
Dynamic Link Inclusion in Online PDF Journals

Steve Probets1, David F. Brailsford2, Les Carr and Wendy Hall3

1 Electronic Publishing Solutions, Navdeep Court, Melton Road, Nottingham, UK,
sgp@cs.nott.ac.uk

2 Electronic Publishing Research Group, Department of Computer Science, University of
Nottingham, Nottingham, NG7 2RD,dfb@cs.nott.ac.uk

3 Multimedia Research Group, Department of Electronics and Computer Science, University of
Southampton, Southampton SO2,lac@ecs.soton.ac.uk

Abstract. Two complementaryde factostandards for the publication of elec-
tronic documents are HTML on the World Wide Web and Adobe’s PDF (Portable
Document Format) language for use with Acrobat viewers. Both these formats
provide support for hypertext features to be embedded within documents. We
present a method, which allows links and other hypertext material to be kept in
an abstract form in separate link databases. The links can then be interpreted or
compiled at any stage and applied, in the correct format to some specific rep-
resentation such as HTML or PDF. This approach is of great value in keeping
hyperlinks relevant, up-to-date and in a form which is independent of the finally
delivered electronic document format. Four models are discussed for allowing
publishers to insert links into documents at a late stage. The techniques discussed
have been implemented using a combination of Acrobat plug-ins, Web servers
and Web browsers.

Introduction

Over the past few years two very different developments have opened up the market
for portable electronic document technologies. One of these is the World Wide Web
(WWW) with its HTML markup language; the other is Adobe Acrobat where the un-
derlying Portable Document Format (PDF) [10] is based on Level 2 PostScript. For the
moment, these are the two majorde factoelectronic document standards but neither of
them provides a comprehensive solution to the problems of producing, disseminating
and indexing a distributed corpus of electronic documents. Instead their strengths and
weaknesses are almost completely complementary which serves to highlight, yet again,
the problems of bridging the gap between the "document structure" approach of HTML
and the "document appearance" starting point of Acrobat’s PDF.

This paper explains why dynamic link inclusion is beneficial and how it is achieved
in two disparate standards such as HTML and PDF. HTML and PDF differ, not only
in syntax but in their underlying link methodology. The paper goes on to explain how
dynamic link inclusion can be achieved in PDF files by extending the functionality of
the Acrobat viewer and how users can access the dynamic link inclusion software using
the World-Wide Web.

World Wide Web documents are marked up in hypertext markup language (HTML)
which is derived from SGML. There is no notion of a conventional ’page’ nor of fixed

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Nottingham ePrints

https://core.ac.uk/display/98062?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


hyphenation and justification decisions. In a sense, therefore, HTML documents (like
SGML ones) are driven ’top-down’, from their structural tags, with detailed appearance
on the screen being a function of the viewer rather than any inherent rasterising model
in HTML.

Acrobat viewers, by contrast, are driven ’bottom up’ from PDF, which is specifi-
cally designed for fast, on-screen, rendering of documents. The PDF document model
is still strongly allied to pages and any resizing of the screen window in Acrobat leads to
a cropping of the page on the screen, rather than wrap-around and re-formatting. There
are simple hypertext features in PDF including links, bookmarks and electronic ’yellow
stickers’. Acrobat also has an extensive application programmers interface (API) which
enables developers to write code that can be executed under certain circumstances by
Acrobat viewers. The programs developed by the API are known asplug-ins; they are
not stand-alone programs but dynamically linked libraries, which are accessed from the
Acrobat viewer. In this respect Acrobat viewers have similar extensibility to WWW
viewers such as Netscape and Internet Explorer (which also have plug-in capabilities).
Recent developments with Acrobat 3.0, such as a closer relationship with web browsers
and support of forms, have underlined the importance of WWW for disseminating doc-
uments whether they be in HTML or PDF.

Despite the popularity of the HTML and PDF formats they are far from being the
last word in electronic document evolution. We shall set out, in the next section, the
current arrangements for embedding hypertext links into PDF and HTML documents,
finding that the very notion of ’link embedding’ constitutes a large proportion of the
problem with respect to updating and maintaining HTML and PDF documents.

The goal of our research is to follow well-established principles from previous hy-
pertext systems [5] [4] [13] which show that ’separable hyperstructure’ confers enor-
mous benefits in the flexible usage of an electronic document. By keeping hypertext
items in a separate link database we are able to engineer a publisher’s toolkit that en-
ables hypertext features to be overlaid, as needed, onto documents held in a wide variety
of formats. The very popularity of HTML and PDF make them the obvious candidates
for testing out these ideas.

Link Implementation in HTML and PDF

In the HTML format, links are embedded in documents by an extension of the tagging
structure used for features such as paragraphs, font changes and so on. For example a
construction such as:

The <A HREF="http://www.w3.org/">W3</A> consortium ...
will cause the phrase ’The W3 consortium ...’ to be rendered on the screen, with the

word ’W3’ being highlighted (usually in blue) by virtue of its position between the<A>
and</A> tags. This highlighting denotes that W3 is to be the ’source anchor’ for a link,
with the ’destination anchor’ being specified by the string beginning"http://... .
Notice that this notation specifies very clearlywherethe destination document is held,
via the Internet addresswww.w3.org . Once that server has been contacted the ultimate
destination is the start of the default document at this address. This notation has the
virtue that the word ’W3’ remains the source anchor regardless of whereabouts on the



screen it appears but the hard-coding of the link destination causes all kinds of problems
if the physical location of the destination document changes or if the destination file
were to be renamed.

If embedded HTML links are far from satisfactory then things become even more
desperate when we turn to PDF. The links can be intra-document (i.e. from one place
in a document to another place in the same document), inter-document (i.e. from one
place in a document to a particular place in another document on the same file system) or
they can point at resources on the internet (web-links). The word ’place’ in the previous
sentence has to be taken all too literally: the source and destination anchors of a PDF
link have to be specified as bounding boxes of the desired ’hot areas’ on the appropriate
PDF pages. A PDF version of the previous example could not tag the wordW3, in the
abstract, as being the source anchor of a link. Rather it assumes that, by one means or
another, the position of the word on the page, and its bounding box, can be calculated so
that a position-specified anchor can be created. To be fair, a small amount of indirection
is permitted, for the destination of a link, in the latest version of PDF. But in quoting
a label such asFREDfor the destination of a link we still cannot escape from the fact
thatFRED’s absolute position coordinates and bounding box still have to be specified
somewhere in the PDF file.

It is clear, then, that PDF links and bookmarks are hard to specify correctly. One
way out of the dilemma is to generate these items during the typesetting process. This is
achieved by inserting PDFMARK procedure calls into the PostScript file produced by
the chosen text-formatting software. The PDFMARKs are PostScript procedure calls
which specify hypertext items. When the PostScript is converted to PDF by Adobe’s
Distiller program, the PDFMARKs are mapped to the appropriate PDF hyperstructural
item.

The CAJUN [15] project at the University of Nottingham used this technique to
automate link insertion into documents. It must be noted that Hyperfeatures produced
by this method are embedded into the PDF file as the file is created and, as such, suffer
all the drawbacks mentioned in the next section.

A final point to note is that, like Acrobat, web servers are extensible, in that they
provide hooks through which the functionality of the system can be extended. Whereas
the standard way to add functionality to Acrobat is via plug-ins, web servers use Com-
mon Gateway Interface (CGI) scripts. A CGI script is a script or program that runs
on the web server with end-users uploading data to the server (typically using HTML
forms). The CGI scripts can access the data supplied by the form document and act on
it accordingly. Web search engines use a form and CGI script interface. The CGI scripts
can, if necessary, invoke Acrobat and utilise Acrobat plug-ins thereby enabling PDF
files to be manipulated over the internet.

Separable Hyperstructure

The previous sections have shown that there are several interconnected issues to be ad-
dressed when developing a system for hypertext items that makes them easy to maintain
and to update. These issues are theseparability, generalityand thelevel of abstraction
that a document model permits its links (and other hypertext items) to possess. Turning



first to the embedding of links, we see at once that this approach makes it very difficult
for documents to be shared in a useful way. Suppose we have a large, 50 Mbyte, PDF file
with some publisher-supplied links already embedded within it. Suppose, furthermore,
that this file is to be viewed by 50 different people in an organisation and all of these
people want to add their own hyperstructure. The only way to do this, at the moment, is
for each user to add extra links via Acrobat Exchange and to save a personal copy of the
file with these new links embedded in it. The net effect of this is to create 2.5 Gbytes
of extra PDF files, all of which have the same underlying imageable material and differ
only in the hyperlinks that have been added. But if these extra links could be saved
in a separate link base then a plug-in extension for the Acrobat viewer could interpret
them and overlay them onto the imageable content supplied from a single master PDF
file. This model bears strong similarities to the way in which re-entrant, or ’pure code’,
programs are administered in multi-user virtual memory systems. A master copy of the
program code is shared between all users on the machine but each user has a separate
and personal data segment. An incidental benefit of separated link bases is that these
can be kept fully up-to-date quite independently of the underlying material to which
they refer.

We have already described how a PDF link from a phrase such asHELLO WORLD
is specified by the bounding box of that phrase on a given page. Although the Acrobat
Exchange viewer does not allow the underlying material to be edited in any way, it does
allow for pages to be added, deleted or replaced. The effect of replacing a page whose
original version contained the source or destination of a link is to transfer the link to
the replaced page with exactly the same position and bounding box. Thus, if the phrase
HELLO WORLDhas migrated due to a reformatting of the page then the anchor for the
PDF link will notmigrate with it. This effect underlines the case for abstractness in link
specification and a late-binding implementation policy. If the specification of the source
for the link, in the separate link base, specifies the anchor as being the first occurrence
of HELLO WORLDin section 3.0 of a given document then the Acrobat plug-in can
locate the page position of that anchor at the last possible moment thereby avoiding the
problems of ’hard’ embedded links becoming out-of-date.

Separable hyperlinks have been argued to be advantageous for many reasons, ([3][14]
and [6], the latter based on the Dexter Hypetext Model [9]). They allow the author or
reader of a document to create a personalised overlay of hypertext structure that is (to
some extent) insulated from changes made to the source document’s data or formatting.
They also enableone to manytype links to be specified (although how these links are
implemented within a product like Acrobat must be addressed — see later). Finally, they
provide an advantage in the case where thelinked-todocument is subject to change. A
database of links makes the requirements for consistency explicit with respect to a set
of both source and destination documents, allowing an authoring environment to check
document editing activities against the explicit collection of link objects. For example,
the Hyper-G environment provides strict guarantees of link consistency by monitoring
all document changes and renames, automatically updating the relevant link objects as
necessary, even if they are maintained on a different host computer to the edited docu-
ment.



Let us look briefly at some existing hypertext systems, to see how they cope with
the points raised.

Web Links

In order to overcome the problem that Web links are too specific in pointing towhere
information is kept rather thanwhat the information is, the IETF Uniform Resource
Identifier Working Group (http://www.ics.uci.edu/pub/ietf/uri/ ) was
set up to investigate how link destinations could be specified in a more generic man-
ner. Although the IETF Working Group has investigated ways to provide a ’resolution-
mechanism-independent architecture for Uniform Resource Name (URN) usage and
name space management’ which would go some way to solving this problem, the like-
lihood of their results being implemented soon is doubtful. URN’s should encompass
scope, uniqueness and persistence using a resolvable extensible architecture. To achieve
this goal numerous schemes have been developed by the IETF’s working group. In the
discussions that follow, links to web pages have been specified using universal resource
locators, however there is no reason why URN link specifiers could not be used instead.

Acrobat Links

Link annotations within Acrobat differ from the link anchors found in web documents
in that they link from and to specific views of a page, rather than from and to spe-
cific words within a document. Acrobat links are more closely related to the idea of a
web imagemap in that link sources are specified in page coordinates whereas the web’s
HTML anchors link from a word or group of words to another document, or to a specific
point within another document. Thus a textual description of an Acrobat link could be
described as:
Link from the area enclosed by the coordinate pair (x1,y1)
(x2,y2) to file XYZ.HTML and display this document with
the anchor DESTINATION at the top of the browser window.

As mentioned earlier, in order to extend the lifespan of web links within PDF there
is no reason why URN based schemes could not be adopted to work with the web links
of Acrobat.

HyTime, Hyper-G and Microcosm

Other hypertext environments promote the idea of hyperlinks as first-class objects, man-
aged separately from the documents to which they refer. The HyTime [12] standard
defines independent links which (through a sophisticated combination of address reso-
lution techniques) can point to the data at the source and destination of the link, while
being stored in an entirely different location. Through the use of notation specific lo-
cators even data in highly specialised formats (such as PDF) can be represented in
hypertext links, although, for reasons of simplicity, we chose to describe links using an
SGML-based notoation (see Fig. 1).

Hyper-G (and its commercial form, HyperWave) [13] take advantage of independent
databases of bi-directional links to provide guarantees of consistency across its global



hyperstructure, thereby eliminating the dangling link problem and alleviating some of
the source/destination inconsistency problems that can arise when editing hypertext
material.

In both Hyper-G and Microcosm [4] it is the responsibility of the document viewers
to actively interrogate the link databases to discover any available links; other software
which shares the same API may also manipulate links in various ways. For example,
Microcosm provides a chain of software processes (called filters) which can handle
the link requests on behalf of the viewer, expanding or pruning the selection of links
that was originally requested. Microcosm’s links themselves are of three main types
depending on the context that a link is applicable to: a specific link is applicable only in
one specific location in one specific document whereas, at the other end of the spectrum,
a generic link is applicable at any point in the document corpus that a particular keyword
occurs.

It has been argued that a separate database of links and documents is equivalent to
a single database of documents with embedded links [1], however this is not the case
when a link may be anchored at many places in the document corpus. In addition a
separate link database is a necessity when dealing with a document format that does not
itself support embedded links (e.g. plain ASCII text files or GIF images).

Four Models for Link Services

The advantages provided by separable databases of links have been outlined above. The
form of this database is variable, although for this work we have a chosen a link database
that can be described by a simple SGML DTD (an example of database entries can be
seen in Fig. 1). The database consists of a sequence of links, and each link is composed
of a source, a destination and some optional descriptors. Both the source and destination
are described as a triple (document URL, offset within document, selected object within
document) and allow the system to pinpoint the link anchors either by measuring from
the beginning of a document (using the offset), or by matching a selection, or both.

The idea of external linkbases (Fig. 1) is very attractive in web-oriented environ-
ments where the rapid expansion of available data, means that hard-coded links in web
pages and PDF articles (even using URNs) are very hard to keep up-to-date. External
linkbases are much easier to maintain and manage; information has to be updated in
one place rather than in multiple files.

The linkbases used in this work are derived from those used by Microcosm. In
Fig. 1, the ’type=generic’ attribute specifies that the link being described applies to all
occurences of the source term in all files. Like Microcosm links could be restricted to
specific files by specifying the source document (’type=local’) and to specific words
within specific files if the offset is specified (’type=specific’). Due to the nature of the
PDF language, offsets cannot easily be calculated, however word occurence could be
used instead (e.g. link from the 2nd occurence of the phrase ’Computerized Braille
Typesetting’). By ’typing’ links in this way source anchors can be precisely specified.

If external linkbases are used, the ability to dynamically include links in documents
at the time the document is requested means that end-users can always be supplied with
current links to the latest information. If linkbases are to be used as the source of hyper-



<link type=generic>
<src>
<doc><offset><sel>Typesetting
<dest>
<doc>http://cajun.cs.nott.ac.uk/wiley/journals/
epo/pdf/volume1/issue2/ephxj012.pdf
<offset><sel>
<title>Computerized Braille Typesetting: Another
View of Mark-up Standards
<link type=generic>
<src>
<doc><offset><sel>SGML
<dest>
<doc>http://cajun.cs.nott.ac.uk/wiley/journals/
epo/pdf/volume2/issue1/epdxb021.pdf
<offset><sel>
<title>Why Use SGML?

Fig. 1.An example linkbase

features in journal articles then there are various models that can be used to accomplish
this. Different models occur when the linkbases and papers are in different locations
and the model of choice may depend on who owns the papers and the linkbases. These
models are described below and outlined in Fig. 2.

1. Microcosm model. The conventional Microcosm model assumes that publishers
have control of articles and that users maintain their own linkbase files. In this
instance, the user obtains the paper from the publisher and applies his links to the
file to create a customised hyper-linked file.

2. Publisher control model. A second model occurs when the publishers maintain both
articles and linkbases. Users request an article from the publisher and inform the
publishers that they require one particular linkbase to be applied to the file. Pub-
lishers then include the links into the file and disseminate the file to the user.

3. Split control model 1. This is a model where publishers can make revenue from
hitherto unforeseen areas. The publisher can allow (and charge for) their linkbases
to be incorporated into files that end-users own (they may even have been purchased
from other publishers). In this case the end-user sends his article over the Internet
to the publisher, with a request that a certain type of link be included in his file.
The publisher performs the inclusion and sends the file back to the user. This fa-
cility could be charged for, but, even if it is provided as a free service, publishers
would not be losing out, as they could include links in their client’s file that point
to files that the publisher is selling. As an example of this, a researcher may own
a PDF file about the use of radioactive isotopes in elucidating fish diseases. The
main area of interest for the researcher may be in radioactive isotopes or it may
be in fish biology. Assuming that the interest lies in fish biology and that the re-
searcher knows that XYZ Publisher has an extensive fish biology linkbase, then the



Linkbase Add links
plug-in

Linked
Paper

Linked
Paper

User requests paper from
publisher. Paper sent to
user who inserts linkbase

User requests that the
publisher includes one of 
their linkbases into one of
their papers. Fully linked
paper is then returned

USER PUBLISHER DESCRIPTION

Paper

Linkbase

Add links
plug-in

Paper

Paper
Add links
plug-in Linkbase

Linked
Paper

User sends paper to publisher.
Publisher inserts their linkbase
and fully linked paper is
returned

Split Control Model 1

Paper Add links
plug-in

Linked
Paper

User requests linkbase from
publisher. User then inserts 
linkbase into paper

Linkbase Split Control Model 2

Microcosm Model

Publisher Control Model

Fig. 2. Four models of link inclusion

researcher can transfer the paper over the internet to XYZ Publisher, with a request
that the contents of the fish biology linkbase be inserted into the paper. Alterna-
tively if both link subjects are of interest, then links from the fish biology linkbase
could be inserted in one colour and links from the radioactive isotope linkbase in
another colour.

4. Split control model 2. An alternative model which is similar to the previous model
involves transferring the linkbase from the publisher to the client and enabling the
client to incorporate the linkbase into any article maintained on the client’s ma-
chine. The advantage of this model is that the majority of processing is performed
on the client’s machine (this model has been termed the heavyweight-client model)
thereby reducing the load on network servers. The obvious disadvantage however
is that publishers are distributing a saleable asset, the linkbase, into the community
where it can be reproduced, transferred or altered without the publisher’s consent.



The Open Journal’s Acrobat Plug-in Toolkit

The Open Journal Project is a project undertaken by the Universities of Southampton
and Nottingham in conjunction with a number of academic journal publishers [8]. The
aim of the Open Journal Project is to provide a framework for publishing journals in a
network environment such that maximum access to (and from) the publications is en-
sured. Part of the work performed for the Open Journal Framework (OJF) is to develop
tools which enable the first of the split control scenarios to occur with Acrobat PDF
files. Other parts of the project have enabled similar facilities to occur within HTML
documents and documents in other formats. However, PDF appears to have become the
standard format for electronically disseminating print-based journal articles, therefore
the remainder of this paper deals solely with Acrobat PDF article dissemination.

In order to make PDF documents compatible with external linkbases, Acrobat plug-
ins have been developed to incorporate links from a linkbase into a PDF file, and web
compliant programs using the HTTP protocol have been developed to ease the transfer
of PDF articles over the Internet from client to publisher.

A number of tools have been developed as part of the OJF project that will be
directly of use to publishers of PDF products. Some of these tools are designed as
tools to be used by publishers to include links into PDF documents before making the
documents available over the Internet. Other tools are designed so that users can specify
which types of links they require in files that they are downloading. The tools developed
so far include:

– Basic OJF plug-in. This plug-in reads a linkbase and includes the links into a PDF
file. If there are multiple links in the linkbase with the same source, only the first
link is included. The included links follow the same specification as that required
by Adobe’sweblinkplug-in, therefore PDF written with this plug-in can be read
with the basic Acrobat Reader, or Exchange with theweblinkplug-in.

– Multiway OJF plug-in. This plug-in also includes the links from a linkbase into the
PDF. It differs from the basic plug-in in that if a source word has multiple links
emanating from it (e.g. if there are multiple entries in the linkbase for particular
phrase), then all these links are maintained in the PDF. Only one link object is
created around the source phrase, but multiple destinations are stored within the link
object. In order to achieve this the PDF link object has been extended to include
multiple destinations, each of these destinations having an associated description
allowing users to make an informed choice about which link they wish to follow.
In order to use the PDF created by this plug-in, users need to have a plug-in which
reads and displays the multiway links (the multiread plug-in — see later). The
PDF link objects have been created in such a way that if the multiread plug-in is
not installed on the end user’s machine then the standard web-link plug-in should
be able to read and follow the first of the link choices. Links included using the
Multiway and Basic plug-ins appear to to the user as normal Acrobat web-links.

– Multiread plug-in. This is the plug-in that enables users to select a multiway link
and to be presented with a choice of destinations. Users can follow the link to
the destination of their choice. This plug-in also enables the user to edit either the
destination, the source or the description of a multiway link. Currently this plug-in



creates an HTML file from the data in the PDF link object and uses a web browser
to supply the multiple destinations to the user.

– Sendpdf plug-in. This plug-in implements the two parts of split control method 1.
The user has the ability to send a PDF file maintained locally on the user’s machine
to a web server running a version of the Multiway OJF plug-in. As well as sending
PDF, the user specifies which linkbases should be included and in what colours.
The web server performs the linkbase inclusion and sends the fully linked paper
back to the user. If the user is on a particularly slow link, and the paper to be used
as the basis for link inclusion is available over the web, then the user can send the
URL of the paper of the paper into which the server is to include the links. The
server will then download the paper before including the links. The information
flow for this process is described here:

1. The user requests (by selecting a tool button in Exchange) that a web page
outlining the linkbases offered by the publisher should be downloaded. (The
User requires Exchange with thesendpdfandweblinkplug-ins).

2. The publisher’s web server returns an HTML page outlining the linkbases of-
fered for inclusion by the publisher. This HTML page contains a form enabling
the user to specify the location of the paper that is to have the links included,
the linkbases to include and the colours. (The Publisher requires a web server.)

3. The user fills in this form and returns it to the publisher. (The user requires a
web browser.)

4. The publisher’s web server requests the PDF specified by the user from a re-
mote server. (The publisher requires a CGI script (calledinslinks) to download
the paper.)

5. The PDF paper is sent to the publisher’s web server by the remote web server.
6. TheinslinksCGI script then calls Exchange on the publisher’s machine which

automatically includes the linkbases requested by the user. (The publisher re-
quires themultiwayOJF plug-in.)

7. Exchange returns the fully linked PDF document back to the publisher’s web
server.

8. The publisher’s web server can now return the fully linked PDF file to the user’s
web client.

9. The web client reads the PDF file and invokes Acrobat Exchange so that the
user can view the fully linked document.

– Utility plug-ins. These enable existing links in PDF documents to be extracted and
stored in linkbases.

– Tools for generating linkbases from other information sources such as bibliography
files.

Linkbase Management: Acrobat Plug-ins for a WWW Proxy

At the start of the OJF project, the existence of PDF journal articles on the WWW
was conjectured rather than experienced; midway through the project most publishers
had already provided archives of journal material as a commercial service, viewable
not even in separate helper applications any more, but as an integral part of the WWW



browser window. In such an environment, the publishing partners were keen to see OJF
software that (a) required no additional software to be downloaded and maintained on
the users’ system and (b) that did not change the way that the user normally browsed
for information. In other words, the interactive, menu-driven link enquiry interface [2]
that was inspired by Microcosm had to be changed into a hands-off, automatic interface
that looked exactly like the WWW.

Hence an alternative, ’interfaceless’ approach was investigated, making link addi-
tion transparent to its users by embedding it in the WWW’s document transport system,
compiling links into documents as they were delivered to the user by a specially adapted
WWW proxy server (a proxy link server). This provides a variation on the Publisher
Control model of Fig. 2: the linking proxy can be hosted by a different publisher to the
one that serves the documents that the user requests—allowing the ownership of the
links to be independent of the ownership of the documents.

Controlling Links In this new scenario users just see linked PDF documents delivered
and displayed as normal, with no intervention on their part. Since the interfaceless link
server may require at least some configuration beyond the defaults set up by the service
administrator (for example choosing applicable sets of link databases for an individual),
a method for communicating with the server is provided. This takes the form of a kind of
a ’link remote controller’ which is an HTML form displayed in a browser window and
whose results are interpreted by a module in the link server and retained on the proxy’s
persistent storage to modify any further requests from the same user. The purpose of the
controller is to give to the user the ability to choose how links are displayed and used
within the processed documents

The controller gives the user the ability to choose which one of the server’s installed
linkbases are to be combined with requested documents, or to completely bypass the
link compilation if a ’normal’ document viewing mode is required. The controller pro-
vides a greater degree of control over the linking process, enabling the user to specify
in some detail which link databases are switched on and off as the user browses in and
out of a number of document resources, to control the kinds of linkbase that are used
at such a point (e.g. internal navigation through a resource vs citation of documents
external to the resource)

The Open Journal Framework Project makes use of this kind of controller to help
the user navigate through large suites of collected but separate Internet resources, all
integrated by the use of linkbases. By introducing a model of Internet resources (collec-
tions of documents and associated link databases) and aggregations of these resources
(collections of collections of documents and associated link databases), it is possible to
define the user’s ’static location’ in a document space, and hence to know which hy-
pertext actions are applicable at each point in that document space. If the user travels
outside all known resources (e.g. to a colleague’s personal home page), then the option
still remains to apply the most general links or else to have the link server refrain from
applying any links. Without this model the same sets of link databases are applied to
any document which the user sees.



Link Presentation Once a link is selected for inclusion in a document by virtue of its
presence in a chosen linkbase and its applicability to the current document has been es-
tablished (often determined by a simple keyword matching operation) the proxy inserts
the link according to a specific presentation format.

The recent standard for Cascading Style Sheets for HTML documents [11] allows
the presentation of many document features to be controlled by visual parameters such
as font, size and colour. WWW links in HTML documents are normally tightly bound to
previously marked-up anchors, and so a style-sheet’s only option for parametrising link
presentation is to change the typographic attributes of the (fixed) anchor. By contrast,
the linking proxy has complete freedom to choose how to elaborate a link by binding
it to any suitable anchor site in the document or inventing a new piece of content to
act as an anchor (in the form of a distinguishing marker or a more general annotation).
This freedom is balanced against the fixed layout of a PDF document which makes
it difficult to fit extra visual objects within the body text. The options which apply to
PDF documents are to have the links appear as boxes around the linked text (Acrobat
default), footnote-style asterisks or pseudo citations. Different colours may be used to
distinguish the various types of links.

Conclusions

The plug-ins outlined above have enabled hyperfeatures to be included into PDF docu-
ments after the documents have been created. The integration of Acrobat and the world-
wide web has meant that hyper-features can be added remotely over the internet.

By developing tools which can incorporate external linkbases into on-line docu-
ments, end users can always be provided with up-to-date hyperfeatures. Up-to-date hy-
perfeatures imply not only links to pages or articles that are current (already this can be
attained by the use of URN conventions) but they also enable a paper written in 1990
to link to a paper published in 1996. This ability is very difficult if hyperlinks are em-
bedded within the context of a document (whether it be PDF, HTML or whatever). In
addition, by extending the PDF link objects to cope with multiple destinations from one
particular source, users have the ability to make choices about what they want to view.

Experiments with proxy-based linking allow different kinds of linking ’agent’ to
discover many different kinds of links [7] using a burgeoning array of supporting re-
source materials. In fact, one of the problems that is beginning to be encountered is how
to intelligently filter the set of potential links so that the end user is not overwhelmed by
a sea of blue boxes on every viewed page, representing an indiscriminate flood of links.

This work described in this paper was funded in the UK by JISC’s Electronic Li-
braries (ELiB) programme reference 2/35. A simplified version of the linking proxy
software described in the section on Linkbase Management is being commercialised
under the name ’Webcosm’.

References

1. P J Brown and H Brown. Embedded or separate hypertext mark-up: is it an issue.
Electronic Publishing, Origination, Dissemination and Design, 8(1), March 1995.



2. L Carr, D De Roure, G Hill, and W Hall. The distributed link service: a tool for pub-
lishers, authors and readers. InProceedings of the Fourth World Wide Web conference,
Boston, MA, USA, 1995.

3. Hugh Davis. To embed or not to embed.Communications of the ACM, 38(6), August
1995.

4. A M Fountain, W Hall, I Heath, and H C Davis. Microcosm: an open model for
hypermedia with dynamic linking. InProceedings of the European Conference on
Hypertext ECHT 90. Cambridge University Press, 1990.

5. N.L. Garrett, K.E. Smith, and N. Meyrowitz. Intermedia: Issues, strategies and tactics
in the design of a hypermedia system. InProceeding of the Conference of Computer-
Supported Cooperative Work, 1986.

6. Kaj Grénbaek and Randall Trigg. For a dexter-based hypermedia system.Communi-
cations of the ACM, 37(2), 1994.

7. S. Hitchcock, L. Carr, S. Harris, J. M. N. Hey, and W. Hall. Citation linking: Improv-
ing access to online journals. InSecond ACM International Conference on Digital
Libraries, Philadelphia, USA, July 1997.

8. S. Hitchcock, F. Quek, L. Carr, W. Hall, A. Witbrock, and I. Tarr. Linking every-
thing to everything: Journal publishing myth or reality, April 1997. Presented at the
ICCC/IFIP conference on Electronic Publishing T97: New Models and Opportunities,
Canterbury: UK.

9. F. Halsz and M. Schwartz. The dexter hypertext reference model. InProceedings of
the Hypertext Standartdization Workshop, 1990.

10. Adobe Systems Incorporated.Portable Document Format Reference Manual. Addi-
son Wesley, June 1993.

11. Hakon Wium Lie and Bert Bo.Cascading Style Sheets : Designing for the Web.
Addison-Wesley, 1997. ISBN: 020141998X.

12. L Carr L, D Barron, and W Hall. Why use HyTime?Electronic Publishing: Origina-
tion, Dissemination and Design, 6(1), Dec 1993.

13. H Maurer and I Tomek. Some aspects of hypermedia systems and their treatment in
Hyper-G.Wirtschaftsinformatik, 32(2), April 1990.

14. Amy Pearl. Sun’s link service: A protocol for open linking. InHypertext ’89 Pro-
ceedings, 1989.

15. P. Smith, D. Brailsford, D. Evans, L. Harrison, S. Probets, and P. Sutton. Journal
publishing with Acrobat: the CAJUN project.Electronic Publishing: Origination,
Dissemination and Design, 6(4), December 1993.


