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_______________________________________________________________________________26 

ABSTRACT 27 

 28 

The Cinisara is an autochthonous Sicilian bovine breed reared mainly for production of 29 

Caciocavallo Palermitano, a typical stretched-curd cheese. The distribution of A and B alleles at 30 

both the β-lactoglobulin (LGB) and κ-casein (CSN3) loci in Cinisara cows and their influence on 31 

milk traits and cheese yield and composition were analysed. The LGB alleles are associated with 32 

significantly different effects on whey protein level (lower for BB genotype, P<0.01), and casein 33 

index (higher value for BB genotype, P<0.001), while CSN3 alleles were associated with 34 

significantly different effects on milk yield and coagulation properties; the BB genotype showed 35 

higher values for milk yield (P<0.01) and curd firmness (a30 P<0.01 and a2r P<0.01) and lower 36 

values for coagulation and curd firming time (P<0.01) than the AA genotype. Cheese made with 37 

LGB BB milk showed higher percentage protein recovery (P<0.01); cheese made with CSN3 BB 38 

milk showed higher percentage fat recovery (P<0.05). 39 

________________________________________________________________________________ 40 
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1.  Introduction 41 

 42 

The protection of autochthonous genetic resources is a strategic tool to maintain the history 43 

and the culture of particular habitats, the ecological systems, and the local products that often show 44 

specific organoleptic and nutritional characteristics. All autochthonous breeds, thanks to natural 45 

selection, are adapted to their specific environments; autochthonous breeds are also more disease-46 

resistant and are able to survive, reproduce and produce in harsh environmental conditions in which 47 

other more productive breeds fail to capitalise on their genetic potential. As a consequence, 48 

autochthonous breeds are an important tool for conservation of animal biodiversity (Ciotola et al., 49 

2009). In this context, the production of Caciocavallo Palermitano cheese, made with Cinisara 50 

milk, can assist local economic development and contribute to the protection of indigenous genetic 51 

resources, since it is characterised by a strong link with the autochthonous breed and the territory.   52 

The Cinisara breed is a dual-purpose bovine population reared in Sicily. The main 53 

distribution areas consist of the agricultural marginal areas in the province of Palermo, with an 54 

average herd size of 25 animals (DAD-IS database; FAO, 2016). The breed is characterised by 55 

medium size, black colour and a strong resistance to the summer high temperatures typical of the 56 

region; these cows produce about 3700 kg of milk per lactation (AIA, 2014). Since the number of 57 

individuals (about 5000 heads) is low, the Cinisara breed belongs to the “Italian Registrar for native 58 

cattle with a limited diffusion” (Registro Anagrafico delle razze bovine autoctone a limitata 59 

diffusione).  60 

The importance of Cinisara breed, which is a Slow Food presidium, relies on its capability 61 

to exploit difficult environments and areas otherwise unsuitable for other breeds, and on the 62 

production of Caciocavallo Palermitano cheese, which is aged for up to one year and is available 63 

during all four seasons. According to Bonanno et al. (2013), extensive farming systems with cows 64 

fed at pasture are beneficial for physical, chemical, and sensory characteristics of this cheese, 65 
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production of which is based on traditional techniques involving the use of wooden tools and 66 

addition of lamb or kid rennet.  67 

Of course, dairy production is also affected by milk protein variants. The description of the 68 

first milk protein polymorphism can be traced back to 1955, when Aschaffenburg and Drewry  69 

(1955) discovered the two most frequent β-lactoglobulin (LGB) alleles, A and B. At present, 11 70 

alleles are known at this locus (Caroli, Chessa, & Erhardt, 2009; Farrell et al., 2004; Gallinat et al., 71 

2013), which is located on chromosome BTA11 (Hayes & Petit, 1993). Later studies showed that 72 

LGB alleles greatly influence the β-lactoglobulin content of milk, with a reduced synthesis for cows 73 

with the LGB B allele compared with LGB A allele of about 25%. Furthermore, LGB BB milk 74 

shows a higher amount of total casein, from +0.08% to +0.13%, as well as a lower level of whey 75 

proteins (–12%). These differences are associated with a notable positive effect of the LGB B allele 76 

on cheese-making parameters (Di Stasio & Mariani, 2000; Heck et al., 2009). 77 

The polymorphism at the κ-casein locus (CSN3) was the last to be discovered. This locus is 78 

located on chromosome BTA6 in a 250-kb stretch where the four casein genes (CSN1S1, CSN2, 79 

CSN1S2, and CSN3) are clustered (Ferretti, Leone, & Sgaramella, 1990; Threadgill & Womack, 80 

1990). At present, at least 12 variants are known at the CSN3 locus, with A and B alleles being the 81 

most frequent (Caroli et al., 2009). Several studies have reported conflicting results on the effects of 82 

these two alleles on some dairy traits. Nearly all studies reported that the CSN3 B allele is 83 

associated with higher levels of total protein and higher amounts and proportions of caseins in milk 84 

compared with CSN3 A allele (for a review see Di Stasio & Mariani, 2000). On the other hand, no 85 

effect of the CSN3 alleles was observed on protein and casein content in milk by Graml, 86 

Buchberger, Klostermeyer, and Pirchner (1985) and Nilsen et al. (2009). Furthermore, the CSN3 B 87 

allele has been associated with a higher cheese yield in cheeses such as Cheddar, Mozzarella, 88 

Parmigiano-Reggiano, Svecia, and Gouda (Buchberger & Dovč, 2000). As far as milk coagulation 89 

properties, several studies consistently associated the CSN3 B allele with a more uniform micellar 90 
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pattern and consequently a lower coagulation time and greater curd firmness (Bittante, Penasa, & 91 

Cecchinato, 2012; Di Stasio & Mariani, 2000). In contrast, the CSN3 E allele is associated with 92 

unfavourable milk coagulation properties (Caroli, Bolla, Budelli, Barbieri, & Leone, 2000; Jõudu et 93 

al., 2009; Kübarsepp et al., 2006), probably due to the presence of micelles with a low percentage of 94 

κ-casein (Ikonen, Ojala, & Syväoja, 1997). 95 

The aim of this study was to characterise Cinisara breed for LGB and CSN3 loci and, for 96 

the first time in this breed, analyse the influence of these loci on milk traits, cheese yield and 97 

composition. 98 

 99 

2.  Materials and methods 100 

 101 

2.1.  Animals and Management 102 

 103 

A total of 326 Cinisara lactating cows, from 15 farms located in the typical production area 104 

of Caciocavallo Palermitano cheese (Sicily, Italy), were analysed. In these farms, animals were 105 

reared in an extensive system and, during the spring period from mid-March to late May, fed mainly 106 

with natural pasture. 107 

 108 

2.2.  DNA Analysis 109 

 110 

Blood samples were obtained from the coccygeal vein using Vacutainer (Becton, Dickinson 111 

and Company, Franklin Lakes, NJ, USA) tubes containing potassium ethylene diamine tetra-acetic 112 

acid (K-EDTA). DNA from 200 µL of whole blood was extracted using NucleoSpin Blood 113 

QuickPure (Macherey Nangel, Germany) following guideline procedures.  114 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

6 

 

A 397 bp fragment of the CSN3 gene was amplified from 326 Cinisara DNA samples using 115 

the following primers: forward C1 5’CCAAGCCCAGCCAACTACCA3’; reverse C2: 116 

5’AGCCCATTTCGCCTTCTCTGTAA3’. 117 

A 422 bp fragment of the LGB gene was amplified from the same DNA samples using the 118 

following primers: forward L1 5’TCTCCCTGGCTCCATCTGACTTC3’; reverse L2: 119 

5’GGAAGCAGGTGGCACGGCAGT3’. 120 

PCR reactions for both CSN3 and LGB amplification were carried out in a final volume of 121 

50 µL containing 200 ng DNA, 1X PCR buffer, 3 mM MgCl2, 400 µM dNTPs, 20 pmol each 122 

primer, and 2.5 U Taq DNA polymerase (Promega, USA).  123 

The PCR reactions were accomplished as follow: denaturation for 45 sec at 95 °C; 124 

annealing/extension for 1 min at 70 °C, for 35 cycles for both amplifications.  The CSN3 PCR 125 

products were digested separately with HindIII and HaeIII restriction endonucleases to distinguish 126 

A and B alleles and A and E alleles, respectively.  The LGB PCR products were digested with HphI 127 

restriction endonuclease to identify A and B alleles.  The PCR-RFLP products were analysed on 2% 128 

agarose gels stained with ethidium bromide. 129 

 130 

2.3.  Milk and cheese, sampling and analysis  131 

 132 

Three hundred and seven individual milk samples, collected during the morning milking, 133 

were analysed for fat, lactose and somatic cell count by an infrared method (Combi-foss 6000, Foss 134 

Electric, Hillerød, Denmark). The pH and titratable acidity were measured by a pH meter (HI 9025; 135 

Hanna Instruments Inc., Ann Arbor, MI, USA) and as Soxhlet-Henkel degrees (°SH 50 mL-1), 136 

respectively. Total nitrogen (TN), non-casein nitrogen (NCN) and non-protein nitrogen (NPN) were 137 

determined by standard FIL-IDF procedures (FIL-IDF, 1964, 1993) according to milk nitrogen 138 

fractions indicated by Aschaffenburg and Drewry (1959). From these nitrogen fractions, total 139 

protein (TN×6.38), casein {[(TN-(NCN×0.994)]×6.38}, whey protein [(NCN-NPN)×6.38] and 140 
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casein index [casein/(TN×6.38)] were calculated. Individual milk samples were evaluated for 141 

clotting parameters by measuring clotting time (r, min), curd-firming time (k20, min), curd firmness 142 

(a30, mm) and curd firmness after 3 times the clotting time (a2r, mm) with a Formagraph instrument 143 

(Foss Electric).  144 

A laboratory micro cheese-making process was developed to manufacture pressed-curd type 145 

cheeses from each of 307 individual milk samples. The main equipment consisted of a heater fitted 146 

with thermostat and a four water baths equipped with a digital temperature controllers and pumps 147 

for water mixing to ensure homogeneous temperature. Every water bath could contain 6 vats 148 

(capacity 2000 mL); thus, the apparatus allowed processing of 24 samples simultaneously. The milk 149 

samples collected from each farm were processed during the same cheese-making trial, and so 15 150 

batches of cheeses were manufactured, each corresponding to the farm of origin. Each refrigerated 151 

(4 °C) sample of raw and whole milk (1700 mL), contained in a pyrex glass beaker, was heated in 152 

the water bath for about 30 min to reach 37 °C. After addition of 8.75 mL calf liquid rennet 153 

(1:15,000, 80 ± 5% chymosin, and 20 ± 5% pepsin; Chr. Hansen, Parma, Italy) diluted in distilled 154 

water (1.6:100), milk was maintained at 37 °C for 1 h until coagulation. The curd was then broken 155 

using a glass stick until it was reduced into small cubes like rice grains. After cooking at 80 °C for 4 156 

min in the water bath, the curd was removed from the beaker and pressed with hands into a 157 

cylindrical, perforated plastic mould of 10 cm diameter to drain the whey, and turned every 3 min to 158 

facilitate draining. After 15 min, each mould was held in the water bath at 60 °C for 1 h. Then the 159 

cheese was placed on a flat surface for draining, weighed after 1 h, and transferred to a cellar for 7 160 

days at a temperature of 16 °C and a relative humidity of 80%. For each sample, cheese yield at 1 h 161 

and 7 days and water loss between days 1–7 were measured. 162 

Individual cheese samples at 7 days were analysed for chemical composition and physical 163 

characteristics. Cheeses were evaluated, using standard FIL-IDF methods, for dry matter (IDF, 164 

1982), protein (IDF, 1964a), fat (IDF, 1986) and ash (IDF, 1964b) content. Fat and protein recovery 165 

in cheese were calculated as percentage of fat and protein in the cheese with respect to the fat and 166 
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protein content in the corresponding milk. Cheese pH was measured directly with a pH-meter 167 

equipped with a spear electrode FC 200 (HI 9025; Hanna Instruments Inc.).  168 

 169 

2.4.  Statistical analysis.  170 

 171 

Statistical analysis was performed using the GLM procedure of SYSTAT 13 (SYSTAT 172 

2009, Software Inc., Chicago, IL, USA) and analysis included CSN3 genotype (AA, AB, BB), LGB 173 

genotype (AA, AB, BB), days in milk classes (DIM: 0–101, 102–203, 204–305), farm (FM: 1–15)  174 

and the interaction CSN3 × LGB as fixed factors. The differences between means were tested with 175 

Fisher’s LSD test. Significance was declared at P≤0.05, and tendencies were declared at 176 

0.05<P≤0.10. Pearson's correlation coefficients and Bonferroni probabilities were calculated 177 

between the parameters measured in this study. 178 

 179 

3.  Results and discussion 180 

 181 

3.1. CSN3 and LGB genotyping 182 

 183 

A total of 326 Cinisara cows were typed at the CSN3 and LGB loci; genotype and allele 184 

frequencies observed at both loci are shown in Table 1, together with those reported by Chiofalo, 185 

Micari, and Sturniolo (1981) and Guastella, Marletta, Bordonaro, and D’Urso (2006). Only two 186 

animals with the CSN3 AE genotype were identified and are not considered in Table 1 and for the 187 

following analyses. This is the first time that carriers of CSN3 E allele were reported in the Cinisara 188 

breed. The identification of carriers of the CSN3 E allele should be monitored by breeders to avoid 189 

an increase in the frequency of this allele, which is associated with poor milk coagulation properties 190 

(Caroli et al., 2000). According to data shown in Table 1, genotype distributions at both loci are in 191 

Hardy-Weinberg equilibrium (Falconer & Mackay, 1996). Furthermore, comparison with data of 192 
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Chiofalo et al. (1981) and Guastella et al. (2006) shows that, in the last 34 years, LGB allele 193 

frequencies did not change, whereas the CSN3 B allele frequency was reduced by about 11% in the 194 

Cinisara breed. 195 

 196 

3.2. Effects of CSN3 and LGB loci on milk traits 197 

 198 

The least-squares means and standard errors for milk and cheese analysed traits are given in 199 

Table 2, and indicate that genotypes at the CSN3 locus significantly affect milk yield. In particular, 200 

CSN3 BB and AB cows produce a significantly higher quantity of milk than do CSN3 AA cows 201 

(i.e., 12.6 and 12.0 versus 9.9 kg day-1, respectively). These results show that, to increase milk 202 

yield, the actual decreasing trend of the CSN3 B allele frequency, in the Cinisara breed, should be 203 

reversed. Furthermore, LGB AA cows show a tendency (P<0.10) to produce more milk than LGB 204 

BB and AB cows (i.e., 12.8 versus 10.8 and 10.9 kg day-1, respectively). These results, together 205 

with those of several authors who observed both significant and null effects of the different CSN3 206 

and/or LGB genotypes on milk yield (Bonfatti, Di Martino, Cecchinato, Vicario, & Carnier, 2010; 207 

Deb et al., 2014; Gonyon et al., 1987; Ikonen, Ojala, & Ruottinen, 1999; Lin et al., 1989; Van 208 

Eenennaam & Medrano, 1991), can be explained by linkage disequilibrium between alleles of the 209 

analysed loci and quantitative trait loci (QTLs) affecting milk yield. In fact, analysis of the 210 

chromosomal distribution of the QTLs affecting the variability of bovine productions 211 

(www.animalgenome.org and references therein) shows that both the CSN3 (BTA6) and LGB 212 

(BTA11) loci are embedded in genomic regions where different authors have identified QTLs with 213 

effects on milk yield in different breeds.  214 

As a consequence, dominance effects in the two heterozygous genotypes and the strongly 215 

significant interaction (epistasis) between these two loci for milk yield (Table 2) could be ascribed 216 

to QTLs rather than to CSN3 and LGB loci. In particular, analysis of data in Table 2 shows that 217 

dominance effects are +0.75 kg day-1 for CSN3 and –0.9 kg day-1 for LGB, whereas data obtained 218 
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from cows clustered according to the two genotypes (not shown) reveal that the maximum value of 219 

epistatic interaction (+0.78 kg day-1, corresponding to a 7.5% higher daily milk production) is 220 

observed in the homozygous CSN3 BB × LGB AA genotypes. 221 

LGB genotypes significantly affect non-casein nitrogen level (P<0.01), whey protein level 222 

(P<0.01), and casein index (P<0.001). In particular, the LGB BB genotype was associated with 223 

significant lower non-casein nitrogen and whey protein levels, and higher casein index. In the 224 

Cinisara breed, we observed the same results as were consistently reported by several authors in 225 

different breeds (for a review see Di Stasio & Mariani, 2000). The effects of the LGB BB genotypes 226 

on whey protein content, and consequently on casein index, were known since the first 227 

identification of the polymorphism at the LGB locus (Aschaffenburg & Drewry, 1955), and could 228 

be due to nucleotide differences in the promoter regions associated with differential LGB allelic 229 

expression (Martin, Szymanowska, Zwierzchowski, & Leroux, 2002). 230 

Analyses of clotting parameters (Table 2) showed that CSN3 BB milk has shorter 231 

coagulation and curd firming times and stronger curd firmness (a30) compared with CSN3 AA and 232 

AB milk. Again, the results that were observed for these parameters in the Cinisara breed agree 233 

with those consistently reported by several authors (for a review see Bittante et al., 2012) and could 234 

be determined by an effect of the CSN3 polymorphism on the stabilisation and size of casein 235 

micelles (Walsh et al., 1998). In particular, the CSN3 BB genotype is associated with a larger total 236 

micellar surface, which facilitates the action of rennet (Di Stasio & Mariani, 2000; Mariani et al., 237 

1976).  238 

 239 

3.3. Effects of CSN3 and LGB loci on cheese-making parameters 240 

 241 

In Table 3, the effects of CSN3 and LGB genotypes on cheese yield and composition are 242 

reported.  In contrast to what might be expected according to the observed effects of CSN3 243 

genotypes on clotting parameters and LGB genotypes on casein index, we did not observe any 244 
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effects of genotypes at both loci on cheese yield. Similar results were reported by Glantz, Lindmark 245 

Månsson, Stålhammar, and Paulsson (2011). Furthermore, Bonfatti et al. (2011) found that bulk 246 

milk with high CSN3 B content gave higher cheese yield compared with milk with a lower 247 

proportion of CSN3 B. In this study, milk from cows with CSN3 BB and LGB BB genotypes gave 248 

a slightly higher cheese yield, and the differences with the other genotypes did not reach significant 249 

levels. 250 

According to data shown in Table 3, genotypes CSN3 BB and AB are significantly 251 

associated with greater fat recovery percentage in cheese. In addition, CSN3 BB genotype is 252 

associated, as a tendency (P≤0.10), with a lower cheese water loss during the first 7 days after 253 

manufacture. This result could be due to the better milk-clotting parameters of the CSN3 BB and 254 

AB milk, which could be responsible for an increase in fat entrapment (Choi & Ng-Kwai-Hang, 255 

2002; Mariani et al., 1976; Walsh et., 1998) and water retention during the cheese-making process. 256 

In this regard, Alipanah and Kalashnikova (2007) also observed a higher fat recovery in the curd for 257 

milk produced by cows with CSN3 BB and AB genotypes.  Moreover, the LGB BB genotype is 258 

significantly associated with a higher protein recovery in cheese (Table 3) as a consequence of the 259 

effect of this genotype on casein index (Di Stasio & Mariani, 2000) and on casein retention in curd 260 

(Hallén, Lundén, Allmere, & Andrén, 2010). These results are in accordance with those of Bittante, 261 

Cipolat-Gotet, and Cecchinato (2013) who found that protein and, to a lesser extent, fat recovery in 262 

curd have higher heritabilities than those of fat and protein content in milk. Nevertheless, in this 263 

study, the higher fat and protein recoveries in cheeses from CSN3 BB and AB genotypes, and the 264 

LGB BB genotype, respectively, showed only weak and not significant effects in increasing cheese 265 

yield. However, on the whole, the cheese yield expressed as DM percentage was moderately 266 

correlated with both fat (r = 0.45; P<0.001) and protein recoveries (r = 0.30; P<0.001), as already 267 

observed by Bittante et al. (2013). Finally, since cheese yield and the recovery of milk components 268 

are strongly influenced by cheese-making technology (Cipolat-Gotet, Cecchinato, De Marchi, & 269 

Bittante, 2013; Jakob & Puhan, 1992), and we used a micro cheese-making procedure, further 270 
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analyses are necessary to evaluate if similar results can be observed for the production of 271 

Caciocavallo Palermitano cheese, which requires a different cheese-making procedure and is 272 

normally subjected to a longer period of ripening. 273 

 274 

4.  Conclusions 275 

 276 

In this paper, the effects of CSN3 and LGB genotypes on dairy traits measured in the 277 

Cinisara breed are reported for the first time. As expected, and in accordance with the results 278 

observed by several other authors in different breeds, CSN3 genotypes affected milk-clotting 279 

parameters and LGB genotypes affected whey protein percentage and casein index. In addition, 280 

effects of the different genotypes at both loci on milk yield of the Cinisara breed were observed. In 281 

this case, linkage disequilibrium between alleles at both loci and QTLs affecting milk yield could 282 

explain the observed results, including interaction effects, with the consequence that the CSN3 and 283 

LGB loci can be considered as genetic markers for this trait. Finally, no significant effects of the 284 

genotypes at these loci on milk total casein content and cheese yield were observed. The higher 285 

percentages of milk fat and protein retention, observed in cheeses from CSN3 BB and LGB BB, 286 

respectively, are worth being further investigated with respect to the cheese-making processes used 287 

to obtain the typical dairy products. 288 
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Table 1 

Genotype distributions and allele frequencies at the CSN3 and LGB loci of the bovine Cinisara breed.a  

Locus N Genotypes   Allele frequencies   References 
AA AB BB   A B   

          CSN3 324 76 144 104  0.460 0.540  This study 
248 58 79 111  0.393 0.607  Chiofalo et al. (1981) 
156 29 85 42  0.458 0.542  Guastella et al. (2006) 

          
LGB 326 20 97 209  0.210 0.790  This study 

248 14 82 152  0.222 0.778  Chiofalo et al. (1981) 
156 6 58 92   0.224 0.776   Guastella et al. (2006) 

 

a For this study, CSN3 χ2 = 3.56, P>0.05; LGB χ2 = 3.50, P>0.05.  
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Table 2 

Least square mean and standard error (SE) of milk traits and clotting parameters of genotypes at κ-casein (CSN3) and β-lactoglobulin (LGB) loci of Cinisara 

breed. 

Item Genotype  CSN3  Genotype  LGB  Significance 
 AA AB BB  AA AB BB  CSN3 LGB CSN3 × 

LGB 
Milk traits            

Animals 72 133 102  20 95 192     
Days in milk 154±6... 148±5......... 147±5.......  148±8....... 150±4........ 151±3........  ns ns ns 
Milk yield (kg day-1) 9.9±0.57B 12.0±0.18A 12.6±0.57A  12.8±0.83& 10.9±0.40$_ 10.8±0.30$_  ** † ** 
Somatic cells count (log10 mL-1) 5.26±0.09e 5.04±0.08 5.07±0.090  5.05±0.14 5.23±0.07n 5.05±0.05z0  ns ns ns 
pH 6.5±0.0300 6.5±0.02 6.5±0.0300  6.5±0.04zz 6.5±0.02zzz 6.5±0.01zzz  ns ns ns 
Titratable acidity (°SH 50 mL-1) 3.9±0.1400 4.1±0.11 3.8±0.1400  3.8±0.2000 4.0±0.10gz00 4.1±0.07a000  ns ns ns 
Fat (%) 3.39±0.140 3.41±0.12 3.33±0.14  3.17±0.200 3.49±0.10z0 3.48±0.0700  ns ns ns 
Lactose (%) 4.99±0.040 5.00±0.03 5.02±0.040  5.02±0.060 4.98±0.03z0 5.02±0.0200  ns ns ns 
Total nitrogen (%)  0.594±0.010 0.593±0.010 0.584±0.010  0.590±0.0200 0.590±0.010 0.591±0.0100  ns ns ns 
Non-casein nitrogen (%) 0.141±0.004 0.140±0.003 0.136±0.004  0.145±0.006A 0.141±0.003A 0.132±0.002B  ns ** ns 
Protein (%) 3.79±0.060 3.78±0.05 3.73±0.060  3.77±0.09z 3.76±0.04z0 3.77±0.03z0  ns ns ns 
Casein (%)  2.89±0.06z 2.89±0.05 2.86±0.060  2.85±0.08 2.87±0.04z0 2.93±0.03zz  ns ns ns 
Whey protein (%)  0.70±0.02z 0.69±0.02 0.67±0.020  0.72±0.04A 0.70±0.02A 0.64±0.01B0  ns ** ns 
Casein index (%) 0.764±0.006 0.765±0.005 0.767±0.006  0.755±0.008B 0.763±0.004B 0.778±0.003A  ns *** ns 

Clotting parameters            
Coagulation time (r; min)  18.8±0.69A0 18.1±0.59A00 16.0±0.70B0  17.6±0.99000 18.0±0.49z00 17.3±0.37..00  ** ns ns 
Curd firming time (k20; min) 4.3±0.33Aa 3.3±0.28Ab0 2.7±0.34B0  3.7±0.48zz 3.4±0.24zzz 3.1±0.18zzz  ** ns ns 
Curd firmness (a30; mm) 29.7±1.97B0 35.9±1.68B0 39.3±1.99A...0  33.7±.2.8700 34.7±1.40...00 36.5±1.07....0  ** ns ns 
Curd firmness (a2r; mm) 35.1±1.33B0 41.6±1.19A.0 42.8±1.34A--0  39.5±.1.9300 39.0±0.940...0 41.0±0.720...0  *** ns ns 
 
a Means within a row with different superscript upper and lower case letters and with symbols differ at P≤0.01, P≤0.05 and P≤0.10, respectively. For 

significance columns: ***, P≤0.001; **, P≤0.01; †, P≤0.10; ns, not significant 
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Table 3 

Least square mean and standard error (SE) of cheese composition of genotypes at κ-casein (CSN3) and β-lactoglobulin (LGB) loci of 

Cinisara breed. 

 
Item Genotype  CSN3  Genotype  LGB  Significance 
 AA AB BB  AA AB BB  CSN3 LGB CSN3 × 

LGB 
Cheese yield at 1 h (%) 12.59±0.33 12.60±0.27 12.75±0.33  12.21±0.47 12.81±0.23 12.92±0.17  ns ns ns 
Cheese yield at 7 d (%) 11.07±0.29 11.16±0.24 11.37±0.29  10.75±0.42 11.38±0.20 11.47±0.15  ns ns ns 
Cheese water loss 1–7 days (%)  12.2±0.60&  11.2±0.50&$ 10.8±0.60$  11.81±0.86 11.19±0.42 11.21±0.31  † ns ns 
Dry matter (DM) at 7 d (%) 53.49±0.67 54.13±0.56 52.96±0.67  53.15±0.97 53.62±0.47 53.82±0.35  ns ns * 
Cheese yield 7 d (% DM) 5.88±0.16 6.00±0.13 6.00±0.16  5.70±0.23 6.04±0.11 6.14±0.08  ns ns ns 
Protein (% DM) 49.62±0.90 49.75±0.75 49.53±0.90  50.51±1.30 49.06±0.62 49.34±0.46  ns ns ns 
Fat (% DM) 35.29±1.23 36.74±1.03 35.48±1.23  35.29±1.78 36.28±0.86 35.96±0.63  ns ns ns 
Ash (% DM) 5.14±0.11 5.20±0.09  5.38±0.11  5.42±0.16 5.16±0.07 5.15±0.05  ns ns † 
Fat recovery in cheese (%) 61.09±1.63b 65.90±1.36a 64.90±1.63a  64.77±2.36 63.34±1.13 63.79±0.84  * ns ns 
Protein recovery in cheese (%) 80.26±0.67 79.86±0.56 80.49±0.67  78.96±0.97B 79.97±0.47B 81.70±0.35A  ns ** ns 
pH at 7 d 6.03±0.09 6.16±0.07 6.17±0.08  6.17±0.10 6.09±0.07 6.11±0.07  ns ns ns 

 

a Means within a row with different superscript upper and lower case letters and with symbols differ at P≤0.01, P≤0.05 and P≤0.10, respectively. For 

significance columns: **, P≤0.01; *, P≤0.05; †, P< 0.10; ns, not significant. 


