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Abstract: The on-chip generation of large and complex optical quantum states will enable 
low-cost and accessible advances for quantum technologies, such as secure communications 
and quantum computation. Integrated frequency combs are on-chip light sources with a broad 
spectrum of evenly-spaced frequency modes, commonly generated by four-wave mixing in 
optically-excited nonlinear micro-cavities, whose recent use for quantum state generation has 
provided a solution for scalable and multi-mode quantum light sources. Pulsed quantum 
frequency combs are of particular interest, since they allow the generation of single-
frequency-mode photons, required for scaling state complexity towards, e.g., multi-photon 
states, and for quantum information applications. However, generation schemes for such 
pulsed combs have, to date, relied on micro-cavity excitation via lasers external to the 
sources, being neither versatile nor power-efficient, and impractical for scalable realizations 
of quantum technologies. Here, we introduce an actively-modulated, nested-cavity 
configuration that exploits the resonance pass-band characteristic of the micro-cavity to 
enable a mode-locked and energy-efficient excitation. We demonstrate that the scheme allows 
the generation of high-purity photons at large coincidence-to-accidental ratios (CAR). 
Furthermore, by increasing the repetition rate of the excitation field via harmonic mode-
locking (i.e. driving the cavity modulation at harmonics of the fundamental repetition rate), 
we managed to increase the pair production rates (i.e. source efficiency), while maintaining a 
high CAR and photon purity. Our approach represents a significant step towards the 
realization of fully on-chip, stable, and versatile sources of pulsed quantum frequency combs, 
crucial for the development of accessible quantum technologies. 
© 2017 Optical Society of America 
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1. Introduction 

Optical quantum states represent a key resource for quantum information science and have 
the potential to advance applications beyond proof of concept demonstrations, towards e.g. 
quantum communications [1], powerful processing and simulations [2], as well as new 
frontiers in metrology and sensing [3]. The need for a practical quantum technology that 
enables scalable and mass-producible realizations has led to an increased development of on-
chip (integrated) quantum optics platforms, with the ultimate vision of monolithically 
integrating quantum state generation, processing, and detection elements on the same chip 
[4,5]. However, while components for integrated photon manipulation and on-chip photon 
detection still require further development, it must be emphasized that even the efficient 
generation of large and complex optical states within a small footprint remains a central 
technological challenge. 

The recent demonstration of integrated frequency combs for quantum state generation 
introduces a possible solution towards addressing this issue [6]. Specifically, these are on-
chip light sources with a broad spectrum of evenly-spaced frequency modes, and can be 
emitted from a nonlinear micro-cavity when one of its resonances is optically excited [7]. 
When the cavity is operated below the threshold for optical parametric oscillation, two-
photon states can be generated: specifically, in third-order nonlinear media, spontaneous four-
wave mixing (SFWM) mediates the annihilation of two excitation field photons and in turn 
the generation of a signal and an idler photon in spectrally-distinct frequency comb modes [8] 
(Fig. 1). Thanks to the cavity field enhancement, such integrated 'quantum frequency comb' 
(QFC) sources deliver high quantum state generation rates at low excitation powers compared 
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to plain-waveguide sources (cavities have similarly enhanced pair production rates in, e.g., 
nonlinear crystal spontaneous parametric down-conversion-based setups [9]). More 
importantly, this concept also provides a solution for state scalability by allowing several 
frequency modes (compatible with telecommunications wavelength-division multiplexing 
channels) to be accessible within a single waveguide spatial mode. Several multi-channel 
sources based on QFCs have already been demonstrated, among them combs of correlated 
photons [8], cross-polarized photon pairs [10], entangled photon pairs [11–13], multi-photon 
states [12], and frequency-bin entangled states [14,15]. 

excitation

spontaneous four-wave mixing

signal idler

1234N 1 2 3 4 N

Frequency

... ...

 

Fig. 1. Operational principle for pulsed quantum frequency comb generation. A pulsed 
excitation field was coupled to a nonlinear integrated micro-cavity, and through selective 
frequency filtering, was used to excite a single micro-cavity resonance (green). Spontaneous 
four-wave mixing mediated the annihilation of two photons from the excitation spectral-mode 
and the generation of two daughter photons, called signal and idler (red and blue), emitted in 
spectrally-distinct frequency comb modes. As a consequence of energy conservation, these 
signal and idler frequency modes had an equal spectral displacement from the excitation 
frequency (such that the daughter photons occupy, e.g. signal-N and idler-N, where N = 1, 2, 3, 
4, 5, etc. is the resonance index). 

In contrast to a continuous wave excitation, the pulsed excitation of these QFC micro-
cavities –i.e., such that the photon pair generation still occurs probabilistically, but in discrete 
time windows– is particularly suitable for quantum information applications. Such pulsed 
sources significantly simplify the synchronization between photon sender and receiver 
stations, allow for the reduction of detector noise counts through the use of temporal gating or 
post-selection, and can be used in future systems that feature quantum repeaters or relays 
where accurate knowledge of photon timing is required for two-photon interference [16]. 
Additionally, pulsed excitation schemes stand at the basis of time-bin entanglement, a scheme 
which is very well suited for the existing fiber and electronics infrastructures [17,18]. 
Moreover, pulsed excitation is necessary for the generation of fully separable two-photon 
states (i.e., exhibiting no spectral entanglement), enabling the heralding of pure, single 
frequency-mode photons (by detecting the other photon of the pair) [19]. This is of particular 
importance as pure single photon states are among the most fundamental entities in quantum 
optics, and are required for high-visibility multi-source quantum interference (a basis for e.g. 
linear quantum optical computing) [2] and for scaling state complexity (towards, e.g., multi-
photon states) [12]. 

However, to date, pulsed generation schemes for micro-cavity excitation have relied on 
lasers external to the source, a far from ideal solution for the realization of efficient and low-
footprint quantum light sources. First, such excitation schemes reduce the overall source 
scalability, and are incompatible with the ultimate vision of a fully on-chip system. Second, 
the stability of QFC sources relies on the continuous excitation of a micro-cavity resonance, 
but laser light absorption causes thermal frequency-shifts of the resonance frequencies [20]. 
For stable long-term operation, this necessitates active compensation of the thermal shift via 
complex schemes for cavity and/or excitation-wavelength tuning. New methods for micro-
cavity excitation without active feedback have been demonstrated [21–23], but lead to chaotic 

                                                                                          Vol. 25, No. 16 | 7 Aug 2017 | OPTICS EXPRESS 18943 



pulse dynamics below the optical parametric threshold, or offer very limited coincidence rates 
due to multi-stable dynamics at higher pulse powers [24]. Alternatively, pulses with a broad 
spectral width encompassing the thermal shift range can be used to achieve stable excitation 
with less complexity; this approach, however, has stricter requirements on the filter isolation 
and bandwidth necessary to separate the quantum signal from the classical excitation field, 
and reduces the energy efficiency of the system, in turn increasing the total energy 
consumption (i.e. most of the laser bandwidth is not used to excite the narrow resonance 
(100’s MHz) and is thus wasted). Finally, external pulsed lasers are largely limited in terms of 
flexible control of their output, e.g. repetition rate modification, reducing the overall 
versatility of QFC generation. As pulsed QFCs are among the most promising approaches for 
on-chip quantum state generation, the resolution of these issues through the development of a 
scalable, stable, low-power, and versatile pulsed QFC excitation scheme is central to the 
advancement of sources for quantum information science. 

Here, we present a new intra-cavity mode-locked excitation scheme that allows the 
generation of high-quality pulsed quantum frequency combs in a flexible and efficient 
manner. Specifically, we excited a nonlinear micro-cavity using a self-locked, nested-cavity 
configuration with an active modulation and verified the emission of high-purity photon 
states. This is, to the best of our knowledge, the first scheme to generate pulsed integrated 
quantum frequency combs without the need for an external laser. Combined with its 
versatility and the existence of on-chip realizations of the components in the scheme, it 
constitutes a significant step towards a fully integrated pulsed quantum comb source. 

2. Setup 

 

Fig. 2. Experimental setup for the actively mode-locked excitation. The generation scheme for 
pulsed quantum frequency combs consisted of a nonlinear micro-cavity embedded in a larger, 
external cavity. The external cavity incorporated an active electro-optic amplitude modulator, 
an optical gain component, and a narrow band-pass filter, with the latter limiting the scheme’s 
lasing to a pass-band corresponding to a single micro-cavity resonance. The external cavity 
length was chosen such that several external cavity modes oscillated within the bandwidth of 
this single resonance. With the introduction of the amplitude-modulation (at a frequency equal 
to the external mode spacing or a multiple of this quantity), these mode oscillations were 
phase-locked. This gave rise to a pulsed excitation that was limited to the resonance 
bandwidth, with a repetition rate corresponding to the modulation frequency. In turn, this 
pulsed excitation led to the generation of a pulsed quantum frequency comb, which could then 
be separated from the excitation field via a high-isolation notch filter. Inset: Single-photon 
count spectrum measured after the excitation field was filtered out, acquired using a 12.5 GHz 
tunable band-pass filter and single photon detector. 
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Our generation scheme for pulsed QFCs consists of a nonlinear micro-cavity embedded in a 
longer, external laser cavity (Fig. 2). The external cavity incorporates an active electro-optic 
amplitude modulator, an optical gain component, and a narrow band-pass filter, with the latter 
limiting the cavity lasing to a pass-band corresponding to a single micro-cavity resonance. In 
our particular implementation, the nonlinear micro-cavity was a four-port integrated micro-
ring resonator with a free spectral range of 200 GHz and Q-factors of 235,000 (~800 MHz 
resonance bandwidth) [25]. The amplification element was an erbium-doped fiber amplifier 
(EDFA), and the mode-locking element was a radio-frequency (RF) signal-driven amplitude 
modulator. An isolator in the cavity ensured uni-directional pulse propagation, and all 
components were connected with polarization-maintaining fibers for added environmental 
stability. The narrow band-pass filter (corresponding to the H34 telecommunications band) 
limited the cavity lasing to a single micro-ring resonance centered at 1550 nm. 

The external cavity length was chosen such that several (approx. 84) external cavity 
frequency modes oscillated within the 3 dB bandwidth of this single resonance (800 MHz). 
The relative phases of the cavity modes are usually random, giving rise to chaotic pulsing, but 
the introduction of the amplitude-modulation (at a frequency equal to the external mode 
spacing, here 9.8 MHz, or its harmonics), drove these mode oscillations to be phase-locked. 
This gave rise to a pulse train with a repetition rate corresponding to the modulation 
frequency, and a bandwidth that is intrinsically matched to that of the micro-cavity resonance, 
enabling low-power, stable cavity excitation. 

3. Characterization 

The mode-locked pulsing started immediately once the amplitude-modulation signal was 
provided via turn-key operation, and enabled a stable pulse train with very low RMS noise 
(0.42%, Fig. 3(a)) and which, during the course of the output characterization, operated 
without interruptions for days. While most types of modulation signal can be used for mode-
locking (e.g. sine, square, etc.) if they redistribute energy to harmonics of the external cavity 
mode spacing [26], we specifically made use of a rectangular signal given its ease of 
implementation. Changing the modulation frequency within ± 0.001 MHz of the repetition 
rate did not affect the mode-locked operation, allowing a range of repetition rate control, and 
also demonstrating the scheme’s overall relaxed driving signal requirements. 

By changing the net cavity gain (via the amplifier gain and/or cavity loss), the optical 
power of the excitation pulse train can be adjusted, which changes the characteristics of the 
emitted QFC. A high-isolation notch filter was used to separate the excitation field from the 
QFC for such an evaluation. Signal and idler photons (here, from the second resonance pair 
away from the excitation field – signal-2, idler-2 in Fig. 1) were routed to separate detectors, 
where a cross-correlation function ( ( ) ( )2

sig τ , τ being the signal-idler time delay) of their 

coincident detections was measured (Fig. 4(a)). The coincidence-to-accidental ratio (CAR) of 
quantum systems is a key operational metric that compares the probability of obtaining a 
coincidence detection from photon pairs generated during the same excitation pulse 
(coincidence rate), with the probability of measuring a coincidence detection event 
originating between two different excitation pulses, e.g. from dark counts, two different 
SFWM processes, etc. (accidental rate) [27]. We extracted this ratio from the correlation 
functions we obtained, and measured the CAR in our system as a function of the peak 
excitation power coupled into the micro-ring (Fig. 4(b)). The mode-locking operation 
persisted through the entire power range tested. The system achieved a maximum CAR of 
110 and showed the expected CAR decrease with increasing laser powers (caused by a higher 
probability of generating multiple photon pairs at stronger excitation energies) [27]. The 
coincidence rate exhibited the predicted increase with growing excitation powers and, at a 
CAR of 11 (sufficient for, e.g., qubit entanglement verification experiments), we demonstrate 
coincidence rates of ~1.95 kHz. Taking into account the losses after the micro-ring output 
(11.4 dB per signal/idler photon), this corresponds to a pair generation rate of ~363 kHz (0.04 
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pairs per pulse) for this channel couple. We believe that by reducing the losses and using 
micro-cavities with higher nonlinearity, our scheme can easily be applied to demonstrate even 
higher coincidence rates. In our resonance-matched excitation scheme, the entire pulse energy 
can couple to the resonance for excitation, whereas for external lasing schemes (the pulses are 
typically spectrally-broader than the very narrow resonance), less of the total pulse energy 
couples into the resonance. For these external schemes, both the CAR and coincidence curves 
would thus shift towards higher excitation powers (to an extent determined by the ratio of the 
pulse bandwidth to the resonance bandwidth). This in turn leads to a corresponding drop in 
the operational power efficiency, which our scheme avoids. 
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Fig. 3. Laser pulse characterization. (a) Real-time intensity trace of the pulse output, showing 
50 pulses with very low 0.42% RMS noise. The trace was captured using a fast detection 
system (photodiode + oscilloscope with 25 GHz bandwidth). The pulse train corresponds to a 
mode-locked operation of the setup in Fig. 2, with an amplitude-modulation signal at a 
frequency corresponding to the external cavity mode spacing (here 9.8 MHz, determined by 
the external cavity length). (b) Real-time intensity trace, showing 100 pulses with 0.95% RMS 
noise, recorded when the amplitude-modulation was driven at double the cavity mode spacing 
frequency, i.e. 19.5 MHz. 
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Fig. 4. Characterization of the photon pair coincidence-to-accidental ratio. (a) The signal and 
idler photons (signal-2, idler-2) were routed to two separate detectors, where a correlation 
function of their coincident detections was measured. (b). The coincidence-to-accidental ratio 
showed the expected decrease with increasing laser powers, while the coincidence rate showed 
the predicted increase, as caused by an increased probability of generating multiple photon 
pairs at stronger excitation energies. 

Finally, a central feature of our scheme is the flexible control of the QFC generation rate. 
This can be accomplished without changing any components within the cavity, solely by 
modifying the RF amplitude-modulation signal’s frequency. In particular, we observed that 
by driving the amplitude modulator with frequencies at integer multiples of the external 
cavity mode spacing, we attained stable harmonic mode-locking at different repetition rates 
corresponding to the chosen driving frequency (see e.g. Figure 3(b) with modulation at 19.5 
MHz, resulting in a pulse train with 0.95% RMS noise). Interestingly, this repetition rate 
control enables preserving a high CAR (by maintaining a constant excitation-pulse peak 
power), while increasing the coincidence rate by using higher pulse repetition rates (Fig. 5, 
top and middle). As the generation of pure, single frequency-mode photons is central to a 
variety of quantum information applications, we also verified the emitted photon purity as a 
function of the system’s repetition rate (Fig. 5, bottom). Such a measurement was also of 
fundamental interest, as at higher repetition rates fewer cavity modes are excited within the 
resonance, the limiting case of which is single-mode excitation (continuous-wave), commonly 
associated with multi-frequency-mode daughter photons (i.e., frequency entanglement) [19]. 
In our measurement specifically, the effective time resolution of our detection system (~100 
ps) was sufficient to allow time-domain measurements, thanks to the long nanosecond 
coherence time of the photons. The output of a single resonance (here, signal-2) was divided 
by a 50:50 beam-splitter in a Hanburry Brown and Twiss detection configuration [28], with 
the two outputs used for a second-order coherence function ( ( ) ( )2

ssg τ ) measurement. The 

maximum of the second-order coherence function was then used to determine the effective 

number of spectral modes n in the resonance, using the relation ( ) ( )2 1
0 1ssg

n
τ = = +  [29,30]. On 

average, we found an effective mode number of 1.00 ± 0.11 at multiples of the repetition rate, 
corresponding to a high-purity, separable two-photon state, in turn confirming that the scheme 
excites the micro-ring resonance over its entire bandwidth [19]. This is a remarkable result 
with respect to QFC generation, as repetition rate tunability is a central feature that is largely 
inaccessible when using external excitation lasers. At higher repetition rate harmonics (above 
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the fourth harmonic) we observed increasing pulse power fluctuations, a common challenge 
for harmonic mode-locked lasers [31]. Future enhancements to the scheme will target stable 
pulsed operation at even higher multiples of the repetition rate. The implementation of the 
harmonic-mode-locking advances developed to mitigate instability and supermode noise, 
including e.g., cavity length modulation [32,33], nonlinear compensation [34], and high-
finesse supermode filtering techniques [35,36], could enable access to these higher repetition 
rate regimes. 
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Fig. 5. Characterization of photon emission rate and purity. Top: The coincidence rate was 
measured for photon pairs produced in the signal-2 and idler-2 resonances as a function of the 
increasing repetition rate of the pulsed excitation. The coincidence rate was found to grow 
linearly while the coincidence-to-accidental ratio (Middle) was preserved (as the pulse shape 
and peak powers were maintained for different repetition rates). Bottom: Second-order 
coherence function measurements were used to determine the effective number of spectral 
modes in the signal-2 resonance (see text for details). We found an effective mode number of 
1.00 ± 0.11 averaged across the repetition rates tested, corresponding to a pure single-
frequency-mode photon state. Red lines (superposed) correspond to linear fit functions. 
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4. Conclusion 

Our findings illustrate a scalable concept that exploits the resonance pass-band characteristic 
of a micro-cavity to drive a bandwidth-matched (energy-efficient) and stable excitation of the 
micro-cavity and the associated SFWM photon generation process. When compared to 
external excitation schemes, our solution allows for a simple and versatile tuning of the 
repetition rate at which the QFC is emitted, either electronically by changing the RF 
modulation signal or by changing the external cavity length. In our setup, higher repetition 
rates were shown to enable increased pair production rates while maintaining photon purity 
and CAR. Furthermore, as advances to the scheme will enable stable pulsing at higher 
harmonic mode-locking repetition rates, fewer external frequency modes will be excited 
within the resonance, leading to new prospects for fundamental studies in the transitory 
regime between pulsed and continuous wave excitation (e.g. the scaling of photon-pair 
properties like purity and mode-locking dynamics as a function of fewer excited modes). 
Future extensions of the scheme, such as the inclusion of supermode noise-suppression 
techniques [32–36], could potentially also enable the pulse-to-pulse phase coherence required 
for the realization of a high repetition rate time-bin entangled quantum frequency comb 
source. 

Our approach can be easily applied to a wide range of resonant structures besides third-
order nonlinear micro-ring resonators, e.g. photonic crystal waveguides [37] and resonators 
[38], micro-disks [39], coupled resonator optical waveguides (CROWs) [40], and second-
order nonlinear micro-cavities [41]. The bandwidth-matched excitation also gives access to 
higher-power pumping regimes, useful for, e.g., multi-photon state generation [12]. While we 
observed mode-locking when the amplitude modulator was replaced with a phase modulator, 
this was at the cost of a higher sensitivity to the RF driving frequency and the occasional 
operational instability. We thus used a more robust amplitude-modulated setup, however the 
scheme can likely make use of phase modulators if coupled with active synchronization 
methods, e.g. regenerative feedback circuits [42]. Since mode-locking was also observed 
when the fiber amplifier was replaced by a semiconductor optical amplifier (which can be 
integrated, like all the other components), this demonstration represents a significant step 
towards the realization of fully integrated, versatile, and scalable sources of pulsed quantum 
frequency comb states, crucial for the development of quantum networks and interconnects, 
as well as for parallel/multi-channel quantum information processing. 
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