
COLOPHON

The attached paper, although on a Computer Science topic, has no connec-
tion with my current research in Digital Documents. It is another in a
series of experiments to see how long it takes me to re-build electronic
versions of my published early papers as properly re-typeset ‘PDF Nor-
mal’ rather than just as a bitmap scan.

The attached paper appeared in the Proceedings of a Conference called
"Applications of Algol 68" which was held at the University of East
Anglia in March 1976.

The text of this conference, to the best of my knowledge, is not avail-
able online. This paper was acquired by scanning the paper from the ori-
ginal Proceedings and then using Omnipage OCR on the resulting TIFF
files. The paper was then re-typeset using UNIX troff suite to set up
the correct typeface (Courier) and to get the line and page breaks as
accurate as possible.

Despite the fact that Courier normally scans in well under OCR the pages
in the typewritten Proceedings were of very variable quality. Some pages
had faded badly leading to poor recognition accuracy and the need for
some re-keying. The time taken to rebuild this paper was about 4 hours.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Nottingham ePrints

https://core.ac.uk/display/98048?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ALGOL 68 DIALECT CONVERSION—A SYNTACTIC APPROACH

D.F. Brailsford and R.D. Knott

Department of Mathematics

University of Nottingham

Nottingham NG7 2RD

Summary

A syntax directed package for converting Revised

Algol 68 programs into Algol 68-R form, (where possible)

is being developed at Nottingham. The package makes use

of J.M. Foster’s Syntax Improving Device (SID) [1]. The

experience gained has underlined the value of a syntactic

approach to problems of this sort. A far wider range of

constructs can be translated than would ever be possible

by using ad hoc methods. In many respects the difficulties

encountered are those of conventional compiler writing,

but some intriguing new problems arise when, as in this

case, the source language and target language differ

relatively little in philosophy and appearance.

1. Introduction

Since the earliest days of high level computer

languages a wide variety of dialects has sprung up often

due to lack of hardware or software facilities for

implementing some of the language features and sometimes,

more simply, because the implementers take issue with the

language designers over fundamental design decisions. In

the main, however, Algol 68-R tries to implement Algol 68

as defined in the original Report, subject to restrictions

required for one-pass compilation. Thus, the conversion

task is approximately that of converting Revised Algol 68

to original Algol 68.

192

When dialects of a language differ only at the level of

external representation it is possible to do a great deal of

conversion work by very straightforward methods [2]. However,

the moment one strays into syntactic differences between

dialects the need to compile the source text, in some sense,

makes itself apparent. It is precisely at this stage that

the writer of a conversion program baulks at the task of

constructing a goodly part of a new compiler.

Fortunately, due to some joint research work between

ourselves and R.R.E. Malvern, we were able to use a syntax

analyser produced by SID as the basis for our converter.

SID was originally developed by J.M. Foster [1] and it has

been much used as a tool for compiler writing at Malvern —

including the Coral 66 and Algol 68-R compilers. We have

also benefitted directly and indirectly from work done by

P.M. Woodward and A. Putley [3] on the SARA system; in

particular for the extraction of the lexical analyser from

the ALGOL 68-R compiler.

SID itself is written in Algol 68-R and, given a set

of syntax rules for a grammar, it will transform them, if

possible, into a one-track form. If these transformations

are successful. then the output from SID is some ALGOL 68-R

text for a fast one-track analyser. The analyser will be

capable of parsing all permissible ’sentences’ as defined

by the original input grammar. One can embed semantic

’actions’ into the syntax rules to indicate where the

resulting analyser should call these ’actions’ when parsing

a given string. A concise description of how SID works,

and the way that compiling actions can be interspersed with

193

the syntax is given in reference [3].

2. Syntax for Revised Algol 68

An excellent starting point for,a syntax is the chart

of Watt, Peck and Sintzoff [4]. Ultimately this has to be

expressed in Backus Normal Form (BNF) in order to be

acceptable to SID, but at this point we benefitted from

R.D, Knott’s special pre-processor for SID, called SIDTAX

[5], which, among other, things, enables rules to be

expressed in something like the form defined in the

syntax chart. These forms are then converted, automatically,

into BNF by SIDTAX.

For example, in SIDTAX notation, a Revised Algol 68 loop

clause becomes

(FOR ID, Φ)(FROM UNIT, Φ)(BY UNIT, Φ)(TO UNIT, Φ)
(WHILE ENQUIRYCLAUSE, Φ) DO SERIALCLAUSE OD

Alternatives for any part of a construct are expressed

as a list separated by commas and enclosed within round

brackets. Φ denotes the empty alternative.

Unfortunately, the final syntax deviates from the

elegant starting point, mainly due to some re-writing so

that SID can get the syntax into a one-pass form. This

problem becomes especially acute when the compiling actions

are interspersed with the syntax.

In principle, the type of grammars amenable to SID

treatment require only a knowledge of the next symbol in

the source text in order to decide, unambiguously, which

route to follow through the syntax. The initiated will be

aware that Algol 68 does not satisfy this criterion and,

for example, the symbol "(" could be an abbreviated form of a

194

begin, case or if symbol. We may wish to take different

actions depending on which construction is intended. In

such cases one has to cheat a little with SID and arrange

for a look-ahead along the source string. The amount of

look-ahead that is necessary will be discussed in a later

section.

It will not be possible to describe all the

conversions that have to take place but the next sections

illustrate the more interesting points.

3. Problems encountered.

3.1. Representations and notational changes.

Problems of this sort are the easiest to deal with and

call be handled, in a variety of ways.

For example, the lexical analyser can be modified to accept

a variety of different representations, or, in some cases an

appropriate library operator can be written. In either of

these ways one could, for example, make Algol 68 accept the

symbol % for integer division as well as ’/’.

There are also one or two straightforward notational differ-

ences between Algol 68-R and Revised Algol 68 which are

easily dealt with, such as the change from elsf to elif,

from charput to file, from plus to plusab and so on.

Features of the standard prelude not available in Algol 68-R

can also, to some extent, be provided by library procedures and

operators.

3.2. Syntactic differences between dialects.

It is in this area that ad hoc methods run into great

difficulties, due to a lack of any syntactic appreciation of

what is going on. The problems vary in difficulty and

195

perhaps the simplest change to effect is to convert the

Revised Report’s do into do begin, and od into end thereby con-

verting

do serial clause od

into do begin serial clause end

which is sufficient to satisfy Algol 68-R’s syntactic

requirement for do unitary clause. In a similar way one

can enclose the unitary clauses of Revised Algol 68

procedure-bodies within round brackets or begin end, to

make them acceptable to Algol 68-R, but here, of course, we

have to identify where the unit ends in order to place the

closing bracket correctly.

Perhaps the next most difficult of these straightforward

problems is to convert casts i.e.

fdec ENCLOSED-clause

(which is a primary in Revised Algol 68) into

(fdec val unitary clause)

in Algol 68-R. Here fdec is an abbreviation for formal mode

declarer and the extra round brackets are necessary in the

Algol 68-R version so that the whole construction becomes a

primary once again. In this conversion we have had to perform

a short look ahead in the Revised Algol 68 source text in

order to direct the analysis along the right lines. The

problem is that a fdec can signal the start of an identity

declaration, a denotation for a parameterless procedure,

or a cast. The lack of an identifier or a colon

immediately following the fdec rules out the first two

possibilities and one can then proceed to convert the cast.

The symbols loc and heap in generators can be handled

196

fairly easily because one only has to omit heap to obtain

the required effect in Algol 68-R. But in variable

declarations the loc prefix, which is optional in Revised

Algol 68, must not be given in Algol 68-R.

Thus loc int i := 2 converts to int i := 2. Algol 68-R,

additionally, does not permit the heap form of variable

declaration so heap int i := 2 has to be expanded to ref int i

= int := 2.

Finally let as consider two problems of bracket

matching. Algol 68-R does not have the ouse elision but

it is a reasonably straightforward problem to replace it by out

case and to position the closing esac correctly. In

similar vein, the easiest way to get round the Algol 68-R

restriction that serial clauses containing declarations

must begin with a declaration is to note, on entry to every

serial clause, whether or not it starts with a declaration.

If not, then an extra set of begin and end brackets will have

to be correctly positioned if a subsequent declaration is

encountered. Hence the Revised Algol 68

begin print ("start"); int i :=2; print ("finish") end

converts to the Algol 68-R form

begin print ("start"); begin int i := 2; print ("finish")

end end

This technique fails to give the right effect only when

the program uses goto to skip over declarations. Such cases

are either abominable programming, for which one has no

sympathy, or else are actually forbidden by the Revised Report.

197

4. Example

The following example illustrates the conversion of some

of the features mentioned in the previous section. Apart from

this it is neither useful nor meaningful. The Revised

Algol 68 source is given first, followed by the Algol 68-R

version produced by the converter.

Revised Algol 68��������������������
proc example = (ref ref int i, int i) void:

case i plusab 1

in for k to i do print ("hooray") od,

ref int (i) := heap int := 2

ouse j in

print ("yes"),

out print ("no")

esac

Algol 68-R������������
proc example = (ref ref int i, int j) void:

(case i plus 1

in for k to to i do (print ("hooray")),

(ref int val (i)) := int := 2;

out case j in

print ("yes"),

skip

out print ("no")

esac esac)

5. Is mode analysis strictly necessary?

From a purely syntactic point of the answer to this

question is "no", for Revised Algol 68 has been designed for

198

mode-independent parsing. But, of course, a knowledge of

modes can be invaluable in minimising the amount of

look-ahead that is necessary in a given situation. A

good example is

(b| unit, unit|unit)

where mode analysis of b immediately preceding the stick

symbol will indicate at once whether this is a conditional

clause or a case clause. In the absence of this information

one has to look much further ahead, to detect two units in

the in part in order to reach the same conclusion.

Mode analysis, and indeed knowledge of position

strengths, is necessary for actually performing the

conversion since modes are sometimes treated differently in

the two languages. For example, string denotations of 4,

8 or 12 character in Algol 68-R are compiled as bytes,

long bytes and long long bytes respectively if the context

is not strong. This situation has now been immortalised

by one of our colleagues in the phrase "dogged by bytes", For

example

if "fish" [3] = "s" …

which happily yields true in Revised Algol 68 has to be

converted to

if ([] char val "fish")[3] = "s" …

in Algol 68-R.

6. Difficult points.

There are many places where a meaningful conversion from

Revised Algol 68 to Algol 68-R is difficult, if not impossible,

to achieve. An important subset of these is caused by the

scoping differences between the two languages so that

199

int i := 2;

if int i := 6; true then print (i) fi

will print 6 in Revised Algol 68 and 2 in Algol 68-R.

A solution to this problem for conditional clauses

is to embed the whole construction inside a closed clause

in the Algol 68-R translation, together with a re-positioning

of the if. For example we have in Revised Algol 68:

if preamble; condition

then action 1

else action 2

fi

and in Algol 68-R:

begin

preamble ;

if condition

then action 1

else action 2

fi

end

A similar device will also cope with translation of

case…esac clauses, but do do clauses have to be translated

as follows:-

Revised Algol 68:���������������������

while preamble; cond do thing od

Algol 68-R������������

while preamble ;

if cond

then thing; true

else false

200

fi

do skip

Even with the above tricks, problems still remain. If, for

example, the Algol 68-R translation of the conditional

were to be the source in an assignment, then one has to

remember the Algol 68-R constraint on values delivered

from serial clauses which constitute declarations [6].

Clearly, a point is reached where translation is

going to involve much re-writing of the source program, and

it is questionable just how far one should go in this

direction. For these reasons we insist, at present, that

the source text conforms to the following requirements

(among others)

- Defining occurrences of indicators fist precede their

applied occurrence in the text.

- Mutually recursive procedures and operators are not

allowed.

- Field selection from a row of structures to yield an

array is not allowed.

If any of these forbidden features is encountered then

translation is not attempted, but instead a warning can

usually be printed.

7. Conclusions.

Our experience with the converter has shown that we can

successfully convert a much wider range of constructs than

would ever be possible by non-syntactic methods but there

still remain some difficult problems, exemplified in the

previous section. Apart from these points it is possible

to achieve a conversion in more than 1 but less than 2

201

passes, the fractional part representing an allowance for

the look-aheads that have to take place.

Interestingly, many of the difficulties experienced

occur precisely because the two languages are so similar,

in form and intent, that the bulk of the text passes over

with no change whatsoever. The corollary to this is that

when a given construct has an identical appearance in both

languages, but a different meaning, then large scale

re-writing is often necessary. Perhaps this should not be

too surprising because, as with most quirks of artificial

languages, we can find parallel situations in natural

languages. In our case a comparison of English and

American would be a good analogy for Revised Algol 68 and

Algol 68-R (not necessarily in that order!). We all know

the difficulties that arise, due to the same words having

different meanings, so that, in an attempt not to confuse,

an Englishman might have to say "I put on my vest and pants

this morning and so far as I am concerned these are both

undergarments". Or consider the verb "to service" which

has connotations in America that are undreamed of in

England. Indeed, a British Computer manufacturer is

reported to have reduced American computer professionals

to fits of helpless laughter by taking a full-page back

cover advertisement on the rear of an American trade journal

proudly proclaiming "We’ll service you like you’ve never been

serviced before".

202

Acknowledgements.

We thank the S.R.C. and R.R.E. Malvern for financial

support for R.D.K., and the members of the Computing and

Software staff at R.R.E. Malvern for much help and

encouragement

References.

[1] J.M. Foster, Computer Journal, Vol. 11, p.31, May 1968.

[2] A. Maybrey, Proceedings of Liverpool Conference on

Uses of Algol 68, March, 1975.

[3] P.M. Woodward, SARA—RRE Internal Document.

[4] J.M. Watt, J.E.L. Peck and M. Sintzoff, Algol Bulletin

No. 17, June, 1974.

[5] R.D. Knott, M.Sc. Dissertation, University of

Nottingham, 1975.

[6] "Differences between Algol 68-R and 68" RRE Internal

Document (2nd. Edn. June, 1973).

203

