
Lay-up optimization for the hull of a racing sailing yacht

F. Cappello, A. Mancuso*

Department of Mechanics and Aeronautics-University of Palermo, Viale delle Scienze, 90128 Palermo, Italy

Received 21 April 1999; revised 29 March 2000; accepted 3 May 2000

Abstract

Deformability and buckling load of yacht hulls with ®ber reinforced plastic sandwich structure depend on the stack sequence of the skins.

In this work an optimization of ®ber directions of the laminae for a racing yacht is proposed.

This procedure has been divided into three parts (i.e. material characterization, surface model de®nition, lay-up optimization). First of all a

set of unidirectional specimens has been realized, by using the same ®bers and matrix (carbon/epoxy) used for the hull as well as the same

procedure and workers, in order to characterize the material according to American Society for Testing and Materials (ASTM) Standard

D3039, employing strain gage technique. In the second part, by means of an original software in Turbo-Pascal (which uses the half-width

value matrix as an input) linked to Pro/ENGINEER, it has been possible to obtain the body plan and surface and ®nite element (FE) models of

the sailing yacht for the subsequent analyses. In the third step, an optimization procedure that uses the results of FE structural analyses in

three different sailing con®gurations is performed, with the aim of obtaining the ®ber directions that are able to minimize the yacht

deformability, also taking into account the buckling loads. An approximate analytical model has been used in conjunction with a sweep

technique in order to evaluate the best of the solutions. q 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In recent years composite materials have had a very high

diffusion in sailing yacht building. Particularly regarding the

competition ®eld where, generally, no budget limit is

provided. It is necessary to remind that the old IOR [1]

(International Offshore Rule) has been substituted by the

IMS (International Measurement System), which has

rerouted the design towards light and stiff hulls. In fact

the rating value [1], i.e. a sort of penalty that every sailing

yacht has to pay during a regatta, will be lower for such kind

of yacht. In order to have a low rating value, composite

materials can be used, since they supply to the structure

lightness and relatively high stiffness. Since bending is the

prevalent stress, generally the yachts are built by using glass

or carbon epoxy sandwich with a PVC core. However, under

generic load conditions, except tension, thin sandwich

buckles easily [2]; this is the reason why buckling behavior

has been considered in this paper.

In order to minimize the yacht deformations, in this work

an optimization procedure, integrated by ®nite element (FE)

structural analyses performed using ANSYS code, has been

developed; this procedure concerns the lay-up of the sand-

wich (in terms of ®ber orientation), also taking into account

buckling loads. Three load conditions of the yacht have been

examined. The procedure has been set in Ref. [3], where

however buckling has not been considered.

2. Problem analysis

The yacht has been drawn and designed in a Palermo

(Italy) Shipyard by Albeggiani and Inzerillo (numerical

data have been kindly granted by designers and used by

the authors for their calculations). It has the following

characteristics:

Length overall �Loa� � 7:60 m Displacement � 1100 kg

Maximum beam �Bmax� � 2:60 m Ballast � 450 kg

Draft � 1:70 m Tot: sail area � 35 m2

The yacht has been realized to take part in regattas of the

IMS class. The structure is a carbon/epoxy sandwich with a

PVC core. The total thickness of the sandwich is 20 mm; the

core is 15 mm thick, while the six laminae are 0.83 mm

each.
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2.1. Material properties

The sandwich that will be used for the yacht building has

been tested [3] according to ASTM D3039 [4] using strain

gage technique [5,6]. For the tests, 0 and 908 unidirectional

specimens have been realized, employing the same ®bers

and matrix used for the hull as well as the same procedure

and workers. A summary of the test results is shown:

vf � 38% E11 � 85 500 MPa E22 � 4200 MPa

G12 � 5170 MPa

Xt � 800 MPa Yt � 20 MPa S � 60 MPa

Where vf is the volume ®ber percentage, E11 and E22 the

Young's moduli parallel and normal to the ®bers, respec-

tively, Xt and Yt the respective tensile strengths, G12 the

shear modulus and S the shear strength.

2.2. Surface and ®nite element models

The yacht as a whole is de®ned both by the hull and the

superstructures. The mathematical de®nition of the hull has

been a great problem (the so-called hull equation) for

centuries. However, new CAD software capabilities have

partially solved this problem. In fact, for example, it is

possible to de®ne a model by means of different parametric

surfaces [7] (i.e. blended in one or two directions, sweeped).

In this work a blended surface in two directions has been

used. The procedure can be divided into three consecutive,

linked steps: (a) sections construction; (b) surface hull

construction; and (c) superstructures construction.

The ®rst step has been solved starting from the half width

matrix [8] and then modeling a speci®ed number of sections

by using Bezier's curves [7,9]. This procedure gives the

bidimensional sketch of the hull.

An output ®le (in ASCII format), written by the software,

is the input for Pro/ENGINEER. It treats the curves as one

feature and, by blending these, gives the parametric surface.

Many pieces of information such as slope and curvature

have been extracted from the surface analysis. These data

have permitted little changes in the bidimensional sketch in

order to increase the fairing. Once the hull has been de®ned

it has been possible to insert the superstructures composed

by deck, home-deck and cockpit. The used technique

employs boundary curves de®nition. Fig. 1 shows the

generation of the home-deck. It is important to note that

with respect to the model used in Ref. [3], in this case, it

has been possible to de®ne a true 3D model of the yacht.

The FE mesh generation has been carried out by using the

Pro/FEM modeler. The strategy used has been to set a speci-

®ed number of divisions on the boundary curves like keel,

wash-board and transom in order to have quasi-rectangular

elements with a side practically coincident with the water

lines. Only few elements near the bow do not respect this

condition, but this approximation is not important due to the

stiffeners of this part in the real structure. The above fact is

very important, especially if (as foreseen) the yacht is built

by using composite materials; the element side (parallel to

the water lines) has been assumed to be the origin of a local

reference, used to de®ne the composite mechanical proper-

ties simplifying both design and realization procedures.

For yacht and sails quadrilateral isoparametric layered

shell elements with eight nodes (four nodes for sails) and

six degrees of freedom for each node have been used. Many

different layers are allowed for this element. Different thick-

ness, ®ber orientation and orthotropic material properties

can be de®ned for each layer. The element formulation is

based on Midlin's theory. The ANSYS code reduces the

ªlockingº effect [10]. Note that the sails have been modeled

without taking into account their effective shape, but simply

like plates to which the loads are applied, stressing the

structure by means of the shrouds and the mast. The latter

has been modeled with beam elements. The shrouds, the

fore-and-aft stays, modeled using truss elements, have

been prestrained at 0.004±0.005, while the bulb has been

assumed to be a concentrated mass attached to the keel.

Particular care has been spent in ®nding a suitable mesh

for the yacht, which could assure reliable results and reason-

able times of calculation. The ®nal mesh shown in Fig. 2,

has been reached after performing the appropriate conver-

gence analyses, and it is composed of about 5700 elements.

With respect to Ref. [3], a channel along the keel has been

considered for a more realistic determination of the buck-

ling loads. The stiffness of the sails has been increased in

order to reduce the eventuality that buckling appears in

them. Since they are linked to the structure of the yacht

by bars, they should not in¯uence, in a signi®cant way,

the results in the hull.

2.3. Buckling analyses

Generally two analyses types are available to predict the

buckling load with the FE method: nonlinear and linear

buckling analyses. Nonlinear analysis is the most accurate
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approach: it employs a nonlinear static analysis increasing

loads or displacements; with this technique nonlinear effects

(plastic behavior, large de¯ection response, etc.) can be

included.

Linear buckling analysis predicts the buckling strength of

an ideal linear elastic structure. Large displacements could

be also considered, but with the following restrictions [11]:

(a) the structure behavior during the prebuckling phase is

characterized by negligible displacements and the buckling

condition is reached in an unexpected way, showing a

deformed state of a completely different nature from that

present in the prebuckling phase; and (b) they change line-

arly with the load; this happens, for example, in beams and

slabs subject to compression, in pipes and spherical shells

subjected to external pressure. In this paper only linear

buckling analyses are performed, considering that the last

cases are very close to the one examined and that in a

sandwich panel the plastic strain, that could develop up to

the failure, is generally negligible [2]; such a choice is justi-

®ed by the fact that this method requires shorter computing

time (this is not negligible considering the high number of

analyses to perform), and by the requirement to compare the

behavior of the different con®gurations rather than to calcu-

late absolute values.

Buckling loads so calculated will be upper bounds of the

exact ones. The more the previous hypotheses are true, as in

the present case, the more will the differences decrease.

However, the presence of stiffeners (strings, spar-frame,

keelson, etc.), increasing the buckling loads, has been

neglected in the calculations.

In linear buckling the limit condition of elastic stability

exists when [11]:

�K� � 0 �1�
where [K] is the stiffness matrix. In the case of large displa-

cements and elastic material behavior, nonlinearity exists

between strain and displacement (geometric nonlinearity),

for which the [K] matrix could be written [10] as the sum of

a [K0] constant matrix and of a [Ks ] load dependent matrix:

�K� � ��K0�1 �Ks�� � 0 �2�
If [Ks ] depends linearly on the load it can be written as:

��K0�1 l�Ks1�� � 0 �3�
where [Ks 1] is evaluated at some arbitrarily chosen level of

loading (the exercise loads in this paper) and l is a load

factor, which, multiplied by the loads that generated [Ks 1],

gives the critical load intensity. It is then possible to write:

��K0�1 l�Ks1��{u} � 0 �4�
This relationship de®nes a typical eigenvalue problem and,

therefore, it allows to calculate the eigenvalues l and the

corresponding eigenvectors {u}. In this case the load factor

is equal to the minimum value of l .

In this paper, buckling behavior of the whole sandwich is

analyzed, assuming that core material has adequate

compressive and shear moduli to prevent the laminate

skins from locally buckling [2].

2.4. Optimization procedure

In an optimization procedure design variables are inde-

pendent quantities that can be modi®ed in order to achieve

the optimum design; upper and lower limits are speci®ed to

serve as constraints. State variables are dependent variables

used to constrain the design; they are response quantities,

function of the design variables and may have a maximum

and/or minimum limit. In this way design and state variables

de®ne a region of feasible designs. Objective function is the

dependent variable to minimize in the feasible design region.

A procedure based on the construction of approximated
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analytical models and on the application of a sweep tech-

nique has been employed in order to ®nd the optimal ®ber

orientation for each layer of the laminate.

The analytical model approximates the dependence of

both the objective function and state variables by the design

variables. The approximated objective function is mini-

mized instead of the real one. The optimization problem is

constrained by limits on design variables. It is converted to

an unconstrained problem in order to use more ef®cient

algorithms for the minimum research [12]; the conversion

is made by adding penalty terms to the objective function

approximation in order to respect the imposed constraints.

The procedure is carried out by applying an iterative tech-

nique and halts when the convergence is achieved or if the

number of speci®ed loops has been performed. The approxi-

mated model is obtained by calculating the objective func-

tion and the state variables for several sets of design variable

values and performing least square ®ts between the data

points [13]. In order to speed up convergence, feasible

values of design variables have been initially assigned.

Each optimization loop generates a new data point close

to the actual minimum so that the approximations are

updated. At the end of the procedure the set of data corre-

sponding to the minimum value of the objective function is

set as the optimum design. The convergence does not neces-

sarily indicate that a global minimum has been obtained;

therefore, it is often expedient to repeat the analyses, start-

ing from different initial values. In this work the approxi-

mated analytical models have taken in the form of a fully

quadratic representation with cross terms:

F � a 1
XN
n�1

bnxn 1
XN
n�1

cn�xn�2 1
XN 2 1

n�1

XN
m�n 1 1

dnm�xn��xm�

�5�
In Eq. (5) the quantities a, bn, cn, dnm are calculated with the

least squares method, x is the set of design variables and N is

the total set number.

With sweep technique the actual optimum of each design

variable is joined subsequently to values of the other ones,

uniformly swept in the space of design, and the correspond-

ing values of the objective function are calculated.

The optimization analyses are developed in three phases.

In the ®rst phase, using a suf®cient number of iterations, an

approximated analytical model is found, with the aim to

locate the design variables corresponding to a local opti-

mum. In the second, in order to analyze other regions of

the feasible domain not explored before, a sweep generation

is used. Finally in the third, a new approximated analytical

model is developed, starting from the best sets of the design

variables calculated in the preceding two phases.

2.5. Load conditions

Three load conditions have been studied and for all of

these conditions the following have been considered:

1. The weight of both the yacht (,1100 kg) and the crew

(7 £ 80 kg� 560 kg) by assigning appropriate densities

to the elements and gravity acceleration.

2. The shrouds prestrain at 0.005 (corresponding to

,13 000 N) and the fore-and-aft stays prestrain at

0.004 (corresponding to ,16 000 N).

The ®rst load condition (marked with #1) considers the

yacht in a ¯at sea with 308 of heel and sailing close-hauled

with a true wind of 25 knots. The second con®guration (#2)

considers the yacht in the same conditions, but supported

bow and stern by two consecutive waves; for this purpose

some nodes of the extreme bow and stern belonging to the

plane of longitudinal symmetry are constrained. In the last

one (#3) the yacht is considered in a symmetrical con®gura-

tion (without heel) again supported by two consecutive

waves, but subjected to the weight only.

For the purposes of the optimization the following vari-

ables have been considered:

The design variables: given by the ®ber orientations, b 1

and b 2, in two layers of the laminate; since a third layer

with ®bers orientation of 08 is employed (water lines

directions), the global sandwich composition is therefore

[0/b 1/b 2/core/b 2/b 1/0]; the quantities b 1 and b 2 are vari-

able in the range 290±908.
The objective function: represented by the relative displa-

cement in absolute value in the z-direction, uz, (see Fig. 3)

in con®guration #1 between the edge of the stern and the

root of the mast. This function assures the selection of a

®ber orientation that guarantees the greatest bending stiff-

ness in longitudinal direction, compatible with the other

conditions.

Three state variables given by the relative displacements

in absolute value in the y-direction, uy, of the two points

of the wash-board belonging to the section of the mast

(points A and B in Fig. 3), calculated in the three con®g-

urations. These variables assure that the deformations of

the main section do not exceed certain values, which by

experience have been set equal to:

0 # uy�1� # 7 mm 0 # uy�2� # 7 mm

0 # uy�3� # 7 mm
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Two other state variables given by the relative displace-

ments similar to the objective function, but evaluated in

con®gurations #2 and #3, with limits:

0 # uz�2� # 10 mm 0 # uz�3� # 10 mm

Two other state variables that supply limits on the

torsional deformation for the con®gurations #1 and #2.

They are evaluated as relative rotations, a , between the

sections containing the points C and D and the points E

and F (see Fig. 3). The following limitations are assigned

to them:

0 # a�1� # 0:0006 rad 0 # a�2� # 0:0006 rad

Three other state variables given by the linear buckling

load factors. The limits are ®xed at 4, according to Ref.

[2]:

4 # l�1� 4 # l�2� 4 # l�3�

2.5.1. Loads sailing close-hauled

The #1 load condition is represented in Fig. 4. In equili-

brium, the aerodynamic force on the sails, Fs, is balanced by

an equal and opposite load, Fh, that is produced by the

immersed appendixes of the hull. The component FR

(balanced by the drag force Dh) permits the progression of

the hull. The force FH does not contribute to the speed, but

only to the sideslip, and forms an upsetting couple with Lh.

This couple must be balanced by the moment produced by

the weight W (including the crew disposed windward) and

the buoyancy force B.

Loads FR and FH could be estimated by the expressions

[14]:

FH � CH0:6Av2 FR � CR0:6Av2

where A is the sail area (equal to 35 m2), v the wind speed

(25 knots ,12.9 m/s) and CH and CR are the lift and drag

coef®cients. These coef®cients can be taken to be equal to

[14]:

CH � 0:8 CR � 0:3

Finally one obtains:

FH � Lh � 2782 N FR � Dh � 1043 N

FH has been distributed as pressure on the sails. The remain-

ing loads have been applied as concentrated forces to the

centers of gravity of the keel (Lh, Dh) and of the sails (FR).

The draft has been iteratively calculated by imposing the

equilibrium between weight (including the crew) and buoy-

ancy force both in terms of forces and moments. Once the

draft is known it has been possible to apply the buoyancy

force as a pressure on the hull. Now that the loads system

(including the prestrain of fore-and-aft stays and shrouds) is

known and the analyses can be carried out.

3. Analysis of results

In the following the more interesting results are reported.

The remaining ones could be qualitatively deduced from

Ref. [3]. Each system of applied loads determines different

kinds of deformation, which will be added depending on the

sailing condition.

The structure and crew weight, when the hull is in a ¯at

sea, cause the longitudinal in¯exion of the yacht with

concavity towards the bottom and its stretching in crosswise

direction. On the contrary, the shrouds (prestrained and

stressed by the sails) and the weight with emerged hull,

cause opposite deformations. Results of the analysis seem

to show that the analyzed con®gurations signi®cantly repre-

sent different behaviors. The optimization procedure has

required relatively few iterations in order to locate, with

suf®cient reliability, an optimum con®guration. In Fig. 5

diagrams of objective function and design variables vs.

number of sets are reported. It is observed that the algorithm

locates a region of local minimum that begins after eight

sets and ®nishes at the end of the ®rst optimization phase.

Afterward the sweep technique for a total of 20 iterations is

applied. At the beginning and at the end of the second sweep

phase, lower values of uz are found for which

b 1 ù b 2 ù 908. In the third phase, a new approximated

analytical model is developed, starting from the 16 best

sets of the design variables found in the previous phases.

As it is possible to note, the objective function gives the

same least value with the same values of b 1and b 2.

Therefore these values de®ne the optimum design of the

yacht and the resultant sequence of the sandwich is: [0/90/

90/core/90/90/0]. Such a result could be legitimate consid-

ering that the relative displacement uz depends on the

deformability of the yacht in longitudinal and in transverse

direction. In a generalized manner, the stiffness in longitu-

dinal direction would have to grow when the ®bers in the 08
direction are increased, while increasing ®bers at 908 will

improve transversal stiffness. However the sluice shape of

the yacht and its height already confer it high bending stiffness

in longitudinal direction, such that the introduction of other

layers at 08 is not able to increase: in fact con®gurations with
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layers near 08 produce decidedly worse values of the objec-

tive function.

The results seem to show, instead, that the longitudinal

stiffness improves much if the strain of the generic trans-

versal section is reduced, by introducing layers close to 908.
As far as buckling load factors are concerned, the calcula-

tions have given values in the range 5±6; these values are

practically scarcely in¯uenced by the change of ®bers

angles, and the normalized displacements are higher in the

sails. Moreover it has been veri®ed that the buckling load

factors increase with increasing sails stiffness. The above

fact permits to say that the results are valid only from a

mathematical point of view and that the corresponding

load factors on the hull must be considered higher than

those calculated. Buckling load factors of the isolated hull

(including superstructures), subject to the loads of con®g-

uration #3, with b 1 and b 2 varying between 0 and 908, are

also calculated. The corresponding extreme buckling loads

are close to 7 (b 1� b 2� 08) and 17 times (b 1� b 2� 908)
the loads on the hull in the real con®gurations and con®rm

that the imposed limits on the load factors in the optimiza-

tion procedure are respected; moreover the con®gurations

with b 1 and b 2 tending to 908 are still the most stable.

In Fig. 6 the buckled shape of the hull with

b 1� b 2� 908 is shown. With respect to this, for

b 1� b 2� 08 the higher normalized displacements are

located closer to the bow.

Actually the used optimization procedure ®ts the purpose

very well and allows to ®nd a combination of stiffness in the

different directions, with the aim to limit the deformability

of the yacht. Another advantage is that the yacht has been

analyzed as a whole and not as isolated parts, and that the

mutual in¯uences between all the regions have been consid-

ered.

The minimum found seems to be a global minimum and

so other optimization cycles starting from different initial

points have not been performed. Moreover it has been veri-

®ed that far from the discontinuities the stress state is in

safety. The check of resistance of regions with hard discon-

tinuities has not been performed since it has not been

considered to be of interest for this paper.

4. Conclusions

The use of Pro/ENGINEER has been a powerful instru-

ment to model the surface of the yacht. It has permitted an

easy yacht generation starting from the body plan.

Results of the analysis shows that the three different load

con®gurations analyzed signi®cantly represent different
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behaviors. Deformability and buckling loads are in¯uenced

by the change of ®ber angles, showing that higher values can

be achieved only if a proper orientation of the ®bers is

found.

The optimization method based on the creation of an

approximate analytical model, and characterized by the

application of a sweep technique, is suitable to solve the

problem of ®nding the optimal ®bers disposition, as well

as the shape optimization [15]. The minimum value of the

objective function has been located in the second step

during the sweep phase and it has been found again in the

third phase, demonstrating that it is sometimes useful to

employ the sweep technique in order to explore all the ®elds

of the feasible domain. Probably similar results could be

achieved by repeating the procedure, starting from different

imposed initial values.

The resultant sequence from the used optimization pro-

cedure was found to be [0/90/90/core/90/90/0]. Laminae

with b 1 and/or b 2 close to 08 could be envisaged, but the

latter determines in the hull a behavior more ¯exible than

the corresponding one with ®bers close to 908. This is prob-

ably because the closed shape of the hull and its height

already confer it a high bending stiffness in the longitudinal

direction. The introduction of other laminae at 08 is not able

to increase the stiffness; on the contrary, the introduction of

®bers at 908 is able to do, by increasing the stiffness in

crosswise direction and reducing the relative displacements

in the z-direction of the control points.

It is also found that the limits of 4 on the buckling load

factors are not crossed for whatever ®ber disposition and

that the con®gurations with b 1 and b 2 both tending toward

908 are also the most stable.

References

[1] American Bureau of Shipping. Guide for building and classing

offshore racing yachts. New York, 1996.

[2] Shenoi RA, Wellicone JF, editors. Composite materials in maritime

structures. Cambridge Ocean Technology, Cambridge, 1993.

[3] Cappello F, Mancuso A. Ottimizzazione della disposizione delle ®bre

della carena di un'imbarcazione in composito. In: Proc of II Semi-

nario Italo-EspanÄol, Progettazione e fattibilitaÁ dei prodotti industriali.

Vico Equense (Napoli), giugno, 1998.

[4] ASTM D3039. Standard test method for tensile properties of polimer

matrix composite materials. Annual book of ASTM standards, vol.

14.02.

[5] Tsai SW, Hahn HT. Introduction to composite materials. Westport,

CT: Technomic, 1980.

[6] Jones RM. Mechanics of composite materials. New York: Hemi-

sphere, 1975.

[7] Mortenson ME. Modelli geometrici in computer graphics. Milan:

McGraw-Hill, 1989.

[8] Larsson L, Eliasson RE. Principles of yacht design. London: Adlard

Coles Nautical, 1996.

[9] Mancuso A. Ship hull design of sailing yacht. In: Proceedings of the X

ADM Conference, Firenze, 1997.

[10] Zienkiewicz OC, Taylor RL. The ®nite element method. 4th ed.

London: McGraw-Hill, 1989.

[11] Cesari F. Comportamento non lineare delle strutture col metodo degli

elementi ®niti. Bologna: Pitagora Editrice, 1985.

[12] Vanderplats GN. Numerical optimization techniques for engineering

design. Monterey, CA, 1984.

[13] James ML, Smith GM, Wolford JC. Applied numerical methods for

digital computation with Fortran and CSMP. 2nd ed. New York:

Harper and Row, 1977.

[14] Garrett R. Fisica della Vela. Bologna: Zanichelli, 1994.

[15] Cappello F, Ceresia A. Ottimizzazione di forma di componenti strut-

turali, Il Progettista Industriale, maggio 1996.

F. Cappello, A. Mancuso / Advances in Engineering Software 32 (2001) 133±139 139


