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a b s t r a c t

Lysozyme is an important defense molecule of the innate immune system. Known for its bactericidal
properties, lysozyme catalyzes the hydrolysis of b-(1,4)-glycosidic bonds between the N-acetyl glucos-
amine and N-acetyl muramic acid in the peptidoglycan layer of bacterial cell walls. In this study, the
complete coding sequence of four g-type lysozymes were identified in Ciona intestinalis. Phylogenetic
analysis and modelling supported the hypothesis of a close relationship with the vertebrate g-type ly-
sozymes suggesting that the C. intestinalis g-type lysozyme genes (CiLys-g1, Cilys-g2, CiLys-g3, CiLys-g4)
share a common ancestor in the chordate lineage. Protein motif searches indicated that C. intestinalis g-
type lysozymes contain a GEWL domain with a GXXQ signature, typical of goose lysozymes. Quantitative
Real-Time PCR analysis results showed that transcripts are expressed in various tissues from
C. intestinalis. In order to determine the involvement of C. intestinalis g-type lysozymes in immunity, their
expression was analyzed in the pharynx, showing that transcripts were significantly up-regulated in
response to a challenge with lipopolysaccharide (LPS). These data support the view that CiLys g-type are
molecules with potential for immune defense system against bacterial infection.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Lysozyme is a ubiquitous bacteriolytic enzyme produced by
diverse groups of organisms, ranging from bacteria and bacterio-
phages to fungi, plants and animals (Joll�es and Joll�es, 1984). It
catalyzes the hydrolysis of 1, 4-beta-linkages between N-acetyl-d-
glucosamine (NAG) and N-acetylmuramic acid (NAM) in peptido-
glycan heteropolymers of prokaryotic cell walls, leading to the
breakdown of bacterial cells (Smirnow and Wislowska, 2001;
Nilsen et al., 1999). As a result, lysozyme acts directly on Gram-
positive bacteria, causing the lysis of their outermost peptido-
glycan layer. Gram-negative bacteria, however, are not directly
damaged by lysozyme as their outer membrane is significantly
coated with lipopolysaccharide (LPS) moieties. Instead, the outer
membranes of Gram-negative bacteria must first be disrupted by
cationic antimicrobial peptides that expose the inner peptido-
glycan layer of bacteria to lysozyme (Banks et al., 1986; Hancock
and Scott, 2000; Ibrahim et al., 2002).

Based on differences in structural, catalytic and immunological
characteristics, lysozymes are generally classified into six main
types: chicken (c-type) (Hultmark, 1996), goose (g-type) (Prager
and Joll�es, 1996), invertebrate (i-type) (Joll�es and Joll�es, 1975), T4
phage (phage-type) (Fastrez, 1996), bacterial (Holtje, 1996), and
plant (Beintema and Terwisscha van Scheltinga, 1996). The g-type
lysozyme was initially identified as an antibacterial enzyme in egg
whites from the Embden goose (Canfield and McMurry, 1967), but
it was later found to exist in the egg whites of several other bird
species (Prager et al., 1974). More recently, the g-type lysozyme has
been identified in vertebrate species, including mammals (Nakano
and Graf, 1991), fish (Mohanty and Sahoo, 2010), urochordates
(Nilsen et al., 2003) and molluscs (Zhao et al., 2007; Zhang et al.,
2012).

Lysozyme is a well-known antibacterial protein which is active
against Gram-positive bacteria such as Staphylococcus aureus,
Micrococcus luteus, Bacillus stearothermophilus and Clostridium
tyrobutyricum (Proctor and Cunningham, 1988). It is also known to
act as an opsonin and as an activator of the complement system and
circulating phagocytes (Joll�es and Joll�es, 1984; Grinde, 1989). In
addition to these antibacterial functions, some lysozyme family
members have been demonstrated to have antiviral (Ferrari et al.,
1959; Lee-Huang et al., 1999), anti-inflammatory activities (Joll�es
and Joll�es, 1984; Samarayanake et al., 1997; Ogundele, 1998;

https://core.ac.uk/display/98111673?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:aiti.vizzini@unipa.it
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dci.2016.09.010&domain=pdf
www.sciencedirect.com/science/journal/0145305X
www.elsevier.com/locate/dci
http://dx.doi.org/10.1016/j.dci.2016.09.010
http://dx.doi.org/10.1016/j.dci.2016.09.010
http://dx.doi.org/10.1016/j.dci.2016.09.010


Table 1
Primers used for cloning and expression.

Gene Primer sequence (50-30) Application

CiLys-g1 50-TAACCCATACCCATGCCCGT-30 RACE50

50-GCTTGCCCAATCTCGTCTTT-30 NESTED50

50-TGACGGGGATTCGAACAGGA-30 RACE30

50-ATCTGGAAAGTGTGGAGGGC-30 NESTED30

CiLys-g2 50-CTCCCAAACCCTTGCTGTTC-30 RACE50

50-AATTAGATCGGGCGGCCTTA-30 NESTED50

50-GCAATGGCGACTCGTTTCAA-30 RACE30

50-GCTGAACGAGAATGGCTACG-30 NESTED30

CiLys-g3 50-TGCGACGACTCTAACACTTG-30 RACE50

50-CGTACATTGCTGACCCCAAA-30 NESTED50

50-AAAAGATCTGCGTGCGATGG-30 RACE30

50-AGGTTGATAAGCGGCACCAT-30 NESTED30

CiLys-g4 50-TCCTGCCACCATTTTACCAC-30 RACE50

50-AGCCACTACATCGCTAGAGT-30 NESTED50

50-TTGCTTTTCCTGTTCGTCGG-30 RACE30

50-GACGATCGTTACCACACCAT-30 NESTED30

CiLys-g1 50-AACTTTGTATGGACGCTGCTG-30 Real-time PCR
50-GCCCCTGCACGACTTTCA-30 Real-time PCR

CiLys-g2 50-CACGGTGCCGACACAAAGT-30 Real-time PCR
50-GCGCCTTGTAAAATGTGATCTC-30 Real-time PCR

CiLys-g3 50-GCAAGCCGCGAAAGCA-30 Real-time PCR
50-TCACCAAGCCCGTCTTTGTC-30 Real-time PCR

CiLys-g4 50-CGGCGTAGCCATCGCTTA-30 Real-time PCR
50-CGGTGGTGTCAGTGTTGTAGAT-30 Real-time PCR

Actin 50-TGATGTTGCCGCACTCGTA-30 Real-time PCR
50-TCGACAATGGATCCGGT-30 Real-time PCR

F. Di Falco et al. / Developmental and Comparative Immunology 67 (2017) 457e463458
Zhang et al., 2008), to be involved in immune modulatory (Valisena
et al., 1996; Rymuszka et al., 2005) and antitumor activities (Sava
et al., 1989), thus, it is possible that lysozymes function as multi-
purpose defense factors.

Ascidians (subphylum: Tunicata) occupy a key phylogenetic po-
sition in chordate evolution and are considered the sister group of
vertebrates (Zeng and Swalla, 2005; Delsuc et al., 2006;
Tsagkogeorga et al., 2009). They are proto-chordates which
possess an innate immune system, including inflammatory humoral
and cellular responses. An inflammatory response induced by LPS
injection in the body wall of C. intestinalis is a well-established
model for the analysis of regulator and effector inducible host de-
fense molecules of the innate immune system (Bonura et al., 2009;
Parrinello et al., 2008, 2010; Vizzini et al., 2012, 2013; 2015a, 2015b;
2016). In the present paper, we report on the identification, char-
acterization and expression of C. intestinalis g-type lysozymes.
Phylogenetic analysis was conducted to determine their evolu-
tionary relationships. Real-Time PCR analysis revealed that CiLys-
g(1-4) are expressed in several type of tissue, and their transcription
is up-regulated by LPS inoculation.

2. Materials and methods

2.1. Tunicates and LPS inoculation

Ascidians were collected from Sciacca Harbour (Sicily, Italy),
maintained in tanks with aerated sea water at 15 �C, and fed every
second day with a marine invertebrate diet of coraliquid (Sera
Heinsberg, Germany). LPS (Escherichia coli 055:B5, LPS, Sigma-
Aldrich, Germany) solution was prepared in sterile sea water
(12 mM CaCl2, 11 mM KCl, 26 mM MgCl2, 43 mM Tris HCl, 0.4 M
NaCl, pH 8.0). LPS solution (100 mg LPS in 100 ml sea water per
animal) was inoculated into the tunic matrix close to the pharynx
wall at the median body region. Ascidians, both untreated (naive
ascidians) and injected with MS (sham ascidians), were used as
controls.

2.2. Total RNA extraction

Ascidian tissue fragments (200 mg) explanted at various times
(from 1 to 72 h) were immediately soaked in RNAlater Tissue
collection solution (Ambion, Austin, TX), and stored at�80 �C. Total
RNA extractionwas performed by using an RNAqueousTM-Midi Kit
purification system (Ambion, Austin, TX).

2.3. Cloning and sequence analysis

A search conducted in the Ensembl genome browser identified
the sequence: CiLys-g1 (ENSCING00000007365), CiLys-g2 (ENSC-
ING00000024417), CiLys-g3 (ENSCING00000018223), CiLys-g4
(ENSCING00000007365). The sequence of the cDNA was obtained
by using the GeneRacerTM kit (Invitrogen, USA). 50-and 30 RACE
was conducted using the primers listed in Table 1. The overlapping
RACE products were cloned into the pCR™IIvector (TA Cloning Kit,
Invitrogen) and sequenced. They contained the complete coding
regions.

2.4. Bioinformatic analysis

The full length CiLys-g(1-4) cDNA were analyzed using the
ExPASy translation tool (http://web.expasy.org/translate/) to obtain
their ORF region, leader and trailer sequences (UTR), and the
nucleotide sequence was translated into a protein sequence. A
BLAST (http://blast.ncbi.nlm.nih.gov/Blast) search was conducted
to identify the known protein sequences that are homologous to
CiLys-g(1-4). The Exon-Intron Graphic Maker (http://wormweb.
org/exonintron) was used to create an image of the genomic or-
ganization of CiLys-g genes and for comparison. Physical and
chemical parameters such as molecular mass, and theoretical iso-
electric point were computed using the Prot-Param tool on ExPASy
(http://www.expasy.org/tool/protparam/). The NCBI Conserved
Domain database (http://www.ncbi.nlm.nih.gov/Structure/cdd/
wrpsb.cgi) was used to predict domain architecture and other
conserved domains based on sequence homology. Functional mo-
tifs were determined by comparison on the Prosite database
(http://prosite.expasy.org/scanprosite/). The putative cleavage site
of the signal peptide was predicted by SignalP 4.0 (http://www.cbs.
dtu.dk/services/SignalP/). The subcellular location of lysozyme
proteins was predicted using the MultiLoc tool (http://abi.inf.uni-
tuebingen.de/Services/MultiLoc/). Multiple sequence alignment
was conducted using CLC (Version 7.0.0). A secondary structure was
evaluated using Polyview (http://polyview.cchmc.org). Different 3D
structures were predicted using the I-TASSER program (http://
zhanglab.ccmb.med.umich.edu/I-TASSER) and the structures were
validated by Ramachandran plot analysis (http://mordred.bioc.cam.
ac.uk/~rapper/rampage.php) to obtain the best structure among
those predicted. Finally, a phylogenetic tree using Neighbor-joining
method was constructed using MEGA 6.0 after 1000 bootstrap
iterations.

2.5. Real-Time PCR analysis

Tissue Differential expression of the CiLys-g(1-4) cDNAs was
studied by Real-Time PCR using the Sybr-Green method and the
specific sets of primers listed in Table 1. Real-Time PCR analysis was
performed using the Applied Biosystems 7500 Real-Time PCR
System. Tissue Differential expressionwas performed in a 25 ml PCR
reaction containing 2 ml cDNA converted from 250 ng of total RNA,
300 nM forward and reverse primers, and 12.5 ml of Power Sybr-
Green PCRMasterMix (Applied Biosystems).

The 50 cycles of the two-step PCR program consisted of initial
polymerase activation for 3 min at 95 �C, followed by a denaturing
step at 95 �C for 15 s, and then annealing/extensionwas carried out
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at 60 �C for 45 s when the fluorescent signal was detected. Each set
of samples was run three times and each plate contained quadru-
plicate cDNA samples and negative controls.

The amplification specificity was tested using Real-Time PCR
melting analysis. To obtain sample quantification, the 2�DDCt

method was used and the relative changes in gene expressionwere
analysed as described in the Applied Biosystems Use Bulletin N.2
(P/N 4303859). The amount of CiLys-g(1-4) transcripts from
different tissues was normalised to actin in order to compensate for
variations in input RNA amounts. Relative CiLys-g(1-4) expression
was determined by dividing the normalised value of the target gene
in each tissue by the normalized value obtained from the untreated
tissue.

2.6. Statistical methods

Multiple comparisons were performed using one-way analysis
of variance (ANOVA), and different groups were compared by using
Tukey's t-test. Standard deviations were calculated on four exper-
iments. P < 0.05 was considered statistically significant.

3. Results

3.1. Sequence analysis of g-type lysozymes in C. intestinalis

A search in the Ensembl genome browser identified only g-type
lysozymes: CiLys-g1 (ENSCING00000007365), CiLys-g2 (ENSC-
ING00000024417), CiLys-g3 (ENSCING00000018223), CiLys-g4
(ENSCING00000007365).

The full-length mRNA of g-type lysozymes was isolated using a
50 and 30 RACE strategy. The cDNA and amino acid sequence anal-
ysis showed that: CiLys-g1(GenBank Accession No. KX 761980)
presents a 50-UTR of 80 bp, an ORF of 906 bp and a 30-UTR of 84 bp,
encoding 301 amino acids with a predicted molecular size of
39.3 kDa and a pI of 6.93 (Fig. 1); CiLys-g2 (KX761981) presents a 50-
UTR of 41 bp, an ORF of 564 bp, and a 30-UTR of 98, encoding 186
amino acids with a predicted molecular size of 26.4 kDa and a pI of
7.8 (Fig. 1); CiLys-g3 (KX761982) presents a 50-UTR of 59 bp, an ORF
of 456 bp and a 30-UTR of 197 bp, encoding 151 amino acids with a
predicted molecular size of 27.7 kDa and a pI of 9.79 (Fig. 1); CiLys-
g4 (KX761983) presents a 50-UTR of 58 bp, an ORF of 609 bp and a
30-UTR of 91 bp, encoding 202 amino acids, predicted molecular
size of 28.5 kDa and a pI of 7.76 (Fig. 1). In silico analysis, using
Signal P 4.1 and the DELTA BLAST program to evaluate the presence
of conserved domains, showed that: CiLys-g1 presents a predicted
signal peptide of 16 amino acids and a Lytic transglycosylase-like
(SLT) domain (51e162); CiLys-g2 presents a signal peptide of 20
amino acids and a Lysozyme-like domain (2e174); CiLys-g3 does
not present a signal peptide and shows a Lytic transglycosylase-like
(SLT) domain (19e134);CiLys-g4 presents a signal peptide of 16
amino acids and a Lytic transglycosylase-like 2 (SLT2) domain
(26e101) (Fig. 1). The MultiLoc tool was used to predict the sub-
cellular location of lysozyme proteins: CiLys-g1, CiLys-g3, CiLys-g4
showed extracellular lysozymes, while CiLys-g2 showed an intra-
cellular lysozyme. The deduced amino acid sequences of
C. intestinalis g-type lysozymes, examined in GeneBank through
BLASTanalysis, showed significant homologies with components of
the g-type lysozymes family: CiLys-g1 has an identity of 56% and a
positivity of 67% with the Lysozyme g-like 1 of Danio rerio (NP
001002706.1); an identity of 39% and a positivity of 57% with the
Lysozyme g 2 precursor of Homo sapiens (NP_783862.2); CiLys-g2
has an identity of 31% and a positivity of 54% with the Lysozyme g 1
of D. rerio (NP 001002706.1); an identity of 26% and a positivity of
51% with the Lysozyme g 2 precursor of H. sapiens (NP_783862.2);
CiLys-g3 has an identity of 51% and a positivity of 68% with the
Lysozyme g 1 of D. rerio (NP 001002706.1); an identity of 37% and a
positivity of 60% with the Lysozyme g 2 precursor of H. sapiens
(NP_783862.2); CiLys-g4 has an identity of 55% and a positivity of
68% with the Lysozyme g 1 of D. rerio (NP 001002706.1); an identity
of 35% and a positivity of 53% with the Lysozyme g 2 precursor of
H. sapiens (NP_783862.2).

The genomic organization of the CiLys-g genes was determined
and compared with those of human and D. rerio lysozyme type-g
genes (Supplementary data, Fig. S1). The CiLys-g1 and CiLys-g4
genes contained five exons and four introns like the D. rerio type g
lysozyme gene, but unlike the CiLys-g2 and CiLys-g3 genes that
contained 3 exons and 2 introns, whereas the human g-type lyso-
zyme 1 gene contained eight exons and seven introns, and lyso-
zyme g-type 2 contained six exons and five introns, with an
increase in the number of exons in the human lysozyme genes
compared to the lysozyme genes of C. intestinalis.

3.2. Alignment and structural analysis

BLAST analysis with DELTA-BLAST program showed that the
CiLys-g proteins have a GEWL domain, which belongs to a
lysozyme-like superfamily, and a GXXQ motif, which is a signature
of goose family lysozyme. In Fig. S2, by using the CLCworkbench 6.4
alignments, amino acids potentially important for lysozyme cata-
lytic activity (Glu, Asp, Asp) and for binding to ligands (Gly) were
found conserved, and a Lytic transglycosylase-like (SLT) domain
was also identified.

Secondary structure analysis using the Polyview online tool
showed an a helix region but no b-sheet region in the CiLys-g
proteins. Five distinct a-helices were found in the secondary
structure, which is a conserved feature among the g-type lyso-
zymes. Tertiary structure analysis in PyMol revealed that the 3D
structures of CiLys-g proteins, which was predicted using the I-
Tasser online server, also showed five helix regions (Fig. 1). The
active residues of the NAG binding site were distributed in both the
coil and helix regions. The conserved GXXQ motif and the
conserved catalytic residues (Glu) and (Asp) were found to be
located nearer to the hydrophobic core region.

Fig. 1 AeB shows the CiLys-g1 molecular model resulting from
the super-imposition of the 117e301 residue sequence, which
corresponds to the mature peptide and shares 55.43% identity with
the template. The homology modelling process was performed on
the basis of the known crystal structure of Australian black swan
egg white lysozyme (1gbs.1.A). The amino acids involved in binding
to the substrate (Gly118, Tyr263, Gly266) and the catalytic site (Glu188,
Asp213) were found to be conserved.

Fig. 1 CeD shows the CiLys-g2 molecular model resulting from
the super-imposition of the 17e173 residue sequence, which cor-
responds to the mature peptide and shares 32.9% identity with the
template. The homology modelling process was performed on the
basis of the known crystal structure of Anser anser goose lysozyme
(153l.1.A). The amino acids involved in binding to the substrate
(Tyr135, Gly138) and the catalytic site (Arg60,Gln82,Gln103) were
found to be conserved.

Fig. 1 EeF shows the CiLys-g3 molecular model resulting from
the super-imposition of the 4e151 residue sequence, which cor-
responds to the mature peptide and shares 51.70% identity with the
template. The homology modelling process was performed on the
basis of the known crystal structure of Struthio camelus lysozyme g
(3mgw.1.A). The amino acids involved in binding to the substrate
(Tyr113, Gly116) and the catalytic site (Glu38, Asp48, Asp63) were
found to be conserved.

Fig. 1 GeH show the CiLys-g4 molecular model resulting from
the super-imposition of the 18e202 residue sequence, which cor-
responds to themature peptide and shares 54.35% identity with the



Fig. 1. CiLys-g1, CiLys-g2, CiLysg-3, CiLys-g4 nucleotide and amino acid sequence. Mid-grey shading indicates signal peptide, light grey shading indicates Lytic transglycosylase-like
(SLT) domain; goose family lysozyme signature residues are indicated in bold and underlined. Three dimensional structure: A. CiLys-g1; C. CiLys-g2; E. CiLys-g3; G. CiLys-g4. Surface
view: B. CiLys-g1; D. CiLys-g2; F. CiLys-g3; H. CiLys-g4. The active residues are highlighted as coloured spheres, with numbers representing the location.
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template. The homology modelling process was performed on the
basis of the known crystal structure of Struthio camelus lysozyme g
(3mgw.1.A). The amino acids involved in binding to the substrate
(Tyr158, Gly164) and the catalytic site (Glu83, Asp108) were found to
be conserved.

3.3. Phylogenetic analysis

By using the MEGA 6 program, CiLys-g proteins were aligned
with vertebrate and invertebrate members of lysozyme super-
family proteins and a phylogenetic tree was constructed using the
Neighbor-joining method. The tree shows three main clusters
(Fig. S3). The first cluster includes, vertebrate and invertebrate g-
type lysozymes as well as C. intestinalis g-type lysozymes; the
second cluster includes invertebrate i-type lysozymes; the third
cluster includes vertebrate and invertebrate c-type lysozymes. This
analysis suggests that g-type lysozymes share a common ancestor
and that the i-type and c-type may be closely interrelated (Fig. S3).

3.4. Differential gene expression of g-type lysozymes in different
tissues

The spatial expression pattern of g-type lysozyme mRNA in
adult C. intestinalis was investigate by quantitative Real-Time PCR
analysis of total RNA samples from different tissue (pharynx, ovary,
stomach, intestine). Expression was detected in all tissues. As
shown in Fig. 2 CiLys-g1 expression was higher in stomach and
intestine, and lower in ovary and pharynx tissue; CiLys-g2
expressionwas higher in pharynx and intestine, and lower in ovary
and stomach tissue; CiLys-g3 expression was higher in intestine,
and lower in ovary, stomach and pharynx tissue; CiLys-g4 expres-
sion was higher in stomach and lower in intestine, ovary and
pharynx tissue.

3.5. G-type lysozyme genes expression is upregulated by LPS

To study the involvement of the g-type lysozymes of
C. intestinalis in inflammatory response induced after LPS challenge,
the expression pattern of CiLys-g(1-4) mRNAs in naive, sham and
LPS-challenged ascidians was examined by Real-Time PCR analysis.

RealTime PCR analysis of the inflamed ascidian pharynx showed
enhanced g-type lysozymes mRNA levels as an effect of the LPS
challenge (Fig. 2). To examine the temporal course of the response,
four ascidians in three distinct experiments were examined at
increasing post-inoculation time points (1, 2, 4, 8, 12, 24, 48, 72 h).
At each time point, four sham ascidians were the controls (Fig. 2).
CiLys-g1and CiLys-g2 gene expression was significantly boosted at
24e72 h, CiLys-g3 gene expressionwas significantly boosted at 24 h
and 72 h and CiLys-g4 gene expression was significantly boosted at
1 h and 2e4 h, and increased at 8e48 h. The response by sham
ascidians indicates that the inoculation procedure did not signifi-
cantly modulate mRNA expression (Fig. 2).

4. Discussion

The immune system is an important physiological mechanism
that protects the organism against invading pathogens. Lysozyme
has been characterised as an important protein of the innate im-
mune response, and has been evolutionarily conserved throughout
invertebrates and vertebrates. The archetypal lysozyme, which has
served as a model for studies on enzyme structure and function is
the c-type. Analysis of available genome sequences of C. intestinalis
reveals only g-type homologue lysozyme genes. The goose egg
lysozyme (Simpson and Morgan, 1983) was found to be a secreted
protein with a signal peptide. G-type lysozyme genes in birds, with
the exception of the chicken lysozyme g2, and mammal contain
predicted signal sequences for protein secretion (Nile et al., 2004).
In contrast most fish g-type lysozymes do not have the signal
peptide at their N-terminal sequence, suggesting that they are not
secreted from cells (Irwin and Gong, 2003; Kyomuhendo et al.,
2007).

In this study, we identified and characterised the mRNA of the
four C. intestinalis CiLys-g proteinsthat encoded for tree extracel-
lular lysozymes (CiLys-g1, CiLys-g3,CiLys-g4), and one intracellular
lysozyme (CiLys-g2). G-type lysozymes are basic proteins and, in
general, present a high isoelectric point (pI). We observed that the
g-type lysozymes of C. intestinalis cover a wide range of pI values
(from 6.93 to 9.79), suggesting a specialisation for specific tissue or
for their intracellular or extracellular location.

Analysis of the alignment and structure of the CiLys-g proteins
revealed that the mature proteins have a GEWL domain which is
specific for the lysozyme g-type and a GXXQ signature which is
specific for the Goose Lysozyme. In particular, in CiLys-g3 all three
catalytic residues (Glu, Asp, Asp) responsible for the binding of the
lysozyme to the bacterial cell wall turned out to be highly
conserved (Fu et al., 2013) whereas in CiLys-g1 and CiLys-g4, only
two catalytic residues (Glu, Asp) were found to be conserved.
Structure and surface analysis revealed that the conserved GXXQ
motif among the Cilys-g lysozymes is located nearer to the hydro-
phobic core region. This suggests that the GXXQmotif is involved in
the process of binding to the bacterial NAM-NAG and to the pro-
cessing of pathogens. Multiple sequence alignments revealed that
glycine residues remained conserved among the sequences,
including fish, birds and humans and C. intestinalis. These findings
indicate the importance of glycine residues in the structural con-
servation of g-type lysozymes. Thunnissen et al. (1995) confirmed,
using a mutation study in which the mutant without glycine res-
idue showed a declined activity, that the glycine residue is essential
for lysozymal activity. Phylogenetic analysis of vertebrate and
invertebrate g-type, i-type, c-type lysozymes supported the idea of
their evolution from a common lysozyme ancestral gene and the
conclusion that the i-type and c-type are more closely associated
that the g-type. Genomic comparison among the g-type lysozymes
of D. rerio, humans and C. intestinalis showed that the number of
exons varies, ranging from only three for the CiLys-g2 and -g3 of
ascidians to height in human lysozyme g1, and that the structural
similarities of g-type lysozymes are not reflected by their genomic
organization, since the exon-intron pattern of their genes is very
different.

The spatial expression pattern of the mRNA of g-type lysozymes
in adult C. intestinalis was investigated for different tissues (phar-
ynx, ovary, stomach, intestine) and was detected in all tissues, but
the level of mRNA was highest in the pharynx, stomach and in-
testine, which is consistent with suggestions that the g-type lyso-
zyme gene is expressed predominantly in tissues of organs exposed
to the external environment or in hematopoietic tissues (Hikima
et al., 2001; Zheng et al., 2007). The expression pattern of g-type
lysozyme genes has been investigated in various organisms. In
chickens, a restricted expression pattern of the g-type lysozyme
was found; however, it was only expressed in the bone marrow and
lungs, and not in the oviduct, providing an explanation as towhy its
absence was observed in chicken egg white (Nakano and Graf,
1991). In contrast, g-type lysozyme was quite abundant in the egg
white of many other birds, including geese, ostriches and swans
(Irwin and Gong, 2003). Nile et al. (2004) identified a second
chicken g-type lysozyme sequence (chicken g2) that was expressed
in the liver, kidneys and intestines. In humans, two g-type lyso-
zymes were identified, but neither of these genes was widely
expressed in fetal and adult tissues (Irwin and Gong, 2003). These
restricted distribution patterns in birds and mammals contrasted



Fig. 2. Real-Time PCR analysis: (A, C, E, G) Tissue expression of g-type lysozymes of C. intestinalis. The mRNA expression level was calculated relative to actin expression and shown
as mean ± SD (N ¼ 4);. (B, D, F, H) Time-course of g-type lysozymes of C. intestinalis gene expression in the pharynx after inoculation into the body wall of 100 mg bacterial
lipopolysaccharide (LPS) in 100 ml marine solution (MS) (in grey), compared with the gene expression in ascidians injected with 100 ml MS (in white). Values, plotted as mean ± SD,
were inferred from four ascidians examined in three distinct experiments; each assay was performed in triplicate. Asterisks indicate significant differences, at each time point,
between LPS and MS inoculation (post hoc Tukey's t-test). *P < 0.05; **P < 0.01.
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with the broad expression patterns of g-type lysozymes in fish and
invertebrate species. G-type lysozymes have been detected in the
spleen, kidneys, gills, skin, heart, intestines and blood of Japanese
flounder, orange-spotted grouper, large yellow croaker, Atlantic cod
and grass carp (Hikima et al., 2001; Savan et al., 2003; Yin et al.,
2003; Zheng et al., 2007), as well as in the gills, mantle, hepato-
pancreas, hemocytes andmuscles inMytilus galloprovincialis (Wang
et al., 2012). Real-Time analysis has shown that C. intestinalis g-type
lysozymes are upregulated in the pharynx after LPS challenge, in
particular, CiLys-g1, CiLys-g2 and CiLys-g3 gene expression
were significantly boosted at 24e72 h, while CiLys-g4 gene
expression was significantly boosted at 1 h and 2e4 h and
decreased at 8e48 h, supporting a defensive role for CiLys-g lyso-
zymes. All of these findings suggest a functional role for CiLys-g(1-
4) in innate immune defense and in the intracellular digestion of
bacteria in C. intestinalis, a marine invertebrate that feeds by
filtering seawater and which is often exposed to high concentra-
tions of microorganisms.
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