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Editorial
Chronic myelogenous leukemia (CML) is a clonal

myeloproliferative disorder characterized by the reciprocal t (9:22)
chromosomal translocation. This rearrangement produces the so-
called Philadelphia chromosome carrying the chimeric Bcr-Abl
oncoprotein, p210, responsible of disease progression [1].

Because of its critical role in pathogenesis, the scientific community
had focused on targeting Bcr–Abl for treatment of CML. For many
years Imatinib (IM), as selective inhibitor of the Tyr-Kinase activity of
the oncoprotein, was used to treat CML patients [2].

From 2000 some data relative to IM resistance were available. There
are many mechanisms responsible of IM resistance, more often point
mutations that cause the progression to blast crisis and death in few
months. To circumvent them, more potent TKIs have been
subsequently approved [3]. However, another problem arise: these
compounds don’t work on all patients because of the different IM-
resistant mutants of BCR-ABL[4].

Therefore, there is a continous need for new drugs and
combinations that could improve responses and survival rates for
CML. Moreover, because of the complexity of signalling pathways and
the overexpression of many of them on tumour cells, the simultaneous
use of different drugs to target alternative signalling may produce an
higher therapeutic success accompanied by less toxicity.

After a comparative functional and proteomic analysis of CML cell
lines [5], we worked many years trying to overcome IM-resistance with
new compounds and we studied the effects of Carboxyamidotriazole
(CAI) and later of Carboxyamidotriazole Orotate (CTO) on CML cell
lines IM-resistant. Calcium is a well-known second messenger
involved in regulation of cell proliferation and apoptosis. Many data
indicate that Ca2+ regulates signalling transduction pathways involved
in malignant phenotype and tumor progression [6]; furthermore, Ca2+

homeostasis can affect development and progression of CML [7].

CAI, an inhibitor of calcium-mediated signal transduction
pathways, is one of the first cytostatic signal inhibitor proposed as anti-
cancer drugs. It has been tested in solid tumor patients in Phase I and
II clinical trials at the National Cancer Institute [8,9]. CTO is the
orotate salt form of CAI, developed at Tactical Therapeutics. INC (New
York, NY, USA). CTO shows a reduced toxicity, increased oral
bioavailability and achieves higher plasma concentrations and stronger
efficacy when compared to the parental compound [10].

We demonstrated that CAI reduces cell proliferation, increases cell
death and it is able to inhibit both bcr-abl dependent and independent
signalling pathways on IM- resistant CML cell lines [11]. In light of
this results, we keep working to better clarify the molecular
mechanisms of CAI on our CML model. For this reason, we used three
myeloid murine cell lines (32D) encoding for BCR/ABL-p210 (full

length), BCR/ABL-T315I and BCR/ABL-E255K mutants. T315I and
E255K are two mutations frequently observed in CML patients; in
presence of these mutations IM cannot bind to the kinase or cannot
recognize it because the kinase maintain an inactive conformation. We
demonstrated that CAI exert its effects through an increase of reactive-
oxygen species that in turn modulate total amount and activity of the
oncoprotein Bcr-Abl, downstream signalling and apoptosis [12].
Because of the higher solubility and efficacy of CTO with respect to the
parental compound (CAI), we also tested the effects of CTO on IM-
resistant CML cell lines, demonstrating its inhibitor effects on cell
proliferation and on CML tumor xenografts growth; moreover CTO
modulates angiogenesis in vitro and in vivo [13].

Many advances have been made in understanding the biology of
tumor and the scientific community begin to take care of the bone
marrow microenvironment that play a prominent role for the
progression of malignant cells through the pre-metastatic niche
formation.

In particular, importance has been made on the role of cytokines,
growth factors, adhesion molecules released by both tumor and non-
tumor cells into the microenvironment that provide a suitable niche for
cancer cell growth and survival. In this context, a number of studies
investigated the role played by microvesicles released by cells as cargos
of cytokines or nucleic acids (e.g. mRNAs or miRNAs) and in the
modulation of tumour progression [14,15]. Between microvesicles,
exosomes are classified according to their endosomal origin and their
size (40-100 nm). Recent publications describe exosomes as new
players in modulating the tumor microenvironment, promoting
angiogenesis and tumor development [16]. Trying to clarify the role of
CML-derived exosomes in the pre- metastatic niche formation, we
studied the crosstalk between CML and bone marrow stromal cells.
First of all we demonstrated that CML survival and resistance to
chemotherapy are affected by bone marrow stromal cells and that CML
cells release exosomes that are able to influence in vitro and in vivo
angiogenesis [17,18]. Later we clarify the mechanism demonstrating
that addition of CML-derived exosomes to vascular endothelial cells as
well as to bone marrow stromal cells is able to induce both in vitro and
in vivo tumor progression, through the stimulation of interleukin 8-
mediated paracrine and autocrine loops [19,21].

The EGFR is a signal transducer highly conserved during evolution.
It plays an important role in different physiological processes, as well
as in cancer progression. Recent evidences describe an extracrine
(exosomal targeted receptor activation) signalling involving the
exosomes- mediated packaging and release of EGFR ligands [22].
AREG is an EGFR ligand highly expressed in different tumors;
importantly, tumor exosomes carrying AREG are rapidly internalized
leading to cancer cell invasion [23].
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We demonstrated a new extracrine signalling where CML derived
exosomes, carrying AREG, modulate bone marrow microenvironment
through activation of EGFR signalling on stromal cells and subsequent
release of IL8. Importantly, exosomes isolated from serum of CML
patients carry AREG, thus confirming the role of AREG–EGFR axis
mediated by CML exosomes, also in vivo [24].

Conclusion
In the bone marrow microenvironment, stromal cells are able to

sustain the growth and survival of leukemic cells by protecting
malignant cells from chemotherapy- induced death; on the other hand,
leukaemia cells induce changes in the bone marrow stroma
composition.

Briefly, we have demonstrated a possible mechanism through
which, in the context of this bidirectional crosstalk, CML exosomes
exert their effect on tumor microenvironment: CML exosomes,
through activation of EGFR in stromal cells, induce the production
and release of IL8; IL8 supports the growth and survival of CML cells
both in vitro and in vivo. These results contribute to better understand
the role of exosomes in the crosstalk between bone marrow derived
cells and CML cells and may suggest new therapeutic approaches
involving exosomes and their content for early diagnosis and treatment
of chronic myelogenous leukemia.
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