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Abstract

Neural field models of firing rate activity have had

a major impact in helping to develop an under-

standing of the dynamics seen in brain slice prepara-

tions. These models typically take the form of integro-

differential equations. Their non-local nature has led

to the development of a set of analytical and numeri-

cal tools for the study of waves, bumps and patterns,

based around natural extensions of those used for lo-

cal differential equation models. In this paper we

present a review of such techniques and show how re-

cent advances have opened the way for future studies

of neural fields in both one and two dimensions that

can incorporate realistic forms of axo-dendritic inter-

actions and the slow intrinsic currents that underlie

bursting behaviour in single neurons.

1 Introduction

The multi-scale properties of spatio-temporal neural

activity leads naturally to some interesting mathemat-

ical challenges, in terms of both modelling strategies

and subsequent analysis. Since the number of neu-

rons and synapses in even a small piece of cortex is

immense a popular modelling approach has been to

take a continuum limit and study neural networks in

which space is continuous and macroscopic state vari-

ables are mean firing rates. Perhaps the first attempt

at developing a continuum approximation of neural

activity can be attributed to Beurle [1] in the 1950’s

and later by Griffith [2, 3] in the 1960’s. By focusing
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on the proportion of neurons becoming activated per

unit time in a given volume of model brain tissue con-

sisting of randomly connected neurons, Beurle was

able to analyse the triggering and propagation of large

scale brain activity. However, this work only dealt

with networks of excitatory neurons with no refrac-

tory or recovery variable. It was Wilson and Cowan in

the 1970’s [4, 5] who extended Beurles work to include

both inhibitory and excitatory neurons as well as re-

fractoriness. For a fascinating historical perspective

on this work we refer the reader to the recent article by

Cowan [6]. Further work, particularly on pattern for-

mation, in continuum models of neural activity was

pursued by Amari [7, 8] under natural assumptions

on the connectivity and firing rate function. Amari

considered local excitation and distal inhibition which

is an effective model for a mixed population of inter-

acting inhibitory and excitatory neurons with typical

cortical connections (commonly referred to as Mexi-

can hat connectivity). Since these seminal contribu-

tions to dynamic neural field theory similar models

have been used to investigate EEG rhythms [9], visual

hallucinations [10, 11], mechanisms for short term

memory [12, 13] and motion perception [14]. The sorts

of dynamic behaviour that are typically observed in

neural field models includes, spatially and temporally

periodic patterns (beyond a Turing instability) [10, 15],

localised regions of activity (bumps and multi-bumps)

[12, 16] and travelling waves (fronts, pulses, target

waves and spirals) [17, 18, 19]. In the latter case

corresponding phenomena may be observed experi-

mentally using multi-electrode recordings and imag-

ing methods. In particular it is possible to electri-

cally stimulate slices of pharmacologically treated tis-

sue taken from the cortex [20, 21, 22], hippocampus
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[23] and thalamus [24]. In brain slices these waves

can take the form of spindle waves seen at the on-

set of sleep [25], the propagation of synchronous dis-

charge during an epileptic seizure [26] and waves of

excitation associated with sensory processing [27]. In-

terestingly, spatially localised bumps of activity have

been linked to working memory (the temporary stor-

age of information within the brain) in prefrontal cor-

tex [28, 29], representations in the head-direction sys-

tem [30], and feature selectivity in the visual cortex,

where bump formation is related to the tuning of a

particular neuron’s response [31].

In this paper we present a review of neural field the-

ories of Wilson-Cowan and Amari type and describe

the mathematical techniques that have been used in

their analysis to date. For the purposes of exposition

we shall stick to single population models, though

all of what we say can be easily taken over to the

case of two or more populations, such as discussed

in [32]. In section 2 we introduce the standard integro-

differential equation (IDE) for a scalar neural field and

discuss the conditions under which this reduces to a

local partial differential equation (PDE) model. More-

over, we show how the IDE model may be written as

a purely integral equation. The integral framework is

convenient for certain types of analysis, such as cal-

culating the onset of a Turing instability. We briefly il-

lustrate this in section 3. Next in section 4 we move on

to a study of travelling wave solutions and show how

techniques from the reaction-diffusion literature may

be used to provide estimates of wave speed. Interest-

ingly for the choice of a Heaviside firing rate function

wave speeds can be calculated exactly. We describe

this procedure for travelling front solutions in section

5. Moreover, borrowing from ideas first developed

in the PDE community we also show how to anal-

yse wave stability using an Evans function approach.

In section 6 we consider a slightly more general set

of neural field equations that incorporate modulatory

terms. These models support travelling pulses, as

well as fronts. Generalising the techniques used for

the study of fronts we show how to determine pulse

speed and stability as a function of system parame-

ters. Moreover, localised bump solutions are simi-

larly handled by recognising them as standing pulse

waves. The extension of the standard model to incor-

porate space-dependent delays, arising from axonal

and dendritic communication delays is the subject of

section 7. As well as describing the conditions under

which these models may be reduced to a PDE descrip-

tion, we review the effect of such delays on the onset

of a dynamic Turing instability. In section 8 we re-

turn to the starting point for the derivation of a firing

rate model and show how it is also possible to carry

forward slow ionic currents into a firing rate descrip-

tion of neural tissue. In illustration we construct a fir-

ing rate model that incorporates a slow T-type calcium

current, IT, known to be important in the bursting re-

sponse of thalamo-cortical relay cells. Moreover, for a

purely inhibitory network and a Heaviside firing rate

function we show how to construct so-called lurch-

ing pulses, often seen in simulations of more detailed

biophysical networks expressing IT. Some non-trivial

consequences of working with neural fields in two di-

mensions are discussed in section 9. In particular we

show that the stable so-called dimple bump that can

be found in a one dimensional model does not have

a stable two dimensional analogue. Finally in section

10 we discuss some of the open challenges relating to

the further development and analysis of neural field

theories.

2 Mathematical framework

In many continuum models for the propagation of

electrical activity in neural tissue it is assumed that the

synaptic input current is a function of the pre-synaptic

firing rate function [5]. These infinite dimensional dy-

namical systems are typically variations on the form

[32]

1
α

∂u(x, t)
∂t

= −u +
Z ∞

−∞
dyw(y) f ◦ u(x− y, t). (1)

Here, u(x, t) is interpreted as a neural field represent-

ing the local activity of a population of neurons at

position x ∈ R. The second term on the right repre-

sents the synaptic input, with f ◦ u interpreted as the
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firing rate function. The strength of connections be-

tween neurons separated by a distance y is denoted

w(y) = w(|y|) (assuming a spatially homogeneous and

isotropic system), and is often referred to as the synap-

tic footprint.

There are several natural choices for the firing rate

function, the simplest being a Heaviside step function.

In this case a neuron fires maximally (at a rate set by

its absolute refractory period) or not at all, depending

on whether or not synaptic activity is above or below

some threshold. In a statistical mechanics approach

to formulating mean-field neural equations this all or

nothing response is replaced by a smooth sigmoidal

form [4, 33]. For an arbitrary firing rate response the

model (1) is naturally written in the form

Qu(x, t) = ψ(x, t), (2)

where ψ(x, t) is given by the second term on the right

hand side of (1) and Q = (1 + α−1∂t). The linear dif-

ferential operator Q is used to model the dynamics as-

sociated with first order synaptic processing and can

easily be generalised to represent higher order synap-

tic processing [34]. It is convenient to write ψ(x, t) in

the form

ψ(x, t) = (w⊗ f )(x, t), (3)

where ⊗ represents a spatial convolution:

(w⊗ f )(x, t) =
Z ∞

−∞
w(y) f (x− y, t)dy. (4)

Numerical simulations of (2) using the integral equa-

tion (3) with sigmoidal f , show that such systems sup-

port unattenuated travelling waves as a result of lo-

calised input [5]. We note that the time independent

solutions of (2) are given by u(x) = ψ(x). For this class

of solutions Amari [8] was able to find localised stable

pulses that are bistable with a homogeneous steady

state, assuming a Heaviside firing rate function and

Mexican hat connectivity. Subsequently Kishimoto

and Amari showed that such solutions also exist for

a smooth sigmoidal function (at least in the high gain

limit) [16].

For certain (special) choices of w(x) it is possi-

ble to re-cast the equation for ψ(x, t) in a more lo-

cal form [17]. If the Fourier transform, FT[w](k) =

R
R eikxw(x)dx, of w(x) has a simple rational polynomial

structure we may exploit the convolution property of

(3) to write the equation for ψ(x, t) as a PDE. To il-

lustrate this consider the choice w(x) = e−|x|/2, with

FT[w](k) = (1 + k2)−1. In this case taking the Fourier

transform of (3) yields

FT[ψ](k, t) =
1

1 + k2 FT[ f ◦ u](k, t). (5)

Cross multiplying by 1 + k2 and inverting (remember-

ing that FT[ψx](k) = ikψ), gives

(1− ∂xx)ψ(x, t) = f ◦ u(x, t). (6)

Hence, the evolution of u is described by the pair of

coupled partial differential equations, (2) and (6). By

exploiting the local PDE structure that can be obtained

with such special choices it is possible to use many of

the standard tools from dynamical systems analysis

to study solutions of inherently non-local neural field

models. For example, in a co-moving frame travel-

ling wave solutions are given by a system of ordinary

differential equations (ODEs), with travelling fronts

and pulses viewed as global (heteroclinic and homo-

clinic) connections. Standard shooting and numerical

continuation techniques (both numerical and analyti-

cal) may then be brought to bear in their construction

[18, 34].

Another common choice of w(x) in the study of

neural field models is that of a Mexican hat function,

such as w(x) = (1− |x|)e−|x|/4 (perhaps more properly

called a wizard hat function, because of its cusp at the

origin [35]). In this case FT[w](k) = k2/(1 + k2)2, and a

similar argument to that above gives

(1− ∂xx)2ψ(x, t) = −[ f ◦ u(x, t)]xx. (7)

Time-independent solutions of (7) are solutions of the

fourth order ODE: (1−dxx)2u(x, t) =−[ f ◦ u(x)]xx (us-

ing Qu(x) = ψ(x)). Interestingly, numerical solution

of such systems typically yield single and multi-bump

structures (regions of localised activity) [12, 13]. More-

over, the governing equations are now known to pos-

sess a Hamiltonian structure [12]. The extensive use

of local PDE methods (particularly those for fourth

order reversible systems) for studying such localised
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structures can be found in the work of Laing and Troy

[36] and Krisner [37]. A detailed numerical analysis

of localised time-independent solutions to equation

(7) with a sigmoidal form of firing rate function can

be found in [34]. Here, it is shown that this particu-

lar fourth order system admits multiple bump solu-

tions, and that such localised multi-bumps are lost (in

favour of global patterns) when a stable N-bump and

an unstable (N + 2)-bump coalesce.

Apart from waves and bumps, neural field models

are also known to support the formation of globally

periodic patterns [10]. Such patterns can emerge be-

yond a so-called Turing bifurcation point. To develop

this, and other techniques, in full generality, it is con-

venient to use the language of Green’s functions and

write

Qη(t) = δ(t), (8)

where η(t) is the Green’s function of the linear dif-

ferential operator Q, with η(t) = 0 for t ≤ 0. For the

first-order case considered till now (Q = 1 + α−1∂t),

the Green’s function is simply η(t) = αe−αt. For the

second order operator Q = (1 + α−1∂t)2, the Green’s

function is that of that of the often used alpha func-

tion, η(t) = α2te−αt. We are now in a position to deal

with neural field models in a purely integral frame-

work by integrating (2) to obtain

u = η ∗w⊗ f ◦ u, (9)

where the temporal convolution ∗ is defined by

(η ∗ f )(x, t) =
Z t

0
η(s) f (x, t− s)ds. (10)

The distributed delay kernel η(t) can be chosen so as

best to describe the response of a given synapse.

3 Turing instability analysis

We now describe how a spatially homogeneous state

can become unstable to spatially heterogeneous per-

turbations, resulting in the formation of periodic pat-

terns. We do this using a Turing instability analysis.

One solution of the neural field equation (1) is the spa-

tially uniform resting state u(x, t) = u for all x, t, de-

fined by

u = κ f (u), (11)

where κ =
R

R w(y)dy. Note that for positive weight

kernels it is quite common to normalise them such

that
R

R w(y)dy = 1. We linearise about the steady state

by letting u(x, t) → u + u(x, t) so that f (u) → f (u) +
f ′(u)u to obtain

u = γη ∗w⊗ u, γ = f ′(u). (12)

This has solutions of the form eλteikx, so that λ = λ(k)

is given implicitly by the solution to

γLT[η](λ)FT[w](k)− 1 = 0, (13)

where LT[η](λ) is the Laplace transform of η(t):

LT[η](λ) =
Z ∞

0
η(s)e−λsds. (14)

The uniform steady state is linearly stable if Re λ(k) <

0 for all k ∈R, k 6= 0. For example, with an exponential

synapse η(t) = e−t, the stability condition is simply

FT[w](k) < γ−1 for all k ∈ R, k 6= 0. (15)

Now consider the case that FT[w](k) has a positive

maximum ŵmax at k = ±kc, that is FT[w](kc) = ŵmax

and FT[w](k) < ŵmax for all k 6= kc. Let γ−1
c = ŵmax,

then (i) For γ < γc the resting state is linearly sta-

ble. (ii) At the critical point γ = γc there is an in-

stability due to excitation of the pattern e±ikcx. (iii)

Beyond the bifurcation point, γ > γc, λ(kc) > 0 and

this pattern grows with time. In fact there will typ-

ically exist a range of values of k ∈ (k1, k2) for which

λ(k) > 0, signalling a set of growing patterns. As the

patterns grow, the linear approximation breaks down

and nonlinear terms dominate behaviour. (iv) The sat-

urating property of f (u) tends to create patterns with

finite amplitude, that scale as
√

k− kc close to bifur-

cation and have wavelength 2π/kc. (v) If kc = 0 then

we would have a bulk instability resulting in the for-

mation of another homogeneous state. Note that if

Im λ(kc) 6= 0, then the homogeneous solution would

be time-periodic.

Since the Fourier transform of Mexican hat type

functions, which represent short-range excitation and
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long range inhibition, are peaked away from the ori-

gin they are capable of supporting a Turing instabil-

ity. An example of such a function is w(x) = e−|x| −
e−|x|/2/2 (a wizard hat). Another classic example is a

difference of Gaussians.

Generalising this approach to two dimensions is

straight forward. Near a bifurcation point we would

expect spatially heterogeneous solutions of the form

eλteikc·r for some kc = (k1, k2), and r ∈ R2. For a given

kc = |kc| there are an infinite number of choices for

k1 and k2. It is therefore common to restrict attention

to doubly periodic solutions that tessellate the plane.

These can be expressed in terms of the basic symmetry

groups of hexagon, square and rhombus. Solutions

can then be constructed from combinations of the ba-

sic functions eikcR·r, for appropriate choices of the basis

vectors R. Details of this programme, and the non-

linear analysis necessary in order to correctly select

which of the modes will stably appear are discussed

in [10, 15, 32, 38, 39]. For a recent discussion of how

to treat spatio-temporal pattern formation in systems

with heterogeneous connection topologies (more real-

istic of real cortical structures) we refer the reader to

[40, 41].

4 Travelling waves

Waves in the form of travelling fronts and pulses have

now been observed in a variety of slice preparations

[20, 21, 22, 42, 43]. To establish properties of waves

in a model neural system it is convenient to introduce

the coordinate ξ = x− ct and seek functions U(ξ, t) =
u(x− ct, t) that satisfy (9). In the (ξ, t) coordinates, the

integral equation (9) reads

U(ξ, t) =
Z ∞

−∞
dyw(y)

Z ∞

0
dsη(s)

× f ◦U(ξ − y + cs, t− s). (16)

A travelling wave, with speed c, is a stationary solu-

tion U(ξ, t) = q(ξ) (independent of t), that satisfies

q(ξ) =
Z ∞

0
η(z)ψ(ξ + cz)dz, (17)

with

ψ(ξ) =
Z ∞

−∞
w(y) f (q(ξ − y))dy. (18)

Note that standing waves (with c = 0), are defined

by Qu(x, t) = q(x) so that q(x) = ψ(x). It is conve-

nient to regard the bumps of spatially localised time-

independent solutions that we have mentioned earlier

as standing waves with speed c = 0.

For sigmoidal firing rate functions it is generally

possible to arrange for the system to have three ho-

mogeneous steady states, u1 < u2 < u3. In this case it

is natural to look for travelling front solutions with

q(−∞) = u3 and q(∞) = u1, which connect u1 and

u3 (which are stable to homogeneous perturbations).

Arguing in analogy to techniques used for estimat-

ing front speeds for reaction-diffusion equations we

consider the linearised equations of motion around

the fixed points. In this case we are led to consider

systems with linear firing rate functions of the form

f (u) = γu, which give rise to exponential solutions

u(ξ) ∼ eλξ . It is easily established that λ is the solu-

tion to L(c, λ) = 0 where

L(c, λ) = γLT[η](−cλ)FT[w](−iλ)− 1. (19)

If the temporal and spatial kernels, η(t) and w(x),

are both normalised to unity, then we see that that

L(c,0) = γ−1. For λ < 0, L(c, λ) is a monotonically de-

creasing function of c with limc→∞ L(c, λ) =−1. More-

over, we have that

∂L(c, λ)
∂λ

∣∣∣∣
λ=0

= γc
Z ∞

0
sη(s)ds > 0, (20)

for c > 0, and that ∂2L/∂2λ(c, λ)> 0 for all λ and c > 0

(i.e. L(c, λ) is a convex function of λ). Following Diek-

mann [44, 45], we introduce a minimum propagation

speed, c∗, as

c∗ = inf{c | L(c, λ) = 0, for some λ < 0}. (21)

Now, choosing γ > 1, a minimum with c > 0 can only

occur for λ < 0 (using the convexity of L(c, λ) and

the fact that ∂L/∂λ(c,0) > 0). Consider, for example

the case of an exponential synaptic footprint w(x) =
e−|x|/2 and an exponential synapse η(t) = αe−αt. In

this case we have from (19) that c = c(λ), where

c(λ) =
α

λ

[
1− γ

1− λ2

]
, (22)
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for |λ| < 1. Since the value of λ for which c′(λ) = 0

is independent of α we immediately see that c∗ is lin-

ear in α. For a general nonlinear firing rate c∗ is still

expected to be a good predictor of wave speed if the

linearisation at u = u satisfies f (u) < f ′(u)u [44, 45].

For sigmoidal firing rate functions it has been

shown by Ermentrout and McLeod that there exists

a unique monotone travelling wave front for posi-

tive spatially decaying synaptic connections [17]. In-

deed, there are now a number of results about exis-

tence, uniqueness and asymptotic stability of waves

for IDEs, such as can be found in [8, 46, 47, 48]. Other

work on the properties of travelling fronts, and in par-

ticular speed as a function of system parameters can

be found in [18, 34, 49]. Note also that a formal link

between travelling front solutions in neural field the-

ories and travelling spikes in integrate-and-fire net-

works can be found in [50].

The linear stability of waves is obtained by writing

U(ξ, t) = q(ξ) + u(ξ)eλt, and Taylor expanding (16), to

obtain the eigenvalue equation u = Lu:

u(ξ) =
Z ∞

−∞
dyw(y)

Z ∞

0
dsη(s)e−λs f ′(q(ξ − y + cs))

× u(ξ − y + cs). (23)

A travelling wave is said to be linearly stable if

Re (λ) < 0 for λ 6= 0. Since we are concerned with sys-

tems where the real part of the continuous spectrum

has a uniformly negative upper bound, it is enough

to determine the location of the normal spectrum for

wave stability [51]. In general the normal spectrum of

the operator obtained by linearising a system about

its travelling wave solution may be associated with

the zeros of a complex analytic function, the so-called

Evans function. This was originally formulated by

Evans [52] in the context of a stability theorem about

excitable nerve axon equations of Hodgkin-Huxley

type. The extension to integral models is far more re-

cent [51, 53, 54, 55, 56, 57].

Throughout the rest of this paper we shall focus on

the particular choice of a Heaviside firing rate func-

tion, f (u) = Θ(u− h) for some threshold h. The Heav-

iside function is defined by Θ(x) = 1 for x ≥ 0 and is

zero otherwise. In this case ψ depends only on where

the threshold is crossed and not directly on the shape

of u. Apart from allowing an explicit construction of

travelling waves this choice also allows for a direct

calculation of wave stability via the construction of an

Evans function [51]. Although often chosen for math-

ematical reasons the Heaviside function may be re-

garded as a natural restriction of sigmoidal functions

to the regime of high gain. Importantly, numerical

simulations show that many of the qualitative prop-

erties of solutions in the high gain limit are retained

with decreasing gain [17, 18, 34].

5 Fronts in a scalar integral model

In this section we introduce the techniques for con-

structing the Evans function with the example of trav-

elling front solutions to (9). A more detailed discus-

sion of the construction of the Evans function for neu-

ral field theories can be found in [51]. We look for trav-

elling front solutions such that q(ξ) > h for ξ < 0 and

q(ξ) < h for ξ > 0. It is then a simple matter to show

that

ψ(ξ) =
Z ∞

ξ
w(y)dy. (24)

The choice of origin, q(0) = h, gives an implicit equa-

tion for the speed of the wave as a function of system

parameters.

The construction of the Evans function begins with

an evaluation of (23). Using the identity

d
dq

Θ(q(ξ)− h) =
δ(ξ)
|q′(0)| , (25)

we arrive at the expression

u(ξ) =
u(0)

c|q′(0)|

Z ∞

−∞
dyw(y)η(−ξ/c + y/c)e−λ(y−ξ)/c.

(26)

From this equation we may generate a self-consistent

equation for the value of the perturbation at ξ = 0,

simply by setting ξ = 0 on the left hand side of (26).

This self-consistent condition reads

u(0) =
u(0)

c|q′(0)|

Z ∞

0
dyw(y)η(y/c)e−λy/c, (27)

remembering that η(t) = 0 for t ≤ 0. Importantly this

has a non-trivial solution if E(λ) = 0, where

E(λ) = 1− 1
c|q′(0)|

Z ∞

0
dyw(y)η(y/c)e−λy/c. (28)
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We identify (28) with the Evans function for the trav-

elling front solution of (9). It can be shown that i) the

Evans function is only real-valued if the eigenvalue

parameter λ is real, ii) the complex number λ is an

eigenvalue of the operator L if and only if E(λ) = 0,

and iii) the algebraic multiplicity of an eigenvalue is

exactly equal to the order of the zero of the Evans

function [51]. Also, from translation invariance, λ = 0

is an eigenvalue (with eigenfunction q′(ξ)), so that

E(0) = 0.

A common choice for the synaptic response func-

tion is η(t) = αe−αt. In this case the condition q(0) = h

gives an implicit expression for the speed of the wave

in the form [58]

h =
κ

2
− LT[w](α/c). (29)

Moreover, the Evans function takes the explicit form

E(λ) = 1− LT[w]((α+ λ)/c))
LT[w](α/c)

, (30)

where we have made use of the fact that E(0) = 0.

As an example it is illustrative to consider w(x) =
e−|x|/2, with Laplace transform LT[w](α) = (1 +
α)−1/2. The speed of the front is determined from (29)

as

c = α
1− 2h

2h
, (31)

which we observe is linear in α (as in the earlier ex-

ample for a linear firing rate function). Using (30) the

Evans function is easily calculated as

E(λ) =
λ

c + α+ λ
. (32)

The equation E(λ) = 0 only has the solution λ = 0.

We also have that E ′(0) > 0, showing that λ = 0 is a

simple eigenvalue. Hence, the travelling wave front

for this example is linearly stable. Assuming c > 0

the travelling front (17) is given in terms of (24) which

takes the explicit form

ψ(ξ) =

 1
2 e−ξ ξ ≥ 0

1− 1
2 eξ ξ < 0

. (33)

Note that in this example the travelling front is mono-

tone on R. However, this does not always have to

be the case, particularly when choosing Mexican hat

connectivities. For example with the choice w(x) =
(1− a|x|)e−|x|, we have that

ψ(ξ) =

e−ξ(1− a− aξ) ξ ≥ 0

2(1− a)− eξ(1− a + aξ) ξ < 0
. (34)

To ensure that limξ→−∞ q(ξ) > h, requires the choiceR
R w(y)dy = 2(1 − a) > h. Plots of (33) and (34) are

shown in Fig. 1.

0
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Figure 1: A plot of the travelling wave solution ψ(ξ)

for an exponential synaptic footprint w(x) = e−|x|/2

(solid curve) and a wizard hat w(x) = (1− |x|/2)e−|x|

(dashed curve). For both examples κ =
R

R w(y)dy =
1/2. Note that the wizard hat footprint leads to a non-

monotone shape for the travelling front.

6 Recovery and lateral inhibition

In real cortical tissues there are an abundance of

metabolic processes whose combined effect is to mod-

ulate neuronal response. It is convenient to think of

these processes in terms of feedback mechanisms that

modulate synaptic currents. Such feedback may act

to decrease activity in the wake of a travelling front

so as to generate travelling pulses (rather than fronts).

We will consider simple models of so-called spike fre-

quency adaptation (i.e. the addition of a current that ac-

tivates in the presence of high activity) that are known

to lead to the generation of pulses for network connec-

tivities that would otherwise only support travelling

fronts [18]. Generalising the model in the previous

7



section we write

Qu(x, t) = (w⊗ f ◦ u)(x, t)− g(wa ⊗ a)(x, t),

Qaa(x, t) = f ◦ u(x, t), (35)

with wa(x) = wa(|x|) and g a constant. The (tem-

poral) linear differential operator Qa is assumed to

have a Green’s function ηa(t). With the alternative

choice Qaa = u we obtain a model with linear recovery

[53, 59]. This model can also be analysed in exactly the

same way as the model with nonlinear recovery, and

we refer the reader to [51]. In [51] it is shown that

stable coexisting travelling fronts can exist beyond a

front bifurcation. Moreover, such fronts may be con-

nected and depending on their relative speed the re-

sulting region of activity can widen or contract.

The model with nonlinear recovery (35) may be

written in integral form as

u = [η ∗w⊗−gηb ∗wa⊗] f ◦ u, (36)

where ηb = η ∗ ηa. Note that we may also interpret

this as a lateral inhibitory network model [60]. This

model is expected to support travelling pulses of the

form q(ξ)≥ h for ξ ∈ [0,∆] and q(ξ) < h otherwise. We

write this pulse solution in the form

q(ξ) =
Z ∞

0
η(z)[ψ(ξ + cz)− gψa(ξ + cz)]dz, (37)

where ψa(ξ) =
R

R wa(y)a(ξ − y)dy. Here, a(ξ) is given

by

a(ξ) =


R ∆−ξ/c
−ξ/c ηa(z)dz ξ ≤ 0R ∆−ξ/c
0 ηa(z)dz 0 < ξ < ∆

0 ξ ≥ ∆

, (38)

and ψ(ξ) by

ψ(ξ) =


F (−ξ,∆− ξ) ξ ≤ 0

F (0, ξ) + F (0,∆− ξ) 0 < ξ < ∆

F (ξ − ∆, ξ) ξ ≥ ∆

, (39)

where

F (a, b) =
Z b

a
w(y)dy. (40)

The dispersion relation c = c(∆) is then implicitly de-

fined by the simultaneous solution of q(0) = h and

q(∆) = h.

In a co-moving frame we have a modified form

of (16) under the replacement w(y)η(s) → w(y)η(s)−
gwa(y)ηb(s). Linearising around a travelling pulse so-

lution and proceeding analogously as for the front so-

lution described in section 5, we obtain an eigenvalue

equation of the form u = Lu. In this case

Lu(ξ) = [A(ξ, λ)− gC(ξ, λ)]u(0)

+ [B(ξ, λ)− gD(ξ, λ)]u(∆),

(41)

for ξ ∈ [0,∆], with

A(ξ, λ) =
1

c|q′(0)|

Z ∞

ξ
dyw(y)η(−ξ/c + y/c)

× e−λ(y−ξ)/c, (42)

and C(ξ, λ) is obtained under the replace-

ment w(y)η(s) → wa(y)ηb(s) in (42). Also

B(ξ, λ) = |q′(0)/q′(∆)|A(ξ − ∆, λ) and D(ξ, λ) =
|q′(0)/q′(∆)|C(ξ − ∆, λ). Demanding that perturba-

tions be determined self consistently at ξ = 0 and

ξ = ∆ gives the system of equations[
u(0)

u(∆)

]
= A (λ)

[
u(0)

u(∆)

]
, (43)

where

A (λ) =

[
A(0, λ)− gC(0, λ) B(0, λ)− gD(0, λ)

A(∆, λ)− gC(∆, λ) B(∆, λ)− gD(∆, λ)

]
.

(44)

There is a nontrivial solution of (44) if E(λ) = 0, where

E(λ) = det(A (λ)− I). We interpret E(λ) as the Evans

function of a travelling pulse solution of (36).

6.1 Example: A pair of travelling pulses

Here we consider the choice η(t) = αe−αt, ηa(t) = e−t,

w(x) = e−|x|/2 and wa = δ(x) so that we recover a

model recently discussed by Coombes et al. [34]. The

travelling pulse solution for this model is given by (37)

with ψa(ξ) = a(ξ) and

a(ξ) =


[1− e−∆/c]eξ/c ξ ≤ 0

[1− e(ξ−∆)/c] 0 < ξ < ∆

0 ξ ≥ ∆

. (45)
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Using (39) ψ(ξ) is given by

ψ(ξ) =


1
2 (em+ξ − em+(ξ−∆)) ξ ≤ 0

1− 1
2 (em+(ξ−∆) + em−ξ) 0 < ξ < ∆

1
2 (em−(ξ−∆) − em−ξ) ξ ≥ ∆

. (46)

In Fig. 2 we plot the speed of the pulse as a function

of g, obtained by the simultaneous solution of q(0) = h

and q(∆) = h. It is straightforward to obtain C(0, λ) =

0

3

6

9

0 1 2 3

c

g

Figure 2: Speed of a travelling pulse as a function of

g in a model with nonlinear recovery. Parameters are

h = 0.1 and α= 2. The fast branch is stable (solid line),

whilst the slow branch is unstable (dashed line).

C(∆, λ) = D(∆, λ) = 0 and

A(0, λ) =
1

c|q′(0)|
α

2
1

1 + α/c + λ/c
, (47)

B(0, λ) =
1

c|q′(∆)|
α

2

{
e−(α+λ)∆/c − e−∆

1− α/c− λ/c

+
e−(α+λ)∆/c

1 + α/c + λ/c

}
, (48)

D(0, λ) =
αe−∆(1+λ)/c

c|q′(∆)|

(
1− e−∆(α−1)/c

α− 1

)
. (49)

with B(∆, λ) = |q′(0)/q′(∆)|A(0, λ) and A(∆, λ) =
e−∆ A(0, λ). Moreover, we have simply that

−cq′(φ)/α = −h + ψ(φ) − ga(φ) for φ ∈ {0,∆}.

One natural way to find the zeros of E(λ) is to write

λ = ν + iω and plot the zero contours of Re E(λ) and

Im E(λ) in the (ν,ω) plane. The Evans function is

zero where the lines intersect. We do precisely this in

Fig. 3 for three distinct points on the solution branch

shown in Fig. 2. On the fast branch it would appear

that all the zeros of the Evans function lie in the left

hand complex plane, whilst for the slow wave there is

at least one in the right hand plane (on the real axis).

As expected there is a double zero eigenvalue as one

passes from the fast to the slow branch of travelling

pulse solutions. Hence, the fast wave is stable and the

slow wave unstable.

6.2 Example: A dynamic instability of a
standing pulse

In many models of working memory, transient stimuli

are encoded by feature-selective persistent neural ac-

tivity. Such stimuli are imagined to induce the forma-

tion of a spatially localised bump of persistent activity

which coexists with a stable uniform state (with low

firing rate). Although long-range inhibition with local

recurrent excitation [12, 61] (and indeed without [62])

is known to be one mechanism for bump formation,

it is also possible that bistability at the single neuron

level may have a role to play [63]. Here, we shall focus

on the former mechanism and refer the reader to Fall

et al. [64] for a recent discussion of this phenomenon

within the Camperi-Wang population model of visu-

ospatial working memory with purely lateral inhibi-

tion [63].

Localised bump solutions are easily investigated

within the framework that we have described here as

they may be regarded as standing pulses with c = 0.

In this case (37) reduces to

q(ξ) =
Z ∆

0
wb(ξ − y)dy, (50)

where we have introduced the effective interaction

kernel wb(x) = w(x)− gwa(x). To be more specific (50)

describes a so-called 1-bump solution. Although it is

possible to pursue a similar construction for 2-bump

solutions, these are typically found to be unstable for

a Heaviside firing rate function [13], though this is

not necessarily true when one considers smooth fir-

ing rate functions [34]. From (50) we may calculate

the derivative

q′(ξ) = wb(ξ)−wb(ξ − ∆), (51)

9
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Figure 3: Evans function for a travelling pulse in a

model with nonlinear recovery. Zeros of the Evans

function occur at the intersection of the thick and thin

solid lines where Re E(λ) = 0 = Im E(λ). In the top

figure g = 3 and a solution is taken from the fast

branch. In the middle the value of g is that at the

saddle-node bifurcation from Fig. 2. On the bot-

tom g = 3 with a solution taken from the slow branch.

Other parameters are the same as in Fig. 2.

from which we note that |q′(0)| = |q′(∆)|. For c = 0,

w(y) and wa(y) are relatively flat and we obtain the

further simplification

A(ξ, λ) =
1

|q′(0)|LT[η](λ)w(ξ), (52)

C(ξ, λ) =
1

|q′(0)|LT[ηb](λ)wa(ξ), (53)

with B(ξ, λ) = A(∆− ξ, λ) and D(ξ, λ) = C(∆− ξ, λ).

In this section we choose η(t) = αe−αt, ηa(t) = e−t,

w(x) = e−|x|/2 and wa(x) = e−|x|/σa/(2σa). Enforcing

the condition q(0) = h or q(∆) = h generates the pulse

width as a function of system parameters:

1
2

(1− e−∆)− g
2

(1− e−∆/σa ) = h. (54)

A plot of the pulse width as a function of the threshold

parameter h is shown in Fig. 4, highlighting the fact

that solutions come in pairs. The standing pulse shape

0

2

4

6

8

0 0.025 0.05 0.075 0.1 0.125h

∆

Figure 4: Pulse width as a function of threshold h in a

model with lateral inhibition and nonlinear recovery.

Here σa = 2 and g = 1.

is easily calculated and some typical bump shapes are

shown in Fig. 5. For small values of the threshold

the bump on the upper branch of Fig. 4 has a dim-

pled shape such that q′′(0) > 0. With increasing h, q′′(0)

decreases through zero and a bump with q′′(0) < 0 is

obtained.

We may use (52) and (53) to construct the Evans

function and plot it in the same fashion as the last

example. However, unlike the last example we find

that there is not a simple exchange of stability as one

10
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Figure 5: Bumps in a model with lateral inhibition

and nonlinear recovery, with σa = 2 and g = 1. Top:

(h,∆) = (0.01,7.78). Bottom: (h,∆) = (0.075,3.39).

Both solutions are taken from the upper branch of

Fig. 4, showing that dimple solutions are found for

a sufficiently small choice of threshold.

passes through the limit point defining the transition

from a broad to a narrow pulse. Indeed we see from

Fig. 6 that it is possible for a solution on the upper

branch of Fig. 5 to undergo a dynamic instability with

increasing α. By dynamic we mean that a pair of com-

plex eigenvalues crosses into the right hand plane on

the imaginary axis, so that the standing pulse may be-

gin to oscillate, as originally described in [60]. For the

parameter values in Fig. 6 and choosing a value of

α below that defining a dynamic instability, direct nu-

merical simulations show that a bump solution is sta-

ble to random perturbations. In contrast, beyond the

dynamic instability point, a bump solution can desta-

bilise in favour of a homogeneous steady state, as il-

lustrated in Fig. 7.

To gain more insight into the form of a solution be-

yond the oscillatory instability it is useful to assume a

-2

-1

0

1

2

-2 -1 0 1 2

ω

ν
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1

2
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ω
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Figure 6: Evans function for a bump in the model with

lateral inhibition and nonlinear recovery. Here h = 0.1

and a solution is taken from the branch with largest

width ∆. On the top α = 0.75, and in the middle α =
1.0, whilst on the bottom α = 1.25. This illustrates the

possibility of a dynamic instability with increasing α

as a pair of complex eigenvalues crosses over to the

right hand plane through the imaginary axis.
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x
t

u

Figure 7: 3-d plot of a destabilised bump (α = 1.1),

with h = 0.1. Initial data with u(x,0) = 1.05q(x) where

q(x) is the stationary bump solution.

solution of the form u(xi(t), t) = h for i = 1,2, such that

x1 < x2 and u(x, t)> h for x ∈ (x1(t), x2(t)) at time t and

u(x, t) < h otherwise. Differentiation of this defining

expression for a time-dependent bump gives

ux(xi, t)
dxi

dt
+ ut(xi, t) = 0. (55)

This equation can be used to obtain the evolution of

the bump-width ∆(t) = x2(t)− x1(t). The expressions

for ut and ux are naturally obtained by differentiating

(36) (remembering that f is a Heaviside). For exam-

ple, if we choose Q = 1 + α−1∂t, Qa = 1 + ∂t, then the

bump evolves according to

y
2

d∆
dt

= α(−h + W(∆)− z),

dz
dt

= −z + gWa(∆),

dy
dt

= α(−y + w(0)−w(∆)− gz1),

dz1

dt
= −z1 + wa(0)−wa(∆), (56)

where we identify y = ux(x1, t) = −ux(x2, t). Here

W(x) =
Z x

0
w(y)dy =

1
2

[1− e−x], (57)

Wa(x) =
Z x

0
wa(y)dy =

1
2

[1− e−x/σa ]. (58)

(59)

Denoting the fixed point by (∆∗, z∗, y∗, z∗1), we recover

an expression for ∆∗ identical to earlier, i.e. W(∆∗)−
gWa(∆∗) = h, which is equivalent to (54). Hence, the

curve for ∆∗ = ∆∗(h) is identical to that of Fig. 4. The

Jacobian of the system at the fixed point has eigenval-

ues λ = −1, λ = −α and λ = λ± where

λ± =
TrJ±

√
(TrJ)2 − 4 det J

2
, (60)

and

J =

[
2αw(∆∗)/y∗ −2α/y∗

gwa(∆∗) −1

]
. (61)

We note that det J = −2αwb(∆∗)/y∗. Moreover, dif-

ferentiation of the fixed point equation for ∆∗ with

respect to ∆∗ yields wb(∆∗) = h′(∆∗), showing that

wb(∆∗) > 0 on the lower solution branch of Fig. 4.

Hence, det J < 0, and from (60), we see that this solu-

tion is a saddle. On the upper branch det J > 0 and

a Hopf bifurcation occurs when TrJ = 0, which is ex-

pected to occur with increasing α. A plot of the fixed

point of the system of equations (56) as well as the

maximum amplitude of oscillation for periodic orbits

arising at a Hopf bifurcation are plotted in Fig. 8.

This numerical solution of (56) shows that the Hopf

0

2

4

6

8

0 0.04 0.08 0.12
h

∆

Figure 8: Pulse width as a function of threshold h in a

model with lateral inhibition and nonlinear recovery.

Here σa = 2, g = 1 and α = 4. Solid (dashed) lines are

stable (unstable). Open circles denote the maximum

amplitude of unstable periodic orbits emerging from

a sub-critical Hopf bifurcation.

bifurcation is sub-critical, with no emerging stable or-

bits. In fact the emergent unstable periodic orbit is de-

stroyed in a collision with the unstable lower branch

of fixed points. Pinto and Ermentrout have suggested
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that this is the reason why direct numerical simula-

tions (just beyond the point of instability) do not show

stable breathing bumps [60]. Although this approach

is useful in predicting qualitative behaviour of the full

equations of motion, it is not particularly useful in

providing accurate estimates of the critical values of α

and h necessary to see a dynamical instability. Unfor-

tunately, there is not an accurate agreement with the

point of instability calculated using the exact Evans

function approach and that of the Hopf bifurcation in

the kinematic theory of bump dynamics.

Returning our attention to the results described

above for dynamic instabilities of localised bumps, it

would appear that the question of how to generate

stable breathing solutions in a neural field model is

an interesting one. One way to generate such solu-

tions has been found that relies upon the inclusion

of localised inputs [65], breaking the homogeneous

structure of the network. The use of unimodal inputs

means that this mechanism does not require a Mexi-

can hat connectivity to either generate bumps or sta-

ble breathing bumps (merely just a positive footprint

such as a spatially decaying exponential). However,

it is also possible to find stable breathing solutions in

a homogeneous model with Mexican hat connectivity

that incorporates a dynamic firing threshold [66].

7 Space-dependent delays

In the presence of space-dependent delays, it is natu-

ral for ψ(x, t) to take the slightly more general form

ψ(x, t) =
Z ∞

−∞

Z ∞

−∞
K(x− y, t− s) f ◦ u(y, s)dyds. (62)

A model with space-dependent axonal delays may

be obtained by choosing K(x, t) = w(x)δ(t − |x|/v)

[34, 67], where v is the finite speed of action potential

propagation. Alternatively a model of dendritic de-

lays studied intensively by Bressloff [68, 69] is recov-

ered with the choice K(x, t) = w(x)g(t). Here g(t) is the

Green’s function of the cable equation with a synapse

at a fixed (dendritic) distance from the cell body. As

in section 2 the (double) convolution structure of this

equation may be exploited to obtain a PDE formula-

tion, provided that the two dimensional FT of K(x, t)

has a rational structure. For an axonal delay the choice

w(x) = e−|x|/2 gives rise to a type of damped inhomo-

geneous wave equation:

[(v + ∂t)2 − v2∂xx]ψ(x, t) = [v2 + v∂t] f ◦ u(x, t). (63)

This equation was first derived by Jirsa and Haken

[67, 70] and has been studied intensively in respect to

the brain-behaviour experiments of Kelso et al. [71].

Similar equations have been presented in [72, 73, 74,

75], where the linearisation of such equations (about

a homogeneous steady state) has been used in the

interpretation of EEG spectra. As regards the set

of full nonlinear integral equations one obvious con-

sequence of introducing an axonal delay is that the

speed of a travelling wave must be slower than that of

the action potential, i.e. c < v. The calculation of wave

speed and stability for a Heaviside firing rate function

is easily generalised to the case of finite v and is de-

scribed in [18, 34, 51]. For the case of the exponential

synaptic footprint chosen above and an exponential

synaptic response, η(t) = αe−αt, it is possible to obtain

a closed form expression for the speed, c, of a front in

terms of the speed of an action potential, v, as

c =
v(2h− 1)

2h− 1− 2hv/α
. (64)

Note that we recover equation (31) in the limit v →∞
as expected. The techniques used in section 6 may

also be adapted to construct travelling pulse solutions,

and indeed this has recently been done by Enculescu

[76]. This calculation is easily reproduced (although

we do not do so here) and we have used this to make

a plot of front and pulse speed as a function of v in

Fig. 9. We note that the pulse (if it exists) always trav-

els slower than the front. Interestingly an examination

of the Evans function for each solution (adapting the

calculations in sections 5 and 6) shows that the front

is always stable whilst the pulse is always unstable.

Hence, it is not possible to change the stability of a

front or pulse by varying v. However, the affect of

varying v can have a far more profound effect on the

stability of a homogeneous steady state, as we now

discuss.
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Figure 9: The speed of a travelling front (solid line)

and a travelling pulse (dashed line) as a function of

action potential velocity in a model with space depen-

dent axonal delays. Here the synaptic footprint is ex-

ponential, w(x) = e−|x|/2, and the synaptic response

function is also exponential, η(t) = αe−αt. The firing

rate function is a Heaviside, f (u) = Θ(u− h). Note that

the pulse travels slower than the front. Moreover, an

examination of the Evans function for both solution

types shows that the front is always stable, and the

pulse is always unstable. Parameters are α = 1 and

h = 0.25.

In section 3, we showed that static Turing instabil-

ities can arise for Mexican hat connectivities in the

absence of space-dependent delays. However, when

working with (62) it is possible for dynamic Turing

instabilities to occur. These were first found in neu-

ral field models by Bressloff [68] for dendritic de-

lays and more recently by Hutt et al. [77] for ax-

onal delays. Both these studies suggest that a com-

bination of inverted Mexican hat connectivity with a

space-dependent delay may lead to a dynamic insta-

bility. Indeed the choice of inverted Mexican hat is

natural when considering cortical tissue and remem-

bering that principal pyramidal cells i) are often en-

veloped by a cloud of inhibitory interneurons, and

ii) that long range cortical connections are typically

excitatory. We now illustrate the possibility of a dy-

namic Turing instability for a model with axonal de-

lays by considering an inverted wizard hat function

w(x) = (|x| − 1)e−|x| and alpha function synaptic re-

sponse η(t) = α2te−αt. Proceeding as in section 3 we

linearise around a homogeneous solution and con-

sider perturbations of the form eλteikx. In this case

the dispersion relation for λ= λ(k) takes the modified

form

γLT[η](λ)FT[ŵ](k)− 1 = 0, (65)

where ŵ(x) = w(x)e−λ|x|/v. Compared to (13) (obtained

in the absence of space-dependent delays), equation

(65) is not separable in the sense that FT[ŵ](k) is not

just a function of k, but is also a function of λ. It

is natural to decompose λ in the form λ = ν + iω

and equate real and imaginary parts of (65) to ob-

tain two equations for ν and ω. If we write these

in the form G(ν,ω) = 0 and H(ν,ω) = 0, then the si-

multaneous solution of these two equations gives the

pair (ν(k), ω(k)), so that we may parametrically ex-

press ω = ω(ν). An example of such a plot is shown

in Fig. 10. Here, it can be seen that for a fixed value

1

1.5

2

2.5

-0.04 0 0.04ν

ω

γ < γ (v)
c

γ = γ (v)
c

γ > γ (v)
c

Figure 10: Continuous spectrum for a scalar neural

field model with an inverted wizard hat synaptic foot-

print, axonal delays (of speed v = 1) and an alpha

function synapse (with α = 1). On the left γ = 7 <

γc(v) and on the right γ = 9 > γc(v). For γ < γc(v)

the continuous spectrum lies in the left hand complex

plane and the homogeneous solution is stable. For

γ > γc(v) part of the continuous spectrum lies in the

right hand complex plane and the homogeneous solu-

tion is unstable.

of v there is a critical value of γ = γc(v) such that for

γ < γc(v), the continuous spectrum lies in the left hand
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complex plane, whilst for γ > γc(v) part of the spec-

trum lies in the right hand complex plane. The Tur-

ing bifurcation point is defined by the smallest non-

zero wave number kc that satisfies Re (λ(kc)) = 0. It

is said to be static if Im (λ(kc)) = 0 and dynamic if

Im (λ(kc)) ≡ ωc 6= 0. A static bifurcation may then be

identified with the tangential intersection of ω = ω(ν)

and ν = 0 at ω = 0. Similarly a dynamic bifurcation

is identified with a tangential intersection with ω 6= 0.

The integral transforms in (65) are easily calculated as

LT[η](λ) = (1 + λ/α)−2 and

ŵ(k, λ) =
−2λ/v[(1 + λ/v)2 − k2]− 4k2(1 + λ/v)[

(1 + λ/v)2 + k2
]2 ,

(66)

so that we may rewrite (65) as a sixth order polyno-

mial in λ; ∑6
n=0 anλn = 0 where the coefficients an =

an(k, v, α, γ) are given in the appendix. Hence, the

functions G(ν,ω) and H(ν,ω) may also be written as

polynomials in (ν,ω). For the calculation of a dynamic

Turing instability we are required to track points in

parameter space for which ν ′(ω) = 0. By differen-

tiating G(ν,ω) = 0 = H(ν,ω) with respect to ω we

see that this is equivalent to tracking points where

Gk Hω − HkGω = 0 (itself another polynomial equa-

tion). Beyond a dynamic Turing instability we expect

the growth of travelling patterns of the form ei(ωct+kcx).

A plot of the critical curve γ = γc(v) for a dynamic Tur-

ing instability (with kc 6= 0) is shown in Fig. 11. Here,

it can be seen that with increasing γ (the gradient of

the firing rate at the homogeneous steady state) a dy-

namic instability is first met for v ∼ 1. Direct numeri-

cal simulations (not shown) of the full model show ex-

cellent agreement with the predictions of the dynamic

Turing instability analysis. To determine the condi-

tions under which one might see a standing wave

(arising from the interaction of a left and right trav-

elling wave), it is necessary to go beyond linear analy-

sis and determine the evolution of mode amplitudes.

The techniques to do this in (one dimensional) neural

field theories are nicely described by Curtu and Er-

mentrout [78].

8

12

0 1 3 5

Dynamic Turing

Patterns

γ

v

Figure 11: The critical curve for a dynamic Turing in-

stability in a neural field with axonal delays and an

inverted wizard-hat connectivity, with an alpha func-

tion synaptic response (and α = 1). Above the curve

γ = γc(v), the homogeneous steady state is unstable,

leading to the growth of travelling patterns of the

form ei(ωct+kcx).

8 Neural field equations with slow

ionic currents

In the type of continuum models we have considered

so far it has been assumed that the synaptic input cur-

rent is a function of the pre-synaptic firing rate func-

tion. To see how this might arise consider a one di-

mensional continuum of spiking single neurons with

synaptic input at position x given by

u(x, t) = η ∗w⊗ ∑
m∈Z

δ(t− Tm(x)). (67)

This models the effect of an idealised action potential

(delta-Dirac function) arriving at a synapse and initi-

ating a postsynaptic current at time Tm. If the synap-

tic response is on a slower time scale than that of the

mean interspike-interval (Tm−Tm−1) and fluctuations

around the mean are small, then it is natural to replace

the spike train in (67) with a (smooth) firing rate func-

tion (see for example [79, 80]). To illustrate how one

might go about deriving this firing rate function we

consider an integrate-and-fire process for the evolu-

tion of a cell membrane voltage given by

C
∂v
∂t

= −gL(v− vL) +
N

∑
k=1

Ik + u. (68)
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Here, C is a membrane capacitance, gL a constant

leakage conductance, and vL a constant leakage re-

versal potential. The Ik represent a set of slow in-

trinsic ionic currents, which typically have the form

Ik = gkmpk
k hqk

k (vk − v) where pk, qk ∈ Z, mk and hk are

gating variables that satisfy differential equations, vk

is the reversal potential of the kth channel and the gk

are a set of constant conductances. From now on we

shall refer all voltages to vL. An action potential is said

to occur whenever v reaches some threshold h. The set

of action potential firing times are defined by

Tm(x) = inf{t | v(x, t) ≥ h ; t ≥ Tm−1(x) + τR}. (69)

Here τR represents an absolute refractory period. Im-

mediately after a firing event the system undergoes

a discontinuous reset such that v → 0. Assuming

that the dynamics for v is much faster than that

of u and any intrinsic currents (equivalent to tak-

ing τ ≡ C/gL → 0 in (68)), then v equilibrates to

it’s steady-state value, which we denote by vss =
vss(u,m1, . . . ,mN, h1, . . . , hN). Moreover, we may com-

pute the firing rate of the IF process as f = f (vss),

where

f (v) =
1

τR + τ ln
(
v/(v− h)

)Θ(v− h), τ =
C
gL
. (70)

So a neural field model that respects the presence of

intrinsic ionic currents should be written as

u = η ∗w⊗ f ◦ vss. (71)

Note that in the absence of any slow intrinsic currents

we obtain the standard model u = η ∗w⊗ f ◦ u, since

vss = u (after choosing units such that gL = 1).

To demonstrate the enormous impact the inclusion

of extra slow currents can have, consider a single in-

trinsic ionic current (N = 1 in (68)) with p1 = q1 = 1,

m1 = Θ(vss − vr) and h1 = r given by

τ (vss)
dr
dt

= −r + r∞(vss), (72)

with r∞(v) = Θ(vr − v) and τ (v) = τ−Θ(v − vr) +
τ+Θ(vr − v). This is a minimal model for the slow

T-type calcium current IT [81]. The slow variable

r represents the deinactivation of the low-threshold

Ca2+ conductance. When this conductance is evoked,

Ca2+ entering the neuron via T-type Ca2+ channels

causes a large voltage depolarisation known as the

low-threshold Ca2+ spike (LTS). Conventional action

potentials mediated by fast Na+ and K+ currents often

ride on the crest of an LTS resulting in a burst response

(i.e., a tight cluster of spikes). If the neuron is hyper-

polarised below vr, the low-threshold current deinac-

tivates (with a time constant of τ−). In this situation

release from inhibition results in a post inhibitory re-

bound response consisting of an LTS and a cluster of 2-

10 spikes. This type of dynamical behaviour is known

to play an important role within the context of tha-

lamocortical oscillations [25]. When neurons can fire

via post inhibitory rebound it is also well known that

this can lead to lurching waves of activity propagating

through an inhibitory network [82]. A lurching wave

does not travel with a constant profile, (i.e., there is no

travelling wave frame) although it is possible to iden-

tify a lurching speed. Rather, the propagating wave

recruits groups of cells in discrete steps. The lead-

ing edge of active cells inhibits some cluster of cells

ahead of it (depending on the size of the synaptic foot-

print). Inhibited cells (ahead of the wave) must wait

until they are released from inhibition before they can,

in turn, fire. The first mathematical analysis of this

phenomenon can be attributed to Terman et al. [83].

These authors work with a slightly more complicated

version of the slow IT current than considered here

and treat conductance based models (rather than fir-

ing rate). Using techniques from geometric singular

perturbation theory they derive explicit formulas for

when smooth and lurching waves exist and also deter-

mine the effect of network parameters on wave speed.

However, this work relies partly on numerically deter-

mined properties of the single cell model.

Here we show how an exact analysis of lurching

waves can be performed when the IT current de-

scribed above is incorporated into a firing rate model.

Taking v1 � v and introducing gr = g1v1, then vss =
vss(u, r) is given by the solution to

vss = u + grrΘ(vss − vr), (73)

choosing units such that gL = 1. For mathematical

convenience we work with the Heaviside firing rate
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function f (v) = Θ(v − h) (obtained from (70) in the

limit τ → 0 with units such that τR=1) and consider

a purely inhibitory network with

w(x) = − 1
2σ

Θ(σ− |x|). (74)

We denote the size of a cluster involved in a lurch by L.

For simplicity we shall only consider lurching pulses

L

t

x

T
L

∆

∆

h

v
r

h

Figure 12: A diagram of an idealised solitary lurching

pulse showing the four unknowns that parameterise

the solution. Here L represents the size of a cluster,

TL the period of the lurch, ∆h the time spent firing and

∆ the duration of inhibition where the rebound vari-

able r is increasing. Grey regions indicate where the

system is firing.

where consecutive active clusters are adjacent to each

other. We suppose that to a first approximation neu-

rons for x ∈ (0, L) are simultaneously released from in-

hibition and start firing at time t = TL. The next group

with x ∈ (L,2L) fires when t = 2TL. We define the

firing duration of a cluster as ∆h (i.e., the time spent

above h) and the duration of inhibition (time spent

below vr before release) as ∆. An illustration of this

type of lurching pulse is shown in Figs. 12 and 13.

An analysis of this type of solution has been given in

[84]. Here it was shown that a lurching wave takes the

simple (separable) form

u(x, t) = W(x)Q(t,min(t,∆h )), (75)

-0.1

0

0.1

0.2

T
L

2 T 3 T 4 T
L L L

v

t

1 2 3

h

v
r

∆

h

∆

ss

Figure 13: A plot of the analytical solution for a lurch-

ing pulse, with an α function synaptic response, η(t) =
α2te−αt. The lines labelled 1, 2, and 3 represent trajec-

tories from neurons in adjacent clusters, with cluster

1 firing first. It is assumed that clusters can only fire

once through rebound. In this example α = σ = gr =
1, τ+ = 2, τ− = 10, h = .1, and vr =−0.05. The numer-

ical solution of the system of defining equations gives

(L,TL,∆,∆h) = (0.5,3.21,2.39,1.07). Note that for clar-

ity only partial trajectories are plotted.

for x ∈ (0, L) and t > 0, where

Q(t, a) =
Z a

0
η(t− s)ds,

W(x) =
Z x+L

x
w(y)dy. (76)

The full solution is defined by periodic extension such

that u(x + L, t + TL) = u(x, t). Hence, using (73), we

have a closed form expression for vss in terms of the

four unknowns L, TL, ∆ and ∆h. Note that if 2L <

σ then W(x) = L/2σ and u(x, t) given by (75) is in-

dependent of x. Assume to a first approximation

that vss(x, t) = v(0, t) for x ∈ (0, L), then the four un-

knowns are determined by the simultaneous solution

of vss(0,TL) = vr, vss(0,TL + ∆h) = h, vss(0,TL − ∆) =
vr and vss(L,TL) = vr. Since W(L) takes its maximal

value for L = σ/2 we see that there is a solution with

L = σ/2. It is convenient to introduce a lurch velocity

c = L/TL. A numerical solution of the four simultane-

ous equations may be used to construct c = c(vr), and

a plot of such a solution for an alpha function synap-

tic response is shown in Fig. 14. Lurching waves are
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Figure 14: Speed c = L/TL of a solitary lurching pulse

in an inhibitory network with the slow IT current as a

function of the rebound threshold vr. Parameters as in

Fig. 13

found for vr < 0, with c → 0 as vr → 0 (on the lower

branch). Moreover, c increases with decreasing vr and

a solution is lost in a saddle-node bifurcation. Note

that in the absence of the IT current this model net-

work would not support any form of propagating ac-

tivity. Direct numerical simulations suggest that the

slow wave (lower branch) is stable. It remains an open

challenge to establish this result analytically.

9 Extension to 2D

In specific brain regions, such as mammalian neocor-

tex, connectivity patterns follow a laminar arrange-

ment, with strong vertical coupling between layers.

Consequently cortical activity is considered as occur-

ring on a two dimensional plane, with the coupling

between layers ensuring near instantaneous vertical

propagation. Hence, it is highly desirable to obtain so-

lutions to fully planar neural field models. We have al-

ready briefly discussed Turing instabilities in two spa-

tial dimensions in section 3, and will not pursue this

further. Rather the challenge is to ascertain whether

an extra spatial dimension can lead to any fundamen-

tally new network behaviour as compared to that in

one dimension. In comparison to the studies of one

dimensional networks, far less is known about be-

haviour in two dimensions. Relatively recently, how-

ever, Laing and Troy [36] have developed PDE meth-

ods to study scalar neural field equations in two spa-

tial dimensions. The focus of this work has been on

the numerical construction of spatially localised (radi-

ally symmetric) solutions (via shooting methods) and

their stability (via the numerical solution of an eigen-

value problem). Their work shows how circularly

symmetric N-bumps play an important role in the for-

mation of asymmetric N-bumps. By choosing radially

symmetric kernels that allow for an equivalent PDE

model their work also opens up the possibility for the

numerical study of travelling waves [19, 85]. How-

ever, when a local PDE approach is not possible (as

is the case for synaptic footprints with compact sup-

port) one must seek solutions of the full integral neu-

ral field model directly. Thus far, the only analytical

results are for radially symmetric time-independent

solutions. Taylor [86] and Werner and Richter [87]

have classified some of the circular and ring solutions

(for Heaviside firing rate functions), and analysed the

stability of solutions with respect to radial perturba-

tions. More recent work by Folias and Bressloff [65] in-

troduces techniques that can also handle angular per-

turbations.

In this section we show how some of the ideas of

previous sections can be carried over to two spatial

dimensions. We will limit our discussion to time-

independent localised solutions, rather than the far

more challenging study of travelling waves. By fo-

cusing on the properties of a radially symmetric one-

bump solution we will highlight the importance of

considering angular perturbations, and not just radial

ones, in the determination of bump stability.

The two dimensional generalisation of (9) for a ra-

dially symmetric footprint takes the form

u(r, t) =
Z

R2
dr′w(|r− r′|)

Z ∞

0
dsη(s) f ◦ u(r′, t− s),

(77)

where r = (r, θ) and r′ = (r′, θ′). Time-independent so-

lutions satisfy

q(r) =
Z

R2
dr′w(|r− r′|) f ◦ q(r′). (78)

Linearising about the time-independent solution by
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writing u(r, t) = q(r) + u(r)eλt and working to first or-

der in u(r) generates the eigenvalue equation:

u(r) = LT[η](λ)
Z

R2
dr′w(|r− r′|) f ′(q(r′))u(r′). (79)

As an example we consider the construction of a ra-

dially symmetric bump solution for the choice f (u) =
Θ(u− h). In this case we have that q(r) = q(r), where

r = |r|, with q(r) > h for r ≤ a and is zero otherwise.

Hence, from (78)

q(r) =
Z 2π

0

Z a

0
w(|r− r′|)r′dr′dθ. (80)

This is readily evaluated using a 2D Fourier transform

(equivalent to a Hankel transform) of w(r), which we

write in the form

w(r) =
Z ∞

0
w̃(k)J0(rk)kdk. (81)

Here Jν (x) is the Bessel function of the first kind, of

order ν and

w̃(k) =
Z

R2
eik·rw(r)dr. (82)

Following [65] it may then be shown that substitution

of (81) into (80) gives

q(r) = 2πa
Z ∞

0
w̃(k)J0(rk)J1(ak)dk. (83)

Using the fact that f ′(u) = δ(r− a)/|q′(a)| means that

(79) reduces to

u(r, θ) =
aLT[η](λ)
|q′(a)|

Z 2π

0
w(|r− a′|)u(a, θ′)dθ′, (84)

where a′ = (a, θ′). Following [36] and [65] we look for

solutions of the form u(r, θ) = um(r)eimθ , where m ∈ Z.

In this case the radial component of the eigenfunction

satisfies

um(r)
um(a)

=
aLT[η](λ)
|q′(a)|

Z 2π

0
dθ cos(mθ)

×w(
√

r2 + a2 − 2ra cos θ), (85)

where we have exploited the fact that
R 2π

0 w(|r −
a′|) sin(mθ)dθ = 0. Hence, radial perturbations away

from the border of the bump are completely deter-

mined by the perturbation at the bump edge (as in

the one dimensional case). Setting r = a in (85) gen-

erates an implicit expression for the discrete spec-

trum λ = λm, where λm is the solution to Em(λ) ≡

LT[η](λ)−1 − µm = 0, with µm ∈ R given by

µm =
2a

|q′(a)|

Z π

0
w(2a sin θ) cos(2mθ)dθ. (86)

We interpret Em(λ) as a family of Evans functions for

the two dimensional single bump. The condition for

stability is thus that Re (λm) < 0 for all m. Although

it is hard to find closed form expressions for λm it is a

simple matter to obtain them numerically.
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Figure 15: Bump radius a as a function of threshold h.

Note that for h < hD the bump solution on the branch

a+ has a dimple. The point where h = hD on the upper

branch is indicated by the filled black circle.

An evaluation of the bump solution (83) in closed

form is typically only possible for special choices of

w(r). In fact it is easier to choose forms of w̃(k) (the

2D Fourier transform of w(r)) that allow the use of

known integral formulas involving products of Bessel

functions. From the analysis of one dimensional sta-

tionary solutions we would expect to obtain bump

solutions for a radially symmetric kernel of the form

w(r) = e−r − e−r/2/2. Since this two dimensional Mex-

ican hat function does not have a simple Hankel trans-

form we make use of the approximation

1
2π

e−r ≈ 2
3π

(K0(r)− K0(2r)) ≡ E(r), (87)

where Kν (x) is the modified Bessel function of the sec-

ond kind. For computational simplicity we now work

with the explicit choice w(r) = E(r) − E(r/2)/4. The

factor of 4 enforces the balance condition
R

R2 w(|r|)dr =
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Figure 16: A plot of λ0 and λ2 along the solution curve

of Fig. 15. We note that λ1 = 0 for all points on

the curve a = a(h). Hence, although solutions on a+

are stable to radial perturbations, for h < hD dimpled

solutions are unstable to perturbations of the form

u2(r) cos(2θ).

0, although this is not strictly necessary for the gener-

ation of bump solutions. Using the fact that the Han-

kel transform of K0(pr) is Hp(k) = (k2 + p2)−1 we may

write

w̃(k) =
2

3π

{
−H2(k) +

5
4

H1(k)− 1
4

H1/2(k)
}
. (88)

Substitution into (83) leads to integrals of the formZ ∞

0

J0(rk)J1(ak)
k2 + p2 dk ≡ Lp(a, r). (89)

Integrals of this type are given by [65, 88]

Lp(a, r) =

 1
p I1(pa)K0(pr) r ≥ a
1

ap2 − 1
p I0(pr)K1(pa) r < a

, (90)

which allows us to compute (83) as

q(r) =
4a
3

(
−L2(a, r) +

5
4

L1(a, r)− 1
4

L1/2(a, r)
)
. (91)

The bump radius is determined by the condition

q(a) = h. In Fig. 15 we plot the bump radius as a

function of firing threshold. This clearly has the same

trend as seen in the one dimensional case (cf Fig. 4).

As in the one dimensional case we find two types of

solution; one with q′′(0) < 0 for h > hD and the other

with q′′(0) > 0 for h < hD. Examples are shown in the

insets of Fig. 15. On the upper branch of Fig. 15

we have plotted the point at which q′′(0) = 0, defin-

ing the transition from dimpled to non-dimpled so-

lutions at h = hD. In the one dimensional case no

instabilities were found on the upper branch where

a = a+. However, we shall now show that in two di-

mensions there is the possibility of an instability on

the upper branch precisely at the point where h = hD.

Consider, for example, an exponential synaptic time

course η(t) = e−t. In this case LT[η](λ)−1 = 1 + λ and

the condition for stability is simply that λm < 0 for all

m, where λm = −1 + µm. In Fig. 16 we plot λ0 and

λ2 along the solution branch of Fig. 15 (λ1 is identi-

cally zero by rotation invariance). Hence, although the

bump on the branch with a = a+ is stable to radial per-

turbations (since λ0 < 0 on a+), it is not stable to per-

turbations with m = 2. Indeed λ2 crosses through zero

precisely at the point h = hD on a+, signalling the fact

that dimple solutions are unstable. From the shape

of the eigenfunction u2(r) cos 2θ, plotted in Fig. 17,

we would expect the bump to split in two as h is de-

creased through hD. This result is confirmed in [89],

where a further discussion of both bump and ring in-

stabilities can be found.

10 Discussion

Although it is clear that there are an increasing num-

ber of powerful mathematical techniques to choose

from when studying neural field equations it is still

true that such studies would benefit from contribu-

tions of a more fundamental nature. Much of the dis-

cussion in this paper has revolved around either mak-

ing links between integral models and PDEs, or work-

ing with the Heaviside firing rate function. In the for-

mer case this merely side-steps the need to develop
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Figure 17: A plot showing the shape of the function

u2(r) cos(2θ) on the branch a+ when h = hD. The peaks

of this function occur at r = a. Beyond the instability

point a one bump solution splits into two pieces.

general techniques for the study of nonlinear integral

equations. In contrast the latter case does allow for

analysis in an integral framework, but at the expense

of being able to choose an arbitrary (and perhaps more

realistic) firing rate function. However, it is pleas-

ing to note that some exact results for the existence

and stability of bumps have recently been obtained for

non-Heaviside firing rate functions with a piecewise-

linear nature [35, 90]. For smooth firing rate functions

techniques from singular perturbation theory, such as

reviewed in [32], have also been useful for moving

away from the Heaviside limit. Ideally however, one

would like to call upon a set of new techniques that

would allow the numerical continuation of solutions

to nonlinear integral equations, as is commonly done

for solutions to nonlinear ODEs using packages like

AUTO [91]. Besides the obvious mathematical chal-

lenges of dealing with dynamic neural fields, particu-

larly in two spatial dimensions, there are also issues

to do with incorporating more biologically realistic

features. We have already hinted at how to incor-

porate the effects of passive dendritic structures and

slow ionic currents in sections 7 and 8. However, it

is also important to remember that real neural tissue

is anisotropic and inhomogeneous, and that the neu-

ral field equations presented here must be modified to

reflect this, as in the work of Bressloff [92]. Further-

more, one must remember that the mean firing rate

assumption neglects the precise details of spiking ac-

tivity and as such does not take into account the effects

of temporal correlations between firing events. In-

deed, direct numerical simulations of spiking neural

field models have uncovered a number of interesting

bifurcations and dynamical phenomena, that would

be ruled out in a corresponding firing rate model, e.g.

[93, 61, 94, 80].

A program of work that addresses the above issues

is currently underway, and will be reported on else-

where.
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Appendix

The coefficients a0, . . . , a6 used in section 7 are given

explicitly by

a0 = (1 + k2)2 + 4γk2, (92)

a1 = 2(1 + k2)
[α(2 + γ) + (1 + k2)v]

αv
, (93)

a2 =
2α2(k2 + 2γ + 3) + 8α(1 + k2)v + (1 + k2)2v2

α2v2 ,

(94)

a3 = 2
α2(2 + γ) + 2α(3 + k2)v + 2(1 + k2)v2

α2v3 , (95)

a4 =
α2 + 8αv + 2(3 + k2)v2

α2v4 , (96)

a5 = 2
α+ 2v
α2v4 , (97)

a6 =
1

α2v4 . (98)
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