

(mass flow rates of water and salt, respectively, expressed in kg/s). The two pairs of quantities, all 

functions of the streamwise coordinate y, are related by: 

;SOL SOL SOL SOL SOL SOL SOL
S S W SG M C Q G Q G    (1) 

and, conversely, 

  ;
SOL SOL SOL SOL

SOL SOLS W S
SOLSOL SOL

S W S

G G G
C Q

M G G





 


 (2) 

in which MS is the molar mass of salt in kg/mol (58.443×10-3 for NaCl) and SOL is the density of 

the solution, function of concentration and temperature (see Annex 1). Depending on the balance to 

be expressed, the use of one or the other couple of quantities may be more convenient. 

In particular, mass balances of water and salt along the channels are better expressed in terms 

of mass flow rates as: 
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CONC DIL
W W

W W

dG dG
J W

dy dy
    (3) 

CONC DIL
S S

S S

dG dG
M N W

dy dy
     (4) 

in which W is the density of water at the working temperature T. JW is the overall trans-membrane 

water flux in m3/(m2s), given by the difference of an osmotic and an electro-osmotic term: 

JW=JW,OSM - JW, E.OSM (5) 

The osmotic term, always directed from the dilute to the concentrate channel, can be expressed as: 

   , , ,
CONC DIL CONC DIL

W OSM p AEM AEM AEM p CEM CEM CEMJ L L        (6) 

in which Lp,IEM is the osmotic permeability of the generic membrane IEM, usually measured in 

ml/(m2 h bar) (but SI units are m3/(m2 s Pa)); and SOL
IEM  is the osmotic pressure corresponding to the 

interface concentration SOL
IEMC  at the interface between the SOL channel and the IEM membrane (so 

that there are four of these terms). Osmotic pressures can be accurately computed as functions of 

the concentrations by Pitzer’s correlations [33, 34]. For NaCl solutions, tese can be replaced to a 

good approximation by the simple correlations reported in Annex 1. 

The electro-osmotic term can be computed as 

, .
W

W E OSM H S
W

M
J n N


  (7) 

where nH is the hydration number, which can be assumed to be 7 for NaCl, and NS is the overall 

molar salt flux between concentrate and dilute channels (which will be better discussed below). 

Strictly, one should speak of distinct ionic hydration numbers (e.g. 6 for Na+ and 8 for Cl- [35]); 

however, a single “salt hydration number” nH is an acceptable approximation for what is itself a 

small contribution to the overall species balance in the stack. Note that in RED the salt flux is 

always from the concentrate to the dilute solution, so that the electro-osmotic water flux is always 

opposite to the osmotic one. 

The molar salt flux NS consists of two components: a Coulombic one, proportional to the local 

current density i, and a diffusive one which would be zero for perfectly perm-selective membranes: 

COUL DIF
S S SN N N   (8) 

For monovalent ions, the Coulombic salt flux can be written as: 
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COUL
S

i
N

F
  (9) 

while the diffusive salt flux entering the overall balance (8) can be written as 

   , ,
DIF DIF DIF CONC DIL CONC DILAEM CEM
S S AEM S CEM AEM AEM CEM CEM

AEM CEM

D D
N N N C C C C

H H
       (10) 

in which DIEM is the salt diffusivity in the generic membrane, usually ranging from 10-12 to 10-10 

m2/s and thus much smaller than the diffusivity in solution (10-9 m2/s). Strictly, Eq. (10) holds 

only for planar membranes; for profiled membranes, it should be replaced by more complex 

formulae, or used with suitable equivalent thicknesses. The Coulombic salt flux COUL
SN  remains 

constant across the cell pair, and – like i – is a function of y only, whereas the diffusive salt flux 

takes different values across different membranes. 

In order to close the above system of balance equations, it is necessary to express the electric 

current density as a function of the cell pair potentials, and these latter as functions of the 

concentrations. For monovalent ions, the open circuit voltage (OCV), or electromotive force, 

associated with each cell pair can be expressed by the Nernst law as [6] 

  ln
CONC CONC
i i

AEM CEM DIL DIL
i i

RT C
OCV

F C

 


   (11) 

in which AEM, CEM are the perm-selectivities of the anionic and cationic exchange membranes, 

CONC
iC  and DIL

iC  are the inlet bulk concentrations of the concentrate and dilute solutions and CONC
i , 

DIL
i  are the corresponding activity coefficients, while T is the absolute temperature and the 

physical constants R, F have their standard values as specified in the Nomenclature. The activity 

coefficients  can be estimated as functions of the concentrations by using Pitzer’s model [33, 34], 

which, for NaCl solutions, can be replaced to an excellent approximation by the simple correlations 

reported in Annex 1.  

If the electric circuit is closed on an external load Rext, an electric current I, corresponding to an 

average areal current density i=I/(LW), flows through the load so that the potential difference 

across it is VLOAD=IRext. It is convenient to divide this potential difference by the number nCP of 

cell pairs, thus obtaining the voltage per cell pair vLOAD=VLOAD/nCP. The local electromotive force E 

(per cell pair), which is a function of y (Figure 4), can be computed from the local solution 

concentrations (varying along the flow direction y) as: 

  ln
CONC CONC

AEM CEM DIL DIL

RT C
E

F C

 


   (12) 
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Note that E=OCV for y=0 (inlet). As Figure 4 shows, the local current density i is obtained from  

BL LOAD

blank

E v
i

r r





 



 (13) 

in which BL is the overall (non-Ohmic) voltage drop in a cell pair due to the presence of 

concentration boundary layers on the four solution-membrane interfaces, r is the areal Ohmic 

resistance of channels and membranes in one cell pair, and rblank is the areal Ohmic resistance of the 

electrodic compartments divided by the number nCP of cell pairs.  

 

2.3 Non-Ohmic voltage drop 

In regard to the non-Ohmic voltage drop BL, it can be expressed as the sum of four terms: 

CONC CONC DIL DIL
BL AEM CEM AEM CEM          (14) 

corresponding to the four solution-membrane interfaces existing in the cell pair. The generic term 

SOL
IEM  can be expressed as [6]: 

 lnSOL SOL
IEM IEM IEM

RT

F
      (15) 

in which SOL
IEM  is the polarization coefficient, defined as  

 min / , /SOL SOL SOL SOL SOL
IEM IEM IEMC C C C   (16) 

i.e. as the ratio of the concentration at the SOL-IEM interface (wall) to the bulk concentration in 

SOL when SOL represents the concentrate channel and as the inverse ratio when SOL represents the 

dilute channel, so that one always has 1SOL
IEM  . Of course, SOL

IEM  1 and SOL
IEM  0 for the case of 

perfect mixing. 

Each  term is related to the corresponding Sherwood number, defined as  

,Sh
SOL
eqSOL S IEM

IEM SOL SOL SOL
IEM

dN

C C D
  


 (17) 

in which NS,IEM is the salt flux through the generic membrane IEM, necessarily identical on the two 

opposite CONC and DIL faces of each membrane and given by 

 , ,2 2

COUL
DIF CONC DILS IEM

S IEM S IEM IEM IEM
IEM

N i D
N N C C

F H
      (18) 

(see Eqs. (8)-(10)). Also, SOL
eqd  is the hydraulic diameter of the channel occupied by the solution 
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SOL (conventionally identified here with twice the channel height HSOL), DSOL is the salt diffusivity 

in solution SOL and the sign is chosen so as to always have Sh>0. From the above definitions, it 

can easily be shown that 

, 2
1

Sh

CONC
CONC S IEM
IEM CONC CONC CONC

IEM

N H

D C



   (19) 

1

, 2
1

Sh

DIL
DIL S IEM
IEM DIL DIL DIL

IEM

N H

D C



 

  
 

 (20) 

The advantage of using the Sherwood number instead of the polarization coefficient  is that, 

unlike , it depends only on the geometric configuration, on the Reynolds number and (weakly) on 

the Schmidt number, but not on the specific values of the concentrations and of the current density. 

For parallel flow in plane channels under boundary conditions intermediate between uniform wall 

concentration and uniform wall mass flux (as they occur in the present problem), Sh is 8 on all 

four interfaces. For more complex geometries (e.g. spacer-filled channels or profiled membranes), 

Sh can be computed by the Finite Volume CFD code (see flow chart in Figure 3), using the well-

established “unit cell” approach [19] as will be discussed in Section 4. Provided the Sh, U and N 

terms are defined with reference to a nominal channel thickness H and projected surface area 

S=L∙W, all the above treatment continues to hold also in these more complex configurations. 

 

2.4 Ohmic losses 

Only the ideal case of void (spacerless) plane channels interleaved with planar membranes will be 

discussed in this Section. The more realistic cases of spacer-filled channels (still interleaved with 

planar membranes) and of profiled membranes will be discussed in the following Sections 4.2 and 

4.3, respectively. 

For spacerless plane channels and planar membranes, the areal resistance r of a cell pair can 

be computed (see Figure 1) as the series of four resistances: 

CONC DIL AEM CEMr r r r r      (21) 

The areal Ohmic resistance rSOL of a void (spacerless) solution-filled channel is simply 

SOL
SOL

SOL

H
r


  (22) 

The electrical conductivity  of each solution can be assumed to be a function of its bulk 

concentration C and can be evaluated using the correlations reported in Annex 1. 

In regard to the Ohmic resistance of the membranes, recent and accurate measurements by 
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Galama et al. [30] show that, at least for the reinforced homogeneous membranes investigated: 

- when a ion exchange membrane is immersed in a single electrolytic solution with 

concentration C, its Ohmic resistance varies with C, decreasing steeply as C increases up to 

10 mol/m3 and then tending to a flat value for higher C; 

- when the membrane is wet by two electrolytic solutions with different concentrations CCONC, 

CDIL, its Ohmic resistance is mainly a function of CDIL and depends only weakly on CCONC. 

For example, for AMX (anion exchange) and CMX (cation exchange) membranes (Neosepta®, 

Tokuyama Corporation, Japan), with thickness HAEM=138 m, HCEM=181 m, the experimental 

results for rIEM reported in [36] could be approximated well by the simple formula: 

  cDIL
IEMr a b C


   (23) 

with a=2.810-4, b=710-3, c=1.25 (AMX) and a=2.510-4, b=710-3, c=1.25 (CMX) when CDIL is 

expressed in mol/m3 and rIEM in  m2. 

Strictly, correlations of the form of Eq. (23) hold for a given membrane, i.e. not only for a 

given membrane composition but also for a given membrane thickness and shape (e.g. profiled 

membranes). The assumption that rIEM can be expressed as HIEM/IEM, as in a homogeneous 

resistive slab of electric conductivity IEM, is not supported by experimental evidence and is not 

consistent with some of the membrane models proposed in the literature [36]. Actually, the whole 

subject of membrane Ohmic resistivity and of its dependence on thickness, shape and solution 

concentrations has not been satisfactorily elucidated so far and deserves further investigation.  

 

2.5 Axial profiles 

The set of equations described above was implemented as a simple algorithm in which, for given 

CONC
iC , DIL

iC , CONCH , DILH , CONC
iU , DIL

iU , L, rblank, vLOAD and membrane properties, Eqs. (3)-(4) 

are integrated by finite differences starting from the known inlet concentrations. To this purpose, 

the stack length L is divided into n elements (e.g. 50). An iterative method is necessary because the 

current density i depends on BL, Eq. (13), but in its turn BL depends on the salt fluxes NS,IEM, Eqs. 

(14)-(15) and (19)-(20), and thus on i, Eq. (18).  

The algorithm was implemented on different platforms including Excel, G-95 Fortran and 

gPROMS. A series of preliminary tests were conducted to ensure that, using the same data, 

different implementations yielded identical results. A grid-independence study showed that the 

results changed negligibly when the number n of axial subdivisions was made to vary from 10 to 

160, the most grid-sensitive quantity being the axial profile of current density. 
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An example of the results computed by this 1-D model is given in Figure 4. This is for the 

conditions specified in Table 1. 

 

Table 1 – Conditions assumed in the reference case 

Property CONC solution DIL solution AEM membrane CEM membrane 

Concentration C (mol/m3) 500 17 - - 

Thickness H (m) 300 300 138 181 

Inlet velocity U (cm/s) 2 2 - - 

Osmotic permeability Lp (ml/m2 h bar) - - 5 [37] 5 [37] 

Salt diffusivity DS (m2/s) See Annex 1 See Annex 1 5.5×10-11 [37] 5.5×10-11 [37] 

Hydration number nH (-) - - 7 7 

Permselectivity  (-) - - 0.90 [37] 0.95 [37] 

Ohmic areal resistance r (m2) See Annex 1 See Annex 1 Eq. (15) [36] Eq. (15) [36] 

 

In addition, the stack length was assumed to be 0.8 m and the areal blank resistance per cell pair 

510-5 m2. The potential difference across the external load per cell pair, vLOAD, was assumed to 

be 0.05 V. For the sake of simplicity, both channels were supposed to be void (spacerless). 

Figure 5(a) reports axial profiles of bulk concentrations. Note that, for an infinite stack length, 

these would tend asymptotically to two values CONCC , 
DILC  such that the electromotive force E, Eq. 

(12), equals the imposed potential difference vLOAD between the electrodes, so that both the local 

current density i and the local Ohmic losses  vanish. For realistic stack lengths, this condition is 

usually far from being reached. 
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Figure 5.  Axial profiles computed by the 1-D model for the conditions specified in Table 1.  
(a) concentrations; (b) electric potential differences; (c) current density. 

 

Figure 5(b) reports axial profiles of the same electric potential differences that were schematically 

shown in Figure 4. Under the conditions considered here, most of the internal potential drop is 
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associated with axial concentration variations (C) and with Ohmic losses (). Note that, as one 

moves along y, C increases while  decreases. Non-Ohmic losses associated with concentration 

changes in the direction orthogonal to the membranes (BL) are comparable with the other losses 

only in the first tract of the stack and play a secondary role elsewhere.  

Finally, Figure 5(c) reports the axial variation of the electric current density i. Note that i 

initially increases due to the strong reduction of the Ohmic resistivity of the dilute solution. In the 

second half of the stack, i decreases exponentially with a large relaxation length.  

 

2.6 Voltage-current characteristic curves 

Figure 5 was obtained by choosing a specific value for the potential difference vLOAD between the 

electrodes. If vLOAD is made to vary in small steps (e.g. 0.001 V) between 0 and OCV, current-

voltage characteristic curves like those reported in Figure 6 are obtained. 

 

 

 
Figure 6.  Current density-voltage characteristic curves computed by the 1-D model for the conditions 

specified in Table 1. 

 

Here, voltage drops and current density i are mean values, obtained by averaging over the stack 

length L (or, equivalently, over the stack projected surface S=L∙W). Note that both the open circuit 

voltage OCV (0.147 V here) and the potential difference vLOAD across the external load rext are 

uniform along the stack and thus do not need averaging. By iSC we denote the short circuit current 

corresponding to rext=0 and vLOAD=0 (54 A/m2 in the present reference case). It can be observed 

that the axial loss C would be zero under open circuit conditions (i=0) in an ideal stack, i.e. in 

the absence of non-ideal effects (osmotic and electro-osmotic water flux and diffusive salt flux), 
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but is significant even at zero current in the real stack considered here. Also polarization losses BL 

would vanish for i=0 under ideal conditions, but are non-zero here due to the diffusive salt flux. 

As a consequence, the voltage across the load per cell pair (vLOAD) under open circuit conditions 

(rext∞), which would be equal to 0.147 V=OCV in an ideal stack, is only 0.10 V in the present, 

real conditions. Only the Ohmic loss  vanishes for i=0 both in an ideal and in a real stack. 

The diagram in Figure 6, which is for a single cell pair and per unit area, can be turned into a 

V-I (total voltage – total current) plot by multiplying vLOAD times nCP (number of cell pairs in the 

stack) and i times S=L∙W (projected surface area of the stack). As Figure 7 schematically shows, 

for any given external load Rext the intersection of the resulting V(I) curve (internal characteristic) 

with the straight line of slope Rext (external characteristic) determines the working point P. 

 

 

 

Figure 7.  Internal and external characteristics and working point P (schematic). 

 

For example, for the reference case considered in Figure 6 and a stack with nCP=100 and S=0.64 m2 

(L=W=0.8 m), the internal characteristic decreases from nCP×0.1=10 V for I=0 (open circuit) to 0 

for I=54×0.64=34.6 A (short circuit). For a load resistance Rext 10 V / 34.6 A  0.289  the 

working point would be at IP17.3 A, VP5 V, yielding a gross electrical power of 86.5 W, close 

to the maximum that can be extracted from the stack under the given conditions. 

 

2.7 Pumping power and load curves 

The gross power density GPD (per cell pair) is obtained as  
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GPD = vLOADi (24) 

The net power density NPD is obtained by subtracting from GPD the pumping power density PPD, 

associated with pressure losses in the concentrate and diluate channels: 

NPD = GPD - PPD (25) 

In its turn, PPD can be expressed as: 

CONC CONC DIL DILQ p Q p
PPD

S
  

  (26) 

in which QSOL=USOLHSOLW is the volume flow rate in each channel (SOL=either CONC or DIL), 

pSOL is the corresponding pressure loss, S=LW is the (projected) surface area and  is the 

efficiency of the pump. 

The distributed pressure drop can be computed as 

 2

0

1

2 2

SOLL
SOL SOL SOL
dist SOL

U
p f dy

H
    (27) 

in which fSOL is the Darcy-Weisbach friction coefficient for channels filled with the SOL solution. 

Note that Eq. (27) allows for the streamwise variation of density and mean velocity of the solution 

to be taken into account, using the same axial discretization into n elements adopted for the 

calculation of electrical quantities and concentrations. 

For plane channels / membranes in laminar flow, one has f=96/Re, while, for profiled 

membranes or spacer-filled channels, f can be computed as a function of Re by CFD simulations of 

the unit cell for the appropriate geometry (see flow chart in Figure 2 and details in Section 4). Note 

that the presence of a spacer or of a profiled membrane may enhance the friction coefficients by 

several times with respect to a void (spacerless) plane channel. 

Unlike mass transfer entry effects, at low Re hydrodynamic entry effects extend over only a 

few hydraulic diameters and thus are negligible due to the very high slenderness ratio of RED 

channels; for example, even for short and relatively thick ducts, say L=0.1 m and H=400 m, one 

has L/deq=125. 

For each channel, singular pressure drops can be collectively modeled as 

 2

2

SOL

SOL SOL SOL
sing

U
p K    (28) 

in which the constant KSOL (singular loss coefficient) accounts for area or direction changes both in 

the channels proper and in the relevant manifolds. Singular pressure losses in RED stacks may vary 
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broadly according to the design chosen for the flow distribution system; it has been reported in the 

literature [21] that they may amount to a significant fraction of the overall pressure drop. Since, for 

f=50–500 and L/deq=102–103 (ranges of values typical of spacer-filled RED channels), the term 

fL/deq may vary between 5∙103 and 5∙105, values of K of 103–105 (or even larger) can be expected.  

For the same reference case considered in the previous Figures 5 and 6, Figure 8 reports the 

various computed power density terms (per cell pair) corresponding  to the voltage terms in Figure 

6 as functions of the average current density i, together with the net power density (per cell pair) 

NPD= GPD-PPD computed by Eqs. (26)-(28) for KCONC=KDIL=104 and =0.7. 

 

 

 
Figure 8.  Current density-power density curves computed by the 1-D model for the same configuration as 

in Figure 5 and KCONC=KDIL=104, =0.7. 

 

Note that, due to non-Ohmic effects, the maximum gross power density GPD is attained for a mean 

current density slightly less than one half the short-circuit value iSC. The same value of i 

maximizes also the net power density NPD since the pumping power density PPD does not depend 

on i. Note also that, under the present conditions, pumping losses are just a small fraction of the 

gross power density despite the high values chosen for the singular loss coefficients. 

 

3 CFD SIMULATIONS 

3.1 General aspects 

As discussed in Section 1, 3-D CFD simulations were used in the presence of geometrically 

complex configurations (spacer-filled channels and profiled membranes) in order to obtain 

quantities that are required by the higher-scale, simplified 1-D model described above:  
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- Sherwood numbers Sh SOL
IEM  on all four solution-membrane interfaces; 

- friction coefficients fSOL in the two fluid compartments. 

In all cases, the equation solved were the continuity and momentum (Navier-Stokes) equations 

written, for simplicity, for a constant-property fluid: 

0j

j

u

x





 (29) 

,

1i ji i
s i

j i j j

u uu up
a

t x x x x



  

    
    

 (30) 

No-slip conditions were imposed at solid walls. Symmetry conditions were imposed at the lateral 

boundaries, while a “unit cell” treatment was adopted at the inlet-outlet boundaries: translational 

periodicity was imposed at these faces, while a constant source vector as (force per unit mass, i.e. 

acceleration), directed along the main flow direction, was adopted as the driving term balancing 

frictional losses. Note that, with this treatment, p represents the periodic component of pressure, 

while its large-scale streamwise gradient is -as. Further details of the unit cell approach have been 

extensively discussed in previous papers concerning Reverse Electrodialysis [19], Membrane 

Distillation [38] and other problems [39]. 

The convective-diffusive transport of salt, treated as a neutral species, was described by a 

scalar transport equation: 

j
C

j j j

u cc c
D S

t x x x

  
  

   
 (31) 

By analogy with the momentum equations, c represents the periodic component of salt 

concentration (expressed in mol/m3), while the compensative term SC is included at the right hand 

side in order to balance salt inflow or outflow through the walls representing fluid-membrane 

interfaces (note that it is positive for the concentrate channel and negative for the dilute one). 

The bulk concentration C was defined in all cases as 

1
s

A

C u cdA
Q

   (32) 

in which A is the cross sectional area and Q=UA is the volumetric flow rate. Due to the 

compensative sink term SC, C is independent of the specific cross section chosen. The unit cell-

averaged mass transfer coefficient k on each wall is best defined [40] as 
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 
 

w

w

N
k

c C



 (33) 

in which {cw} is the wall concentration and {Nw} is the molar flux from the wall into the fluid, both 

averaged over a specific wall (solution-membrane interface) of the unit cell. Note that {cw} and 

{Nw} are still, in general, functions of the axial location along the channels, y.  

Finally, k is made dimensionless as a Sherwood number Sh=k(2H)/D. The choice of using as 

the length scale 2H (i.e., the hydraulic diameter of an indefinite plane channel of the same height) 

rather than the “true” hydraulic diameter is based on several years’ experience in the numerical 

simulation of reverse electrodialysis and membrane distillation problems [19, 38].  

The above flow and transport equations were solved by a finite-volume method using the 

Ansys-CFX code [41]. Details on meshing, grid independence and numerical methods have been 

provided elsewhere [19]. The same code was also used to compute the Ohmic areal electric 

resistance r of the cell pair by solving the Laplace equation for the electrical potential, 2=0, on 

the basis of the concentration-dependent electric conductivities of solutions and membranes. The 

results were used to check the accuracy of simpler models for the cell pair areal resistance. 

The further details of the computational technique differ according to whether spacer-filled 

channels or profiled membranes have to be simulated. 

 

3.2 Spacer filled channels 

In the case of spacer-filled channels, delimited by planar ion exchange membranes, the CFD 

simulations were limited to the concentrate and dilute fluid compartments, considered one at a 

time. At both walls, simulating the solution-membrane interfaces, a third-type (Robin) boundary 

condition was imposed for the scalar c (concentration): 

 wall ext

wall wall

c cc
D

n r


 


 (34) 

in which D is the salt diffusivity in the solution, {cwall} is the local concentration at the wall, cext is 

an arbitrary “external” concentration, whose value is irrelevant to the purpose of computing the 

Sherwood number, and rwall is a resistance to mass transfer which was set equal to the diffusive 

resistance of the channel, H/D. This choice provides Sherwood numbers intermediate between 

those that would be computed under conditions of uniform wall concentration (rwall0) and 

uniform wall mass flux (rwall∞); however, the dependence of Sh upon rwall is small. 

By way of example, Figure 9(a) shows the computational domain in the case of woven 

filaments. The channel configuration is completely specified by the pitch-to-channel height ratio 
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P/H and by the flow attack angle φ, defined as the angle formed by the main flow direction with 

one (arbitrarily chosen) array of filaments. Figure 9(b) shows two fluid compartments filled with 

identical woven spacers and sandwiched between ionic exchange membranes, to form a 

periodically repetitive unit of a whole cell pair. In the direction orthogonal to the membranes, 

periodic planes cut midway through one of the membranes as in Figure 1. Of course, in principle 

concentrate and dilute channels might have different heights and contain different spacers. 

 

 

 (a) (b) 
 

 
 
Figure 9. Channels filled with woven spacers: (a) unit cell (computational domain); (b) concentrate and 

dilute fluid compartments sandwiched between ionic exchange membranes, to form a 
periodically repetitive unit of a whole cell pair. 

 

CFD results for the friction coefficient f and the Sherwood number Sh (on each surface) in woven 

spacers with P/H=2 and flow incidence angles φ of 0-90° and 45° are shown in the range Re70 

(that of the highest interest for RED) in Figure 10. The friction coefficient is normalized by the 

corresponding factor for parallel flow in an empty (spacerless) plane channel, 96/Re. Best-fit 

polynomial correlations are also reported; these were used as a basis to evaluate Sh (on each of the 

four interfaces) and f in the context of the 1-D model described in Section 2.  

In Figure 10(a) it can be observed that spacers enhance friction 14 to 20 times with respect to 

an empty (spacerless) channel. The flow attack angle has a relatively small influence on f. 

In Figure 10(b) a very large mass transfer enhancement with respect to an empty channel can 

be observed, together with a stronger influence of the flow attack angle. As Re tends to 0, the 

Sherwood number Sh tends for both angles to values below the plane-channel Sh, which is 8 

under third-type boundary conditions; this means that spacers do not promote mass transfer but are 

actually impairing it because of shadow effects. However, at Reynolds numbers typical of RED 
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(e.g. 5-20) a large enhancement is observed, from 4 to 10 times for φ=45° (flow directed along the 

diagonal of the spacer diamonds) and from 2 to 5 times for φ=0-90° (main flow direction 

orthogonal or parallel to the filaments). 

 

 

Figure 10. CFD results (symbols) and best-fit polynomials (lines) for woven spacers with P/H=2 and 
different flow attack angles. (a) friction coefficient multiplier with respect to a spacerless plane 
channel; (b) mean Sherwood number (Sc=600). 

 

In regard to Ohmic losses, the areal electrical resistance of a spacer-filled channel can be 

approximated by: 

SOL
SOL

SOL SOL

H
r

 
  (35) 
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in which SOL is the porosity, or void ratio VSOL/V, which depends only on the spacer geometry. In 

most cases, simple algebraic expressions can be derived for this quantity; in particular, for woven 

spacers with P/H=2,  is found to be 0.75. The areal resistance of the (planar) membranes is 

assumed to remain the same as in the ideal case of void channels (see Section 2). Solution and 

membrane resistances are then combined in series to yield the areal resistance r of a cell pair. 

The comparison with accurate 3-D predictions of the areal resistance for some representative 

configurations, obtained by numerically solving the Laplace equation 2=0 for the electrical 

potential using the same CFD code adopted for flow and concentration predictions (Ansys-CFX), 

has shown that Eq. (35) provides a satisfactory accuracy. 

 

3.3 Profiled membranes 

In the case of profiled membranes, the separate-channel approach adopted for the numerical 

simulation of spacer-filled channels is not adequate, because now neither concentration nor 

electrical potential boundary conditions at the membrane walls are known a priori. Therefore, we 

chose to perform flow and scalar (salt) transport simulations, and Ohmic resistance calculations, for 

the cell pair as a whole. In the lateral and streamwise directions, the unit cell approach was retained 

and periodic boundary conditions were imposed. By way of example, Figure 11 reports the unit cell 

(computational domain) used for a profiled-membrane configuration that we will call here 

“Overlapped Crossed Filaments” (OCF). 

 

 

 

Figure 11. Unit cell (computational domain) used for Overlapped Crossed Filaments (OCF) profiled 
membranes. 
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In this case, a purely diffusive scalar transport equation was solved also in the solid regions 

(simulating the ion exchange membranes): 

C
j j

c c
D S

t x x
   

 
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 (36) 

in which D* is the diffusivity in the generic membrane and CS   is a suitably defined compensative 

source term, similar to its counterpart SC adopted in in the fluid compartments, Eq. (31). Two 

different bulk concentrations were imposed in the two channels, and a single realistic value of the 

scalar diffusivity D* (typically 10-11 m2/s, much lower than the salt diffusivity in the solutions) was 

imposed in the membranes to allow a salt flux from the concentrate to the dilute solution. Since the 

Sherwood numbers depend only marginally on the specific distributions of concentration and molar 

flux over the walls, the exact choice of D* is immaterial. By this method, at the solid-fluid 

(membrane-solution) interfaces general interface conditions (continuity of concentration and 

normal molar flux), and concentration boundary conditions did not need to be assigned. 

Results obtained by CFD for the friction coefficient f and the Sherwood number Sh (on each 

surface) in the range Re70 are shown in Figure 12 for OCF profiled membranes with P/H=2. As 

in Figure 10, three flow attack angles (0°, 45° and 90°) are considered, best-fit polynomials are 

reported, and the friction coefficient is normalized by the corresponding coefficient for parallel 

flow in a plane channel, 96/Re.  

In Figure 12(a) it can be observed that, even for low Reynolds numbers, OCF profiled 

membranes with P/H=2 enhance friction with respect to an empty (spacerless) channel by about 

one order of magnitude (less, however, than corresponding woven spacers in Figure 11). The 

influence of the flow attack angle on f is small for Re<30. 

In Figure 12(b) it can be observed that, as in the case of woven spacers, for Re0 mass 

transfer is not enhanced, and may actually be impaired, by the presence of the membrane profiles 

(Sh<8). However, the Sherwood number increases with Re and, in the range Re=5-20, it becomes 

considerably larger than in empty channels (2 to 4 times for φ=45°, which is again the most 

effective flow attack angle). The effect, however, is less than in woven spacers (Figure 10). 

In regard to Ohmic losses in profiled membranes, in this case neither the membranes nor the 

channels possess a simple planar shape and thus, strictly speaking, the areal resistance r of a cell 

pair cannot be computed by Eq. (21), i.e. as the series of four resistances. Rather, for each channel-

membrane configuration, r should be computed as a whole by solving the Laplace equation for 

the electrical potential  in three dimensions, provided the membrane can be treated as a 

homogeneous resistive material of electric conductivity . 
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Figure 12. CFD results (symbols) and best-fit polynomials (lines) for OCF (overlapped crossed filaments) 
profiled membranes with P/H=2 and different flow attack angles. (a) friction coefficient 
multiplier with respect to a spacerless plane channel; (b) mean Sherwood number (Sc=600). 

 

However, approximate but simple expressions for r, to be used in conjunction with simplified 

stack models, are desirable for parametrical design or optimization studies. For OCF membranes 

like those in Figure 11, a reasonable approximation is to compute the areal resistance of the whole 

cell pair (see Figure 1) as: 

0

CPH
dx

r
    (37) 
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i.e. as the series of the electrical resistances of infinitesimal layers of thickness dx, each 

characterized by an electrical conductivity  /k k
k

S S  , which is the area-weighted average 

of the electrical conductivities of the various materials present in the generic section. 

The integral in Eq. (37) can be reduced to the sum of elementary, though cumbersome, 

algebraic expressions. Note that even Eq. (35), proposed for spacer-filled channels, can be obtained 

as a special case of Eq. (37) in the limit of zero electrical conductivity of the filaments.  

The accuracy of the above approximation was verified a posteriori by comparing its 

predictions with accurate, 3-D numerical solutions for the electrical potential, obtained for a few 

representative cases by the same 3-D code (Ansys-CFX) used for the assessment of Sh and f. 

Very small discrepancies (a few % at most) were obtained. 

 

3.4 Adjustments for concentration effects 

All the Sherwood numbers reported above were computed by CFD for a reference Schmidt number 

Scref=600, roughly corresponding to solutions of intermediate dilution (C100 mol/m3). On the 

basis of our own sensitivity study, the influence of Sc, and thus of the concentration C, can be 

taken into account by multiplying the reported values of Sh by (Sc/Scref)1/2, a factor which becomes 

significant only for highly concentrated solutions. Only in the case of parallel, fully developed flow 

in a plane (spacerless) channel the Sherwood number is independent of the Schmidt number and 

thus does not require any concentration adjustment. 

 

3.5 Adjustments for entrance effects 

All the values of f and Sh reported above were computed for fully developed flow, either in a plane 

(spacerless) channel or in the periodic unit of an array of identical cells. In a real, finite-length 

stack, the local Sherwood number decreases towards its fully developed value Sh∞ as a function of 

the dimensionless distance from inlet, y*=(y/dh)/Pe, where dh is the hydraulic diameter (=2H) and 

Pe=Re∙Sc is the Peclet number [42]. The inverse of y* is known as the Graetz number (Gz) and the 

problem of determining Sh in the entry region is known as the Graetz problem. As a rule of thumb, 

in laminar flow the ratio Sh/Sh∞ becomes negligibly different from unity (e.g., <1.05) for y*>0.02 

while it may be as high as 3-5 for y*=10-4. In RED and other mass transfer processes, due to the 

high value of Sc (e.g. 600) and despite the low values of Re (e.g. 10), Pe may be quite high (e.g. 

6000), so that the condition y*=0.02 is attained for (y/Dh)=120. For channels with H=300 m 

(dh=600 m), this value corresponds to a distance of 0.072 m, so that, in short stacks (e.g. L=0.1-

0.2 m), entrance effects extend over a large portion of the stack and cannot be neglected. 
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Details of the behaviour of Sh in the entrance region depend on the inlet conditions and on the 

channel’s geometry. For laminar flow in circular pipes with simultaneously developing flow and 

concentration fields, accurate correlations are provided by Gnielinsky [42]. For flat rectangular 

channels (which include the laterally indefinite plane channel as a limiting case), computational 

results have been collected by Lee et al. [43]. As an additional test, we have performed accurate 

numerical simulations for varying Sc and Re in plane channels using Ansys-CFX, confirming 

that the ratio Sh/Sh∞ depends only on y* (or Gz) and can be approximated by the simple correlation 

1/33
Sh 1

Gz
Sh

  
    
   
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G
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C

 (38) 

with CG0.18. Figure 13 shows Eq. (38) along with results by Lee et al. [43] and our own CFD 

predictions.  

 

 
 
Figure 13. Entrance effects on the Sherwood number in plane channels. Results from the literature and 

from present CFD calculations are reported along with Eq. (38) (solid line). The broken line 
represents the correlation for the average Sherwood number in the interval 0 - y*. 

 

Although not very accurate, Eq. (38) was chosen as the simplest correlation exhibiting the correct 

asymptotic behaviour both for y*0 and for y*∞. It also possesses the nice property that the 

average of Sh between the channel inlet and the generic axial location can be approximated by a 

correlation of the same form as the local one, Eq. (38), but with a different constant 

(3 / 2)avg
G GC C  (0.27). This is also reported in Figure 13 and shows that, as expected, entrance 

effects on the average Sh extend far downstream than local effects. 

Note that the local multiplier (Eq. (38) with CG=0.18) should be used in conjunction with the 



 

30 

1-D stack model described in Section 2, while the average multiplier (Eq. (38) with avg
GC =0.27) is 

more suitable for 0-D (lumped parameter) models. 

For more realistic channel configurations, involving spacers or profiled membranes, the 

literature reports few and unclear findings. For example, Shakaib et al. [44] conducted 3-D CFD 

simulations for developing flow in spacer-filled channels at Re>102, Sc650 and φ=0°/90°; they 

found that Sh differed significantly from its asymptotic value Sh∞ only in the first 2 unit cells (see 

their Figure 3) and exhibited a non-monotonic behaviour on the face adjacent to the filaments at 

90° incidence. On the other hand, Rohlfs and Lienhard [45] conducted numerical simulations for 

heat transfer in developing flow with transverse cylindrical obstacles floating in a plane channel; 

they found a Nu–y* dependence similar to that in Eq. (38) which, for high values of the Prandtl 

number (equivalent to the Schmidt number for mass transfer), implied that Nu was significantly 

higher than its asymptotic value in several unit cells.  

While the issue clearly deserves further investigations, in the present work we assumed, for the 

sake of simplicity, that the same correlation derived for empty channels can be applied to spacer-

filled channels or profiled membranes. 

 

4 COMPARISON OF GEOMETRIES 

As an example of the influence of the channel configuration on the stack performance, Figure 14 

reports voltage-current density characteristic curves computed by the combined 1-D / CFD model 

for the conditions in Table 1 (the same holding for the spacerless channel case in Figures 6-8), but 

different channel configurations: (a) overlapped (diamond) spacers with P/H=2; (b) OCF profiled 

membranes with P/H=2. In both cases, the flow attack angle φ was 45°; the comparison with 

results for other values of φ (not reported here for the sake of brevity) shows that the influence of 

this parameter is only secondary at the present low Reynolds number. 

These results should be compared with the corresponding predictions obtained by the same 1-

D model for the ideal case of a void (spacerless) channel, for which CFD results are not required 

(Figure 6). The comparative examination of the current density- voltage (per cell pair) curves 

shows that the relative importance of different voltage losses is about the same in all cases: Ohmic 

and axial losses are of a similar magnitude, while boundary layer drops play only a secondary role. 

However, it can be observed that BL is utterly negligible in the case of woven spacers, which cause 

a very effective mixing, intermediate in the presence of OCF profiled membranes, and largest in 

the empty channel of Figure 6. Both woven spacers and OCF profiles yield a short-circuit current 

density slightly larger than the empty channel, showing that, in regard to mass transfer, they 

perform better than this latter. 
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Figure 14. Current density-voltage curves computed by the 1-D/CFD model for the conditions specified in 

Table 1 and different configurations: (a) woven spacers with P/H=2; (b) OCF profiled 
membranes with P/H=2. The flow attack angle φ was 45° in both cases. 

 

Figure 15 reports power density-current density curves (load curves) for the same configurations as 

in Figure 14. These highlight the importance of frictional pressure drop: both woven spacers and 

OCF membranes cause much larger pumping losses than the empty channel, which significantly 

reduce the net power density.  
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Figure 15. Current density-power density curves computed by the 1-D/CFD model for the conditions 

specified in Table 1 and different configurations: (a) woven spacers with P/H=2; (b) OCF 
profiled membranes with P/H=2. The flow attack angle φ was 45° in both cases. 

 

An overall comparison between the three geometries examined is given in Figure 16. It reports the 

gross (a) and net (b) power density (per cell pair), GPD and NPD, as a function of the mean current 

density i. Figure 16(a) shows that the highest gross power density and the highest short circuit 

current density are provided by OCF profiles, followed by woven spacers and then by the empty 

channel. On the other hand, as shown by Figure 16(b), the highest net power density per cell pair is 

provided by empty channels, followed by OCF profiled membranes and then by woven spacers. 
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Figure 16. Summary results for the three geometries examined in the present study. (a) current density-

gross power density curves; (b) current density-power density curves. See Table 1 for a 
description of the assumed conditions.  

 

5 MODEL VALIDATION 

As a caveat, it should be observed that validating a model for RED is not as neat a business as it 

would be validating, say, a CFD code. The reason is twofold: on one hand, any such model 

involves a large number of physico-chemical properties (e.g. membrane perm-selectivity, Ohmic 

resistance and osmotic / electro-osmotic permeability) which are known only approximately, and 

whose dependence on the solutions’ concentrations is not fully characterized. On the other hand, 

measurements in real stacks are usually limited to global quantities such as the overall 

electromotive force and electric current, while data on local quantities such as electrical voltage, 

current density or concentration (which are typically predicted by a computational model) are rare.  
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For a preliminary validation of the model we considered here two sets of data obtained with a 

different number of cell pairs in the stack and different membranes. In both cases the relevant 

quantity is the Gross Power Density measured as a function of the flow velocity in the channels. 

The first set of data was presented by Veerman et al. [1], who used a stack with 50 cell pairs, 

10×10 cm in size, equipped with Fumasep FAD/FKD membranes, and the standard riverwater / 

seawater solutions (C=500/17 mol/m3). The height of both the concentrate and the dilute channels 

was 200 m and the porosity of the woven spacer used was estimated to be 67%. The membrane 

properties, as reported by the authors on the basis of their own measurements either in the same 

paper [1] or in a parallel study [34], are summarized in Table 2. 

 

Table 2 – Membrane properties in seawater/riverwater as reported by Veerman et al. [1]. 

Property AEM CEM 

Membrane type Fumasep FAD (Fumatech) Fumasep FKD (Fumatech) 

Thickness H, m 82 82 

Permselectivity 0.95 0.95 

Ohmic areal resistance R, m2 1.63×10-4 5.9×10-4 

Salt diffusivity DS, m2/s 1.3×10-11 [37] 1.3×10-11 [37] 

Water diffusivity DW, m2/s 1.3×10-9 [37] 1.3×10-9 [37] 

Equivalent osmotic permeability 
Lp, ml/(m2 h bar) 

22 22 

 

Although the authors characterized osmotic fluxes through the membranes by reporting the water 

diffusivity, in order to facilitate comparisons we converted this into an osmotic permeability and 

expressed it in the usual units of ml/(m2 h bar). In regard to quantities not explicitly reported by the 

authors, we assumed typical values, namely, Rblank=10-2 m2 for the areal resistance of the 

electrodes and nH=7 for the hydration number (necessary to compute electro-osmotic fluxes). 

Predictions obtained by the 1-D model are compared in Figure 17 with experimental results for 

different velocities of the solutions in the channels (Figure 6 of reference [1]). It can be observed 

that the model yields only a small overprediction of GPD by 0.03 W/m2, rather uniform in the 

velocity range considered. This small discrepancy is probably caused by non-ideal effects not 

considered in the model, such as parasitic currents or fouling. 
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Figure 17. Comparison of the Gross Power Density (GPD) predicted by the present model for different 
flow velocities with experimental results by Veerman et al. [1] (Fumasep membranes). 

 

The second set of data was presented by Choi et al. [2], who used a small stack with only 1 cell 

pair, 5×5 cm in size, equipped with Selemion AMV / CMV membranes and Ti-wire woven 

spacers. Membrane properties are reported in Table 3. 

 

Table 3 – Membrane properties as reported by Choi et al. [2]. 

Property AEM CEM 

Membrane type Selemion AMV Selemion CMV 

Thickness H, m 120 120 

Permselectivity 0.94 0.94 

Areal resistance R, m2 0.0033+0.031/CDIL 0.0033+0.031/CDIL 

Salt diffusivity DS, m2/s 3.1×10-12 [37] 3.1×10-12 [37] 

Water diffusivity DW, m2/s 1.2×10-10 [37] 1.2×10-10 [37] 

Equivalent osmotic permeability 
Lp, ml/(m2 h bar) 

1.25 1.47 

 

Salt diffusivity and water diffusivity (this latter roughly corresponding to an osmotic permeability) 

are not reported in [2] but were measured for these membranes by Veerman et al. [37]. As in 

Galama et al. [36], the overall Ohmic resistance of the membranes was found to be a function of 

the dilute concentration only. Assuming this resistance to be equally distributed among AEM and 

CEM, the authors’ measurements (Figure 3 in [2]), once expressed as an areal resistance per single 

membrane, can be approximated by the simple formula rIEM=0.0033+0.031/CDIL (rIEM in  m2, CDIL 
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in mol/m3), i.e. by a correlation of the same form as Eq. (23) but with different values of the 

constants a, b and c. The salt hydration number was assumed to be nH=7. 

The height of concentrate and dilute channels was 200 m as in the previous example. The 

authors let the dilute concentration vary between 0.85 and 34 mol/m3 (0.05-2 g/l), while the 

concentrate was seawater (C500 mol/m3) in all cases. They let also the velocity in the channels 

vary between 0.4210-2 and 2.510-2 m/s (flow rate 2.5 – 15 ml/min). The gross power density, 

GPD, was estimated from voltage measurements taken between reference points internal to the 

electrodic compartments, so that it did not include the loss across the electrodes (which, in the case 

of a single cell pair, would be a considerable fraction of the electromotive force). The motion of the 

two solutions was in cross flow and followed the diagonals of the stack; however, for such short 

stack length (5 cm side), the difference from the present model’s assumption of parallel flow can be 

considered negligible. 

Current density – gross power density curves, similar to those reported as examples in Figure 

17(a), obtained by the 1-D model are compared with experimental results of [2] in Figure 18.  

Figure 18(a) is for UCONC=UDIL=0.42 cm/s (flow rate 2.5 ml/min), CCONC=500 mol/m3 

(seawater) and varying CDIL, from 1.7 mol/m3 to 34 mol/m3. Maximum GPD values are predicted 

with fair accuracy; they first increase as CDIL decreases from 34 to 8.5 mol/m3, due to the increased 

C-ratio in the Nernst expression of OCV, Eq. (11); however, a further reduction of CDIL causes 

GPD to decrease since the increase in the Ohmic resistance of the dilute channels overwhelms the 

Nernst effect. This non-monotonic trend is well reproduced by the model, although GPD is 

overestimated at the smallest dilute concentration (1.7 mol/m3). Short circuit currents are 

overestimated at all concentrations, and particularly at low CDIL, probably because parasitic current 

loops are present in the experiments but are not taken into account by the model. 

Figure 18(b) is for CCONC=500 mol/m3, CDIL=17 mol/m3 and different values of the mean 

velocity U in both channels, from 0.42 to 2.5 cm/s. It can be observed that GPD increases with U, 

mainly because higher flow rates cause smaller axial voltage drops C (associated with the axial 

decrease of the concentration ratio); beyond a certain value of U, further increments fail to cause 

significant increases of GPD because axial effects become negligible with respect to other sources 

of voltage drop (Ohmic and non-Ohmic losses). This behaviour is correctly reproduced by the 

model, although it somewhat underestimates the influence of the flow rate. 
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Figure 18. Comparison of the Gross Power Density (GPD) predicted by the present model with 
experimental results by Choi et al. [2] (Selemion membranes). (a) UCONC=UDIL=0.4210-2 m/s, 
CCONC=500 mol/m3 and varying CDIL; (b) CCONC=500 mol/m3, CDIL=17 mol/m3 and varying 
velocity in the channels. 

 

6 CONCLUSIONS 

In this paper, we presented a coupled strategy for the prediction of RED stack performance, based 

on combining a one-dimensional model of the stack with fully three-dimensional finite volume 

simulations of the electrolyte channels, including complex configurations (spacers or profiled 

membranes). An advanced CFD code was used to provide Sherwood numbers and friction 

coefficients, related, in their turn, to polarization voltage losses and pumping power losses, 

respectively. Finite-volume 3-D computations were also used to provide areal Ohmic resistances.  

Results were compared with literature data obtained in laboratory-scale stacks and a 

satisfactory overall agreement was observed. Under the conditions considered for these 
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comparisons (short stacks, low current densities and thin channels provided with spacers) the terms 

computed by finite-volume simulations (Sherwood numbers, friction coefficients) were found to 

play a relatively secondary role. However, the passage to long stacks of industrial interest (e.g. 1 

m) will make an accurate estimate of friction coefficients crucial for the assessment of the net 

power density. Similarly, polarization losses in RED may become more important in the future, as 

membranes offering lower Ohmic resistances are developed; they may also be more important in 

ElectroDialysis, usually characterized by higher current densities, larger flow rates, and larger 

channel heights. Finally, the possible choice of thicker channels will make an accurate evaluation 

of boundary layer losses similarly important; and the adoption of profiled membranes in lieu of 

spacers will raise the problem of predicting the overall Ohmic resistance of the cell pair in complex 

spatial configurations. 

In this perspective, the combined approach described in this paper constitutes a fully 

predictive, potentially very accurate, and still extremely fast-running, tool to investigate the 

potentials of alternative designs, to orient experimental activities and to design/optimize real RED 

equipment.  
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NOMENCLATURE 

Symbol Quantity Unit 

as; as,i Driving acceleration  m s-2 

C Bulk concentration mol m-3 

c Local concentration mol m-3 

cext External concentration mol m-3 

D Salt diffusivity m2 s-1 

deq Hydraulic diameter (=2H) m 

E Electromotive force per cell pair V 

F Faraday’s constant, 9.6485104 C mol-1 

f Darcy friction coefficient - 

G Mass flow rate kg s-1 

GPD Gross Power Density per cell pair W m-2 
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Gz Graetz number, Pe/(y/deq) - 

H Thickness m 

I Electrical current  A 

i Electrical current density A m-2 

J Trans-membrane water flux m s-1 

K Singular pressure loss coefficient - 

k Mass transfer coefficient, N/(C-cwall) m s-1 

L Stack length m 

Lp Osmotic permeability M s-1 Pa-1 

M Molar mass Kg mol-1 

N Molar flux mol m-2 s-1 

nCP Number of cell pairs in the stack - 

nH Hydration number - 

NPD Net Power Density per cell pair W m-2 

OCV Open circuit voltage per cell pair V 

P Pitch of spacers or profiled membrane m 

p Pressure  Pa 

PPD Pumping Power Density per cell pair W m-2 

Pe Peclet number, Re∙Sc - 

Q Volume flow rate m3 s-1 

r Areal electrical resistance per cell pair  m2 

R Gas constant, 8.3415 J mol-1 K-1 

Rext External electrical resistance (load) 

Re Void channel Reynolds number, U deq/ - 

S Projected surface area of stack, LW m2 

SC Compensative source term mol m-3s-1 

Sc Schmidt number, /D - 

Sh Sherwood number, k∙deq/D - 

T Absolute temperature K 

U Void channel velocity, Q/(HW) m s-1 

uj Generic velocity component m s-1 

V Volume  m3 

VLOAD Voltage drop across the external load  V 

vLOAD Ratio VLOAD/nCP V 
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W Stack width (spanwise extent) m 

xj Generic coordinate m 

y Co-ordinate along the flow direction m 

y* Dimensionless distance from inlet, (y/Dh)/Pe  - 

 

Greek symbols 

  

 Membrane permselectivity - 

 Activity coefficient - 

p Pressure drop Pa 

 Porosity, or void ratio, VSOL/V - 

 Electrical voltage drop per cell pair V 

 Polarization coefficient, min(cwall/C, C/cwall) - 

 Viscosity Pa s 

 Kinematic viscosity m2 s-1 

 Osmotic pressure Pa 

 Density kg m-3 

 Electrical conductivity S m-1 

 Electrical potential V 

φ Flow attack angle  deg 

 Pump efficiency  - 

 

Subscripts/superscripts 

  

AEM Anion Exchange Membrane  

BL Related to concentration boundary layer  

blank Pertaining to electrodic compartments  

CEM Cation Exchange Membrane  

CONC Concentrated solution  

COUL Coulombic (proportional to i)  

CP Cell pair  

DIF Diffusive  

DIL Dilute solution  

dist Distributed  

E.OSM Electro-osmotic  
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IEM Ion exchange membrane (AEM/CEM)  

i Inlet  

k Generic material in a section of a cell pair  

LOAD Electrical external load  

OSM Osmotic  

OCV Open circuit voltage  

P Working point  

ref Reference concentration  

S Salt  

SC Short circuit  

SOL Generic solution (CONC/DIL)  

sing Singular pressure loss  

W Water  

wall Wall (solution-membrane interface)  

C Related to axial changes in concentration  

 Related to Ohmic effects  

 

Averages 

  

  Over the whole stack projected surface S  

{ } Over one wall of one unit cell  
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Annex 1: Correlations used for thermophysical and transport properties of NaCl solutions 

at T=25°C (concentration C in mol/m3) 

 

 Density  (kg/m3), best fit of data from Green and Perry [46]:  

 = 5.94×10-11 C3 - 1.032 ×10-6 C2 + 4.097×10-2 C + 997 

 

 Viscosity  (Pa·s) , best fit of data from Ozbek et al. [47]:  

 = 1.886×10-15 C3 + 5.260×10-12 C2 + 7.947×10-8 C + 0.8899×10-3 

 

 Kinematic viscosity (m2/s):  

 = /

 

 Salt diffusivity DS (m2/s), best fit of data from Vitagliano and Lyons [48]:  

D=1.47×10-9+0.13×10-9∙exp(-C/70) (C400) 

D=-2.87262×10-21∙C3+2.03219×10-17∙C2-8.44113×10-15∙C+1.4705×10-9 (C>400) 

 

 Activity coefficients  (dimensionless), bestfit of Pitzer’s model [33, 34]: 

=0.64+0.189e-C/260+0.1605e-C/20 (C1200) 

=0.64+0.189e-C/260+0.1605e-C/20+1.051×10-7∙(C-1200)1.8 (C>1200) 

 

 Osmotic pressure  (Pa), bestfit of Pitzer’s model [33, 34]: 

=4.906×103∙C0.9887 (C1000) 

=1.359×103∙C1.1745 (C>1000) 

 

 Electrical conductivity  (S/m), best fit of data from Islam et al. [49]:  

log10()=-0.0027373∙(log10(C))3-0.0059675∙(log10(C))2+0.98994∙(log10(C))-1.9074 (C1000) 

log10()=-1.3893∙(log10(C))3+13.252∙(log10(C))2-41.277∙(log10(C))+43.011 (C>1000) 


