
Partnering Strategies for Fitness Evaluation in a Pyramidal
Evolutionary Algorithm

GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, pp 263-
270, New York, USA, 2002.

Uwe Aickelin

School of Computer Science
University of Nottingham
NG8 1BB UK
uxa@cs.nott.ac.uk

Larry Bull

Intelligent Computer Systems Centre
University of the West of England

Bristol BS16 1QY, UK

Abstract

This paper combines the idea of a hierarchical
distributed genetic algorithm with different inter-
agent partnering strategies. Cascading clusters of
sub-populations are built from bottom up, with
higher-level sub-populations optimising larger
parts of the problem. Hence higher-level sub-
populations search a larger search space with a
lower resolution whilst lower-level sub-
populations search a smaller search space with a
higher resolution. The effects of different partner
selection schemes for (sub-)fitness evaluation
purposes are examined for two multiple-choice
optimisation problems. It is shown that random
partnering strategies perform best by providing
better sampling and more diversity.

1 INTRODUCTION

When hierarchically distributed evolutionary algorithms
are combined with multi-agent structures a number of
new questions become apparent. One of these questions is
addressed in this paper: the issue of assigning a
meaningful (sub-) fitness to an agent. This paper will look
at seven different partnering strategies for fitness
evaluation when combined with a genetic algorithm that
uses a co-operative sub-population structure. We will
evaluate the different strategies according to their
optimisation performance of two scheduling problems.

Genetic algorithms are generally attributed to Holland
[1976] and his students in the 1970s, although
evolutionary computation dates back further (refer to
Fogel [1998] for an extensive review of early
approaches). Genetic algorithms are stochastic meta-
heuristics that mimic some features of natural evolution.
Canonical genetic algorithms were not intended for

function optimisation, as discussed by De Jong [1993].
However, slightly modified versions proved very
successful. For an introduction to genetic algorithms for
function optimisation, see Deb [1996].

The twist when applying our type of distributed genetic
algorithm lies in its special hierarchical structure. All sub-
populations follow different (sub-) fitness functions, so in
effect only searching specific parts of the solution space.
Following special crossover-operators these parts are then
gradually merged to full solutions. The advantage of such
a divide and conquer approach is reduced epistasis within
the lower-level sub-populations which makes the
optimisation task easier for the genetic algorithm.

The paper is arranged as follows: the following section
describes the nurse scheduling and tenant selection
problems. Pyramidal genetic algorithms and their
application to these two problems are detailed in section
3. Section 4 explains the seven partnering strategies
examined in the paper and section 5 describes their use
and computational results. The final section discusses all
findings and draws conclusions.

2 THE NURSE SCHEDULING
PROBLEM

Two optimisation problems are considered in this paper,
the nurse scheduling problem and the tenant selection
problem. Both have a number of characteristics that make
them an ideal testbed for the enhanced genetic algorithm
using partnering strategies. Firstly, they are both in the
class of NP-complete problems [Johnson 1998, Martello
& Toth 1990]; hence, they are challenging problems.
Secondly, they have proved resistant to optimisation by a
standard genetic algorithm, with good solutions only
found by using a novel strategy of indirectly optimising

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Nottingham ePrints

https://core.ac.uk/display/98098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the problem with a decoder based genetic algorithm
[Aickelin & Dowsland 2001]. Finally, both problems are
similar multiple -choice allocation problems. For the nurse
scheduling, the choice is to allocate a shift-pattern to each
nurse, whilst for the tenant selection it is to allocate an
area of the mall to a shop. However, as the following
more detailed explanation of the two will show, the two
problems also have some very distinct characteristics
making them different yet similar enough for an
interesting comparison of results.

The nurse-scheduling problem is that of creating weekly
schedules for wards of up to 30 nurses at a major UK
hospital. These schedules have to satisfy working
contracts and meet the demand for given numbers of
nurses of different grades on each shift, whilst at the same
time being seen to be fair by the staff concerned. The
latter objective is achieved by meeting as many of the
nurses’ requests as possible and by considering historical
information to ensure that unsatisfied requests and
unpopular shifts are evenly distributed. Due to various
hospital policies, a nurse can normally only work a sub-
set of the 411 theoretically possible shift-patterns. For
instance, a nurse should work either days or nights in a
given week, but not both. The interested reader is directed
to Aickelin & Dowsland [2000] and Dowsland [1998] for
further details of this problem.

For our purposes, the problem can be modelled as
follows. Nurses are scheduled weekly on a ward basis
such that they work a feasible pattern with regards to their
contract and that the demand for all days and nights and
for all qualification levels is covered. In total three
qualification levels with corresponding demand exist. It is
hospital policy that more qualified nurses are allowed to
cover for less qualified one. Infeasible solutions with
respect to cover are not acceptable. A solution to the
problem would be a string, with the number of elements
equal to the number of nurses. Each element would then
indicate the shift-pattern worked by a particular nurse.
Depending on the nurses’ preferences, the recent history
of patterns worked and the overall attractiveness of the
pattern, a penalty cost is then allocated to each nurse-
shift-pattern pair. These values were set in close
consultation with the hospital and range from 0 (perfect)
to 100 (unacceptable), with a bias to lower values. The
sum of these values gives the quality of the schedule. 52
data sets are available, with an average problem size of 30
nurses per ward and up to 411 possible shift-patterns per
nurse.

The problem can be formulated as an integer linear
program as follows.

Indices:

i = 1...n nurse index.

j = 1...m shift pattern index.

k = 1...7 are days and 8...14 are nights.

s = 1...p grade index.

Decision variables:

=

else 0
 patternshift works nurse 1 ji

xij

Parameters:

n = Number of nurses.

m = Number of shift patterns.

p = Number of grades.

=
else 0

night day / covers patternshift 1 kj
a jk

=
else 0

higheror grade of is nurse 1 si
qis

pij = Preference cost of nurse i working shift pattern j.

Ni = Shifts per week of nurse i if night shifts are worked.

Di = Shifts per week of nurse i if day shifts are worked.

Bi = Shifts per week of nurse i if both are worked.

Rks = Demand of nurses with grade s on day or night k .

F(i) = Set of feasible shift patterns for nurse i, defined as

i

shiftscombinedjBa

or

shiftsnightjNa

or

shiftsdayjDa

iF

i
k

jk

i
k

jk

i
k

jk

∀

∈∀=

∈∀=

∈∀=

=

∑

∑

∑

=

=

=

14

1

14

8

7

1

)(

Target function:

!min
1)(

→∑ ∑
= ∈

n

i

m

iFj
ijij xp

Subject to:

ix
iFj

ij ∀=∑
∈

1
)(

 (1)

skRxaq ks
iFj

n

i
ijjkis ,

)(1

∀≥∑ ∑
∈ =

 (2)

Constraint set (1) ensures that every nurse works exactly
one shift pattern from his/her fe asible set, and constraint
set (2) ensures that the demand for nurses is covered for
every grade on every day and night. Note that the
definition of qis is such that higher graded nurses can
substituted those at lower grades if necessary. Typical
problem dimensions are 30 nurses of three grades and 411
shift patterns. Thus, the Integer Programming formulation
has about 12000 binary variables and 100 constraints.

Finally for all decoders, the fitness of completed solutions
has to be calculated. Unfortunately, feasibility cannot be
guaranteed, as otherwise an unlimited supply of nurses,
respectively overtime, would be necessary. This is a
problem-specific issue and cannot be changed. Therefore,
we still need a penalty function approach. Since the
chosen encoding automatically satisfies constraint set (1)
of the integer programming formulation, we can use the
following formula, where wdemand is the penalty weight, to
calculate the fitness of solutions. Hence the penalty is
proportional to the number of uncovered shifts and the
fitness of a solution is calculated as follows.

min!0;max
14

1 1 1 11 1

→

−+ ∑∑ ∑∑∑∑

= = = == = k

p

s

n

i

m

j
ijjkisksdemand

n

i

m

j
ijij xaqRwxp

Here we use an encoding that follows directly from the
Integer Programming formulation. Each individual
represents a full one-week schedule, i.e. it is a string of n
elements with n being the number of nurses. The ith
element of the string is the index of the shift pattern
worked by nurse i. For example, if we have 5 nurses, the
string (1,17,56,67,3) represents the schedule in which
nurse 1 works pattern 1, nurse 2 pattern 17 etc.

For comparison, all data sets were attempted using a
standard Integer Programming package [Fuller 1998].
However, some remained unsolved after each being
allowed 15 hours run-time on a Pentium II 200.
Experiments with a number of descent methods using
different neighbourhoods, and a standard simulated
annealing implementation, were even less successful and
frequently failed to find feasible solutions. A
straightforward genetic algorithm approach failed to solve
the problem [Aickelin & Dowsland 2000]. The best
evolutionary results to date have been achieved with an
indirect genetic approach employing a decoder function
[Aickelin & Dowsland 2001]. However, we believe that
there is further leverage in direct evolutionary approaches

to this problem. Hence, we propose to use an enhanced
pyramidal genetic algorithm in this paper.

3 TENANT SELECTION PROBLEM

The second problem is a mall layout and tenant selection
problem; termed the mall problem here. The mall problem
arises both in the planning phase of a new shopping centre
and on completion when the type and number of shops
occupying the mall has to be decided. To maximise
revenue a good mixture of shops that is both
heterogeneous and homogeneous has to be achieved. Due
to the difficulty of obtaining real-life data because of
confidentiality, the problem and data used in this research
are constructed artificially, but closely modelled after the
actual real-life problem as described for instance in Bean
et al. [1988]. In the following, we will briefly outline our
model.

The objective of the mall problem is to maximise the rent
revenue of the mall. Although there is a small fixed rent
per shop, a large part of a shop’s rent depends on the sales
revenue generated by it. Therefore, it is important to
select the right number, size and type of tenants and to
place them into the right locations to maximise revenue.
As outlined in Bean et al. [1988], the rent of a shop
depends on the following factors:

• The attractiveness of the area in which the shop is
located.

• The total number of shops of the same type in the
mall.

• The size of the shop.

• Possible synergy effects with neighbouring similar
shops, i.e. shops in the same group (not used by Bean
et al.).

• A fixed amount of rent based on the type of the shop
and the area in which it is located.

This problem can be modelled as follows: Before placing
shops, the mall is divided into a discrete number of
locations, each big enough to hold the smallest shop size.
Larger sizes can be created by placing a shop of the same
type in adjacent locations. Hence, the problem is that of
placing i shop-types (e.g. menswear) into j locations,
where each shop-type can belong to one or more of l
groups (e.g. clothes shops) and each location is situated in
one of k areas. For each type of shop there will be a
minimum, ideal and maximum number allowed in the
mall, as consumers are drawn to a mall by a balance of
variety and homogeneity of shops.

The size of shops is determined by how many locations
they occupy within the same area. For the purpose of this
s tudy, shops are grouped into three size classes, namely
small, medium and large, occupying one, two and three
locations in one area of the mall respectively. For
instance, if there are two locations to be filled with the
same shop-type within one area, then this will be a shop
of medium size. If there are five locations with the same
shop-type assigned in the same area, then they will form
one large and one medium shop etc. Usually, there will
also be a maximum total number of small, medium and
large shops allowed in the mall.

To test the robustness and performance of our algorithms
thoroughly on this problem, 50 problem instances were
created. All problem instances have 100 locations
grouped into five areas. However, the sets differ in the
number of shop-types available (between 50 and 20) and
in the tightness of the constraints regarding the minimum
and maximum number of shops of a certain type or size.
Full details of the model and how the data was created, its
dimensions and the differences between the sets can be
found in [Aickelin 1999].

4 PYRAMIDAL GENETIC
ALGORITHMS

Both problems failed to be optimised with a standard
genetic algorithm [Aickelin & Dowsland 2000, 2001].
Our previous research showed that the difficulties were
attributable to epistasis created by the constrained nature
of the optimisation. Briefly, epistasis refers to the ‘non-
linearity’ of the solution string [Davidor 1991], i.e.
individual variable values which were good in their own
right, e.g. a particular shift / location for a particular nurse
/ shop formed low quality solutions once combined. This
effect was created by those constraints that could only be
incorporated into the genetic algorithm via a penalty
function approach. For instance, most nurses preferred
working days; thus, partial solutions with many ‘day’
shift-patterns have a higher fitness. However, combining
these shift-patterns leads to shortages at night and
therefore infeasible solutions. The situation for the mall
problem is similar yet more complex, as two types of
constraints have to be dealt with: size constraints and
number constraints.

In [Aickelin & Dowsland 2000] we presented a simple,
and on its own unsuccessful, pyramidal genetic algorithm
for the nurse-scheduling problem. A pyramidal approach
can best be des cribed as a hierarchical coevolutionary
genetic algorithm where cascading clusters of sub-
populations are built from bottom up. Higher-level sub-
populations have individuals with loner strings and
optimise larger parts of the problem. Thus, the hierarchy

is not within one string but rather between sub-
populations which optimise different problem portions.
Hence, higher-level sub-populations search a larger
search space with a lower resolution whilst lower-level
sub-populations search a smaller search space with a
higher resolution. A related hierarchical framework was
presented using Genetic Programming [Koza 1991]
whereby main program trees coevolve with successively
lower level functions [e.g. Ahluwalia & Bull 1998]. The
pyramidal GA can be applied to the nurse-scheduling
problem in the following way:

• Solutions in sub-populations 1, 2 and 3 have their
fitness based on cover and requests only for grade 1,
2 and 3 respectively.

• Solutions in sub-populations 4, 5 and 6 have their
fitness based on cover and requests for grades (1+2),
(2+3) and (3+1).

• Solutions in sub-population 7 optimise cover and
requests for (1+2+3).

• Solutions in sub-population 8 solve the original (all)
problem, i.e. cover for 1, for (1+2) and for (1+2+3).

The full structure is illustrated in figure 1. Sub-solution
strings from lower populations are cascaded upwards
using suitable crossover and selection mechanisms. For
instance, fixed crossover points are used such that a
solution from sub-population (1) combined with one from
(1+2) forms a new solution in sub-population (1+2). Each
sub-population performs 50% of crossovers uniform with
two parents from itself. The other 50% are done by taking
one parent from itself and the other from a suitable lower
level population and then performing a fixed-point
crossover. Bottom level sub-populations use only uniform
crossover. The top level (all) population randomly
chooses the second parent from all other populations.
Although the full problem is as epistatic as before, the
sub-problems are less so as the interaction between nurse
grades is (partially) ignored. Compatibility problems of
combining the parts are reduced by the pyramidal
structure with its hierarchical and gradual combining.
This can be seen as similar to the “Island Injection”
parallel GA system [Eby et al. 1999].

Using this approach improved solution quality in
comparison to a standard genetic algorithm was recorded.
Initially roulette wheel selection based on fitness rank had
been used to choose parents. The fitness of each sub-
string is calculated using a substitute fitness measure
based on the requests and cover as detailed above, i.e. the
possibility of more qualified nurses covering for less-
qualified ones is partially ignored. Unsatisfied constraints
are still included via a penalty function. This paper will
investigate various partnering strategies between the
agents of the sub-populations to improve upon these
results.

Figure 1: Nurse Problem Pyramidal Structure.

Similar to the nurse problem, a solution to the mall
problem can be represented by a string with as many
elements as locations in the mall. Each element then
indicates what shop-type is to be located there. The mall
is geographically split into different regions, for instance
north, east, south, west and central. Some of the
objectives are regional; e.g. the size of a shop, the synergy
effects, the attractiveness of an area to a shop-type,
whereas others are global, e.g. the total number of shops
of a certain type or size.

The application of the pyramidal structure to the mall
problem follows along similar lines to that of the nurse
problem. In line with decomposing partitions into those
with nurses of the same grade, the problem is now split
into the areas of the mall. Thus, we will have sub-strings
with all the shops in one area in them. These can then be
combined to create larger ‘parts’ of the mall and finally
full solutions.

However, the question arises how to calculate the
substitute fitness measure of the partial strings. The
solution chosen here will be a pseudo measure based on
area dependant components only, i.e. global aspects are
not taken into account when a substitute fitness for a
partial string is calculated. Thus, sub -fitness will be a
measure of the rent revenue created by parts of the mall,
taking into account those constraints that are area based.
All other constraints are ignored. A penalty function is
used to account for unsatisfied constraints.

Due to the complexity of the fitness calculations and the
limited overall population size, we refrained from using
several levels in the hierarchical design as we did with the
nurse scheduling. Instead a simpler two -level hierarchy is
used as shown in figure 2: Five sub-populations
optimising the five areas separately (1,2,3,4,5) and one

main population optimising the original problem (all).
Within the sub-populations 1-5 uniform crossover is used.
The top-level population uses uniform crossover between
two members of the population half the time and for the
remainder a special crossover that selects one solution
from a random sub-population that then performs a fixed-
point crossover with a member of the top population.

Figure 2: Mall Problem Pyramidal Structure.

The remainder of this paper will investigate ways to try to
improve on previously found poor results by suggesting
ways of combining partial strings more intelligently. An
alternative, particularly for the mall problem, would be a
more gradual build-up of sub-populations. Without
increasing the overall population size, this would lead to
more and hence smaller sub-populations. However, this
more gradual approach might have enabled the algorithm
to find good feasible solutions by more slowly joining
together promising building blocks. This is in contrast to
the relatively harsh two-level and three-level design
where building blocks had to ‘succeed’ immediately.
Exploring the exact benefits of a gradual build-up of sub-
solutions would make for another challenging area of
possible future research.

5 PARTNERING STRATEGIES

The problem of how to pick partners has been noted in
both competitive and co-operative coevolutionary
algorithms. Many strategies have been presented in the
literature as summarised for instance in [Bull 1997]. In
this paper, the following strategies are compared for their
effectiveness in fighting epistasis by giving meaningful
(sub-) fitness values in the pyramidal genetic algorithm
optimising the nurse scheduling and the mall problems.

• Rank-Selection (S): This is the method used so far in
our algorithms. Solutions are assigned a sub-fitness

1+2+3

1+2

all

3+1 2+3

1 3 2

2 1

all

3 4 5

score based as closely as possible on the contribution
of their partial string to full solutions. All solutions
are then ranked within each sub-population and
selection follows a roulette wheel scheme based on
the ranks [e.g. Aickelin & Dowsland 2000].

• Random (R): Solutions choose their mating partners
randomly from amongst all those in the sub-
population their sub-population is paired with [e.g.
Bull & Fogarty 1993].

• Best (B): In this strategy, each agent is paired with
the current best solution of the other sub-
population(s). In case of a tie, the solution with the
lower population index is chosen [e.g. Potter & De
Jong 1994].

• Distributed (D): The idea behind this approach is to
match solutions with similar ones to those paired with
previously [e.g. Ackley & Littman 1994]. To achieve
this each sub-population is spaced out evenly across a
single toroidal grid. Subsequently, solutions are
paired with others on the same grid location in the
appropriate other sub-populations. Children created
by this are inserted in an adjacent grid location. This
is said to be beneficial to the search process because a
consistent coevolutionary pressure emerges since all
offspring appear in their parents’ neighbourhoods
[Husbands 1994]. In our algorithms, we use local
mating with the neighbourhood set to the eight agents
surrounding the chosen location.

• Best / Random (BR): A solution is paired twice: with
the best of the other sub-population(s) and with a
random partner(s). The better of the two fitness
values is recorded.

• Rank-based / Random (SR): A solution is paired
twice: with roulette wheel selected solution(s) and
with (a) random partner(s). The better of the two
fitness values is recorded.

• Random / Random (RR): A solution is paired twice
with random partner(s). The better of the two fitness
values is recorded.

6 EXPERIMENTAL RESULTS

6.1 THE MODEL

To allow for fair comparison, the parameters and
strategies used for both problems are kept as similar as
possible. Both have a total population of 1000 agents.
These are split into sub-populations of size 100 for the
lower-levels and a main population of size 300 for the
nurse scheduling and respectively of size 500 for the mall
problem. In principle, two types of crossover take place:
within sub-populations a two-parent-two-children
parameterised uniform crossover with p=0.66 for genes
coming from one parent takes place.

Each new solution created undergoes mutation with a 1%
bit mutation probability, where a mutation would re-
initialise the bit in the feasible range. The algorithm is run
in generational mode to accommodate the sub-population
structure better. In every generation the worst 90% of
parents of all sub-populations are replaced. For all fitness
and sub-fitness function calculations a fitness score as
described before is used. Constraint violations are
penalised with a dynamic penalty parameter, which
adjusts itself depending on the (sub)-fitness difference
between the best and the best feasible agent in each (sub-)
population. Full details on this type of weight and how it
was calculated can be found in Smith & Tate [1993] and
Aickelin & Dowsland [2000]. The stopping criterion is
the top sub-population showing no improvement for 50
generations.

To obtain statistically sound results all experiments were
conducted as 20 runs over all problem instances. All
experiments were started with the same set of random
seeds, i.e. with the same initial populations. The results
are presented in feasibility and cost respectively rent
format. Feasibility denotes the probability of finding a
feasible solution averaged over all problem instances.
Cost / Rent refer to the objective function value of the
best feasible solution for each problem instance averaged
over the number of instances for which at least one
feasible solution was found.

Should the algorithm fail to find a single feasible solution
for all 20 runs on one problem instance, a censored
observation of one hundred in the nurse case and zero for
the mall problem is made instead. As we are minimising
the cost for the nurses and ma ximising the rent of the
mall, this is equivalent to a very poor solution. For the
nurse-scheduling problem, the cost represents the sum of
unfulfilled nurses’ requests and unfavourable shift-
patterns worked. For the mall, the values for the rent are
in thousands of pounds per year.

6.2 RESULTS

Table 1 shows the results for a variety of fitness
evaluation strategies used and compares these to the
theoretic bounds (Bound) and the standard genetic
algorithm approach (SGA). For the Nurse Scheduling
Problem all strategies used give better results than those
found by the SGA. However, as explained above, most
credit for this is attributed to the pyramidal structure
reducing epistasis.

On closer examination, rank-based (S), random (R) and
distributed (D) perform almost equally well, with the
rank-based method being slightly better than the other
two. All three methods have in common that they contain

a stochastic element in the choice of partner. The benefit
of this is apparent when compared to the best (B) method.
Here the results are far worse which we attributed to the
inherently restricted sampling. Interestingly, using the
double schemes (SR, BR and RR) improves results across
the board, which again strengthens our hypothesis how
important good sampling is. The overall best results are
found by the double random (RR) method. These results
correspond to those reported in [Bull 1997].

The results for the Mall problem are similar to those
found for the nurse problem: Double strategies work
better than single ones and the Best strategy does
particularly poorly. However, unlike for the nurse
scheduling none of the single strategies significantly
improves results over the SGA approach. Reasons for this
have already been outlined in the previous sections, i.e.
mainly the nature of splitting the problem into sub-
problems being contrary to many of the problem’s
constraints. On the other hand, even for the simple
strategies results are far improved over those found by
using the partnering strategies for mating, whilst those
found by the double strategies even outperform the SGA.
We believe that this can be explained as follows: The
main downfall of the partnering for mating strategies for
the mall problem was outside control of these strategies. It
lies in the fact that the sub-fitness scores are not a good
predictor for the success of sub-solutions. However, as
these results show, if the original (sub-)fitness measures
are substituted by full fitness scores based on good
partnering methods the pyramidal structure does work.
This confirms our suspicion that the previous ‘failure’ of
the pyramidal idea for the mall problem was rooted within
our choice of sub-fitness measures rather than in the
hierarchical sub-population idea itself.

Method N Cost N Feasibility M Rent M Feasibility

Bound 8.8 100% 2640 100%

SGA 54.2 33% 1850 94%

S 13.3 79% 1860 90%

R 14.5 77% 1915 94%

B 35.9 44% 1550 72%

D 14.6 77% 1820 88%

SR 12.7 84% 1950 99%

BR 14.2 81% 1897 86%

RR 12.1 83% 1955 99%

Table 1: Partnering Strategies for Fitness Evaluation
Results (N = Nurse, M = Mall).

6.3 NURSE SCHEDULING WITH A
HILLCLIMBER

The results presented so far show that even with the best
algorithm for the nurse scheduling problem some data
instances were unsolvable. In order to overcome this, a
special hillclimber has been developed which is fully
described in [Aickelin & Dowsland 2001]. The use of
local search to refine solutions produced via the GA for
complex problem domains is well established – often
termed memetic algorithms [e.g. Moscato 1999]. Briefly,
the hill-climber is local search based algorithm that
iteratively tries to improve solutions by (chain-) swapping
shift patterns between nurses or alternatively assigns a
strictly solution improving pattern to a nurse. As the hill
climber is computationally expensive, it is only used on
those solutions showing favourable characteristics for it to
exploit. Those solutions are referred to as ‘balanced’ and
one example is a nurse surplus on one day shift and a
shortage on another day shift.

The last set of experiments presented in table 2 shows
what impact the best partnering schemes for evaluation
(RR) has once the previously excluded hillclimber is
attached to the genetic algorithm. The results reveal that
the SGA is outperformed by the double random fitness
evaluation approach coupled with the hill climber. One
possible explanation for this effect can be found by
having a closer look at the RR operator. Gains are most
likely made due to better sampling. However, as
mentioned before there is a large stochastic element
involved in this case. Judging from these results it seems
that this is beneficial as it leads to a bigger variety of
solutions in turn leaving more for the hill climber to
exploit.

Algorithm Short N Cost N Feasibility

SGA & Hillclimber SGA&H 10.8 91%

RR & Hillclimber RR&H 9.9 95%

Table 2: Results for Algorithms combined with a
Hillclimber for the Nurse Scheduling Problem.

7 CONCLUSIONS

Using the partnering strategies for evaluation purposes
yields results in accordance with those reported in [Bull
1997]. For both problems the simple strategies worked
equally well apart from the restricting ‘best’ choice.
Combining two partnering schemes improved results
further with the overall best solutions found by the double

random strategy. Interestingly, the improvements of
results seemed to be based on better sampling and more
diversity. Thus for this approach an additional hillclimber
is able to improve solutions beyond the previously best
ones.

REFERENCES

Ackley D H & Littman M L (1994) “Altruism in the
Evolution of Communication”, in R Brooks & P Maes
(Eds.) Artificial Life IV, MIT Press, Mass., pp 40-48.

Ahluwalia M. & Bull L. (1998) “Coevolving Functions in
Genetic Programming: Dynamic ADF Creation using
GliB”. In V.W. Porto, N. Saravanan, D. Wagen & A.E.
Eiben (eds.) Proceedings of the Seventh Annual
Conference on Evolutionary Programming. Springer
Verlag, pp 809-818.

Aickelin U (1999). “Genetic Algorithms for Multiple-
Choice Optimisation Problems.” PhD Dissertation,
University of Wales, Swansea, Un ited Kingdom.

Aickelin U and Dowsland K (2000). “Exploiting problem
structure in a genetic algorithm approach to a nurse
rostering problem.” Journal of Scheduling 3, pp 139 -153.

Aickelin U and Dowsland K (2001). “An indirect genetic
algorithm approach to a nurse scheduling problem.”
Under review by the Journal of Computing and
Operational Research.

Bean J, Noon C, Ryan S, Salton G (1988), “Selecting
Tenants in a Shopping Mall,” Interfaces 18, pp 1-9.

Bull, L. (1997) Evolutionary Computing in Multi-Agent
Environments: Partners. In T. Baeck (ed.) Proceedings of
the Seventh International Conference on Genetic
Algorithms. Morgan Davis, L. (1991) Handbook of
Genetic Algorithms. Van Nostrand Reinhold. Kaufmann,
pp 370-377.

Bull L & Fogarty T C (1993), “Coevolving
Communicating Classifier Systems for Tracking”, in R F
Albrecht, C R Reeves & N C Steele (eds.) Artificial
Neural Networks and Genetic Algorithms, Springer-
Verlag, New York, pp 522-527.

Deb K (1996), Genetic Algorithms for Function
Optimisation, in F. Herrera, J.L. Verdegay (Editors),
Studies in Fuzziness and Soft Computing Volume 8,
Physica Verlag, pp 4-31.

Davidor Y. (1991), Epistasis Variance: A Viewpoint on
GA-Hardness, Foundations of Genetic Algorithms 1, 23-
35, G Rawlins (Ed), Morgan Kaufmann, 1991.

Eby D, Averill R, Goodman E & Punch W (1999)
"Optimal Design of Flywheels Using an Injection Island

Genetic Algorithm” Artificial Intelligence Engineering
Design, Analysis and Manufacturing, 13, pp. 389-402.

Fuller E. (1998), Tackling Scheduling Problems Using
Integer Programming. Master Thesis, University of Wales
Swansea, United Kingdom, 1998.

Holland J. (1976), Adaptation in Natural and Artificial
Systems. Ann Arbor: University of Michigan Press, 1976.

Husbands P (1994), “Distributed Coevolutionary Genetic
Algorithms for Multi-Criteria and Multi-Constraint
Optimisation”, in T C Fogarty (ed.) Evolutionary
Computing, Springer-Verlag, pp 150-165.

Iba H (1996), “Emergent Co-operation for Multiple
Agents Using Genetic Programming”, in H-M Voigt, W
Ebeling, I Rechenberg & H-P Schwefel (eds.) Parallel
Problem Solving from Nature - PPSN IV, Springer,
Berlin, pp 32-41.

Johnson D.S. (1998), private communication, 1998.

Koza, J.R. (1991) Genetic Programming. MIT Press.

Martello S. and Toth P. (1990), Knapsack Problems,
Wiley, Chichester, 1990.

Moscato P (1999), Memetic Algorithms: A Short
Introduction, in New Ideas in Optimization, Corne D,
Dorigo M & Glover F (eds), Mc Graw Hill, pp 219-234,
1999.

Potter M. & De Jong K. (1994) A Co -operative
Coevolutionary Approach to Function Optimisation. In Y
Davidor, H-P Schwefel & R Manner (eds.) Parallel
Problem Solving From Nature - PPSN III, Springer-
Verlag, Berlin, pp 249-259.

Ronald E (1995), When Selection Meets Seduction, pp
167-173 in Eshelman L, Proceedings of the International
Conference on Genetic Algorithms, Morgan Kaufmann
Publishers, San Francisco, 1995.

Smith A. and Tate D. (1993), Genetic Optimisation Using
a Penalty Function, Proceedings ICGA 5, pp 499-505,
Forrest S (ed.), Morgan Kaufmann, 1993.

Stanley A E, Ashlock D, Testatsion L (1994), “Iterated
Prisoner’s Dilemma with Choice and Refusal of
Partners”, in C G Langton (ed.) Artificial Life III,
Addison-Wesley, Redwood City, pp 131-146.

Wolpert D & Macready W (1995), No Free Lunch
Theorem for Search, SFI-TR-95-02-010, The Santa Fe
Institute, Santa Fe, pp 1-38, 1995.

