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Abstract: Dendritic cells are the crime scene investigators of the human immune 
system. Their function is to correlate potentially anomalous invading entities with 
observed damage to the body. The detection of such invaders by dendritic cells 
results in the activation of the adaptive immune system, eventually leading to the 
removal of the invader from the host body. This mechanism has provided 
inspiration for the development of a novel bio-inspired algorithm, the Dendritic 
Cell Algorithm. This algorithm processes information at multiple levels of 
resolution, resulting in the creation of information granules of variable structure. 
In this chapter we examine the multi-faceted nature of immunology and how 
research in this field has shaped the function of the resulting Dendritic Cell 
Algorithm. A brief overview of the algorithm is given in combination with the 
details of the processes used for its development. The chapter is concluded with a 
discussion of the parallels between our understanding of the human immune 
system and how such knowledge influences the design of artificial immune 
systems. 

1. Introduction 

The human immune system (HIS) is a decentralised, robust and error tolerant 
system which consists of a plethora of interacting cells. This system provides 
protection from invading entities such as bacteria and regulates numerous bodily 
functions. Immunology, the study of the human immune system, encompasses 
multiple levels of abstraction. For the past 100 years immunology has been a 
reductionist science, concentrating on the precise mechanisms involved in the 
relationship between immune-related molecules and cells. More recently 
[Cohen07] immunologists are examining such components from a systemic 
perspective. The exact purpose of the HIS still remains elusive, though current 
thinking within immunology is that it provides a combination of protection and 
regulation. Protection involves the rapid detection of invading microorganisms 
termed pathogens, their subsequent removal from the body and the process of 
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repair following pathogenic infection. Regulation via the immune systems 
involves the maintenance of a constant internal environment, namely the 
homeostasis of bodily processes. This includes temperature, acidity levels, growth 
of blood vessels, regulation of inflammatory processes and tolerance to self-cells.  

As computer scientists, our interest in the immune system is as a protection 
system as natural parallels can be drawn between natural pathogens and threats to 
computer systems, such as internet based ‘viruses’ and ‘worms’[Forrest94]. To 
use the immune system as inspiration for computer algorithms, the construction of 
immune-inspired models is performed at numerous levels of abstraction, including 
molecular signaling networks and models of cell.  These concepts are translated 
into an algorithm or system through processes of abstraction and modeling.  

The creation of artificial immune systems (AISs) involves the translation of 
basic immunological models into feasible algorithms. This requires careful 
modeling of immune inspired features. To achieve this successfully, it is 
recommended that the desired immune components are modelled at various levels 
of abstraction then transformed into an algorithm using a similar multi-scale 
ethos.The choice of functions abstracted from the natural system is heavily 
influenced by the methods used in experimental immunology as this limits our 
understanding of the immune system. Three different levels of abstraction are 
commonly used including the molecular level, cellular level and systemic level, 
with the majority of research focusing on the molecular level. Such trends within 
immunology influence the manner by which AISs are created with most using 
models of molecular interactions in terms of binding between molecules 
[deCastro02].  

The Dendritic Cell Algorithm (DCA) is an example of an immune inspired 
algorithm developed using a multi-scale approach. This algorithm is based on an 
abstract model of dendritic cells (DCs). The DCA is abstracted and implemented 
through a process of examining and modeling various aspects of DC function, 
from the molecular networks present within the cell to the behaviour exhibited by 
a population of cells as a whole. Within the DCA information is granulated at 
different layers, achieved through multi-scale processing. This differs from the 
standard view of granular computation [Bargiela03] as such information granules 
do not have an explicit fuzzy component or membership function. However, their 
processing is performed in a similar multi-level manner and across multiple time 
scales forming a diverse set of information granules. Input data is in the form of 
two different input streams, which are combined and correlated across variable 
time windows. In addition such AIS algorithms are inherently human-centric in 
their development. They are based on a foundation of how the immune system is 
perceived through immunological experimentation. This ultimately forms the 
abstract biological model underpinning the function of immune inspired 
computational systems.  
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In this chapter we use the parallels drawn between natural DCs and the 
artificial population of DCs used in the DCA to illustrate the principles behind 
multi-scale algorithm development. The aim of this chapter is to show how such 
abstraction can be achieved and to stress the importance of understanding a system 
from multiple perspectives to produce systems that encompass several layers of 
information granularity. In Section two an overview of the relevant immunology is 
presented and the development process of multi-signal models is outlined. In 
addition we present an overview of the AIS algorithms developed for computer 
security and optimisation and draw parallels with human-centric developments in 
immunology. Section three introduces the DCA as a multi-resolution algorithm. 
Section four provides a brief description of an implemented DCA highlighting 
signal and antigen processing as granular computation, and Section five continues 
the discussion of the DCA in the context of human centric development. Finally 
conclusions are drawn regarding the relationships between immunology, AIS and 
the lessons learned from the developmental process used to create the DCA. 

2. Background 

2.1 Human Immune System 

The human immune system (HIS) is vast, containing in excess of 10 million cells. 
There is no archetypal “immune cell” akin to neurones in the central nervous 
system. Instead the HIS is an abstract concept, a name imposed by immunologists 
for a collection of cells whose function is within the remit of protection and 
regulation. The HIS is classically subdivided into two distinct branches: the innate 
and the adaptive systems. The innate system is evolutionarily the oldest immune 
component and its role to provide a rapid response on detection of specified 
molecules within the body [Murphy08]. 

Innate cells include macrophages, natural killer cells and dendritic cells, which 
perform initial pathogen detection by instructing the immune system of damage 
and clear the surrounding tissue of any debris. Over the evolution of the species, 
the immune system has acquired the knowledge of which molecules indicate the 
presence of pathogens. Immune cells are equipped with receptors (surface bound 
proteins) armed to detect such molecules. These receptors are present in great 
number on the cells of the innate immune system. The repertoire of pathogenic 
recognition receptors (termed pattern recognition receptors) is fixed once the 
genome of an individual is encoded. This implies that the innate immune system 
cannot adapt to novel threats over the lifetime of the individual - an important task 
given the fact that pathogens are constantly evolving.  
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To keep pace within this biological arms race, the HIS also contains a 
population of cells that are able to dynamically restructure their receptors to adapt 
to new threats. Such cells of the adaptive immune system, namely B-cells and T-
cells, have the ability upon cloning to reorganise the molecules of their pathogen 
detectors (termed variable region receptors) to attempt to adapt to new threats. It 
is the combination of the rapid response of the innate immune system, coupled 
with the dynamic modifications of the adaptive immune system that provides 
sufficient protection to ensure the survival of our species. 

The current thinking of immunologists heavily influences the manner by which 
we construct AISs. The inspiration used as the basis of such algorithms is derived 
not from the immune system itself, but from human abstractions of how we 
believe the immune system to function. Therefore here we introduce the basic 
trends in immunology over the past 100 years and comment on how various 
human-centric streams of research in immunology has influenced the field of AIS.  

In 1891, Paul Ehrlich and his colleagues [Silverstein05] postulated that the 
human defense mechanism against pathogens revolved around the generation of 
immunity through the production of antibodies. He showed that these generated 
antibodies are specific to the pathogen or toxin being targeted. From his 
perspective a paradox existed termed horror autotoxicus - the immune system has 
to ensure that invaders are controlled and deleted before an infection spreads 
without responding to or damaging its own cells. Following Ehrlich’s work, the 
clonal selection principle was developed where the immune system is postulated 
to have the ability to respond to proteins - termed antigen - which do not belong to 
‘self’ and to target antigens belonging to ‘nonself i.e. pathogenic proteins.  This 
formed a major constituent of a theory known as central tolerance and is shown in 
Figure 1 as the “one-signal model”. 
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Figure 1 Abstract representation of the three multiple signal models developed in immunology, 
including the original one signal model, the costimulation driven two signal model where the 
involvement of pathogens was not understood until after the model was explored, and finally the 
three signal model which also includes danger signals. 

As the 20th century progressed, T-cells were characterised in addition to the 
antibody producing B-cells. In 1959, Lederberg proposed the principle of negative 
selection. He established the link between foetal development and the generation 
of tolerance to self-antigen. It is shown that in infancy, newly created T-cells are 
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presented a sample of self-antigen. T-cells are deleted if they displaying a receptor 
protein which matches self-antigen with a sufficiently high binding affinity. This 
results in a population of T-cells acutely tuned to respond to non-self entities. 

However, this response to non-self is not always an observable fact and 
numerous noteworthy exceptions have been discovered [Murphy07]. Four main 
problems have arisen questioning the credibility of central tolerance and ‘self-
nonself' as the central dogma of immunology. 
• Vaccinations and immunisations require adjuvants (bacterial detritus) despite 

the vaccination containing non-self particles; 
• What the body classes as self changes over time for example in pregnancy; 
• Our guts are host to colonies of bacteria which serve a symbiotic function 

forming the gut flora, without which we are prone to severe intestinal infections 
and inflammation;  

• The immune system can behave inappropriately and attacks its host in the form 
of autoimmune diseases such as multiple sclerosis, rheumatoid arthritis and 
inflammatory bowel disorders, in addition to the generation of allergy to benign 
particles such as pollen.  
The first major modification to the classical one-signal model is the addition of 

a secondary pathway for the activation of adaptive immune cells. This is termed 
costimulation and has been shown as a requirement for the full activation of T-
cells, forming the two-signal model shown in Figure 1. Even if an antigen and T-
cell bind sufficiently well, a costimulation signal is required in order for the 
activation of the T-cell to effector function. In order to bind to antigen, a T-cell 
must be ‘presented’ the antigen by a cell of the innate immune system, known as 
an antigen presenting cell (APC) such as DCs. 

It is thought that for a T-cell to become activated it must be first presented its 
antigen by an APC in conjunction with molecules termed co-stimulatory 
molecules (CSM). Initially it was undetermined as to what causes APCs to express 
such molecules. Janeway [Janeway89] postulated that APCs produced CSMs in 
response to the detection of bacterial sugars, known as PAMPs - pathogen 
associated molecular patterns. These molecules are exclusively produced by 
pathogens as the name suggests and hence act as a signature of bacterial presence 
in the body. This is a ‘two-signal model’ (Figure 1) as the T-cell is given two 
signals, CSM and antigen. 

This theory explains the need to add bacterial detritus to immunisations, and 
also the lack of response to changing self-proteins, as they do not have PAMPS. 
However, this theory alone cannot explain the lack of response by the immune 
system to the ‘friendly’ bacteria in the gut or the phenomenon of auto-immunity to 
which no pathogens are present. 

One of the most recent models is the “danger theory” which incorporates a 
third signal. Matzinger [Matzinger94] proposed that in addition to the requirement 
for antigen and CSMs, T-cells also require a particular type of interleukin, a 
messenger molecule, from the APC to promote full T-cell activation. The danger 
theory postulates that this particular interleukin is produced by the APC in 
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response to exposure to tissue damage. This ‘three-signal model’ is shown in 
Figure 1. 

It is thought that the presence of something like a bacterial colony in an 
otherwise healthy piece of tissue will cause the tissue cells to die unexpectedly. As 
a result of such cell death, termed necrosis, the inner constituents of the tissue 
cells are subject to a rather chaotic degradation process. DCs in particular are 
shown to increase production of the relevant interleukin, IL-12, upon receipt of 
such indicators of cell damage.  

Conversely, cells can die as part of a normal regulatory process, termed 
apoptosis. DCs exposed to the signals of apoptosis themselves produce a different 
kind of signal, termed IL-10. Instead of activating the T-cell, production IL-10 by 
DCs causes T-cell deactivation. Through DCs producing varying amounts of IL-
12 versus IL-10, the T-cell is given final confirmation whether to respond to the 
presented antigen or to become tolerant to its presence. 

Research continues in immunology to find further plausible mechanisms of 
immune activation. Recently, a new type of T-cell, a Th17 cell has come to the 
fore using a fourth signal expressed by DCs. The mechanism of action still 
remains unclear, though it appears that this cell is stimulated without the third 
interleukin signal and in the presence of a fourth signal known as TGF-. These 
discoveries show that no matter what the current state of the art, such models will 
be continually updated and improved as we develop increasingly sophisticated 
techniques for the study of the function of the HIS, leading in perpetual 
development of AIS based on these new discoveries. 

To summarise, multiple-signal models of T-cell activation have dominated 
much of immunology for the past century. This basic model has been subject to 
much debate and numerous additions incorporating different molecular activating 
and suppressing signals in addition to the binding of T-cell to antigen. 
Understanding the basics of immunology is the initial step in creating AIS 
algorithms. In the next section we discuss how AISs have developed in a similar 
manner to the multiple signal models presented in this section. 

2.2 Artificial Immune Systems (AISs) 

AISs are computer systems and algorithms inspired by the function of the HIS. 
There are numerous parallels in the pathway of development of AISs. As with 
immunology, AIS also began by using the self-nonself principles of negative and 
clonal selection to create the Negative Selection Algorithm, which was used 
primarily for applications within computer security. Clonal selection is used in a 
variety of immune algorithms including AIRS, which has proven to be a 
competitive multi-class classification system. 

In comparison with other bio-inspired computing paradigms, AISs are 
relatively young. Forrest et al. first implemented negative selection in 1994 
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[Forrest94], based on the T-cell centric one-signal model. Exposition and 
exploration of this algorithm dominated the field of AIS for the following decade. 
The idea behind this principle is appealing to computer security - the notion of 
creating a computer immune system to detect computer viruses is naturally 
appealing as a metaphor. This algorithm uses self-nonself principles, creating a set 
of randomly generated ‘detectors’ tuned via a mechanism of profiling of normal 
behaviour, selection of detectors which deviate from normal. This results in a 
detector set tuned to only respond to ‘non-self’ or anomalous strings.  

While negative selection generated much interest in AIS, the algorithm itself 
has been shown to have a number of shortcomings. The nature by which the 
detectors are generated relies on the initial creation of a sufficient amount of 
detectors to cover the potential self-nonself feature space. Obviously, as the 
dimensionality or size of this feature space increases, the number of detectors 
required to fully cover such space increases exponentially. This has been proven 
both experimentally [Kim01] and theoretically [Stibor06]. In addition to such 
scaling problems, the algorithm also is prone to the generation of false alarms or 
false positives. These type1 misclassification errors are thought to arise partially 
due to the ‘one-shot’ style of learning, and the fact that it is difficult to accurately 
represent what is ‘normal’ within a single bit-string [Stibor05]. Despite numerous 
attempts to remedy this challenge with thorough investigations of the 
representation [Zhou06], this algorithm does not produce results similar in calibre 
to that observed by the HIS.  

Consequently AIS researchers have incorporated an ever-increasing amount of 
underlying immune-inspiration in an attempt to improve such algorithms. For 
example, the incorporation of a second signal was first proposed by Hofmeyr 
[Hofmeyr99] and implemented by Balthrop [Balthrop05], where it was shown to 
reduce the rates of false positives in numerous cases. As with immunology, AIS 
has continued to add signals to its underlying models in much the same manner as 
immunologists have over the past century.  

Aickelin et al. proposed a novel approach to the development of AIS 
[Aickelin03] centered in the incorporation of the danger theory to AIS. Two 
streams of research resulted from this proposition, one including Janeway’s 
infectious nonself model and the other resulting in the creation of the Dendritic 
Cell Algorithm. Both algorithms are applied with success to the detection of 
network intruders, encompassing a variety of problems within such fields 
[Greensmith06, Twycross06].  

The augmented two-cell model was implemented by Twycross and Aickelin 
[Twycross06] and while it was never explained as incorporating a PAMP signal (it 
is expressed as a ‘danger signal’ in their literature) it is indeed incorporating a 
secondary signal to a process which also requires the selection of a T-cell along 
with the use of an APC to provide the second signal. The second signal was 
derived from data out of range of characterised ‘normal’ data.  

The developments of AIS outlined above do not focus on the development of 
clonal selection and idiotypic network based systems, as they do not have 
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sufficient relevance to the development of the DCA. However, the interested 
reader is advised to refer to Timmis and DeCastro [Timmis02] for further details.  

The development of AIS for uses within computer security in particular have 
inherent parallels with dogma in immunology as summarised in Figure 2. This can 
be attributed to the fact that AIS researchers are improving their relationships with 
practical immunologists as interdisciplinary collaborations become increasingly 
prevalent within computer science and the life sciences. This was indeed the case 
for the ‘Danger Project’ resulting in the development of the DCA. This is 
corollary to the fact that techniques in immunology have developed to such a level 
where quite detailed models can be constructed as the knowledge base expands 
regarding the actual function of the HIS. 

 

 
Figure 2 The parallel development of immunology and subsequently, artificial immune systems. 
Given the trend in artificial immune systems to work increasingly closely with immunologists, 
we expect that this trend will continue for the forseeable future within this field. 
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3. Overview of the Dendritic Cell Algorithm (DCA) 

In this section we give an overview of the DCA and its underlying immune 
inspiration. Metaphorically, DCs are the crime-scene investigators of the HIS, 
traversing the tissue for evidence of damage - namely the signals of apoptosis and 
necrosis, and for potential culprits responsible for the damage, namely antigen. 
More information regarding the function of natural DCs can be found in an 
excellent review by of the field by Lutz and Schuler [Lutz02] with a distilled 
version for computer scientists presented in [Greensmith07]. 

The DCA is derived from an abstract model of DC biology resulting in an 
anomaly detection algorithm that provides robust detection and correlation. 
Different cells process input data mapped as ‘signals’ acquired over different time 
periods. This generates individual ‘snapshots' of input information that are 
subsequently correlated with antigens. The DCA is described in greater technical 
detail in numerous sources including Greensmith et al. [Greensmith06, 
Greensmith08a] and in the corresponding PhD thesis [Greensmith07].  

The process of creating an algorithm such as the DCA is nontrivial, involving 
multiple stages of development and requires the performance of cross-disciplinary 
research in conjunction with immunologists. Within the framework of the Danger 
Project [Aickelin03], practical immunologists conducted parallel research which 
filled gaps in knowledge to assist in the creation of the most accurate models 
possible. In this section a high level description of the algorithm is provided for 
illustrative purposes.  
 

The DCA is a population based algorithm, with each artificial cell acting as an 
agent within the system. To achieve the incorporation of our abstract model of DC 
function two levels of abstraction are used, namely the internal mechanisms of the 
cell and the overall behaviour of the cell throughout its lifetime. As an algorithm it 
performs filtering of input signals, correlation between signals and antigen, and 
classification of antigen types as normal or anomalous. Two levels are explicitly 
modelled, namely the internal cell procedures and the behavioural state changes.  

The internal cell procedures form the lowest level of abstraction used to dictate 
the behaviour of the artificial DCs. This comprises the collection of antigen data 
and the cumulative processing of the cells input signals.  Input signals are 
transformed into cumulative output signals acquired over time. Signal data enters 
the system and is stored in an array. The cell uses these signal values each time the 
cell update function is called. Upon acquisition of the signal values each cell 
performs a weighted sum equation to combine the inputs three times to produce 
interim output values. These interim values are added to a final output value 
resulting in each cell producing three ‘running total’ output signals. Each input 
signal has a weight associated to transform the input values into the three interim 
values. The model of this process is represented in Figure 3.  
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Figure 3 Graphical representation of the signal processing used within each cell of the DCA. 
Each input signal per category is transformed to one of the three outputs. The weights used in 
this calculation are derived from a ratio discovered by our associate immunologists. 

Each output signal is assessed each iteration. Three output signals are generated 
termed the costimulation value; the semi-mature output; and the mature output and 
their respective functions described in Table 1. The costimulation value is used to 
limit the lifespan of each individual cell within the DC population. Upon 
initialisation, each cell is assigned a threshold value, representing the lifespan of 
the cell.  The cumulative costimulation value is assessed against the lifespan 
threshold each iteration. Once this threshold is exceeded, the cell is removed from 
the population, analysed and eliminated. Upon analysis, the remaining two values 
are assessed.  

 
 
Output signal Function 
Costimulatory signal Assessed against a threshold to 

limit the duration of DC signal and 
antigen sampling, based on a 
migration threshold 

Semi-mature signal Terminal state to semi-mature if 
greater than resultant mature signal 
value 

 
Mature signal Terminal state to mature if greater 

than resultant semimature signal value 

Table 1 Cumulative output signal functions for the three output signals of an artificial DC.  
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The behavioural component is summarised in Figure 4. This level of 
abstraction is used to define the state changes that appear to be so pivotal to the 
role of the DC in the HIS. In nature DCs change state to either mature or semi-
mature at a certain point. In our abstract model the DCs have perceived sufficient 
information when they produce a particular receptor attracting the cell to the 
lymph node compartment.  

The costimulatory value controls the initial state change from immature to 
either the semi-mature or mature state. The final state is determined by the greater 
of the two remaining values. If the value of the semi-mature output is greater then 
the cell is deemed semi mature, and the same process applies should the mature 
signal be greater.  

 
Figure 4 UML state chart representing the abstract model of an individual DC.  
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Each time input signals are received an antigen may also be collected (unless 
no antigen are generated at that timepoint). All antigen collected by the cell over 
its lifetime are ‘presented’ in conjunction with this context value at this analysis 
stage. The antigen-plus-context is used to assess the anomalous nature of such 
antigen. Antigen are not modified in any way by the DC, but are collected from 
the antigen vector and stored until presentation. The manner by which the antigen 
are stored has varied between the various versions of the algorithm, though this is 
not thought to affect the resulting performance of the algorithm.  

A minimum number of ten cells are required to perform processing 
[Greensmith08]. The multiplicity of cells means that the algorithm uses a 
consensus decision generated across the population to make decisions. The output 
of the algorithm is an anomaly score for each antigen type, to which a threshold 
can apply to give a definite class prediction. Due to the time-sensitive nature of 
the algorithm, it is not particularly suited to randomly ordered data but is shown to 
have useful and robust properties when applied to challenging real-time 
applications [Greensmith07]. The abstract principles outlined in this section are 
further elaborated upon in Section 4 to demonstrate how this algorithm works in 
practice. 

  

4. Implementing the DCA 

In Section 3 a high level overview of the DCA is given. In this section a more 
detailed algorithmic description is given. The purpose of a DC algorithm is to 
correlate disparate data-streams in the form of antigen and signals and to label 
groups of identical antigen as ‘normal’ or ‘anomalous’. The DCA is not a 
classification algorithm, but shares properties with certain filtering and sorting 
techniques. This is achieved through the generation of an anomaly coefficient 
value, termed the MCAV. The labeling of antigen data with a MCAV coefficient 
is performed through correlating a time-series of input signals with a group of 
antigen. The signals are pre-normalised and pre-categorised data sources based on 
snapshots of preliminary experimental data, which reflect the behaviour of the 
system being monitored. Categorisation of the signals is based on the four signal 
model based on PAMP, danger, safe and inflammation signals. The co-occurrence 
of antigen and high/low signal values forms the basis of categorisation for the 
antigen data. The primary components of a DC based algorithm are as follows: 

 
1) Individual DCs with the capability to perform multi-signal processing 
2) Antigen collection and presentation 
3) Sampling behaviour and DC maturation state changes 
4) A population of DCs and their interactions with signals and antigen 
5) Incoming signals and antigen, with signals pre-categorised as PAMP, 
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danger, safe or inflammation 
6) Multiple antigen presentation and analysis using ‘types’ of antigen 
7) Generation of anomaly coefficient for various different types of antigen 

 
Each cell in the population acts as an agent and has a set of instructions, which 

are performed every cell update iteration. Control of the frequency and nature of 
cell updates is specific to the instance of the algorithm’s implementation as is the 
rate of signal sampling and the number of antigen collected per iteration. Diversity 
is generated within the DC population by initiation of migration of the DCs at 
different time points i.e. the cessation of data sampling. This creates a variable 
time window effect throughout the DC population, which adds robustness to the 
system, and segments signals and antigen into variable information granules 
which underpin the functioning of the algorithm. 

 
 
Each time a cell is updated the input signals are processed and added to the 

cell’s internal values to form a set of cumulatively updated output signals in 
addition to the collection of antigen data items. The DCs are assigned one of three 
states at any point in time, namely immature, semi-mature or mature.  Initially the 
cells are all assigned the ‘immature’ state label. Upon the receipt of sufficient 
signal values to initiate a process termed maturation, the cell can transform to 
either the semi-mature or the mature state. The differences in the semi-mature and 
mature state are controlled by a single variable, determined by the relative 
differences between two output signals produced by the DCs. If, over its lifespan, 
the cell accumulates predominantly safe signals, the cell is classed as semi-mature, 
otherwise it is assigned the mature status. Whilst in the immature state, the DC has 
three functions, which are performed each time a single DC is updated: 

 
1) Sample antigen: the DC collects antigen from an external source and 

places the antigen in its own antigen storage data structure. 
2) Update input signals: the DC collects values of all input signals present 

in the signal storage area 
3) Calculate interim output signals: at each iteration each DC calculates 

three temporary output signal values from the received input signals, with 
the output values then added to form the cell’s cumulative output signals. 
 

Signal processing is performed via a weighted sum equation, bypassing the 
modelling of any biologically realistic gene regulatory network. A simple 
weighted sum equation is used in order to reduce any additional computational 
overheads, as the primary purpose of this algorithm is to perform anomaly 
detection in near to real-time. The crucial component of this procedure is the 
ability of the user to map normalised input data to one of the four categories of 
input signal (PAMP, danger, safe and inflammation). The general form of the 
signal processing equation is:  



15 

 
 
Op = (PwiPi + DwiDi + SwiSi) (1+I)   p ,  
 
where Pw, Dw and Sw are assigned weights, Pi, Di and Si are the input signal 

values of category PAMP (P), danger (D) or safe (S) for all signals (i) of that 
category for all output signals p, assuming that there are multiple signal sources 
per category. In this equation, the term I represents the inflammation signal. This 
sum is repeated three times, once per output signal, which are then added to the 
cumulative output signals. Suggested ratios for the weights are given in Table 2 
where input signals are represented as j per category and outputs as p  per value. 
Each weight can be derived from two weights directly assigned to the PAMP 
signals (W1 and W2). The actual values used for the weights can be user defined, 
though the relative values determined from biological experimentation are kept 
constant.  

 
 i = 1, PAMP i = 2, Danger i = 3, Safe  
p = 1, 

costimulation 
W1 W1 / 2  W1 * 1.5 

p = 2,  semi-
mature 

0 0 1 

p = 3, mature  W2 W2 / 2  W2  * -1.5 
 

Table 2 Derivation and interrelationship between weights in the signal processing equation, 
where the values of the PAMP weights are used to create the all other weights relative to the 
PAMP weight. W1 is the the weight to transform the PAMP signal to the CSM output signal and 
W2 is the weight to transform the PAMP signal to the mature output signal. 

Each member of the DC population is assigned a context upon its state 
transition from immature to a matured state of either mature (context = 1) or semi-
mature (context =0). Diversity and feedback in the DC population is maintained 
through the use of variable migration thresholds. The natural mechanism of DC 
migration is complex and not particularly well understood, involving the under 
and over production of numerous interacting molecules. Therefore we use a 
simple approximation of a thresholding mechanism using migration thresholds to 
assess if a DC has received sufficient information to present suitable context 
information along side the antigen collected during this sampling period.  

 
Each DC in the population is assigned a “migration threshold value upon its 

creation. Following the update of the cumulative output signals, a DC compares 
the costimulatory signal value (CSM) with its assigned migration threshold value. 
If CSM exceeds the migration threshold, the cell ceases sampling input data and 
the resultant values and collected antigen are ‘presented’ for analysis. At this point 
the cell is reset (all internal values set to zero and antigen expunged) and returned 



16 

to the sampling pool of cells.  
 
The range of the migration thresholds assigned throughout the population is 

also a user-defined parameter. Previously random, Gaussian and uniform 
distributions have been used to provide the population with this diversity with 
respect to the range. We have used simple heuristics to define the limits of such 
ranges of threshold value, relating to the median values of the input signal data, 
and as a result are data-specific.  The net result of this is that different members of 
the DC population ‘experience’ different sets of signals across a time window. If 
the input signals are kept constant, this implies that members of the population 
with low values of migration threshold present antigen more frequently, and 
therefore produce a tighter couple between current signals and current antigen. 
Conversely, DCs with a larger migration threshold may sample for a longer 
duration, producing relaxed coupling between potentially collected signal and 
context. This diversity ensures that the same information is processed in slightly 
different manners, resulting in noise tolerance to variation and conflict in the input 
data streams.  

 
Once all data is processed or a specified number of antigen are presented (if the 

dataset is sufficiently large) the antigen and cell context values are collated to 
form the anomaly scores for each antigen type. The antigen data used with the 
DCA are an enumerated type variable, with multiple antigen of the same value 
forming a single antigen type. For example, a running process on a CPU has a 
process ID, and the antigen can be a representation of the process ID generated 
each time the process invokes a system call.  

 
Antigens are collected by different DCs that have experienced different 

snapshots of signal data. Therefore to analyse an antigen type one must average 
the experience of the DC population for that particular type. The value we assign 
per antigen type is termed the mature context antigen value or MCAV. This is a 
real value between zero and one: the closer this value is to one the greater the 
probability that this antigen type is anomalous. The MCAV is the sum of the 
number of individual antigen presented in the mature context divided by the total 
number of antigen presented for a single antigen type. This forms an average 
context value for each antigen type calculated from information derived using the 
population dynamics of the algorithm. The creation of this value also adds 
robustness as it cancels out any errors made by individuals in the DC population. 
At the core of this algorithm is a combination of numerical signal data processed 
at the lowest level of granularity, correlated with enumerated type antigen at a 
higher level of abstraction, which when brought together results in a robust 
anomaly detection paradigm. A generic version of the DCA is shown in Figure 5.  
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Figure 5 A high level overview of the DCA as a system, with data flowing in to the 

signal matrix and antigen storage areas, and antigen types presented for analysis where the 
MCAV anomaly values are generated.  
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The DCA has been applied to numerous anomaly detection problems where 

signal and antigen mapping is possible. Such scenarios include the detection of 
port scans and internal intrusions. The detection of internal intrusions with the 
DCA formed a significant development for this algorithm, with extensive 
experimentation and analysis performed [Greensmith08a]. The dataset used was 
derived from monitoring a real host machine under a variety of experimental 
scenarios, such as emulating busy ‘mid-morning’ periods and performing scanning 
attacks under different network conditions. The objective of the insider 
experiments is to assess the DCA’s performance when applied to the detection of 
slow and stealthy port scans. The antigen types are captured process IDs generated 
by the host machine each time a monitored process invokes a system call. The 
seven used signals are monitored from various system attributes of the monitored 
host:  

 
1) PAMP1 : Number of ICMP destination unreachable errors received 

per second; 
2) PAMP2 : Number of TCP Reset packets received per second; 
3) Danger1 : Sending of network packets per second; 
4) Danger2 : Ratio of TCP to all other packets per second; 
5) Safe1 :  Rate of change of sending network packets per second; 
6) Safe2 : Average TCP packet size; 
7) Inflammation: Presence of a remote root login.  

 
In these experiments we show that the DCA has the ability to discriminate 

between the standard running processes on a monitored machine and an 
anomalous sustained port scan, performed by an emulated internal intruder. The 
results of this study also highlight a susceptibility of the algorithm to the 
‘bystander’ effect, as a small number of false positives are generated to a normal 
process if it is equally as active as an anomalous process at exactly the same time. 
For this study the DCA is compared against a neural network based Self 
Organising Map (SOM) approach. Significant statistical differences were found in 
the performance of the two algorithms, with further one-sided nonparametric 
statistical tests concluding that the performance of the DCA is superior to that of a 
standard SOM, when comparing antigen type segment sizes of 10000. For full 
experimental details and a comprehensive analysis of this comparative study refer 
to Greensmith et al. [Greensmith08a], and [Gu08] for a comparative study of the 
DCA, negative selection and other machine learning algorithms.  
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5. DCA Development 

Numerous stages are involved in creating an immune inspired algorithm. 
Following the description given in the previous section, here the process is 
presented by which this algorithm was designed and implemented. This process 
consisted of numerous stages and commenced by examining the interactions 
between DCs and T-cells. Once this information was compiled it became apparent 
that DCs perform a crucial role in mediating between the innate and adaptive 
immune system. 
DCs appear to be a key cell in the immunological decision making process. The 
model generated at this stage involved multiple signal processing pathways within 
the DC itself in addition to complex interactions with a variety of adaptive 
immune cells.  This model is highly complicated and is not suitable for direct 
transformation into an algorithm as it contained too many interactions. An abstract 
model of this process was required and developed.  

The core of the abstract model is shown in Figure 4. This model dictates the 
cell behaviour and groups multiple cell inputs and outputs into four categories of 
input signal and three categories of output signal. In this model the state changes 
of an individual cell are also defined. While a DC is in its signal and antigen 
collection phase, the cell is termed immature. Upon receipt of input signals 
(PAMPs, danger signals from necrosis and safe signals from apoptosis) the 
immature cell undergoes a state change to either the mature or semi-mature state.  

Antigen presented by a mature cell are potentially anomalous, and antigen 
presented by a semi-mature cell are potentially normal. For each type of antigen 
the number of semi-mature versus mature presentations are counted. This metric is 
used to derive an anomaly score for that particular type of antigen, upon which a 
threshold of anomaly is applied. Antigen with a score above this threshold are 
classed as anomalous. This calculation allows us to dispense with the 
computationally intensive process of generating T-cells, but provides a similar 
output functionally.  

This abstract model could then be taken and transformed into a feasible 
algorithm as outlined in Section 3.2. As shown in Figure 6, three incarnations of 
the algorithm have been developed, implemented and tested on a variety of 
applications. The initial prototype system provided a ‘proof of concept’, and 
resulted in a feasible algorithm. This system used the minimum components, using 
three input signals derived from the dataset, and for each data item, ten artificial 
DCs were used to sample both antigen (the data ID) and signals (attributes). 
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Figure 6 Diagram of the DCA development process. As shown in the legend, this process cycles 
between complex and simple models. The appropriate level of complexity is dependent upon the 
use of the model, shown in the right hand column. 

As a rudimentary test, the prototype DCA is applied to the Wisconsin Breast 
Cancer dataset, where it achieved high rates of true positives and very low rates of 
false positives. This investigation highlights the suitability of the algorithm for 
applications which require ordered input data, such as real-time anomaly 
detection. We demonstrated that the DCA was not suitable for solving standard 
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machine learning problems but could be applied to problems involving intensive 
processing in a real-time environment.  

Following the prototype, the algorithm was scaled up to become a fully 
working, real-time intrusion detection system [Greensmith06]. An agent-based 
framework, libtissue [Twycross06] was used as a development platform with each 
DC acting as an independent agent. Antigen are fed into a storage area to be 
randomly selected at any point by any DC. Signals are fed into a signal matrix, 
with each member of the DC population updated with new input information each 
time the matrix is updated. The mechanism used by individual DCs to produce 
three output signals from this input is explained in the next section. Once all 
antigen are fed into the system anomaly scores are calculated for each antigen 
type. To test this system, the DCA is initially applied to the detection of scanning 
activity from a monitored client machine. As with the proof of concept experiment 
it is shown that high rates of false positives and low rates of true positives are 
generated. The initial investigation was then scaled up to encompass more 
sophisticated scans, where the performance was similarly good. Upon comparison 
with a Self-Organising Map [Greensmith08a], it is shown that the DCA produces 
significantly fewer false positives than this established technique.  

This particular version of the DCA has also been applied to the detection of a 
novel threat on the internet, botnets [AlHammadi08], where the DCA produced 
high rates of true positives and low rates of false positives in comparison to a 
statistical technique. Outside of computer security Kim et al. [Kim06] have 
successfully applied the DCA to the detection of misbehaviour in wireless sensor 
networks, where again the algorithm showed much promise. The DCA is also 
showing promise in the area of robotic security as demonstrated by Oates et al. 
[Oates07]. A proof of concept experiment is performed to demonstrate that the 
DCA could be used for basic object discrimination in a controlled environment.  
The same researchers have now extended this research into the theoretical domain 
[Oates08] through frequency tuning analysis. This research has highlighted that 
the DCA exhibits filter properties and moreover suggests the importance of the 
lifespan limit.  

We had developed a seemingly successful algorithm capable of good 
performance across a range of problems and domains. However, this system 
consisted of over 15 tunable parameters, such as the number of cells, the threshold 
for maturation, the number of input signals, the weights for the processing of the 
input signals and numerous other parameters [Greensmith06]. Basic sensitivity 
analyses could be performed, but was difficult as due to large amounts of 
probabilistic elements it was not clear which components were performing which 
function and what exactly was performing the anomaly detection. We suspect that 
the key to the algorithm is the time-sensitive correlation between processed 
signals and collected antigen combined with a consensus decision taken across a 
population of cells. Due to the sheer amount of factors and parameters it was not 
obvious how we could analyse such a system to the degree of accuracy required.  
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The most recent incarnation of the DCA is a deterministic version. This 
remedies the problem of excessive stochastic elements and assists in proving to 
our community and the bio-inspired community at large not only that the 
algorithm can produce good results. In addition, we understand why it produces 
such results. Investigations of the time delay between signals and antigen have 
assisted in improving our understanding of how the correlation between these two 
sources of data is performed [Greensmith08].  

In addition an improved anomaly assessment and comparable results with our 
previous systems, it has provided a platform in which we can track individual cells 
and antigen through the system over numerous repetitions and achieve identical 
scenarios within our antigen and signal processing. This reproducibility has let us 
examine the various features in isolation. We aim to extend this work across a 
multitude of applications and to use it to perform more theoretical analyses of the 
algorithm. This includes discovering in which situations it is unsuitable along with 
finding successful applications, allowing for a fuller characterisation of the 
capabilities of the technique. We intend to use this system as our testbed for 
adding novel components to the algorithm as the state-of-the-art in immunology 
progresses including such components as the Th17 cells mentioned previously. 

6. Conclusions 

In this book chapter both human centric and multi-faceted development paradigms  
have been presented. We have shown the parallels which exist between 
immunology and artificial immune systems. Such parallels are in terms of 
development, where immunological discovery has ultimately shaped the way in 
which we view the immune system in order to construct immune-inspired 
algorithms. This phenomena may be at least partially attributed to the fact that 
what is of interest to immunologists is ultimately published and such resources 
form the basis of inspiration. Perhaps the link between immunology and AIS will 
become even closer as interdisciplinary collaborations within AIS become more 
prevalent, resulting in algorithms which actually resemble an immune system. 
Whether an increased amount of immunological accuracy will be of any great 
benefit to AIS remains to be seen. However, the close examination of immunology 
appears to have been fruitful for the DCA. 

With the DCA two levels of abstraction were used, namely at an intra-cellular 
level and at a cell behaviour level. The choice to use these levels in particular was 
dictated by the scope of experiments performed by the collaborating 
immunologists. This has resulted in an algorithm which is unique as it performs 
filtering on input signals, correlation between signals and antigen and 
classification of antigen. Without such detailed immunology, the inspiration may 
have appeared too abstract, and the resulting system may have become over 
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simplistic. In order to develop complex algorithms one may need to understand 
the complex form of the chosen system of inspiration.  

Finally, it is crucial to note the manner by which the DCA was developed as 
shown in Figure 5. This process varied between highly complicated models and 
systems to simplified versions. The cycling between complex and simple is 
necessary - the complex models are needed in order to find the correct level of 
detail, with the simplification process reducing factors such as computational 
complexity or having to explicitly model interactions between molecules and 
receptors. Both types of model, simple and complex, are needed in order to find 
the right level of abstraction to transform an idea into a working system.  

The current incarnation, the deterministic DCA, has reduced numbers of 
parameters and controllable elements, so the same antigen and signals are sampled 
by the same cell agents  provided the input is kept constant. As the simple to 
complex cycle continues, the next step with this algorithm is to introduce 
stochastic elements individually. This will allow for the investigation of the 
algorithm behaviour in more detail, and will assist in demonstrating how much 
randomness is necessary in this system or similar. 
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