
Encapsulating and Manipulating Component Object  
Graphics (COGs) using SVG  

Alexander J. Macdonald 
Document Engineering Laboratory 

School of Computer Science 
University of Nottingham 

Nottingham, NG8 1BB, UK 
ajm@cs.nott.ac.uk 

David F. Brailsford 
Document Engineering Laboratory 

School of Computer Science 
University of Nottingham 

Nottingham, NG8 1BB, UK 
dfb@cs.nott.ac.uk 

Steven R. Bagley 
Document Engineering Laboratory 

School of Computer Science 
University of Nottingham 

Nottingham, NG8 1BB, UK 
srb@cs.nott.ac.uk 

ABSTRACT 
Scalable Vector Graphics (SVG) has an imaging model similar to 
that of PostScript and PDF but the XML basis of SVG allows it to 
participate fully, via namespaces, in generalised XML documents.  

There is increasing interest in using SVG as a Page Description 
Language and we examine ways in which SVG document 
components can be encapsulated in contexts where SVG will be 
used as a rendering technology for conventional page printing. 

Our aim is to encapsulate portions of SVG content (SVG COGs) 
so that the COGs are mutually independent and can be moved 
around a page, while maintaining invariant graphic properties and 
with guaranteed freedom from side effects and mutual 
interference.  Parellels are drawn between COG implementation 
within SVG’s tree-based inheritance mechanisms and an earlier 
COG implementation using PDF. 

Categories and Subject Descriptors 
E.1 [Data]: Data Structures — Trees; I.7.2 [Document and Text 
Processing]: Document Preparation — Markup Languages; I.7.4 
[Document and Text Processing]: Electronic Publishing. 

General Terms: Algorithms, Documentation. 
Keywords 
XML, SVG, PDF, parameterization, component object graphics  

1. INTRODUCTION 
The World Wide Web Consortium (W3C), set up a working group 
in 1998, to draw up draft proposals for Scalable Vector Graphics 
(SVG) in response to a need for better rendering of material such 
as line diagrams, schematics, and maps.  At present there is only 
limited native support within Web browsers for rendering SVG—
for the most part popular browsers such as Internet Explorer need 
to install an SVG plug-in supplied by Adobe Systems Inc. 
Although the syntax of SVG is XML based, the semantics of its 
graphics model are similar to those of PostScript and PDF. In 
common with these two languages, SVG combines graphical 
sophistication with the ability to place text strings accurately. 

Currently, with SVG 1.1, the major use is for ‘vector graphic 
inserts’ into conventional Web pages. But with SVG 1.2 close to 
approval there is now the prospect of SVG acquiring a page model 
(via pagesets [1]). This, in turn, means that SVG could become a  

viable rendering technology for a Page Description Language 
(PDL) for conventional hard-copy printing. Danilo and Fujisawa 
[2] have already surveyed some of the problems, ranging from 
frame buffer size to filters and ICC colour spaces, which need to 
be addressed before SVG can become a satisfactory PDL. Our 
concerns run even deeper: we want to develop ways to determine 
the graphical state at the root of a given SVG subtree sufficiently 
accurately, and to encapsulate it in some way, so that the subtree 
can then be extracted and used elsewhere.  

1.1. Previous work and present aims 
In a previous paper [3] we developed the idea of Component 
Object Graphics (COGs) in which encapsulated graphic objects 
can have their page positions and certain needed resources (e.g. 
fonts) declared at the head of a suitable data structure. Our initial 
implementation of COGs was in PDF and the PDF data structure 
we used for encapsulation was the FormXobject.  

In the Component-Object Graphic model the pages in a PDL are 
no longer described as monolithic page streams (where the effect 
of each operator depends on the operators that have been executed 
before it) but rather as independent graphical objects, or COGs. A 
COG is a self-contained block that describes how to draw itself in 
a manner independent of any other COG appearing before it, 
while ensuring also that it does not affect the appearance of any 
COG imaged after it. In other words, adding or removing a COG 
from a page should have no visible side-effect on any other COG 
on that page. 

A key advantage of PDF COGs is that a single COG instance can 
be shared throughout a document. Our COG model allows us to 
encapsulate PDF inside a FormXObject structure while the PDF 
graphical system (and its capability for saving and restoring 
graphic state) make it possible to establish a relative co-ordinate 
system within the COG and to make clear at the head of the 
FormXObject dictionary the resources the COG will use. The 
sequence of COGs on a page is invoked by executing the 
corresponding FormXObjects using the PDF Do operator. 

The COG model is by no means limited to PDF. It is potentially 
applicable to any PDL that offers the possibility of encapsulation 
and re-use of material. So, if SVG 1.2 will truly be a future 
alternative to PDF we wanted to find out whether SVG COGs 
were feasible and, if so, how the tree-based inheritance 
mechanisms for graphic properties might lead to new problems 
and opportunities as compared to the more conventional 
document-based and page-based inheritance properties of PDF. 

We now look at ways in which SVG COGs can be defined, 
manipulated on the page and made shareable. 

FINAL DRAFT of paper accepted for: 
DocEng’05 November  2–4, 2005, Bristol, United Kingdom 
Copyright 2005 Macdonald, Brailsford and Bagley 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Nottingham ePrints

https://core.ac.uk/display/98115?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2. MOTIVATION FOR THIS WORK 
Most PDLs have the problem that when small alterations are 
needed to the final appearance of a document it is often necessary 
to regenerate at least a whole page (and sometimes the whole 
document) from scratch. Similar problems of “monolithic” 
transformations apply to XML documents that are transformed by 
XSLT scripts. Any small change to the output effect will generally 
require that the XSLT script be modified and then re-applied to 
the entire document. 

For certain sorts of application such as product catalogues and 
posters this monolithic approach is not desirable. A page of a 
catalogue typically consists of several component blocks of 
material and each of these should correspond to a separate COG 
of the sort we have described. One needs the ability to move these 
objects around the page for best aesthetic effect and to have each 
COG be equipped with clearly identifiable declarations for the 
resources used.  

3. IMPLEMENTATION OF SVG COGS 
Turning to SVG, we find that its syntax is rather more transparent 
than that of PDF; properties such as fill colour or line width are 
expressed by style attributes on the nodes that draw the object, 
rather than being an ordered sequence of commands to create the 
effect. The listings in Figures 3.2 and 3.3 illustrate the different 
PDF and SVG codings required to render the text ‘Helvetica 
House’ in 12pt Times-Roman. 

/F1 1 Tf 
12 0 0 12 100 100 Tm 
(Helvetica House) Tj 

Figure 3.1 — PDF code to render ‘Helvetica House’ 

<text x="100" y="100" font-family="Times" 
font-size="12pt"> 
Helvetica House 
</text> 

Figure 3.2 — SVG equivalent of the PDF code in Figure 3.1 
Unfortunately (as far as node extraction is concerned) SVG allows 
graphical properties to be inherited down the tree, and so the 
appearance of the <text> node in the above example may 
depend upon its position within the tree.  However, SVG provides 
a grouping node (<g>) that can be used to group together sets of 
nodes that share common properties. As an example, the <text> 
node in Figure 3.3, when rendered, will appear twice as big as 
identical node in Figure 3.2 due to the scale operation attached to 
the entire group. This same scale operation will also affect the x 
and y positioning, which will change from (100,100) to (200,200). 

<g transform=”scale(2)”> 
<text x="100" y="100" font-family="Times" 
font-size="12pt"> 
Helvetica House 
</text> 
</g> 

Figure 3.3 — Scaled text node in SVG 
On the face of it these <g> groupings give us a means of 
encapsulating portions of SVG to form SVG COGs However, 
great care is needed because the possible nesting of groups within 
groups means that the inner grouping inherits the properties of the 
outer group. These problems are not insurmountable (it is a simple 

matter to walk back up the tree towards the root node and 
concatenate all the properties together) but they do complicate the 
process of extracting content.  

The same problem can be found when trying to reinsert the 
extracted graphic into another SVG document. The appearance 
will depend upon where the extracted grouping is inserted into the 
destination SVG document tree. Unless all the rendering 
properties are explicitly specified, as attributes, on the extracted 
graphic it will inherit these values from its newly-acquired 
ancestors in the destination tree and may therefore not render as 
desired. 

SVG is also beset by the same problems encountered in PDF 
regarding extracted content. While we can see that SVG has a 
neater and more regular syntax than PDF, it is still possible for the 
various commands that draw a particular graphical object to be 
located far away from each other within the SVG document. Thus   
the problems described in [3], in working out the exact graphic 
state, still apply here. 

With all the above problems in mind it can be seen that there is a 
need for a COG-like model within SVG just as there was in PDF. 
Fortunately, as with PDF, SVG provides the necessary tools to 
implement such a model. The <use/> element defined in the 
SVG specification permits a reference to be made to an element 
that exists elsewhere in the document and to display that element 
as if the code being referenced existed at this point in the 
rendering tree. In programming language terms, it is the 
equivalent of a procedure call. 

By storing the graphical content of each COG inside a <g> 
element labelled with a unique identifier we can then display this 
COG later on using a <use> element. Now if this COG definition 
existed as an immediate child of the SVG document root node 
then it would be rendered even if it was never referred to. To stop 
the COG definition from being rendered it can be placed inside a 
<defs> element. Any SVG located within a <defs> element 
remains a part of the Document Object Model (DOM) but the 
SVG renderer knows it should not render it until it is explicitly 
called out and used. A rendered SVG COG version of a menu for 
a restaurant called ‘Helvetica House’ is shown in Figure 3.4 along 
with part of the SVG code, in Figure 3.5, that defines and displays 
the heading COG. 

  
Figure 3.4 — Helvetica House menu rendered in SVG COGs 



3.1. Graphical independence of SVG COGs 
By using the previously mentioned <g> element it is very easy to 
group together all of the graphical content of a COG. However, 
SVG 1.2 introduces the ref() matrix, which computes the 
inverse of the current viewport’s transformation matrix. Thus if 
the SVG code is left unchecked it could effectively break out of 
the COG nature of the document and position itself using absolute 
page co-ordinates rather than relative to the origin of its parent. 
This can be prevented by additionally wrapping the COGs inside 
<svg> elements so that they each exist as a separate document 
fragment. This also means COGs are explicitly clipped to their 
bounding box, and so more closely match the behaviour of PDF 
COGs. Another benefit is that resources such as gradients and 
embedded fonts can be stored in the COG. 

Because all positioning in SVG is done relative to the origin of the 
current coordinate system we can apply a transformation, to the 
group as a whole, which will alter that system. This allows the 
entire COG to be moved, scaled or rotated in any way whilst 
preserving the internal positioning of the contents of the COG. To 
demonstrate the graphical independence of the SVG COGs an 
ECMAScript was created that allows the user to move, scale and 
rotate any of the COGs in a document. In effect it mimics the 
effect of the PDF COG manipulation program (written in C++) 
that was described in [3]. It should be noted that while the Acrobat 
plug-in extends the Acrobat viewer (and so is available to all COG 
PDF documents) the ECMAScript must be included, or linked to, 
in the COG SVG document before it can be used.  

It was encouraging to find that the ECMAscript SVG COG 
manipulator worked correctly and, as a given COG is moved 
around the page, all other COGs on the page are unaffected. This 
is demonstrated in Figure 3.6 where the ECMAscript COG 
manipulator has been used to shift the “OTHERS” COG in the 
Helvetica House menu. Also visible are shaded squares, which are 
controls to switch between translation, rotation and scaling of the 
selected COG. 

<svg:svg id="Cog4e3e983e"> 
<svg:text x="100.375" y="21.87" font-
family="helvetica" font-size="30pt"> 
Helvetica House 
</svg:text> 
… 
</svg:svg> 
… 
<svg:use xlink:href="#Cog4e3e983e" 
transform="translate(96.625 32.23999)" 
id="cog-instance-Cog4e3e983e-1"/> 

Figure 3.5 — An SVG COG definition and a reference to it. 

3.2. Creating SVG COGs 
In addition to hand-coding SVG COGs we are presently in the 
process of converting several of our XSLT-based SVG code- 
generation facilities into a form such that they can generate SVG 
COGs. A further useful source of SVG COGs is also available to 
us  because it has proved possible to modify Mong’s PDF-to-SVG 
converter  [4] so that it converts PDF COGs into SVG COGs. 

4. CONCLUSIONS AND FUTURE WORK 
All the effects of PDF COGs described in [3] have been 
successfully replicated in SVG . The use of <defs> and <svg> 
to encapsulate SVG code parallels the use of a FormXObject  

structure in PDF whereas SVG’s <use> operator parallel’s 
PDF’s  execution of a FormXObject via Do. 

Note carefully that the simple SVG COGs we have created are  

 
Figure 3.6 — ECMAScript demonstration of the graphical 

independence of SVG COGs 
 just like their PDF counterparts in being invariant in their 
appearance wherever they might be invoked. This behaviour is a 
consequence of the fact that PDF is a final-form PDL, with no 
facilities for parameterised late-bound adjustments to appearance.  

By contrast, SVG is not a final-form PDL. It is parameterisable 
via XML attributes (see for example the <text> node in Figure 
3.4). If a more powerful mechanism for parameter forwarding and 
binding can be devised one might achieve parameterised COGs. 
An example would be the insertion of formal parameters inside 
text strings to enable late-bound items such as the price of an item, 
or the start and finish dates of a special offer, to be substituted at 
the last possible moment, just before the page is rendered and 
printed. Work continues on exploring this exciting possibility. 

5. ACKNOWLEDGEMENTS 
Thanks are due to Hewlett Packard (UK) and EPSRC for 
supporting Alex Macdonald’s PhD studentship.  In particular we 
thank John Lumley and Tony Wiley of HP (UK) for technical 
insights and administrative help. Thanks are also due to Jon 
Ferraiolo of Adobe Systems Inc for information on SVG 1.2.  

6. REFERENCES 
[1] SVG 1.2 – Multiple Pages. http://www.w3.org/TR/2004/WD-

SVG12-20041027/multipage.html 

[2] Alex Danilo and Jun Fujisawa, “SVG as a Page Description 
Language”  http://www.svgopen.org/2002/papers 

[3] Steven Bagley, David Brailsford, and Matthew Hardy, ‘‘Creating 
reusable well-structured PDF as a sequence of Component 
Object Graphic (COG) elements.,’’ in Proceedings of the ACM 
Symposium on Document Engineering (DocEng’03), pp. 58–67, 
ACM Press, 20–22 November 2003.  

[4] Julius Mong and David Brailsford, ‘‘Some experiments in using 
SVG as the rendering model for structured and graphically 
complex Web material,’’ in Proceedings of the ACM Symposium 
on Document Engineering (DocEng’03), pp. 88–91, ACM Press, 
20–22 November 2003. 

 


