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In the present study we have investigated the properties of a novel cell line (3A cells) obtained from the
liver of 14.5 days post coitum (dpc) wild-type mouse embryo. 3A cells morphology was characterized by
fluorescent localization of F-actin and b-catenin. The expression of specific genes and proteins essential to
liver function in these cells was comparable or even more efficient then in the differentiated hepatocytic
cell line MMH-D6. 3A cells also showed the capability to excrete molecules in extracellular spaces resem-
bling functional bile canaliculi, glycogen storage activity and the ability to control retinol-binding protein
4 secretion in response to retinol deprivation. Their response to the exogenous stress stimulus induced by
tunicamycin was analysed by PCR Pathway Array containing 84 genes involved in the Unfolded Protein
Response (UPR). 3A cells were shown to activate the UPR following a typical stressful event, indicating
that this cellular model could be further exploited to investigate hepatic proteins secretion and specific
reaction to different injuries.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The effort to establish a differentiated hepatic cell line able to
express in vitro the most important liver functions (such as the syn-
thesis of specific serum proteins, the metabolism of carbohydrates
and lipids, and the modification and excretion of endogenous and
exogenous molecules) has long been pursued in several laborato-
ries and different model systems have been described to date (Fer-
rini et al., 1997; Gebhardt et al., 2003; Hewitt et al., 2007). Such
in vitro systems are essential to test a wide panel of molecules, both
of natural or synthetic origin, with beneficial (i.e. nutrients, bioac-
tive molecules, drugs) or detrimental (i.e. environmental pollu-
tants, metals, toxins, etc.) effects on the organism, and to study
the molecular mechanisms that govern their absorption, metabo-
lism, secretion and catabolism in the liver. Primary hepatocytes
are still the closest in vitro model for the liver. However, they have
scarce and often unpredictable availability, limited growth activity
and lifespan, and undergo early phenotypic alterations (Guguen-
Guillouzo and Guillouzo, 2010). Conversely, hepatoma cell lines
such as HepG2, despite representing a widely used model charac-
terized by indefinite proliferative capacity, lack several important
regulatory mechanisms and crucial liver functions such as the
cytochrome P450 activities (Guguen-Guillouzo and Guillouzo,
ll rights reserved.
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2010) or micronutrients transport (Bellovino et al., 1999; Pisu
et al., 2005).

In this study we have characterized the 3A hepatic cell line, iso-
lated from 14.5 dpc embryo of a wild type mouse strain that under-
went spontaneous immortalization.

3A cells were tested for the maintenance of several liver key
features essential for a functional hepatocyte model, including
the regulation of retinol binding protein 4 (RBP4) secretion in re-
sponse to vitamin A deficiency. In addition to structural and func-
tional characteristics, we have tested their capability to overcome
stressful conditions by activating the Unfolded Protein Response
(UPR). The synthesis and secretion of large amounts of proteins
such as hormones, antibodies or growth factors as well as various
stresses, such as hypoxia, starvation, heat and drug treatment can
interfere with proper protein folding in the endoplasmic reticulum
(ER) (Kaufman et al., 2002) and consequently with protein secre-
tion. These events lead to ER stress and accumulation of misfolded
proteins that, in turn, can result in cell failure and death by apop-
tosis. Cells are able to activate specific pathways in order to pre-
vent and relieve ER stress, in particular the UPR pathway,
through which protein synthesis is inhibited and misfolded pro-
teins are (i) detected, (ii) sequestered and/or re-folded, (iii) eventu-
ally degraded (Schroder and Kaufman, 2005; Ron and Walter,
2007). The correct functioning of this pathway ensures a proper
response to exogenous stress, and is therefore essential for cells
to exert efficiently their functions. A new, readily available cell
model, easy to obtain and to maintain in culture, would therefore
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be extremely useful for studies aimed at the characterization of the
hepatic response to stressful events.

2. Materials and methods

2.1. Cell culture maintenance and drug treatment

The murine hepatocytes 3A cell line was derived from liver cul-
tures of 14.5 dpc embryos of wild type mice by limiting dilution
cloning. Met murine hepatocytes (MMH)-D6 is an immortalized
cell line derived from livers of transgenic mice expressing a trun-
cated human MET proto-oncogene. Details of the construction
and of the tissue-specific and temporal expression of the transgene
were previously published (Amicone et al., 1995). All cell lines
were grown in RPMI 1640 supplemented with 10% foetal bovine
serum (FBS EU category, Euroclone, Italy), 50 ng/ml EGF, 30 ng/
ml IGF II (Millipore, Italy), 10 lg/ml insulin, 4 mM L-glutamine
and 100 U/L penicillin and 100 lg/L streptomycin. Cells were usu-
ally plated on collagen I-coated Petri dishes (BD Falcon Plastics) at
37 �C in 5% CO2.

To induce vitamin A deficiency, 3A cells were grown in RPMI
1640 supplemented with 10% delipidized FBS (Lonza, Basel, Swit-
zerland). As control, 3A cells were grown in the same medium sup-
plemented with 3 lM retinol, prepared as 1000� stock solution in
ethanol. Where indicated, 3A cells were treated with 5 lg/ml
tunicamycin (TM) for 4 h at 37 �C in 5% CO2. Unless otherwise sta-
ted all reagents were from Sigma Aldrich, Italy.

2.2. RNA extraction, reverse transcription and PCR

Total RNA was extracted from cultured cells using an RNA extrac-
tion kit (NucleoSpins RNA II, Machery-Nagel GmbH, Germany)
according to the manufacturer’s instructions. Single-stranded cDNA
was obtained by reverse transcription of 1 lg of total RNA using
MMLV-reverse-transcriptase (Promega, Italy). cDNA was amplified
by PCR using Taq DNA polymerase (Invitrogen, Italy). The samples
were analysed by 1% agarose gel electrophoresis. The oligos used
in the experiment were designed with Primer3 software and the
corresponding sequences are reported in Table 1.

PstI digestion was used to discriminate between the two differ-
ent XBP1 mRNA splicing forms. 3A cells were treated with 5 lg/ml
TM for 4 h at 37 �C, then total RNA was extracted from treated or
control cells and used for RT-PCR amplification of XBP1 using spe-
cific primers. Amplified PCR fragments were digested with the
restriction enzyme PstI (Promega, Italy) for 1 h at 37 �C. The sam-
ples were analysed by 1% agarose gel electrophoresis.

2.3. RT2 Profiler PCR Array System

The Mouse Unfolded Protein Response RT2 Profiler™ PCR Array
(SABioscience-Qiagen, Italy) profiles the expression of 84 key genes
Table 1
Primers used for RT-PCR analysis of the indicated genes.

Gene Accession No. Forward

HNF1a NM_009327.3 50-AGACCATGTTG
HNF4a NM_008261.2 50-ACACGTCCCCA
HNF3b NM_010446.2 50-ACATGTTCGAG
HNF6 NM_008262.3 50-GGGCTGGCCTC
GOT1 NM_010324.2 50-AGCCTCAACCA
Ephx1 NM_010145.2 50-TGGCTTCAACTC
E-Cad NM_009864.2 50-CAAGCTGGAGA
RBP4 NM_001159487.1 50-ACTGGGGTGTA
TTR NM_013697.5 50-CTGGACTGGTA
XBP1 NM_013842.2 50-AAACAGAGTAG
b-actin NM_007393.3 50-ATGGATGACGA
responding to unfolded protein accumulation in the ER. Total cel-
lular RNA was extracted from cultured cells (RNeasy� Mini Kit,
Qiagen, Italy) according to the manufacturer’s instructions. Sin-
gle-stranded cDNA was obtained by reverse transcription of 1 lg
of total RNA using SABiosciences RT2 First Strand Kit. Real Time-
qPCRs were performed using Applied Biosystems 7500 Fast with
SYBR Green fluorophore; the reactions were carried out using iQt
SYBRs Green Supermix (BioRad, Italy); cDNA was used as template
and cycling parameters were 95 �C for 10 min, followed by 40 cy-
cles of 95 �C for 15 s, 60 �C for 1 min. Fluorescence intensities were
analyzed using the manufacturer’s software, and relative quantifi-
cation was calculated using the 2�DDCt method. HPRT1 was used as
reference gene. Significant differences between treatments were
evaluated using Student’s t-test, with p 6 0.05 considered
significant.

2.4. Western blotting and immunoprecipitation

Cells were harvested in cold radioimmunoprotein assay (RIPA)
buffer (20 mM Tris–HCl pH 7.5, 150 mM NaCl, 0.1% SDS, 1% Na
deoxycholate, 1% Triton X-100, phosphatases and protease inhib-
itor cocktails (Roche, Italy)). Culture media, where indicated, were
subjected to immunoprecipitation with anti-RBP4 antibody, fol-
lowed by 1 h incubation with 30 ll of ProteinA-Sepharose
(Roche). Sample aliquots were dissolved in sample buffer
(50 mM Tris–HCl, pH 6.8, 2% SDS, 10% glycerol, 100 mg/ml bro-
mophenol blue, 10 mM b-mercaptoethanol), heated for 5 min,
fractionated by 4–20% SDS polyacrylamide gel electrophoresis
(SDS–PAGE), then transferred to nitrocellulose filter. Membranes
were incubated with the specific antibodies: rabbit polyclonal
anti-albumin (Bethyl, Montgomery, TX, USA), rabbit polyclonal
anti-RBP4 (Alexis-ENZO Life Science, Belgium), mouse monoclonal
anti-tubulin (Sigma Aldrich, Italy), rabbit polyclonal anti-IRE1a,
PERK and CHOP (Cell Signaling, Beverly, MA, USA). Proteins were
then detected with horseradish peroxidase-conjugated secondary
antibodies (Thermo Scientific, Rockford, IL, USA) and enhanced
chemiluminescence (ECL) reagent (Perkin Elmer, Italy), followed
by exposure to X-ray film (BioMax Light Film Kodak, Perkin El-
mer, Italy). Densitometric analysis was performed by Image-
QuantTL (GE Healthcare, Italy) software.

2.5. Immunofluorescence staining

3A cells were seeded on collagen-coated coverglasses. Cells
were grown for 48 h after confluence and immunofluorescence
performed as previously described (Conigliaro et al., 2008). Briefly,
cells were fixed with 4% paraformaldehyde, permeabilized with
0.1% Triton X-100 and incubated with FITC-conjugated phalloidin
or rabbit polyclonal antibodies against ß-catenin and albumin
(Bethyl, Montgomery, TX, USA). Nuclei staining was performed
with 1 lg/ml 40,6-diamidino-2-phenylindole (DAPI). Coverglasses
Reverse

ATCACAGAC-30 50-GGGTGGAGATAAAAGTCTCG-30

TCTGAAG-30 50-CTTCCTTCTTCATGCCAG-30

AACGGCTGC-30 50-TGAAGGCTGAATGGTGCTCG-30

TATGAATAAC-30 50-GTTTGAGCTCGGTGGTGATAC-30

CCAGTACCT-30 50-ATCTGCTTCCACTGCCTCGG-30

CAGCTACC-30 50-TTCTGACTTGGTCCAGGTGG-30

CCAGTTTCC-30 50-CAGAGGTGAGCACACTGATG-30

GCCTCCTTT-30 50-GGAGTACTGCAGAGCGAAGG-30

TTTGTGTCT-30 50-TTGGCTGTGAAAACCACATC-30

CAGCTCAGACTGC-30 50-TCCTTCTGGGTAGACCTCTGGGAG-30

TATCGCTGCG-30 50-ATCTTCATGAGGTAGTCTGTCAGG-30
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were mounted with ProLong Gold anti-Fade Reagent (Molecular
Probes, Invitrogen, Italy) and visualized by confocal laser scanning
microscopy (LSM-700, Zeiss, Jena, Germany).

2.6. Fluorescein-diacetate (FDA) staining

3A cells were grown for 48 h after confluence and incubated at
37 �C for 20 min with 5 lg/ml FDA in methanol. Cells were washed
with PBS at room temperature and immediately visualized by fluo-
rescence microscopy (Axioscope 2, Zeiss). Cell membranes were
stained with Wheat Germ Agglutinin (WGA) Alexa-Fluor 555 con-
jugate (Molecular Probes, Invitrogen, Italy).

2.7. Periodic Acid Schiff (PAS) staining

Cell medium was replaced with fresh complete medium 2 h be-
fore analysis. Intracellular glycogen staining was performed using
Fig. 1. Expression of hepato-specific genes in three murine liver cell lines. (A) The two
were grown in two different conditions: sub-confluent (s) and confluent (c). RNA extracte
the genes indicated. Data shown are representative of at least three independent experim
SDS–PAGE and analysed by Western blotting and chemiluminescence. Blot is represe
immunostained for albumin (C) and counterstained with DAPI to visualize the nuclei (D
a PAS staining kit; before staining, control cells were incubated
for 30 min at 37 �C with 10 mg/ml diastase (Roche). Fluorescent
images of PAS-stained cells were captured using an EVOS micro-
scope (AMG, Bothell, WA, USA).

2.8. Assessment of 3A cells viability

Trypan-blue exclusion method was used to assess viability of
3A cells at semi-confluence (70–80%) or 48 h after confluence,
using the TC10 Automated Cell Counter (Biorad, Italy).

2.9. Statistical analysis

All data are expressed as mean ± SD. Student’s t-test was used
to compare means between groups, as indicated in the legend of
the figures. P value was considered significant 60.05. All statistical
analyses were performed using GraphPad Prism software.
hepatic clonal cell lines derived from transgenic (MMH-D6) or wild type (3A) mice
d from MMH-D6 and 3A cells was used in a PCR assay to evaluate the expression of
ents. (B) 40 lg of total cell lysates of the two cell clones were fractionated by 4–20%
ntative of at least three independent experiments. Confocal microscopy of cells
). Magnification bar = 20 lm.
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3. Results

3.1. Characterization of 3A cells

3.1.1. Expression of liver-specific genes and proteins
3A cells, established from wild type mice liver, were tested and

compared with a clonal cell lines derived from transgenic mice
(MMH-D6) (Amicone et al., 1995) for their capacity to express liver
specific genes; MMH-D6 cells have previously been characterized
as an immortalized, untransformed and differentiated hepatocytic
cell line (Mancone et al., 2010) and have thus been used as control
cells in this study. Fig. 1A shows a panel containing the key hepato-
specific genes analysed by PCR assay in MMH-D6 and 3A cells
under different growth conditions: sub-confluent (s) and 48 h after
confluence (c). When confluent, the two cell lines expressed hepa-
tocyte nuclear factors (HNF1a, HNF4a, HNF3b, HNF6), glutamate
oxaloacetate transaminase (GOT1), epoxide hydrolase (Ephx1),
E-cadherin (E-cad), RBP4 and transthyretin (TTR); confluent
MMH-D6 cells showed lower expression of HNF6 and TTR genes
compared to 3A cells. The expression of these genes in both cell
lines was low or undetectable in the sub-confluent state. The
expression of two hepatic secretory proteins, albumin and RBP4,
was analysed by Western blotting and is shown in Fig. 1B. Both
albumin and RBP4, two of the most representative proteins in
the adult liver, were synthesised by the two cell lines. RBP4 was
more abundantly expressed in confluent cells in both lines. Albu-
min expression and intracellular localization were also examined
by confocal laser scanning microscopy in 3A cells (Fig. 1C).
3.1.2. Morphological features
To study the morphology of 3A cells, fluorescence staining of F-

actin and ß-catenin was performed and analysed by confocal laser
scanning microscopy. As shown in Fig. 2, F-actin (A, C) and ß-cate-
nin (B, D) were correctly organized. Both proteins showed a stron-
ger signal close to the cell membrane outlining the cellular
morphology. In the orthogonal projection F-actin appeared to be
Fig. 2. Analysis of 3A cells morphology. Confocal microscopy of confluent 3A cells stained
0.25 lm thick Z-plane image sections (A, B) and representative orthogonal projections fr
nuclear staining (E, F) Magnification bar = 20 lM.
concentrated along the cell periphery but also showed some cyto-
plasmic staining, while b-catenin showed stronger staining in the
apical part of the cells close to the plasma membrane. Confluent
3A cells exhibited a polygonal-hexagonal shape typical of epithelial
cells. The z-stack analysis (Fig. 2C–F) shows the cuboidal structure
of these cells and indicates that they formed a continuous and
morphologically homogenous monolayer.

3.1.3. Fluorescein secretion assay
3A cells, as shown in Fig. 3, were able to internalize FDA that

underwent intracellular hydrolysis and was secreted as fluorescein
into intercellular spaces corresponding to bile canaliculi-like
spaces (in Fig. 3A–D). This localization of fluorescein was also sug-
gested by the orthogonal projection from the z-stack of 3A cell
monolayer (Fig. 3E), where concentration of secreted fluorescein
in specific areas between the cells was observed in cell monolayers
counterstained with cell membrane staining using a fluorescent
WGA conjugate, that selectively binds to N-acetylglucosamine
and N-acetylneuraminic acid (sialic acid) residues.

3.1.4. Periodic Acid Schiff’s (PAS) glycogen staining assay
Glycogen synthesis and accumulation was tested in 3A cells by

PAS staining (Fig. 4) and viewed by transmitted light microscopy
(A) and by fluorescence microscopy (C), taking advantage of the
inherent fluorescence of the Schiff reagent in stained cells (Pilling
et al., 2010). As shown by both methods, glycogen accumulation
was observed in the majority of cells, although clusters of cells
throughout the monolayer appeared more intensely stained. Spec-
ificity of staining was determined by digestion of glycogen with a-
amylase (diastase) prior to PAS treatment, which eliminated the
purple staining (B) or auto-fluorescence (D) specific for glycogen.

3.1.5. Retinol availability regulates RBP4 secretion
Modulation of RBP4 secretion by its ligand, retinol, is a docu-

mented feature of mature hepatocytes. 3A cells retained the regu-
lated secretion of RBP4 as demonstrated by Western blot analysis
for F-actin (A, C, E) and b-catenin (B, D, F). Maximal intensity projection (MIP) of 25
om the z-stack are shown for F-actin (C) and b-catenin (D) with their corresponding
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of cell lysates and immunoprecipitation in culture media (Fig. 5).
Retinol deprivation caused inhibition of RBP4 secretion, therefore
the amount of RBP4 detected in lysates of 3A cells grown for
48 h in delipidized medium (�) was significantly higher than in
control 3A cells, grown in the same delipidized medium in which
3 lM retinol was added (+). Tubulin was immunostained in the
same cell lysates as loading control. As expected, the amount of
RBP4 detected by immunoprecipitation in the culture media was
higher in cells grown in the presence of retinol, in which RBP4
secretion is efficient, compared to cells grown in retinol deficiency,
in which RBP4 secretion is impaired.
3.2. Response to tunicamycin treatment

To evaluate the stress response to an inducer of protein misfold-
ing, 3A cells were incubated with 5 lg/ml TM for 4 h and total RNA
was extracted and analysed with a UPR Pathway Real Time-PCR Ar-
ray (SA Biosciences Qiagen Italia, Italy). As shown in Fig. 6A, TM
treatment modulated the expression of different genes involved
in cellular functions linked to the stress response. In the graph
are indicated the genes with a fold change >2 compared to control
cells not treated with TM. Fig. 6B shows that TM treatment caused
a shift in electrophoretic mobility of both IRE1a and PERK com-
pared to control cells, indicative of the phosphorylation of these
two proteins (Harding et al., 1999), and stimulated the expression
Fig. 3. 3A cells excrete fluorescein in bile canaliculi-like structures. Cells were treated
fluorescence (C, D) microscopy. Merge with differential interference contrast (DIC) con
orthogonal projection from a confocal z-stack of cells treated with FDA (white aggrega
staining) is shown in (E). Magnification bar = 20 lM.
of CHOP that in control conditions – i.e. not stressed – was unde-
tectable. In addition, upon TM treatment and IRE1 activation,
digestion of the PCR amplified XBP1 cDNA by the restriction en-
zyme PstI was inhibited, as shown in Fig. 6C.
4. Discussion

3A cells were isolated from 14.5 dpc embryo of a wild type
mouse strain and spontaneously immortalized. Their viability,
tested by trypan-blue exclusion, was >90% after 48 h at confluence
(data not shown), and these were the conditions used in all further
experiments. The morphological features of 3A cells were high-
lighted by staining the cytoskeletal protein F-actin and the junc-
tional protein ß-catenin. ß-catenin is part of the adherens
junctions and is involved in the stabilization of the epithelial
monolayer, in anchoring to the F-actin cytoskeleton and in trans-
mitting the signals that cause cells to stop dividing once the cells
reach confluence (Perez-Moreno et al., 2008). Recent evidence sug-
gests that b-catenin plays also an important role in various aspects
of liver biology, including development (both embryonic and post-
natal), regeneration, HGF-induced hepatomegaly, zonation and
cancer pathogenesis (Thompson and Monga, 2007). Our analysis
by confocal laser microscopy indicates that the overall shape and
structural organization of 3A cells is similar to that of primary
hepatocytes (Schmelz et al., 2001). Moreover, these cells grow on
with FDA and analysed after 30 min at 37 �C by confocal microscopy (A, B) or by
focal image (C) or phase-contrast image (D) or are also shown. A representative

tes between cells) and counter-stained with WGA for cell membranes (gray apical



Fig. 4. Confluent 3A cells synthesize and accumulate glycogen. Glycogen storage in 3A cells was detected both by PAS (A), that gives an intense intracellular staining, and by
auto-fluorescence emitted by the Schiff reagent used in PAS staining procedure (C). As a control of specificity, cells were treated with diastase to digest glycogen before PAS
staining (B, D). Magnification bar = 20 lM.

Fig. 5. Retinol deficiency inhibits in 3A cells RBP4 secretion. (A) Cells were
incubated for 48 h in delipidized serum in the presence (+) or in the absence (�) of
3 lM retinol, culture media were harvested and subjected to immunoprecipitation
with anti-RBP4 antibody, while cells were lysed in RIPA buffer. 40 lg of total cell
lysates (C) and immunoprecipitated media (M) were fractionated by 4–20% SDS–
PAGE and RBP4 was detected by Western blotting with specific primary antibody
followed by chemiluminescence. (B) RBP4 intracellular amount respect to tubulin
(not shown) was measured by ImageQuantTL software. A representative blot is
shown and the densitometric analysis represents three independent experiments
performed in triplicate. Data are expressed as means ± SD and p value 60.05 is
considered significant (Student’s t-test).
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collagen substrate mainly as a monolayer, as determined by
z-stack analysis of confocal images. PCR analysis was carried out
in sub-confluent and confluent growth conditions, to confirm pre-
vious findings in MMH cells in which terminal differentiation pro-
gram is stimulated by cell–cell contact (Mancone et al., 2010). PCR
results demonstrated that 3A cells express several liver key genes
and, in particular, specific transcription factors (Hepatocyte Nucle-
ar Factors, HNF) such as HNF1, that regulates hepatocyte polariza-
tion and contributes to the transcriptional regulation of genes
crucial for carbohydrate synthesis and storage, lipid metabolism,
detoxification and serum protein synthesis (Guguen-Guillouzo
and Guillouzo, 2010), and HNF4a, a key regulator of morphological
and functional hepatocytes differentiation and polarization (Parviz
et al., 2003). Furthermore, 3A cells express enzymes involved in
amino acid and xenobiotic metabolism (GOT1, Ephx1), proteins
implicated in cell–cell contacts (E-cadherin) and proteins that
transport micronutrients such as vitamin A or thyroid hormone
(RBP4 and TTR, respectively). The expression of RBP4 was also
demonstrated by protein immunoblotting and was higher in con-
fluent than in sub-confluent cells. As demonstrated by immunoflu-
orescence and Western blotting experiments, 3A cells expressed
albumin, considered a late hepatic marker (Conigliaro et al.,
2008; De Kock et al., 2009).

FDA staining is a useful tool to verify the functionality of hepa-
tocytes and to detect the formation of bile canaliculi-like struc-
tures. Hepatocytes excrete endogenous and exogenous
compounds into bile canaliculi by two main transporters, the mul-
tidrug resistance protein-2 (Mrp2) and the bile-salt export pump
(Bsep), both localized at the ‘‘canalicular domains’’ of cell mem-
brane, that function as efflux pumps and actively extrude sub-
strates into the bile (Sidler Pfandler et al., 2004). FDA is not
fluorescent and is able to permeate cell membranes by simple



Fig. 6. Tunicamycin treatment induces an UPR response in 3A cells. (A) Specific UPR genes activation by TM treatment was analysed performing a UPR Pathway RT-PCR Array
in samples treated or not (control) with TM. Genes that changed >2-folds between treated and control cells were considered and represented in the graph. Real Time-qPCR
results were calculated using the 2�DDCt method. The genes presented were significantly modulated with a p value 60.05 (Student’s t-test). (B) Cells were treated with TM for
4 h (+) or not treated (�), then 40 lg of total cell lysates in each lane were fractionated by SDS–PAGE and the proteins indicated in the figure were visualized with specific
primary antibodies by Western blotting and chemiluminescence; tubulin was included as a protein loading control. Arrowheads indicate the phosphorylated forms of IRE1a
and PERK, characterized by a slightly slower migration rate. Blot is representative of at least three independent experiments. (C) Total RNA was extracted from cells
previously subjected (+) or not (�) to TM treatment and XBP-1 gene was amplified by PCR; XBP-1 PCR fragment was then subjected to digestion with the restriction enzyme
PstI and analysed on 1% agarose gel (panel C). Unspliced (u) and spliced (s) forms are indicated.
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diffusion; it undergoes intracellular hydrolysis to fluorescent fluo-
rescein and is then addressed for excretion into bile canaliculi
(Gebhardt and Jung, 1982). The data obtained in this study by
FDA staining demonstrated that confluent 3A cells are able to se-
crete molecules into extracellular spaces that are equivalent to bile
canaliculi, suggesting a correct functional organization. This secre-
tory activity is, in fact, preserved in vitro only in mature hepato-
cytes and in highly differentiated hepatic cell lines (Shanks et al.,
1994), even though the complex network of bile canaliculi ob-
served in the liver can be reproduced only in tridimensional hepa-
tocyte culture models, such as proliferating small hepatocytes
colonies (Sidler Pfandler et al., 2004) or primary hepatocytes
grown in a collagen sandwich (Liu et al., 1999), in which the tissue
organization is maintained.

Glycogen synthesis and accumulation is a typical function of
some cell types, including hepatocytes, as an efficient storage sys-
tem for excessive glucose. 3A cells were shown to accumulate gly-
cogen, another marker of hepatic function. Moreover, we have
demonstrated that 3A cells exhibit regulated accumulation and
secretion of RBP4 depending on ligand availability, a typical feature
of mature hepatocytes. Regulated RBP4 secretion from hepatocytes
by retinol was initially described in animals (Perozzi et al., 1991),
while it is not maintained in some tumoural hepatic cell lines such
as HepG2 (Bellovino et al., 1999). 3A cells are therefore an appro-
priate model to shed light on mechanisms that control RBP4 secre-
tion and metabolic pathways modulated during vitamin A
deficiency.

To further investigate the potential of the 3A hepatic cell model,
we have studied their response to stress stimuli, in particular TM
treatment, looking at the modulation of several genes specifically
involved in the so-called Unfolded Protein Response, UPR. High
throughput technologies, as PCR Arrays, offer the possibility of a
wide scale analysis of genes involved in specific pathways in a sin-
gle sample. By simultaneously screening the genes represented in
the UPR Pathway Real Time-PCR Array, we observed the activation
of a specific response to TM in 3A cells. This response included the
modulation of genes involved in protein folding, ubiquitination,
Endoplasmic Reticulum-Associated protein Degradation (ERAD)
and apoptosis. Among them, we detected the strong activation of
ddit3 gene, that encodes for CCAAT/-enhancer-binding protein
homologous protein (CHOP). GRP78 (hspa5) and Herp (herpud1)
were also strongly up-regulated, as expected since these two pro-
teins are master regulators of protein folding and of ERAD, respec-
tively (Ma and Hendershot, 2004; Hendershot, 2004). The ER is an
essential cellular compartment for protein synthesis, maturation
and secretion, as well as for Ca2+ storage. Upon accumulation of
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unfolded/misfolded proteins or induction of stress by various
conditions, such as inflammation, excess of nutrients, etc., a cas-
cade of events leads to the regulation of specific genes involved
in the restoration of ER homeostasis. The UPR pathway is initiated
by the combined action of some key proteins that act both as sen-
sors of ER stress and response transducers. GRP78, that exerts
essential functions in protein folding as molecular ER chaperone,
is probably the main ‘‘sensor’’ of ER stress; ATF6, IRE-1 and PERK
are the ‘‘transducers’’, responsible for the communication between
stressed ER and the cytosol/nucleus, through a series of other mol-
ecules. Their concerted activity leads to a reduction of protein load
in the ER through the attenuation of protein synthesis, followed by
an increase in the folding/degradation capacity of the cell through
the up-regulation of specific ER chaperones; finally, if homeostasis
cannot be restored, cells are addressed to programmed death by
apoptosis. Overall, these mechanisms are integrated to provide a
response that remodels the secretory apparatus and cellular phys-
iology, according to the demands imposed by ER stress (Kaufman
et al., 2002).

TM is a drug that blocks protein glycosylation, generating mas-
sive glycoproteins misfolding and ER stress, that in turn activates
UPR. We have used TM treatment to check the capacity of 3A cells
to cope with ER overload and protein misfolding. IRE1, PERK and
CHOP, the three key proteins that trigger this kind of response,
were activated upon TM treatment. Activation is carried out by
two different mechanisms: IRE1 and PERK, despite the total protein
amount is not modulated by the treatment, are activated by phos-
phorylation; CHOP expression, that in control conditions is unde-
tectable, is strongly stimulated. We found that in 3A cells treated
with TM, IRE1 and PERK underwent phosphorylation (Harding
et al., 1999), as suggested by the shift in molecular weight due to
the increase of molecular weight; CHOP protein expression was
strongly stimulated, confirming at the protein level the induction
observed at the RNA level (Fig. 6B). IRE1 phosphorylation, pro-
moted by stress, in turn stimulated the activation of XBP1, a tran-
scription factor involved in the UPR (Yoshida, 2007). In a specific
region of this gene, removed upon mRNA splicing by IRE1, there
is a cutting site for the PstI restriction enzyme, therefore resistance
of XBP1 to PstI digestion suggests a response to stress, as we have
found in 3A cells treated with TM (Fig. 6C). Recent evidences sug-
gest that the unspliced form of XBP1 is a feedback negative regula-
tor of the spliced form in the cytoplasm, such that the expression of
the two forms of XBP1 is switched in response to the ER condition
(Yoshida et al., 2006). Preservation of this mechanism in 3A cells
further strengthens their suitability for studies of hepatic stress re-
sponse. This type of response has been studied in different hepatic
models. In particular, primary hepatocytes (Pfaffenbach et al.,
2010) and cell lines such as HepG2 were shown to be acceptable
in vitro models for UPR (Di Fazio et al., 2010). However, HepG2
are of tumoral origin and do not preserve many regulated func-
tions, as demonstrated for modulation of RBP4 secretion by retinol
availability (Bellovino et al., 1999) or for mechanism of ceruloplas-
min secretion (Pisu et al., 2005).

The importance of having a hepatic cell line that responds prop-
erly to UPR is related to the essential role that this mechanism ex-
erts during cell life. Several evidence suggest that UPR is involved
not only in the response to an acute exogenous stress, but is also
necessary to maintain homeostasis of cellular functions during
normal physiological fluctuations, in particular in highly secretory
cells as B lymphocytes (Iwakoshi et al., 2003) and pancreatic ß-
cells (Back et al., 2009).

UPR also plays a critical role in the progression of a wide variety
of diseases. Several authors have demonstrated that in liver, as well
as in other tissues, it has a fundamental role in influencing meta-
bolic functions, such as lipogenesis and glucose homeostasis
(Rutkowski et al., 2008), and in the induction of pathological states
such as Non-Alcoholic Fatty Liver Disease and altered glucose tol-
erance (Szczesna-Skorupa et al., 2004; Oyadomari et al., 2008;
Kammoun et al., 2009; Zheng et al., 2010) and some cancers (Lee,
2007). Interestingly, different animal and cellular models have
been used to test the activity of specific molecules, the so-called
chemical chaperones, able to reduce ER stress and therefore to re-
store cellular homeostasis (Ozcan et al., 2006).

In conclusion, 3A cells can be considered a useful hepatocyte
model that preserves several important liver characteristics, par-
ticularly suitable for studies related to ER stress response and for
testing molecules with potential chemical chaperone activity.
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