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Abstract

A method to find optimal topology and shape of structures is presented. With the first the optimal distribution of an assigned mass is found

using an approach based on homogenisation theory, that seeks in which elements of a meshed domain it is present mass; with the second the

discontinuous boundaries are smoothed. The problem of the optimal topology search has an ON/OFF nature and has suggested the

employment of genetic algorithms. Thus in this paper a genetic algorithm has been developed, which uses as design variables, in the topology

optimisation, the relative densities (with respect to effective material density) 0 or 1 of each element of the structure and, in the shape one, the

coordinates of the keypoints of changeable boundaries constituted by curves. In both the steps the aim is that to find the variable sets

producing the maximum stiffness of the structure, respecting an upper limit on the employed mass. The structural evaluations are carried out

with a FEM commercial code, linked to the algorithm. Some applications have been performed and results compared with solutions reported

in literature.

q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Optimisation of continuous mechanical structures is

much employed in industry, as far as properties, shape and

topology are concerned [1]. If topology and shape are fixed

by means of different criteria, the optimisation can solve

problems of design variables calculation, such as thickness,

height, radius of a circular boundary, fibre orientation in

composite structures [2,3]. If only the topology is given,

then optimisation can find the optimal shape of inward and

outward boundaries [4,5]. These can be constituted by

curves, defined by the location of some points, which are the

design variables; but number, distribution and geometric

entities of the boundaries have to be fixed in advance, using

often heuristic criteria. However, the topology has a high

influence on behaviour of a structure and therefore it is

advisable to find it on more rational basis, e.g. with an

optimisation procedure which determines the optimal

distribution in a certain domain of an assigned limit mass,

and consequently of its boundaries.

There has been studies on methods in topology

optimisation principally in the last 20 years about. In

Refs. [6–9] methods are used determining optimal topology

by searching the optimal values of the densities of

finite elements, in which a fixed feasible domain is meshed

(homogenisation approaches). In other methods elements

are removed from design domain or added to this

one, depending on stress values and on the basis of rules

(e.g. [10]).

Employing methods based on homogenisation

approaches, it is opportune to perform a shape optimisation

just after the topology one as in Ref. [11], in order to smooth

out the rough boundaries obtained in the first step, due to the

coincidence of the latter with the discontinuous edges of the

elements.

The procedure developed in Ref. [11], which searches

the configurations with maximum stiffness and mass below

an assigned value and employs the gradient method, has

been resumed in this work. The problem of the optimal

topology, using the homogenisation approach, is that to seek

the elements, in which the domain is meshed, having mass;

thus it has an ON/OFF nature, similar to the chromosomal

one of the genetic algorithms (GAs) [12,13]. Then for the

purpose of this paper, as optimisation technique a genetic

algorithm has been developed. This uses as design variables,

in the topology optimisation, the relative densities 0 or 1 of
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each element of the structure and, in the shape optimisation,

the coordinates of the keypoints of segments of curves and

straight lines that constitute the boundaries.

GAs employ a random, yet directed, search for locating

the globally optimal solution. Like other methods, e.g. of

response surface [2] and gradient [14], GAs can be applied

to problems for which it is not possible to have an analytical

relationship for the objective function. However they are

superior to other techniques [15], as e.g. the gradient descent

one, since the search is not biased toward a locally optimal

solution. In fact GAs are able not only to improve the

solution close to a local optimum, but also to explore a

larger extension of the design space. On the other hand, they

differ from random sampling algorithms, due to their ability

to direct the search toward relatively ‘prospective’ regions

in the search space [15]. For these reasons they can be used

in problems for which there are no data on the possible

solution; therefore they are useful in several kinds of

problems. The advantages are more substantial when the

number of variables is very high [11], as in the topology

optimisation methods employed in Refs. [6–9,11].

The developed procedure includes also the use of a FE

processor for structural computation, it can be easily used in

structure design, like has been verified with some examples,

and it permits:

to avoid arbitrary assumptions on the topology of the

structures;

to obtain smoothed boundaries;

to reduce the risk to find local optima and then to realise

significant economies - of material, especially in the

topology optimisation due to the binary representation of

the variables;

to get advantage in run-time terms from one bit

formulation of the variables in the topology optimisation.

2. Description of the procedure

2.1. Used genetic algorithm

In the GAs each variable is treated as a binary string

corresponding to a gene; the variable set constitutes an

individual, codified in a structure like the chromosomal one,

having the genes one next to the other; more individuals

constitute a population. In some cases decimal strings are

used instead of binary ones [16,17], with the advantage of

having strings with decimal ciphers much similar between

them for two values near to one another. The population

evolves owing to the modifications performed by the

operators of crossover [18] (interchange of chromosome

segments between mating pairs) and mutation (variation of

bits). Different strategies can be employed in the GAs [12,

19]; their efficiency can depend on the analysed problem. In

this work population size increases increasing number of

variables, it is randomly generated inside the feasible

domain and keeps constant size in the next generations [20].

On the basis of the efficiency of each individual,

evaluated by a fitness, the genetic operator of selection

chooses (Fig. 1):

the good individuals, that, based on the principle of

‘survival of the fittest’, are destined to the generation of a

new population, by using both the genetic operators;

few worse individuals, destined to be modified deeply

for the possible random change of all their genes.

Like it is known, the next generations have new

characteristics, that can produce a better solution and

however can favour the exploration of the feasible domain,

reducing the risk of obtaining only local optima, with

respect to traditional algorithms. Particularly the mutation

on the worse individuals allows to renew the individuals

destined to extinction, not dispersing their genetic patri-

mony, and, at the same time, increasing the diversity in the

population and thus favouring the exploration of the design

domain.

Run-time is generally high and grows with the number of

individual genes. In particular the mutation of the second

type allows, with respect to conventional GAs, to limit the

number of individuals in the population, since the number of

extinct individuals is reduced.

The employed strategy involves also the transfer of the

best individual of each population into the next generation

without transformations, replacing the worse one. Since for

problems with few individuals, the best individual is usually

transferred [15], it is believed that the higher the individual

number, the higher must be the number of the transferred

copies, replacing as many ones extracted randomly, in order

to increase the possibility to enhance the population quality

Fig. 1. Flow chart of a genetic algorithm for structural purpose.

F. Cappello, A. Mancuso / Computer-Aided Design 35 (2003) 761–769762



and to make the analyses faster; obviously the copy number

must not be too high, in order to avoid that the solution tends

to get stuck at a local optimum. In the present paper a copy

number of 3–7% of the individual number has been

transferred.

Naturally, like in other optimisation algorithms, the

process is halted when the fitness stops to improve, a

prefixed fitness has been achieved or the maximum iteration

number has been reached.

The GA developed in this paper is written in the

programming language APDL of the ANSYS code [21], by

means of which the structural analyses for the calculation of

the fitness are executed. The analyses have been performed

with a DEC Alpha workstation 500a.

2.1.1. Individual adaptive probabilities of crossover

and mutation

The individual selection is controlled statistically by two

parameters calculated for each individual—probability of

crossover, pc, and probability of mutation, pm—and by three

coefficients. Two coefficients, rc and rm, are randomly

drawn for each individual; the individual is selected for the

crossover if rc , pc and for the mutation if rm , pm. For the

unselected individuals (bad individuals) a coefficient, r0m;

small and constant during all the process, is defined; if r0m $

pm the individual is selected for the possible change of all its

genes.

Increasing pc and pm increases the probability that the

individual is selected for crossover and mutation. Decreas-

ing pm, increases the probability of changing all individual

genes.

In this paper pc and pm are adapted to the value of the

fitness, f, of each individual; their value increases for the

better individuals, according to the relationships:

pc ¼ k1

f

fmax

; pm ¼ k2

f

fmax

k1; k2 # 1:0 ð1Þ

in which fmax is the maximum fitness in the population;

furthermore it is 0 # ðrc; rmÞ # 1: It has been imposed k1 ¼

1 and k2 ¼ 0:5 [15], because crossover must not be

prevented and therefore the first coefficient must be high,

while the second must be low in order to reduce the

probability to destroy good individuals. In one of the studied

cases k2 ¼ 1 has been also tested.

The possible mutation of all the genes is performed on

the worse individuals, setting r0m ¼ 0:05; with the aim to

change them emphatically. The mutations are effected by

extracting a value, sm, for each gene and comparing it with

the following probability for the individual:

pmm ¼ k3pm ð2Þ

with k3 ¼ 1 in this paper. The genes having sm . pmm are

replaced by new random values inside the feasible domain

of each variable. In this way the number of the mutations

grows with the worsening of the individual and a higher

heterogeneity of individuals can be obtained, favouring the

exploration of the domain.

2.2. Topology optimisation

Often the procedure consists in the assignment of a

feasible domain, which is meshed in finite elements. Each

element is considered to coincide with a cell containing

microvoids [6]; by varying the dimensions of the micro-

voids, the density of the element varies. The optimal

topology of the structure is generated searching the

microvoid dimension distribution—that is the mass distri-

bution in the domain—which assures the desired require-

ments. Since the mechanical properties of the element

change with the density, it is necessary to know the law of

these variations. In literature have been proposed homogen-

isation based approaches:

some approaches search the above relation vs. dimen-

sions and orientation of the microvoids, that are used as

optimisation design variables [6–8];

others assign the relation directly vs. relative density of

the elements, that are the design variables [9,22,23].

The last approach, already used in Ref. [11], is based on

the assumption that element stiffness grows from 0 to the

material one, growing the density from 0 to that of the

material. The relation between Young’s modulus and

density is non-linear [6] and, in linear elastic field, it is

assumed, according to Ref. [24]:

Ei

E
¼

ri

r

� �b
¼ ðr0iÞ

b ð3Þ

In this relation r and E represent, respectively, effective

density and Young’s modulus of the material, Ei Young’s

modulus of the element with average density ri, and relative

density r0i: The value of 2 can be assigned to the constant b

[22,23].

Aim of the optimisation is to maximise the stiffness,

respecting a limit on the usable mass; the stiffness is

quantified by the load work, Lð{r0i}Þ; [25], which becomes

the objective function, that must be minimised, and which

depends on r0i :

Lð{r0i}Þ ¼ {uð{r0i}Þ}
T{Fc} þ

ð
V

{uð{r0i}Þ}
T{Fv}dV

þ
ð
G

{uð{r0i}Þ}
T{Fs}dS ð4Þ

where V is the feasible domain of the structure, contained

by the surface G and meshed; {Fc}, {Fv} and {Fs} are,

respectively, concentrated, body and surface loads; {u} are

the nodal displacements; V denotes volume and S surface.

The use of finite element method is appropriate because,

practically, strains and stresses cannot be calculated in

analytical way.
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To take into account the limit, Ml, on the feasible

material mass, the relative densities of the n finite elements

are subject to the constraint of the mass, Mð{r0i}Þ :

Mð{r0i}Þ ¼ r
Xn

i¼1

ð
Vi

r0i dVi # Ml ð5Þ

It is assumed that discontinuous and jagged contours are

allowed, coincident with those of the elements, although

they harm the accuracy of the FE solution. Nevertheless

these discontinuities can be smoothed performing, succes-

sively, a shape optimisation.

It must be observed that the minimisation of Eq. (4)

furnishes, generally, densities between a lower value,

tending to zero (that is absence of material), and a larger

one, tending to effective material density; in this way vast

regions of the domain would have intermediate densities,

with difficult interpretation from a manufacturing point of

view. The drawback can be overcome using a penalty

function [8,22,26], with the aim to penalise the L values

corresponding to configurations with r0i different from 0 or

1, like it has been made also in Ref. [11]. In this paper,

instead, the use in the GA of the variables 0 or 1 for the

element densities simplifies the above procedure, indis-

pensable with other optimisation techniques that require the

continuity of the variables in the range 0–1; further speed

up of the calculations is obtained just owing to the presence

of one bit only for each string.

Effectively, in order to overcome numerical problems

with the FE code, the value 0 of relative density has been

replaced by 0.01 and Eq. (3) has been used to calculate the

Ei values.

2.2.1. Calculation of the fitness in the topology optimisation

The fitness of each individual is calculated by

using the objective function (Eq. (4)) and taking into

account also the constraint of the mass (Eq. (5)). Its

expression is:

ftoð{r
0
i}Þ ¼

1

Lð{r0i}Þ þ Kt Ml 2 r
Xn

i¼1

ð
Vi

r0i dVi

 !2
ð6Þ

in which r0i is equal to 0 or 1. The relationship is

established in order to penalise the individuals with mass

much larger or much lower than the limit one. The first

are individuals with excessive mass, the latter are

individuals using a small part of the available mass.

The coefficient Kt is a factor, assigned through attempts.

2.3. Shape optimisation

Generally, shape optimisation can be performed with

the aim to find the shape of boundaries, for which

number, distribution and geometric entities have been

fixed heuristically. In this paper it is performed with the

aim to smooth the rough boundaries obtained with

topology optimisation, simplifying the manufacturability

of the structure; otherwise the smoothing would take

place with uncertainty, owing to the difficulties to extract

by the topology precise information on location and

shape of the final boundaries.

In this paper it is established, as in Ref. [11], that the

smoothing must be performed by using curve and straight

line segments and optimising the locations of their key-

points, with the same objective and constraints of the

previous step. The substitution of the rough boundaries with

smoothed ones, permits even more accurate and precise FE

calculations of the load work and the possibility to represent

the more minute details, without increasing substantially the

number of variables, like it would be necessary in

the topology optimisation to obtain the same refinement.

The shape optimisation permits also, in general, to correct

an inaccurate evaluation of the optimal topology, due to a

possible difficulty of convergence of the optimisation

algorithm.

Decimal strings are used in the GA for this optimisation.

2.3.1. Calculation of the fitness in the shape optimisation

In this case each individual is constituted by a set of the

keypoint coordinates, xi. The fitness is calculated by the

objective function, L(xi), similar to Eq. (4) and includes

the penalty term on the mass, like in Eq. (6):

fsoð{xi}Þ ¼
1

Lð{xi}Þ þ Ks Ml 2 r
Xn

i¼1

ð
Vi

dVi

 !2

3. Applications

The procedure has been applied to cases of topology and

shape optimisations. Structures, already studied [11,22]

using algorithms based on gradient method, have been

investigated, in order to compare the results: in both cases

the aim was to make maximum the stiffness, under a 25%

material usage constraint with respect to the reference

domain.

Fig. 2. Feasible domain of a short cantilever.
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3.1. Topology optimisation

First of all the topology has been found of a short

cantilever and of a plate.

3.1.1. Short cantilever

The structure is loaded at the mid point of an edge by a

concentrated force, Fy, and clamped at the opposite edge.

Fig. 2 shows the feasible domain and the values of the

corresponding mass, Mdom, of the usable limit one, Ml, of

the material Young’s modulus, of the Poisson’s ratio, n, of

the thickness, t. Assuming a symmetrical structure, in order

to reduce the element number, only half a structure,

delimited by the horizontal geometric axis of symmetry,

has been modelled and analysed using antisymmetry

boundary conditions. The domain has been meshed by

means of 32 £ 10 identical square four-noded plane stress

elements, as in Refs. [7,11,22], in order to obtain more

comparable results. Thus the design variables are the

relative densities of the 320 elements. Each generation

included 150 individuals.

Different kinds of strategy have been employed. Fig. 3

shows the evolution of the maximum fitness vs. the

generation number, when:

(a) k2 ¼ 0:5 and only one copy of the best individual

transferred to the next generation;

(b) k2 ¼ 0:5 and only one copy k2 ¼ 1 and only one copy

of the best individual transferred;

(c) k2 ¼ 0:5 and only one copy of the best individual

transferred to the next generation up to about 4500

generations, and 10 copies in the remaining gener-

ations until the end;

(d) k2 ¼ 0:5 and 10 copies of the best individual

transferred unchanged from the beginning.

It can be observed that at the thousandth generation

strategies (a) and (b) lead practically to the same results.

Strategies a) and c) show, at least in this case characterised

Fig. 3. Maximum fitness value vs. generation number in the topology

optimisation of the short cantilever in Fig. 2, varying the strategies. The

axes of the zoom cover the ranges 0–1000 (generation number) and 0–

0.00045 (fitness).

Fig. 4. Values of objective function and penalty term vs. generation

number, in the topology optimisation of the short cantilever of Fig. 2,

employing the strategy (d).

Fig. 5. Optimal topology of the short cantilever obtained in the present

paper (a) and in Ref. [11] (b).

Table 1

Results of the topology optimisation found in the present paper and in Ref.

[11] for the short cantilever

Present paper [11]

M (kg) 314.4 £ 1026 314.4 £ 1026

L (N mm) 38.0 137.7

uy (mm) 0.127 0.459

Fig. 6. Feasible domain of a plate clamped in correspondence of the

boundary and loaded in the centroid.
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by a high individual number, the effectiveness of transfer-

ring a copy number higher than 1 to the next generation. In

fact the increase to 10 of the copy number beyond the

4500th has increased the convergence rate. Moreover the

same fitness, as with (c), has been obtained with the strategy

(d), with a much lower generation number, confirming the

goodness of the strategy and, in general, of the procedure.

In Fig. 4 objective function for strategy (d) and penalty

term are plotted vs. generation number. Both tend to

minimum values, even if not monotonically especially in the

first generations. In particular the minimum value of

the penalty term is, practically, equal to zero and involves

the use of a mass coincident with the limit Ml. A new

population was generated every 15 min about.

Fig. 5(a) shows the meshed feasible domain; the

elements with relative density equal to 0 are filled in

white, those with r0i ¼ 1 in black, representing the optimal

topology. This last is not completely in agreement with

those of Refs. [7,22], that is characterised also by few

elements with relative densities very different from 0 and 1,

and of Ref. [11] (Fig. 5(b)). In particular the displacement,

uy; of the application point of Fy (Table 1) in this work is

equal to 0.127, while in Ref. [11] is equal to 0.459, even if

the same mass has been practically employed, and in Ref.

[22] 0.178 denoting in both cases lower stiffness. The reason

for these differences can be, probably, the minor ability of

the other methods to explore the design domain. This

confirms the need to use more suitable algorithms for

finding the global optimum, especially with many variables.

The results confirm that jagged boundaries are obtained.

3.1.2. Plate

The procedure has been applied also to the search of the

optimal topology of a plate, subject to a load concentrated in

the centroid. The plate is clamped in correspondence of the

boundary of the feasible domain (Fig. 6). Owing to the

symmetries only a 1/8 of the design domain, hatched in

figure, has been modelled, with the aim to reduce run-time,

defining the suitable constraints along the symmetry

sections. The domain has been divided into 190 square

four-noded, having the same size as in [11,22], and 20 right-

angled triangles three-noded along the bias of the plate,

shell elements with 6-degrees of freedom per node. Thus the

design variables are the relative densities of the 210

elements. A set of 120 individuals for each generation and

the strategy (d) defined in Section 3.1.1, with eight copies of

the best individual transferred to the next generation, have

been employed. In Fig. 7 the maximum fitness vs. the

generation number is shown. It can be observed that, due to

the employed strategy, the convergence occurs after a low

number of generations, despite the high variable number.

Fig. 8(a) shows the optimal topology. Using gradient

method the topologies shown in Fig. 8(b) [11] and 8(c)

starting from a different initial set, had been obtained. A

very different result has been obtained in Ref. [22], which

resembles to that of Fig. 8(b), but is characterised by the

existence of many elements with relative densities between

0 and 1. Table 2 shows the best values of the displacement,

uz; of the centroid and of the used mass, in this paper and in

Ref. [11]. It can be observed that with both the procedures

the constraint on the mass is respected.

The results obtained with the procedure of this paper are

again better than those obtained with the other methods.

3.2. Shape optimisation

As application the shape optimisation of the plate is

performed, whose topology has been found in Section 3.1.2.

Shape optimisation requires a lower number of variables as

compared to the topology optimisation, and therefore

benefits could be expected in terms of run time. But,

Fig. 7. Objective function vs. generation number in the topology

optimisation of the plate of Fig. 6.

Fig. 8. Optimal topology of the plate of Fig. 6: with genetic algorithm (a) and with gradient method, as in Ref. [11] (b) and with a different starting set of design

variables (c).
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while the topology optimisation has required only the

variables 0 and 1, the variables of the shape optimisation are

real numbers, and consequently more combinations of

variable sets and an increasing of the population are

required; thus can be reduced the above benefits, even if

the feasible range for each variable is fixed around the

border lines between the regions with r0i equal to 0 and 1.

3.2.1. Plate

The topology of Fig. 9 has been adopted, considering the

result of Fig. 8(a) and an easy manufacturability. It is

characterised by rectilinear slots with parallel sides and

holes. A slot is defined by the coordinates of the centres of

the extreme circular arcs, by the distance between them and

by their common radius; a hole is defined by the centre

coordinates and by the radius; these quantities are design

variables. Owing to the symmetries a 1/8 of the plate has

been modelled. Straight boundaries are assumed along the

axis parallel to x, the diagonal one and along the boundary

coincident with that of the domain. The remaining boundary

is modelled by means of four B-spline curves, each defined

by three points, whose coordinates are also design variables;

even the orthogonality of the tangent to the adjacent straight

boundaries has been imposed. In this way the design

variables are 24. The mesh has been obtained by means of

three and four nodes shell elements, using an automatic

mesh generator. The mesh refinement has been fixed with

the aim to reach an acceptable accuracy of the results,

without incurring in excessive run time. A set of 120

individuals for each generation and the strategy (d) of

Section 3.1.1, with four copies of the best individual

transferred to the next generation, have been employed. In

Fig. 10 the maximum fitness value vs. generation number is

shown. As said above, considering the low number of

variables the convergence is proportionally slower than in

the topology optimisation. With respect to the model

definition, there are no holes nor inclined slots (Fig. 11).

The optimum value of uz is slightly lower than that found in

the first step, while the mass is practically the same. The

differences between the results of the two phases of the

optimisation are due to the different approximations

obtained with the two kinds of elaborations. With respect

to the first optimisation in shape optimisation the boundaries

are smoothed and therefore give better results, confirming

Fig. 9. Definition of the boundaries in the shape optimisation of the plate of

Fig. 6, starting from the optimal topology of Fig. 8.

Table 2

Results of the topology optimisation found in the present paper and in Ref.

[11] for the plate of Fig. 6

Present paper [11]

M (kg) 196.5 £ 1026 kg 196.5 £ 1026 kg

L (Nmm) 225 240

uz (mm) 1.125 1.200

Fig. 10. Maximum fitness value vs. generation number in the shape

optimisation of the plate of Fig. 9.

Fig. 11. Configuration of the plate of Fig. 6 after topology and shape

optimisations.
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the need to refine the boundaries, using even a higher

number of elements.

As regard the solution of Ref. [11], a slightly higher

stiffness is achieved (Table 3).

The procedure developed in this paper is easily

applicable to the optimisation of ribs, which can be

modelled using shell elements, overcoming the drawback

to model them only through basis plate thickness variation,

as in Refs. [27,28]. This problem is not dealt with by many

commercial codes and has been experimented already in

Ref. [11], employing the gradient method.

4. Conclusions

In the topology optimisation are often employed

approaches based on homogenisation. These permit to

overcome some arbitrariness necessary using, e.g. rule-

based procedures, and confer to the problem an ON/OFF

nature, which has suggested to the authors the use of GAs

with one bit strings. Genetic algorithms can reduce the risk

of obtaining local minima or maxima; they are suitable for

topology and shape optimisation, where a local optimum can

involve solutions very different from the global ones, and

consequently a possible excess of employed material and

reduction of performances; the drawback is particularly

serious just in the topological optimisation inspired by the

homogenisation approach, because the required high number

of variables favours the determination of local minima. The

one bit variables permit benefits in run-time terms, above all

just when a high number of variables is used.

In this paper the following basic strategy has been

employed:

to favour the action of the genetic operators of crossover

and mutation in the better individuals, by using an

adaptive strategy;

to transfer unchanged the best individual of each

generation to the following one.

Furthermore the following strategy is added, in order to

avoid large population size, recommended by the high

number of variables, but which would require high analysis

time for the convergence:

to substitute the worst individual with the best one;

to transfer unchanged to the next generation a number of

copies of the best individual, dependent on the number of

individuals, replacing as many ones extracted randomly

(it is advisable not to transfer a number of copies larger

than 10% of the individuals, in order to avoid premature

convergence to a local optimum);

to renew the worst individuals, without destining them to

extinction, but modifying them through the possible

random change of all their genes.

The results show the superiority of the developed

algorithm, at least in the topology optimisation, with respect

to gradient methods. They show, furthermore, the advan-

tages in refining with a shape optimisation the boundaries

found by topology optimisation.
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industriali, Vico Equense (Napoli); June 1998.

[3] Cappello F, Celestino A, Luparello S. Progettazione ottimizzata

dell’alettone di un’auto da competizione mediante un algoritmo

genetico. Proceedings of II Seminario Italo-Español, Progettazione e
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