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Abstract 
 

This paper combines the idea of a hierarchical 
distributed genetic algorithm with different inter-
agent partnering strategies. Cascading clusters of 
sub-populations are built from bottom up, with 
higher-level sub-populations optimising larger 
parts of the problem. Hence higher-level sub-
populations search a larger search space with a 
lower resolution whilst lower-level sub-
populations search a smaller search space with a 
higher resolution. The effects of different partner 
selection schemes for (sub-)fitness evaluation 
purposes are examined for two multiple-choice 
optimisation problems. It is shown that random 
partnering strategies perform best by providing 
better sampling and more diversity. 

1 INTRODUCTION 

 

When hierarchically distributed evolutionary algorithms 
are combined with multi-agent structures a number of 
new questions become apparent. One of these questions is 
addressed in this paper: the issue of assigning a 
meaningful (sub-) fitness to an agent. This paper will look 
at seven different partnering strategies for fitness 
evaluation when combined with a genetic algorithm that 
uses a co-operative sub-population structure. We will 
evaluate the different strategies according to their 
optimisation performance of two scheduling problems. 

 

Genetic algorithms are generally attributed to Holland 
[1976] and his students in the 1970s, although 
evolutionary computation dates back further (refer to 
Fogel [1998] for an extensive review of early 
approaches). Genetic algorithms are stochastic meta-
heuristics that mimic some features of natural evolution. 
Canonical genetic algorithms were not intended for 

function optimisation, as discussed by De Jong [1993]. 
However, slightly modified versions proved very 
successful. For an introduction to genetic algorithms for 
function optimisation, see Deb [1996]. 

 

The twist when applying our type of distributed genetic 
algorithm lies in its special hierarchical structure. All sub-
populations follow different (sub-) fitness functions, so in 
effect only searching specific parts of the solution space. 
Following special crossover-operators these parts are then 
gradually merged to full solutions. The advantage of such 
a divide and conquer approach is reduced epistasis within 
the lower-level sub-populations which makes the 
optimisation task easier for the genetic algorithm. 

 

The paper is arranged as follows: the following section 
describes the nurse scheduling and tenant selection 
problems. Pyramidal genetic algorithms and their 
application to these two problems are detailed in section 
3. Section 4 explains the seven partnering strategies 
examined in the paper and section 5 describes their use 
and computational results. The final section discusses all 
findings and draws conclusions. 

 

2 THE NURSE SCHEDULING 
PROBLEM  

 

Two optimisation problems are considered in this paper, 
the nurse scheduling problem and the tenant selection 
problem. Both have a number of characteristics that make 
them an ideal testbed for the enhanced genetic algorithm 
using partnering strategies. Firstly, they are both in the 
class of NP-complete problems [Johnson 1998, Martello 
& Toth 1990]; hence, they are challenging problems. 
Secondly, they have proved resistant to optimisation by a 
standard genetic algorithm, with good solutions only 
found by using a novel strategy of indirectly optimising 
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the problem with a decoder based genetic algorithm 
[Aickelin & Dowsland 2001]. Finally, both problems are 
similar multiple -choice allocation problems. For the nurse 
scheduling, the choice is to allocate a shift-pattern to each 
nurse, whilst for the tenant selection it is to allocate an 
area of the mall to a shop. However, as the following 
more detailed explanation of the two will show, the two 
problems also have some very distinct characteristics 
making them different yet similar enough for an 
interesting comparison of results. 

 

The nurse-scheduling problem is that of creating weekly 
schedules for wards of up to 30 nurses at a major UK 
hospital. These schedules have to satisfy working 
contracts and meet the demand for given numbers of 
nurses of different grades on each shift, whilst at the same 
time being seen to be fair by the staff concerned. The 
latter objective is achieved by meeting as many of the 
nurses’ requests as possible and by considering historical 
information to ensure that unsatisfied requests and 
unpopular shifts are evenly distributed. Due to various 
hospital policies, a nurse can normally only work a sub-
set of the 411 theoretically possible shift-patterns. For 
instance, a nurse should work either days or nights in a 
given week, but not both. The interested reader is directed 
to Aickelin & Dowsland [2000] and Dowsland [1998] for 
further details of this problem. 

 

For our purposes, the problem can be modelled as 
follows. Nurses are scheduled weekly on a ward basis 
such that they work a feasible pattern with regards to their 
contract and that the demand for all days and nights and 
for all qualification levels is covered. In total three 
qualification levels with corresponding demand exist. It is 
hospital policy that more qualified nurses are allowed to 
cover for less qualified one. Infeasible solutions with 
respect to cover are not acceptable. A solution to the 
problem would be a string, with the number of elements 
equal to the number of nurses. Each element would then 
indicate the shift-pattern worked by a particular nurse. 
Depending on the nurses’ preferences, the recent history 
of patterns worked and the overall attractiveness of the 
pattern, a penalty cost is then allocated to each nurse-
shift-pattern pair. These values were set in close 
consultation with the hospital and range from 0 (perfect) 
to 100 (unacceptable), with a bias to lower values. The 
sum of these values gives the quality of the schedule. 52 
data sets are available, with an average problem size of 30 
nurses per ward and up to 411 possible shift-patterns per 
nurse. 

 

The problem can be formulated as an integer linear 
program as follows. 

 

Indices: 

i  =  1...n nurse index. 

j  =  1...m shift pattern index. 

k   =  1...7 are days and 8...14 are nights. 

s  =  1...p grade index. 

Decision variables: 



=

else   0
 patternshift   works nurse   1 ji

xij

 
 

Parameters: 

n  =  Number of nurses. 

m  =  Number of shift patterns. 

p  =  Number of grades. 
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pij  =  Preference cost of nurse i working shift pattern j. 

Ni  =  Shifts per week of nurse i if night shifts are worked. 

Di  =  Shifts per week of nurse i if day shifts are worked. 

Bi  =  Shifts per week of nurse i if both are worked. 

Rks  =  Demand of nurses with grade s on day or night k . 

 

F(i)  =  Set of feasible shift patterns for nurse i, defined as 
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Constraint set (1) ensures that every nurse works exactly 
one shift pattern from his/her fe asible set, and constraint 
set (2) ensures that the demand for nurses is covered for 
every grade on every day and night. Note that the 
definition of qis is such that higher graded nurses can 
substituted those at lower grades if necessary. Typical 
problem dimensions are 30 nurses of three grades and 411 
shift patterns. Thus, the Integer Programming formulation 
has about 12000 binary variables and 100 constraints. 

 

Finally for all decoders, the fitness of completed solutions 
has to be calculated. Unfortunately, feasibility cannot be 
guaranteed, as otherwise an unlimited supply of nurses, 
respectively overtime, would be necessary. This is a 
problem-specific issue and cannot be changed. Therefore, 
we still need a penalty function approach. Since the 
chosen encoding automatically satisfies constraint set (1) 
of the integer programming formulation, we can use the 
following formula, where wdemand is the penalty weight, to 
calculate the fitness of solutions. Hence the penalty is 
proportional to the number of uncovered shifts and the 
fitness of a solution is calculated as follows. 
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Here we use an encoding that follows directly from the 
Integer Programming formulation. Each individual 
represents a full one-week schedule, i.e. it is a string of n 
elements with n being the number of nurses. The ith 
element of the string is the index of the shift pattern 
worked by nurse i. For example, if we have 5 nurses, the 
string (1,17,56,67,3) represents the schedule in which 
nurse 1 works pattern 1, nurse 2 pattern 17 etc. 

 

For comparison, all data sets were attempted using a 
standard Integer Programming package [Fuller 1998]. 
However, some remained unsolved after each being 
allowed 15 hours run-time on a Pentium II 200. 
Experiments with a number of descent methods using 
different neighbourhoods, and a standard simulated 
annealing implementation, were even less successful and 
frequently failed to find feasible solutions. A 
straightforward genetic algorithm approach failed to solve 
the problem [Aickelin & Dowsland 2000]. The best 
evolutionary results to date have been achieved with an 
indirect genetic approach employing a decoder function 
[Aickelin & Dowsland 2001]. However, we believe that 
there is further leverage in direct evolutionary approaches 

to this problem. Hence, we propose to use an enhanced 
pyramidal genetic algorithm in this paper.  

 

3 TENANT SELECTION PROBLEM  

The second problem is a mall layout and tenant selection 
problem; termed the mall problem here. The mall problem 
arises both in the planning phase of a new shopping centre 
and on completion when the type and number of shops 
occupying the mall has to be decided. To maximise 
revenue a good mixture of shops that is both 
heterogeneous and homogeneous has to be achieved. Due 
to the difficulty of obtaining real-life data because of 
confidentiality, the problem and data used in this research 
are constructed artificially, but closely modelled after the 
actual real-life problem as described for instance in Bean 
et al. [1988]. In the following, we will briefly outline our 
model. 

 

The objective of the mall problem is to maximise the rent 
revenue of the mall. Although there is a small fixed rent 
per shop, a large part of a shop’s rent depends on the sales 
revenue generated by it. Therefore, it is important to 
select the right number, size and type of tenants and to 
place them into the right locations to maximise revenue. 
As outlined in Bean et al. [1988], the rent of a shop 
depends on the following factors: 

 

• The attractiveness of the area in which the shop is 
located. 

• The total number of shops of the same type in the 
mall. 

• The size of the shop. 

• Possible synergy effects with neighbouring similar 
shops, i.e. shops in the same group (not used by Bean 
et al.). 

• A fixed amount of rent based on the type of the shop 
and the area in which it is located. 

 

This problem can be modelled as follows: Before placing 
shops, the mall is divided into a discrete number of 
locations, each big enough to hold the smallest shop size. 
Larger sizes can be created by placing a shop of the same 
type in adjacent locations. Hence, the problem is that of 
placing i shop-types (e.g. menswear) into j locations, 
where each shop-type can belong to one or more of l  
groups (e.g. clothes shops) and each location is situated in 
one of k  areas. For each type of shop there will be a  
minimum, ideal and maximum number allowed in the 
mall, as consumers are drawn to a mall by a balance of 
variety and homogeneity of shops. 

 



The size of shops is determined by how many locations 
they occupy within the same area. For the purpose of this 
s tudy, shops are grouped into three size classes, namely 
small, medium and large, occupying one, two and three 
locations in one area of the mall respectively. For 
instance, if there are two locations to be filled with the 
same shop-type within one area, then this will be a shop 
of medium size. If there are five locations with the same 
shop-type assigned in the same area, then they will form 
one large and one medium shop etc. Usually, there will 
also be a maximum total number of small, medium and 
large shops allowed in the mall. 

 

To test the robustness and performance of our algorithms 
thoroughly on this problem, 50 problem instances were 
created. All problem instances have 100 locations 
grouped into five areas. However, the sets differ in the 
number of shop-types available (between 50 and 20) and 
in the tightness of the constraints regarding the minimum 
and maximum number of shops of a certain type or size. 
Full details of the model and how the data was created, its 
dimensions and the differences between the sets can be 
found in [Aickelin 1999]. 

 

4 PYRAMIDAL GENETIC 
ALGORITHMS 

 

Both problems failed to be optimised with a standard 
genetic algorithm [Aickelin & Dowsland 2000, 2001]. 
Our previous research showed that the difficulties were 
attributable to epistasis created by the constrained nature 
of the optimisation. Briefly, epistasis refers to the ‘non-
linearity’ of the solution string [Davidor 1991], i.e. 
individual variable values which were good in their own 
right, e.g. a particular shift / location for a particular nurse 
/ shop formed low quality solutions once combined. This 
effect was created by those constraints that could only be 
incorporated into the genetic algorithm via a penalty 
function approach. For instance, most nurses preferred 
working days; thus, partial solutions with many ‘day’ 
shift-patterns have a higher fitness. However, combining 
these shift-patterns leads to shortages at night and 
therefore infeasible solutions. The situation for the mall 
problem is similar yet more complex, as two types of 
constraints have to be dealt with: size constraints and 
number constraints. 

 

In [Aickelin & Dowsland 2000] we presented a simple, 
and on its own unsuccessful, pyramidal genetic algorithm 
for the nurse-scheduling problem. A pyramidal approach 
can best be des cribed as a hierarchical coevolutionary 
genetic algorithm where cascading clusters of sub-
populations are built from bottom up. Higher-level sub-
populations have individuals with loner strings and 
optimise larger parts of the problem. Thus, the hierarchy 

is not within one string but rather between sub-
populations which optimise different problem portions. 
Hence, higher-level sub-populations search a larger 
search space with a lower resolution whilst lower-level 
sub-populations search a smaller search space with a 
higher resolution. A related hierarchical framework was 
presented using Genetic Programming [Koza 1991] 
whereby main program trees coevolve with successively 
lower level functions [e.g. Ahluwalia & Bull 1998]. The 
pyramidal GA can be applied to the nurse-scheduling 
problem in the following way: 

 

• Solutions in sub-populations 1, 2 and 3 have their 
fitness based on cover and requests only for grade 1, 
2 and 3 respectively. 

• Solutions in sub-populations 4, 5 and 6 have their 
fitness based on cover and requests for grades (1+2), 
(2+3) and (3+1). 

• Solutions in sub-population 7 optimise cover and 
requests for (1+2+3). 

• Solutions in sub-population 8 solve the original (all) 
problem, i.e. cover for 1, for (1+2) and for (1+2+3). 

 

The full structure is illustrated in figure 1. Sub-solution 
strings from lower populations are cascaded upwards 
using suitable crossover and selection mechanisms. For 
instance, fixed crossover points are used such that a 
solution from sub-population (1) combined with one from 
(1+2) forms a new solution in sub-population (1+2). Each 
sub-population performs 50% of crossovers uniform with 
two parents from itself. The other 50% are done by taking 
one parent from itself and the other from a suitable lower 
level population and then performing a fixed-point 
crossover. Bottom level sub-populations use only uniform 
crossover. The top level (all) population randomly 
chooses the second parent from all other populations. 
Although the full problem is as epistatic as before, the 
sub-problems are less so as the interaction between nurse 
grades is (partially) ignored. Compatibility problems of 
combining the parts are reduced by the pyramidal 
structure with its hierarchical and gradual combining. 
This can be seen as similar to the “Island Injection” 
parallel GA system [Eby et al. 1999]. 

 

Using this approach improved solution quality in 
comparison to a standard genetic algorithm was recorded. 
Initially roulette wheel selection based on fitness rank had 
been used to choose parents. The fitness of each sub-
string is calculated using a substitute fitness measure 
based on the requests and cover as detailed above, i.e. the 
possibility of more qualified nurses covering for less-
qualified ones is partially ignored. Unsatisfied constraints 
are still included via a penalty function. This paper will 
investigate various partnering strategies between the 
agents of the sub-populations to improve upon these 
results. 



 

Figure 1: Nurse Problem Pyramidal Structure. 

 

Similar to the nurse problem, a solution to the mall 
problem can be represented by a string with as many 
elements as locations in the mall. Each element then 
indicates what shop-type is to be located there. The mall 
is geographically split into different regions, for instance 
north, east, south, west and central. Some of the 
objectives are regional; e.g. the size of a shop, the synergy 
effects, the attractiveness of an area to a shop-type, 
whereas others are global, e.g. the total number of shops 
of a certain type or size. 

 

The application of the pyramidal structure to the mall 
problem follows along similar lines to that of the nurse 
problem. In line with decomposing partitions into those 
with nurses of the same grade, the problem is now split 
into the areas of the mall. Thus, we will have sub-strings 
with all the shops in one area in them. These can then be 
combined to create larger ‘parts’ of the mall and finally 
full solutions. 

 

However, the question arises how to calculate the 
substitute fitness measure of the partial strings. The 
solution chosen here will be a pseudo  measure based on 
area dependant components only, i.e. global aspects are 
not taken into account when a substitute fitness for a 
partial string is calculated. Thus, sub -fitness will be a 
measure of the rent revenue created by parts of the mall, 
taking into account those constraints that are area based. 
All other constraints are ignored. A penalty function is 
used to account for unsatisfied constraints. 

 

Due to the complexity of the fitness calculations and the 
limited overall population size, we refrained from using 
several levels in the hierarchical design as we did with the 
nurse scheduling. Instead a simpler two -level hierarchy is 
used as shown in figure 2: Five sub-populations 
optimising the five areas separately (1,2,3,4,5) and one 

main population optimising the original problem (all). 
Within the sub-populations 1-5 uniform crossover is used. 
The top-level population uses uniform crossover between 
two members of the population half the time and for the 
remainder a special crossover that selects one solution 
from a random sub-population that then performs a fixed-
point crossover with a member of the top population. 

 

Figure 2: Mall Problem Pyramidal Structure. 

 

The remainder of this paper will investigate ways to try to 
improve on previously found poor results by suggesting 
ways of combining partial strings more intelligently. An 
alternative, particularly for the mall problem, would be a 
more gradual build-up of sub-populations. Without 
increasing the overall population size, this would lead to 
more and hence smaller sub-populations. However, this 
more gradual approach might have enabled the algorithm 
to find good feasible solutions by more slowly joining 
together promising building blocks. This is in contrast to 
the relatively harsh two-level and three-level design 
where building blocks had to ‘succeed’ immediately. 
Exploring the exact benefits of a gradual build-up of sub-
solutions would make for another challenging area of 
possible future research. 

 

5 PARTNERING STRATEGIES 

 

The problem of how to pick partners has been noted in 
both competitive and co-operative coevolutionary 
algorithms. Many strategies have been presented in the 
literature as summarised for instance in [Bull 1997]. In 
this paper, the following strategies are compared for their 
effectiveness in fighting epistasis by giving meaningful 
(sub-) fitness values in the pyramidal genetic algorithm 
optimising the nurse scheduling and the mall problems. 

 

• Rank-Selection (S): This is the method used so far in 
our algorithms. Solutions are assigned a sub-fitness 

1+2+3 

1+2 

all 

3+1 2+3 

1 3 2 

2 1 

all 

3 4 5 



score based as closely as possible on the contribution 
of their partial string to full solutions. All solutions 
are then ranked within each sub-population and 
selection follows a roulette wheel scheme based on 
the ranks [e.g. Aickelin & Dowsland 2000]. 

• Random (R): Solutions choose their mating partners 
randomly from amongst all those in the sub-
population their sub-population is paired with [e.g. 
Bull & Fogarty 1993]. 

• Best (B): In this strategy, each agent is paired with 
the current best solution of the other sub-
population(s). In case of a tie, the solution with the 
lower population index is chosen [e.g. Potter & De 
Jong 1994]. 

• Distributed (D): The idea behind this approach is to 
match solutions with similar ones to those paired with 
previously [e.g. Ackley & Littman 1994]. To achieve 
this each sub-population is spaced out evenly across a 
single toroidal grid. Subsequently, solutions are 
paired with others on the same grid location in the 
appropriate other sub-populations. Children created 
by this are inserted in an adjacent grid location. This 
is said to be beneficial to the search process because a 
consistent coevolutionary pressure emerges since all 
offspring appear in their parents’ neighbourhoods 
[Husbands 1994]. In our algorithms, we use local 
mating with the neighbourhood set to the eight agents 
surrounding the chosen location. 

• Best / Random (BR): A solution is paired twice: with 
the best of the other sub-population(s) and with a 
random partner(s). The better of the two fitness 
values is recorded. 

• Rank-based / Random (SR): A solution is paired 
twice: with roulette wheel selected solution(s) and 
with (a) random partner(s). The better of the two 
fitness values is recorded. 

• Random / Random (RR): A solution is paired twice 
with random partner(s). The better of the two fitness 
values is recorded. 

 

6 EXPERIMENTAL RESULTS 

6.1  THE MODEL  

 

To allow for fair comparison, the parameters and 
strategies used for both problems are kept as similar as 
possible. Both have a total population of 1000 agents. 
These are split into sub-populations of size 100 for the 
lower-levels and a main population of size 300 for the 
nurse scheduling and respectively of size 500 for the mall 
problem. In principle, two types of crossover take place: 
within sub-populations a two-parent-two-children 
parameterised uniform crossover with p=0.66 for genes 
coming from one parent takes place. 

Each new solution created undergoes mutation with a 1% 
bit mutation probability, where a mutation would re-
initialise the bit in the feasible range. The algorithm is run 
in generational mode to accommodate the sub-population 
structure better. In every generation the worst 90% of 
parents of all sub-populations are replaced. For all fitness 
and sub-fitness function calculations a fitness score as 
described before is  used. Constraint violations are 
penalised with a dynamic penalty parameter, which 
adjusts itself depending on the (sub)-fitness difference 
between the best and the best feasible agent in each (sub-) 
population. Full details on this type of weight and how it 
was calculated can be found in Smith & Tate [1993] and 
Aickelin & Dowsland [2000]. The stopping criterion is 
the top sub-population showing no improvement for 50 
generations. 

 

To obtain statistically sound results all experiments were 
conducted as 20 runs over all problem instances. All 
experiments were started with the same set of random 
seeds, i.e. with the same initial populations. The results 
are presented in feasibility and cost respectively rent 
format. Feasibility denotes the probability of finding a 
feasible solution averaged over all problem instances. 
Cost / Rent refer to the objective function value of the 
best feasible solution for each problem instance averaged 
over the number of instances for which at least one 
feasible solution was found. 

 

Should the algorithm fail to find a single feasible solution 
for all 20 runs on one problem instance, a censored 
observation of one hundred in the nurse case and zero for 
the mall problem is made instead. As we are minimising 
the cost for the nurses and ma ximising the rent of the 
mall, this is equivalent to a very poor solution. For the 
nurse-scheduling problem, the cost represents the sum of 
unfulfilled nurses’ requests and unfavourable shift-
patterns worked. For the mall, the values for the rent are 
in thousands of pounds per year. 

 

6.2  RESULTS  

 

Table 1 shows the results for a variety of fitness 
evaluation strategies used and compares these to the 
theoretic bounds (Bound) and the standard genetic 
algorithm approach (SGA). For the Nurse Scheduling 
Problem all strategies used give better results than those 
found by the SGA. However, as explained above, most 
credit for this is attributed to the pyramidal structure 
reducing epistasis. 

 

On closer examination, rank-based (S), random (R) and 
distributed (D) perform almost equally well, with the 
rank-based method being slightly better than the other 
two. All three methods have in common that they contain 



a stochastic element in the choice of partner. The benefit 
of this is apparent when compared to the best (B) method. 
Here the results are far worse which we attributed to the 
inherently restricted sampling. Interestingly, using the 
double schemes (SR, BR and RR) improves results across 
the board, which again strengthens our hypothesis how 
important good sampling is. The overall best results are 
found by the double random (RR) method. These results 
correspond to those reported in [Bull 1997]. 

 

The results for the Mall problem are similar to those 
found for the nurse problem: Double strategies work 
better than single ones and the Best strategy does 
particularly poorly. However, unlike for the nurse 
scheduling none of the single strategies significantly 
improves results over the SGA approach. Reasons for this 
have already been outlined in the previous sections, i.e. 
mainly the nature of splitting the problem into sub-
problems being contrary to many of the problem’s 
constraints. On the other hand, even for the simple 
strategies results are far improved over those found by 
using the partnering strategies for mating, whilst those 
found by the double strategies even outperform the SGA. 
We believe that this can be explained as follows: The 
main downfall of the partnering for mating strategies for 
the mall problem was outside control of these strategies. It 
lies in the fact that the sub-fitness scores are not a good 
predictor for the success of sub-solutions. However, as 
these results show, if the original (sub-)fitness measures 
are substituted by full fitness scores based on good 
partnering methods the pyramidal structure does work. 
This confirms our suspicion that the previous ‘failure’ of 
the pyramidal idea for the mall problem was rooted within 
our choice of sub-fitness measures rather than in the 
hierarchical sub-population idea itself. 

 

Method N Cost N Feasibility M Rent M Feasibility 

Bound 8.8 100% 2640 100% 

SGA  54.2 33% 1850 94% 

S 13.3 79% 1860 90% 

R 14.5 77% 1915 94% 

B 35.9 44% 1550 72% 

D 14.6 77% 1820 88% 

SR 12.7 84% 1950 99% 

BR 14.2 81% 1897 86% 

RR 12.1 83% 1955 99% 

Table 1: Partnering Strategies for Fitness Evaluation 
Results (N = Nurse, M = Mall). 

6.3  NURSE SCHEDULING WITH A 
HILLCLIMBER 

 

The results presented so far show that even with the best 
algorithm for the nurse scheduling problem some data 
instances were unsolvable. In order to overcome this, a 
special hillclimber has been developed which is fully 
described in [Aickelin & Dowsland 2001]. The use of 
local search to refine solutions produced via the GA for 
complex problem domains is well established – often 
termed memetic algorithms [e.g. Moscato 1999]. Briefly, 
the hill-climber is local search based algorithm that 
iteratively tries to improve solutions by (chain-) swapping 
shift patterns between nurses or alternatively assigns a 
strictly solution improving pattern to a nurse. As the hill 
climber is computationally expensive, it is only used on 
those solutions showing favourable characteristics for it to 
exploit. Those solutions are referred to as ‘balanced’ and 
one example is a nurse surplus on one day shift and a 
shortage on another day shift. 

 

The last set of experiments presented in table 2 shows 
what impact the best partnering schemes for evaluation 
(RR) has once the previously excluded hillclimber is 
attached to the genetic algorithm. The results reveal that 
the SGA is outperformed by the double random fitness 
evaluation approach coupled with the hill climber. One 
possible explanation for this effect can be found by 
having a closer look at the RR operator. Gains are most 
likely made due to better sampling. However, as 
mentioned before there is a large stochastic element 
involved in this case. Judging from these results it seems 
that this is beneficial as it leads to a bigger variety of 
solutions in turn leaving more for the hill climber to 
exploit. 

 

Algorithm Short N Cost N Feasibility 

SGA & Hillclimber SGA&H 10.8 91% 

RR & Hillclimber RR&H 9.9 95% 

Table 2: Results for Algorithms combined with a 
Hillclimber for the Nurse Scheduling Problem. 

 

7 CONCLUSIONS 
 

Using the partnering strategies for evaluation purposes 
yields results in accordance with those reported in [Bull 
1997]. For both problems the simple strategies worked 
equally well apart from the restricting ‘best’ choice. 
Combining two partnering schemes improved results 
further with the overall best solutions found by the double 



random strategy. Interestingly, the improvements of 
results seemed to be based on better sampling and more 
diversity. Thus for this approach an additional hillclimber 
is able to improve solutions beyond the previously best 
ones. 
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