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ABSTRACT 
 

Carbon Capture and Storage (CCS) is a climate stabilization strategy that prevents 

CO2 emissions from entering the atmosphere. Despite its benefits, impactful CCS 

projects require large investments in infrastructure, which could deter governments from 

implementing this strategy. In this sense, the development of innovative tools to support 

large-scale cost-efficient CCS deployment decisions is critical for climate change 

mitigation. This thesis proposes an improved mathematical formulation for the scalable 

infrastructure model for CCS (SimCCS), whose main objective is to design a minimum-

cost pipe network to capture, transport, and store a target amount of CO2. Model 

decisions include source, reservoir, and pipe selection, as well as CO2 amounts to 

capture, store, and transport. By studying the SimCCS optimal solution and the subjacent 

network topology, new valid inequalities (VI) are proposed to strengthen the existing 

mathematical formulation. These constraints seek to improve the quality of the linear 

relaxation solutions in the branch and bound algorithm used to solve SimCCS. Each VI is 

explained with its intuitive description, mathematical structure and examples of resulting 

improvements. Further, all VIs are validated by assessing the impact of their elimination 

from the new formulation. The validated new formulation solves the 72-nodes Alberta 

problem up to 7 times faster than the original model. The upgraded model reduces the 

computation time required to solve SimCCS in 72% of randomly generated test instances, 

solving SimCCS up to 200 times faster. These formulations can be tested and then applied 

to enhance variants of the SimCCS and general fixed-charge network flow problems. 

Finally, an experience from testing a Benders decomposition approach for SimCCS is 

discussed and future scope of probable efficient solution-methods is outlined. 
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1.0 INTRODUCTION 

1.1 Background 

Climate change through accumulating greenhouse gases is a threat to life on Earth. 

Carbon dioxide contributes hugely to global warming and if emissions are not controlled, 

natural processes of removing it will not be sufficient to stop its accumulation [1]. The 

increasing use of conventional sources of energy in developing countries means that 

every emission reduction measure would be important [2]. Substituting towards nickel 

farming, use of biodiesel for fuel, use of alternative energy vehicles, and prevention of 

forest fires, are some of the ways to reduce emissions [3], but acceleration of the use of 

carbon capture and storage (CCS) is important to approach the global target of limiting 

temperature-rise to 1.5 ° C [4]. Impactful CCS projects require large investments in 

infrastructure (the US alone accounts for more than 7,600 km of pipelines [4]), which 

could deter governments from using CCS. In this sense, the development of innovative 

tools to support large-scale cost-efficient CCS deployment decisions is critical to 

continue contributing to climate mitigation. 

1.2 Literature review 

CCS refers to the integrated infrastructure to capture CO2 from high-emission sources, its 

safe transport to a dedicated storage reservoir and subsequent sequestration from the 

atmosphere [5]. Its global status is 38 large-scale approved projects around the world [4], 

and reduction in unit investment costs in this technology would be realized with 
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economies of scale. Minimizing the overall cost of CCS is a challenging problem 

involving decisions of determination of sources, sinks, and pipes, and the amount of 

storage, capture and flow of CO2 through this network [6]. Being a mixed integer 

programming problem, solving the CCS for large-scale instances with commercial 

solvers becomes difficult and computationally time-consuming [7]. This suggests that 

improving the existing mathematical formulations and providing new solution algorithms 

will be determinant in solving real CCS instances.   

CCS includes decisions for source-sink-pipeline-network design and network flows. 

Amongst these decisions, pipeline network design and flow problems have been 

previously studied for other gases. One of the early papers on natural gas pipeline 

systems referred to a model consisting of optimizing a network of sources, sinks and 

pipeline diameters [8]. Decisions included selection of pipe diameters, but they did not 

consider the selection of sources and reservoirs. Another paper on optimal pipeline 

network design for a gas described networks as connected trees and involved selection of 

pipe diameters and junction nodes [9]. In this case also, decisions did not include a 

complete network design.  More recently, a research on supply chain network design for 

packaged gases included a mathematical model consisting of optimal selection of: hubs 

as transshipment nodes, filling plants as sources, flow on every arc [10]. This was a 

multi-product level mixed integer program and a decomposition approach was employed 

to solve it efficiently. 

For CCS infrastructure optimization, an initial study hinted at planning a combination of 

ships and pipelines for CO2 transport [11]. Related to pipeline network design for CCS, 
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Dooley et al. (2006) developed a cost-minimization formulation consisting of basic 

network elements in a CCS network [12], but it did not consider realistic network 

features in terms of spatial arrangement. Another CCS infrastructure model involved the 

development of a source-sink matching algorithm named “String of Pearls”, but it 

considered direct straight-line pipeline networks between sources and sinks [13]. In this 

respect, the scalable infrastructure model (SimCCS) [6] was a more sophisticated 

formulation in terms of network configuration, spatial arrangement, decision of pipeline-

diameter-on-arc, and complete system-optimal applications. Variants of this model in the 

form of SimCCS PRICE [7] and SimCCS TIME [14] were developed to incorporate objectives 

considering carbon-tax and temporal requirements respectively. Efforts to improve 

SimCCS scalability led to a model involving linearization of pipeline diameters [15], in 

which the decision of pipes with discrete capacities is substituted with that of continuous 

capacities. SimCCS has also inspired models for optimization of hydrogen supply chain 

infrastructure [16] and wind-power generation infrastructure in SimWIND [17]. 

From the available CCS models, SimCCS is one of the most realistic applications in terms 

of integrated networks, commercially available pipeline diameters and system-optimal 

solutions. An enhancement in this model would be a first step towards improving all CCS 

models and increase their use by decision-makers. Hence, we selected the basic SimCCS 

model for researching improvements in solution times. 

SimCCS is a variant of the fixed-charge network flow (FCNF) problem: it involves the 

selection of sources, reservoirs, transshipment nodes, pipes, pipeline network design, and 

network flow, for carbon capture and storage [6]. Solving an FCNF, which is a mixed 



  4 

integer programming (MIP) problem, takes long times for large scale instances when 

commercial solvers are used [18]. With this thesis, we aim to solve the SimCCS problem 

more efficiently.  Regarding the solution methods for FCNF and pipeline-network design 

problems, a myriad of exact [23, 25, 29, 30, 31,32, 36], heuristic [24, 26-28, 33-34, 37, 

38], and hybrid [35] approaches are available in the literature. To achieve efficient 

solutions, we adopt the exact approach (to obtain optimal solutions) of using valid 

inequalities to exploit the variant structure of the CCS problem via a tighter formulation. 

An early research on general fixed charge problems developed valid inequalities for 

generating cutting planes to improve the formulations [39]. Another study on capacitated 

fixed charge flow problems discusses valid inequalities and examines linear relaxation to 

generate an efficient-solution heuristic [40]. While there has been existing work on valid 

inequalities on capacitated fixed-charge network flow [19] and fixed-charge 

multicommodity network design problems [20], their structure does not involve the 

selection-decision of a single pipe on every arc from a set of available diameters. Also, 

the flexibility for the SimCCS model to decide different diameters of pipes on 

consecutive arcs on a path makes the problem more complex. In this sense, our proposed 

approach of valid inequalities would lead to discovery of novel constraints. 

 

1.3 Scope  

We study the scalable infrastructure model for carbon capture and storage (SimCCS), 

whose mathematical model seeks to minimize the overall cost of sequestration, under 

sequestration, transport and storage of CO2 constraints [6]. By studying the SimCCS 
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solution and the properties of the subjacent network topology, we propose new valid 

inequalities to strengthening the existing mathematical formulation. These constraints 

improve the root node solution (linear relaxation) of the branch and bound algorithm used 

for SimCCS. For each valid inequality (VI), we provide an intuitive description, 

mathematical structure, and examples illustrating their improvements on the linear 

relaxation. Further, we validate the VIs by assessing the impact of removing them from 

the new formulation (CCS coupled with VIs). We discuss the results of testing our 

formulation on a real large-scale problem and on randomly generated instances.   

Our approach yields improvement in computational times of CCS solutions for 72% of 

the tested instances, reaching speedups of up to 200 times compared to SimCCS. We also 

discuss the instance structure where our inequalities are most impactful and outline their 

future application to variants of the SimCCS and general fixed-charge network flow 

problems. Finally, we describe our experience from testing a Benders decomposition 

approach for SimCCS. 
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2.0 MATHEMATICAL MODELS 

The goal of this chapter is to describe mathematical models of existing CCS problem and 

of our proposed formulation. We explain the structure of the formulation with its 

intuition, constraints and illustrations. 

2.1 SimCCS model 

The CCS problem is to design a network able to transport a target amount of CO2—

denoted by  (T in Middleton et al. [6]) —from sources to reservoirs. The network 

consists of source nodes ( ), reservoir nodes ( ), arcs representing pipes ( ), and 

transshipment nodes denoting pipe intersections ( ). (N ) denotes the set of nodes 

adjacent to node ‘i’ but accessible using arcs starting from node ‘i'. (N ) denotes the set 

of nodes adjacent to node ‘i’ but accessible using arcs ending at node ‘i'. Sources and 

reservoirs are subject to maximum capture and storage capacities, denoted by Q  and Q  

for source  and reservoir , respectively. Similarly, F  and V denote the fixed cost (land 

purchase, construction, and technology installation) and variable operational cost 

(pumping and maintenance) for source , whereas parameters F  and V  represent the 

fixed and variable costs for reservoir , respectively. The minimum and maximum 

capacity of arc ( , )—denoted by Q  and Q (mentioned as minQ  and 

maxQ  in Middleton et al. [6])— depend on the chosen pipe diameter ∈ , where  is 

the set of commercially available diameters. Using a pipe incurs in a variable operational 

cost (V ) per ton of CO2 transported, and a fixed-charge construction cost (F ). Decision 

variables include the amount of CO2 that is captured at source  (a ) and stored at 
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reservoir  (b ), as well as the amount transported on arc ( , ) (x ). Additional variables 

represent network design decisions, including operating or not source  (s ) and reservoir 

 (r ), and constructing or not a pipe of diameter  on arc ( , ) (y ).  

 

Minimize ∑ (F s +∈ V a ) + ∑ ∈ ∑ ∈ ∑ F  y       

+ ∑ ∈ ∑ V x∈   + ∑  (F r∈ + V b )      (1) 

x − ∑ Q y  ∈  ≤ 0 , ∀ i ∈ I, j ∈ N       (2) 

x − ∑ Q y  ∈  ≥ 0 , ∀ i ∈ I, j ∈ N       (3) 

∑ x −  ∑ x  − a + b∈ = 0,   ∀i ∈ I ∈        (4) 

a − Q s  ≤ 0, ∀ i ∈ S         (5) 

b − Q r  ≤ 0, ∀ j ∈ R        (6) 

∑ a∈  ≥ τ          (7) 

∑ y∈  ≤ 1, ∀ i ∈ I, j ∈ N         (8) 

y ∈ {0,1}, ∀ i ∈ I, j ∈ N  , d ∈ D        (9) 

s ∈ {0,1}, ∀ i ∈ S          (10) 

r ∈ {0,1}, ∀j ∈ R          (11) 

x ≥ 0, ∀ i ∈ I, j ∈ N          (12) 

a ≥ 0, ∀ i ∈ S          (13) 

b ≥ 0, ∀ j ∈ R          (14) 
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The CCS problem is written in equations (1) to (14). The constraints consist on flow-

balance conditions, minimum and maximum arc flow capacity, CO2 target capture, and 

logical conditions specifying that capture and storage is only possible in sources and 

reservoirs that are operating, and that at most one pipe is selected for each arc. The 

objective function is to minimize the total cost, consisting of variable and fixed-charge 

components. Figure 1(a) shows an example of a CCS instance with three candidate pipes 

for each arc, and Figure 1(b) shows its optimal solution. 

   

 

 

Figure 1. (a) Complete CCS network with three pipe choices per arc. (b) Optimal CCS 
solution.   

 

 

(Capacity Q, Variable cost V, Fixed cost F) 
(Variable cost V, Fixed cost F) 

Arc thickness is proportional to capacity 
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2.2 Strengthening the SimCCS model with Valid Inequalities 

The SimCCS model is a capacitated fixed charge network flow (FCNF) problem that 

contains continuous flow variables representing the amount of CO2 transported and 

binary decision variables for the selection of pipe capacities. Depending on the solver, 

this mixed integer programming (MIP) model is generally solved using a branch-and-

bound algorithm aided with presolve, cutting planes, parallelism, and heuristics [41]. The 

root node of the branch-and-bound tree is a solution with relaxation of integrality 

constraints typically obtained as the MIP’s linear programming (LP) relaxation. 

Strengthening of this initial solution results in a tighter feasible space and fewer 

subsequent branches towards the optimal solution. This thesis focuses on improving the 

optimal value of the LP relaxation via identification of tighter valid inequalities as 

constraints. To produce such inequalities, we examined fractional solutions of the root 

node where the structure of the resulting network revealed potential directions of 

improvement. This analysis of the structure of the optimal network configuration over 

multiple datasets for CCS problem revealed the relationship between linear flow 

variables and binary network-design variables. We derived several rules of a network 

flow to tighten the formulation, producing valuable constraints.  

Cuts based on inherent characteristics of pipe network design yielded an improved 

solution set of fractional values of the integer-variables - s, r and y. These constraints 

tighten the feasible region while ensuring any integer solution from the feasible region is 

not cut. 
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Figure 2: Illustration of a valid inequality for the feasible region of constraints(C1), (C2), 
(C3), (VI1), (VI2), (VI3) in a two-variable multi-constraint integer problem 

 

Figure 2 illustrates the feasible region for a two-variable multi-constraint integer 

problem. The feasible space for this integer programming problem is analogous to the 

MIP of SimCCS with binary variables. The dark dots denote feasible integer solutions, 

which are not eliminated by any of the valid inequality constraint lines. 

The addition of sets of valid constraints may result in improved root relaxations thus 

reducing the number of iterations towards the solution of the MIP branch-and-bound tree 

[21]. In this section, we describe families of valid inequalities including their intuition, 

modelling constraints and examples. The individual and combined effects of these 

inequalities are studied in section 3.0. The SimCCS problem with all valid inequality 

constraints added is called MIP'. 



  11 

2.2.1 Target storage inequality 

This inequality is inspired by two observations. First, the amount of CO2 captured in the 

CCS system cannot remain in the network without being stored. Second, the capacity of 

the open reservoirs should be enough to store the target CO2. Constraint (V1) forces 

target amount of CO2 sequestration to be less than the sum of products of reservoir 

capacities and reservoir-opening binary variables. This drives the binaries to have higher 

fractional values compared to SimCCS resulting in a tighter linear relaxation. 

τ ≤ ∑ Q∈  r            (V1) 

Network diagrams from Figure 3 to Figure 11 in this section consist of nodes represented 

by circles labelled with a letter indicating the node type and the number. Nodes labelled 

with ‘T’ are meant exclusively for transshipment. Nodes marked with ‘S’ could either act 

as a source or transshipment while those with ‘R’ are reservoirs or transshipments. Solid 

arrows represent selected arcs and they are labelled with the corresponding binary 

variable. For instance, yT5, T6, 8” is the binary variable representing the selection of 8” pipe 

between nodes T5 and T6. Multiple labels on the same arc represent different pipes 

selected on that arc. Dashed arrows and light dotted circular blocks denote inactive arcs 

and inactive nodes, respectively. No labels on these circles indicate that the fractional 

value of these binaries in the LP relaxed solution is 0. 

 

Figure 3 illustrates an improved LP relaxation from $361.29 to $471.06 owing to the 

fractional value of binary r   for reservoir R1 being forced up from 0.19 to 1.  

This was tested on a network of 3 sources, 1 reservoir and 5 transshipment nodes with 3 

diameters to select on the existing arcs. The nodes and arcs are labelled with the 



  12 

fractional values of binaries if they are activated. While evaluating this constraint for the 

relaxed LP solution of SimCCS, LHS = τ = 1.017 MT (megatons) and RHS = ∑ Q∈  r  

= 1.012 MT. Hence, the SimCCS LP relaxation solution of $361.29 is infeasible in (V1) 

and the value of RHS is driven up. For SimCCS with (V1), RHS = ∑ Q∈  r  = 5.086 

megatons. No integer solution is cut by (V1) and the optimal solution for both 1(a) and 

1(b) is $497.95. 

. 

 

   

Figure 3. Example representing benefits of adding (V1) 

 

 

S1 

T2 

T1 

S2 T4 

T3 

T5 R1 S3 

sS1=0.58 

rR1= 1 
yS1,T1,8” = 0.9 

yT1,T3,8” = 0.9 

yT5,T6,8” = 0.9 

Diameters 4”, 6”, 8” 

Diameters 4”, 6”, 8” Transshipment T Sources S 

Optimal cost LP relaxation = $361.29 
τ = 1.017 MT 

S1 

T2 

T1 

S2 T4 

T3 

T5 R1 S3 

sS1=0.58 

rR1= 0.19 
yS1,T1,8” = 0.9 

yT1,T3,8” = 0.9 

yT5,T6,8” = 0.9 

Reservoirs R 

Sources S 
Transshipment T 

Reservoirs R 

(b) LP relaxed solution after adding (V1) 
 

(a) LP relaxed solution SimCCS 
 

Optimal cost LP relaxation = $471.06 
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2.2.2 Source requisite inequalities 

Building any source in the SimCCS problem involves capture of CO2 and this activates 

the corresponding s  binary variable to 1. The captured CO2 cannot remain in s  and must 

be transported by building a pipe out or must be stored at the same node by opening a 

reservoir. This information leads to development of constraint (V2) by connecting source 

and pipe selection binary variables. Intuitively, (V2) states that: For a node to be opened 

as a source, at least one outgoing pipe is either built or the node must also be opened as a 

reservoir. 

s ≤ ∑ ∑ ∈ y  + r  , ∀ i ∈ I       (V2) 

Figure 4 explains the improvement of the optimal LP relaxation from $655.59 to $733.94 

by adding (V2). The SimCCS LP relaxation is infeasible for (V2) because of the binaries 

associated with the sources. In this case, the binary variable corresponding to source ‘S3’ 

is equal to 1 (LHS = s = 1) which is greater than RHS of 0.01 (∑ ∑ ∈ y  + r  = 0.01 

+ 0). Constraint (V2) forces the construction of pipes y (S3, S1, 42”) and y (S3, S2, 4”) with 

values of 0.98 and 0.02. The improved LP relaxation has a cost of $733.939 which is 

closer to the optimal solution of $1131.04 than the LP relaxation from SimCCS. 
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Figure 4. Example representing benefits of adding (V2) 

(a.) LP relaxed solution SimCCS 
 

(b.) LP relaxed solution after adding V2 
 

Optimal cost LP relaxation = $655.59 

Optimal cost LP relaxation = $733.939 

Diameters 4”, 6”, 8”, 12”, 16”, 20 “, 24”, 
30”, 36”, 42” 

Diameters 4”, 6”, 8”, 12”, 16”, 20 “, 24”, 
30”, 36”, 42” 



  15 

2.2.3 Reservoir requisite inequalities 

Similar to the source requisite inequalities, building a reservoir in the SimCCS problem 

involves storage of CO2 and this activates the corresponding r i binary variable to 1. This 

captured CO2 cannot occur without being transported by building a pipe into it or being 

captured at the same node by opening it as a source. Constraints (V3) specify the 

relationship between the corresponding reservoir and pipe selection. Intuitively, for a 

node to be opened as a reservoir, at least one incoming pipe is required or the node must 

also be opened as a source. 

r ≤ ∑ ∑ ∈  y  + s  , ∀ i ∈ I       (V3) 

Figure 5 illustrates the improvement of the optimal LP relaxation for the CCS instance 

from Figure 4.a from $655.59 to $669.74 by adding (V3). The SimCCS relaxed LP 

solution is infeasible for (V3) because of the r  variable of reservoir ‘R1’. In this case, 

r = 0.62 is greater than RHS of 0.05 (∑ ∑ ∈  y  + s  = 0.05 + 0). Constraint (V3) 

forces the use of an additional pipe of selection variable y (T5, R1, 4”), with value of 0.57. 

 

 

 

Figure 5. Example representing benefits of adding (V3) 

Optimal cost LP relaxation = $669.74 

LP relaxed solution after adding (V3) 
 

Diameters 4”, 6”, 8”, 12”, 16”, 20 “, 
24”, 30”, 36”, 42” 
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2.2.4 Incoming pipe requisite inequalities. 

The selection of any incoming pipe to a node in the SimCCS problem involves 

transportation of CO2 and this activates the corresponding y  binary variable to 1. This 

CO2 must be transported by building a pipe out or must be stored at the same node 

thereby opening it as a reservoir. Constraints (V4) specify the relationship between the 

associated binary variables. If there is an incoming pipe to a node, at least one outgoing 

pipe must be built or the node must be opened as a reservoir. This valid inequality is 

implicitly satisfied for pipes with minimum capacities greater than 0 because of 

combination of constraints (3), (4), (5) and (6) in SimCCS (Middleton et al.,2009). 

However, if such capacity is equal to zero, then the coefficient Q  in constraint (3) 

makes the constraint redundant. Hence, (V4) is added only for the pipes with Q = 0.  

y  ≤ ∑ ∈ ∑ ∈  y  + r  , i, k ∈ I: (i, k) ∈ A, d ∈ D : Q = 0  (V4) 

Figure 6 illustrates the improvement in the optimal LP relaxation solution $379.43 to 

$385.35 by adding (V4). The SimCCS relaxation LP relaxation solution in Figure 4. (a) is 

infeasible for (V4) because of the binaries associated with the incoming pipes to node 

‘S3’. In this case, y (S1, S3, 4”), = 0.82 which is greater than RHS of 0 (∑ ∈ ∑ ∈ y  + r  

= 0 + 0) since there are no outgoing pipes and ‘S3’ is not selected as a reservoir. 

Constraints (V4) brings force construction of many pipes by ensuring a higher fractional 

sum for outgoing pipes. It also changes the configuration by building additional pipes 

with fractional values on the same arc, opening ‘S3’ as a source, and building looping 

pipes between ‘S1’and ‘S3’. This situation will be addressed later by adding additional 

valid inequalities. 
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Figure 6. Example representing benefits of adding (V4) 

  

 (a.) LP relaxed solution with V2 
 

Optimal cost LP relaxation = $385.35 

Optimal cost LP relaxation = $379.43 

(b.) LP relaxed solution with (V2) and (V4) 
 

Diameters 4”, 6”, 8”, 12”, 16”, 20 “, 24”, 
30”, 36”, 42” 

Diameters 4”, 6”, 8”, 12”, 16”, 20 “, 24”, 
30”, 36”, 42” 
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2.2.5 Outgoing pipe requisite inequalities 

Similar to the incoming pipe inequalities, selection of any outgoing pipe from a node in 

involves transportation of CO2 activating the corresponding y  binary variables to 1. 

This flow of CO2 can only occur by building incoming pipes or by capturing it at the 

same node. Constraints (V5) specify the relationship between the associated binary 

variables. If an outgoing pipe from a node is to be selected, then there is at least one 

incoming pipe or the node must be opened as a source. This is added only for pipes with 

Q = 0 because of similar reasons as described for (V4). 

y  ≤ ∑ ∈ ∑ ∈  y  + s  , ∀ k, i ∈ I: (k, i) ∈ A, d ∈ D : Q = 0  (V5) 

Figure 7 illustrates the improvement in the optimal LP relaxation solution from $669.74 

to $674.15 by adding (V5). The SimCCS LP relaxation solution in Figure 5 is infeasible 

for (V5) because of the binaries associated with the outgoing pipe from node ‘T5’. In this 

case, y (T5, R1, 4”), = 0.57 which is greater than RHS of 0.05 (∑ ∈ ∑ ∈ y  + s  = 0 + 0). 

In this case, (V5) forces the activation of additional pipe selection variables. 

 

 

Figure 7. Example representing benefits of adding (V5) 

Optimal cost LP relaxation = $674.15 

LP relaxed solution after adding (V3) and (V5) 
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2.2.6 Distinction between transshipment and other nodes  

The subjacent network structure in SimCCS can be further exploited by adding variables 

that keep track of the transshipment node use. For this purpose, we define the binary 

variable t  for every node i to specify if a node is activated as a transshipment. Because 

sources and reservoir nodes can also act as transshipment nodes, we impose constraints 

(V6-A) and (V6-B). 

t + s  ≤  1, ∀ i ∈ I       (V6-A) 
t + r  ≤  1, ∀ i ∈ I       (V6-B) 

t =  
1, if activated as a transshipment.

 0, otherwise.                                          
 

2.2.7 Flow through a transshipment inequalities 

When a node distributes, or receives any flow of CO2 without being selected as a source 

or reservoir, then the t variable for this node must be selected as 1. Constraints (V8-A) 

and (V8-B) specify the relationship between flow and t variables.  

∑ ∈ x  ≤  
 τ t , ∀  i ∈  T  

τ(t + s ), ∀  i ∈ S
τ(t + r ), ∀  i ∈ R

     (V8-A) 

∑ ∈ x  ≤  
 τ t , ∀  i ∈ T  

τ(t + s ), ∀  i ∈ S
τ(t + r ), ∀  i ∈ R

     (V8-B) 

In this case, any outgoing flow from node i must lead to activation of t  or s  , for any 

node in sources (S). This behavior is analogous for reservoir (R) nodes and pure 

transshipment nodes (T). Similarly, any incoming flow to node i must lead to activation 

of t or s , for any node in sources(S). Again, this behavior is similar if node i belongs to 

R or T. We use the target amount of CO2 to be sequestered as a big M value for the 

upper-bound for the sum of all flows originating (for V8-A) or ending in a node (V8-B). 
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These inequalities are similar in spirit to (5) and (6) in SimCCS, where source and 

reservoir selection variables are activated by CO2 captured and stored respectively. 

However, t  here is not associated with any cost in the objective function. Also, (V6-A) 

and (V6-B) would prevent s  and t , and r  and t  to be both one at the same time. 

2.2.8 Pipes through a transshipment inequalities 

In addition to (V8-A) and (V8-B), constraints (V9-A) and (V9-B) may strengthen the 

relationship between pipe selection and transshipment variables. In this case, (V9-A) 

ensures activation of t variable if there is any outgoing pipe from a node while (V9-B) 

does the same for an incoming pipe, provided that such node is not selected as a reservoir 

or source.  

y ≤  
 t  , ∀  i ∈ T , j ∈ N  , d ∈ D 

(t + s ), ∀  i ∈ S , j ∈ N  , d ∈ D 
(t + r ), ∀  i ∈ R , j ∈ N  , d ∈ D

    (V9-A) 

y ≤  

 t , ∀  j ∈ T, i ∈ N  , d ∈ D

t + s , ∀  j ∈ S, i ∈ N , d ∈ D 

t + r , ∀  j ∈ R, i ∈ N  , d ∈ D

    (V9-B) 

To see that (V9-A) and (V9-B) do not dominate each other, consider a fractional solution 

where t  = 0, ∀  i ∈ S. Then from (V8-A) we have ∑ ∈ x  ≤ τs , which implies that 

s ≥  ∑ ∈ x  /  . From (V9-A) we have that y ≤  s . Thus, it ensures that:  

s ≥  max { ∑ ∈ x  /  ,   y  }, which is stronger than having (V8-A) and (V9-A) 

individually. This analysis is similar for any t  , where i ∈ R. 
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2.2.9 Inequality for minimum number of pipes (forest inequalities) 

Using transshipment variables, we explore the network topology requirement for a given 

number of sources, reservoirs and transshipment nodes. Table 1 presents this analysis for 

the relation between the minimum required pipes and number of different types of nodes 

in SimCCS. Every cell in this matrix is an arrangement of such minimum number of arcs 

for a given combination of number of sources| S|, reservoirs |R|, and transshipment nodes 

|T|, in a solution.  The network arrangement in a solution is a spanning forest, where a 

forest may contain one or multiple network trees. A solution of CCS could have different 

trees which are not connected to each other. 

Table 1. Network analysis 

a.  

      

b. 
 

 

c. 

 

d. 

 

 e. 

 

   f. 
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For example, case (d) and (e). Cases (c) and (f) present 2 different solution forests each 

for the same minimum number of pipes within them. From this analysis, it can be 

inferred that the total minimum number of pipes on arcs is equal to Max (|R|, |S|) + |T|. 

∑ ∈ ∑ ∈ ∑ ∈ y  ≥ ∑ ∈ s  +  ∑ ∈ t       (V7-A) 

 
∑ ∈ ∑ ∈ ∑ ∈ y  ≥ ∑ ∈ r  +   ∑ ∈ t       (V7-B) 

Constraints V7-A and V7-B force the pipe selection binaries to sum up higher than the 

minimum number of pipes. Note that the Max (|R|, |S|) is formulated by two constraints 

such that the one with higher RHS value dominates the other. One of them will be 

redundant, thus maintaining the inference of this analysis. Figure 8 presents the benefit of 

these forest constraints. For SimCCS instance from Figure 4. (a), the LP relaxation 

solution including constraints (V6) & (V7) increases the optimal objective value from 

$655.59 to $726.30. In this case, LHS in (V7) is: ∑ ∈ ∑ ∈ ∑ ∈ y  = 0.218, which is less 

than the RHS = 3 for (V7-A), RHS=0.62 for (V7-B). LHS for the solution in Figure 6 is 

∑ ∈ ∑ ∈ ∑ ∈ y  = 3. 

 

 

 

Figure 8. Example representing benefits of adding (V6), (V7)  

Optimal cost LP relaxation = $726.303 
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2.2.10 Combined effect of valid inequalities 

The effect of adding all the proposed valid inequalities changes the LP relaxation to at 

least the best of the LP relaxation obtained with individual constraints. Our empirical 

results suggest that after adding (V1) - (V9), there is further scope for improvement. The 

following valid inequalities (V10) and (V11) improve the linear relaxation solution of 

SimCCS with (V1) – (V9). 

2.2.10.1 Transshipment requisite inequalities 

Activation of any transshipment variable in the problem with all constraints ((V1), (V2), 

(V3) … (V9)) involves transfer of CO2 through many nodes, including those being 

selected as a source or a reservoir. A transshipment node cannot be activated without 

having at least one outgoing pipe (we enforce this by (V10-A)) or at least one incoming 

pipe (we enforce this by (V10-B)). These constraints impact the LP relaxation of the 

model with constraints (V1) – (V9). 

t ≤ ∑ ∑ ∈  y    , ∀ i ∈ I     (V10-A) 

t ≤ ∑ ∑ ∈  y    , ∀ i ∈ I     (V10-B) 

Figure 9 illustrates the improvement in the optimal LP relaxation of solution from 

$936.69 to $938.45 by adding (V10). Because the t variable for node ‘T3’ has the value 

of 1 in Figure 9. (a), then LHS = 1, which is greater than RHS for (V10-A) = 

∑ ∑ ∈ y   = 0.574. Thus, the solution is infeasible for constraint (V10-A) for this node. 

This leads to an improvement in linear relaxation by building an additional pipe of 4 inch 

out of ‘T3’ of fractional value 0.379, which ensures binaries on RHS sum up to 1. Similar 

changes happen at node ‘R1’ where the t variable value is a fraction and there is a 

fractional pipe built out of it. 
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Figure 1. Example representing benefits of adding (V10) to combination of all constraints 

 

 

  

Optimal cost LP relaxation = $936.69 

 a. LP relaxed solution for SimCCS with ((V1) – (V9)) 

Optimal cost LP relaxation = $938.345 

b. LP relaxed solution after adding (V10) to ((V1) – (V9)) 
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2.2.10.2 Inequality to avoid looping pipes 

Examination of previous improvements reveal that fractional pipes are built to and from a 

pair of nodes. To avoid this solution, constraint (V11) specifies that the total sum of all 

binaries for pipe selection between a pair of nodes must be less than 1. This is a 

consolidation of the constraint (8) from SimCCS where the direction of pipes was implied 

because an optimal solution would not build looping pipes but would rather send flow in 

one direction to minimize the cost. 

∑ ∈ y  +  ∑ ∈ y  ≤ 1  ∀ (i, j) ∈ A, ℎ ℎ   i ∈ I and j ∈ N   (V11) 

Figure 10 illustrates the improvement in the SimCCS LP relaxation solution from Figure 

9. (a) which increases from $936.69 to $940.63 by adding (V11). It clearly avoids back 

and forth pipes between the pairs ‘S1’ - ‘S2’ and ‘T5 - R1’ of Figure 9. (a), where LHS = 

∑ ∈ y  +  ∑ ∈ y  = 1.425 and = 2 respectively. For both pairs, LHS > RHS and 

hence the solution is infeasible for constraint (V11). 

 

 

 

Figure 2. Example representing benefits of adding V11 to combination of constraints 
((V1) – (V9)) 

Optimal cost LP relaxation = $940.634 
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3.0 COMPUTATIONAL EXPERIMENTS & RESULTS 

The goal of this chapter is to present an analysis of the effectiveness of the introduced 

constraints and their effect on real applications and randomly generated instances. We 

refer to the combination of the SimCCS model and all introduced constraints from (V1) to 

(V11) as MIP’. The individual impact of adding each VI and activation constraints is 

provided along with the mathematical formulation. In the analysis of redundancy, we 

provide the effect of elimination of each constraint on the LP relaxation of MIP’. The aim 

of adding VIs is to reduce the optimal-solution time. We establish the performance of the 

VIs in terms of computation time, linear relaxations, and solution bounds of real problem 

and on randomly generated networks. 

 
3.1 Analysis of effectiveness of valid inequalities.  

This analysis validates all the VI constraints in the MIP’ model to avoid redundancy. We 

conjectured that all VI’s are essential and studied the changes in the LP relaxation for 

removal of each. For validation of effectiveness of a VI, its exclusion from MIP’ must 

worsen the LP relaxation for at least one instance of the SimCCS. The justification of 

using each VI is presented in Table 2 for four instances with different configurations of 

|N| nodes, |A| arcs, |S| sources, |R| reservoirs and |D| diameters. If the linear relaxation of 

MIP’ worsened upon exclusion of a VI, a tick-mark () was entered in the corresponding 

cell. An x-mark (x) was entered for the cell when the same linear relaxation of MIP’ was 

obtained upon elimination of that VI. 
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Constraints (V8), (V10) and (V11) have tick-marks in every column revealing their 

significance in MIP’ for these instances. Elimination of (V9) affects the network with 39 

nodes and 252 arcs. This complements our previous discussion of including both (V8) 

and (V9) to activate the t variables, with neither dominating the other. Since constraints 

(V6) specify the distinction of a node being either a transshipment or a source/reservoir 

and are needed for the forest constraints to function, they are not included in this 

elimination test for validation. Since every row has at least one tick mark, the inclusion of 

each VI benefits MIP’. 

Table 2. Test for validity of VIs on MIP’ 

Instance |N|, |A|, |S|, 
|R|, |D| 12,34,3,3,10 12,22,3,1,10 78,920,20,20,10 39,252,10,10,10 

Linear relaxation of 
MIP 655.23 361.29 8485.4 398.56 

Linear relaxation of 
MIP' 817.16 487.16 9152.56 572.04 

Linear 
relaxation 

upon 
elimination 
of VI from 

MIP' 

V1 x  476.9 x x 
V2  817.04 x  8943.99 571.24
V3 x x  8946.81 x 
V4  x x  9151.92 x 
V5 x x  9151.20 x 
V7 x 473.89 x 566.07
V8 749.31451.34 9111.98 441.24
V9 x x x 571.98

V10 816.09 396.81 9111.98 566.78
V11 813.23 402.31  9151.97 567.03

Optimal solution 1131.04 497.95 *10489.4 861.9 

: LP relaxation worsens on removal of VI’ 

x: LP relaxation is same as MIP' 

*: Solution after 3600 seconds on MIP' 
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3.2 Testing MIP’ on a real problem  

The aim of developing VI’s is to solve large scale network problem sets of SIM CCS 

quickly and efficiently. Hence, we tested MIP’ on a CCS problem for Alberta oil sands in 

Canada. This region with significant carbon emissions is a potential area for application 

of CCS. It consists of designing a CCS infrastructure to transport CO2 from a set of oil-

sands to regions of acid gas sites [22]. Figure 11 presents a map of Alberta and Figure 12 

shows the spatial arrangement of the Alberta network with sources, reservoirs and 

potential arcs shown in red circles, blue circles, and grey lines, respectively. This network 

dataset has 22 sources and 16 reservoirs for CO2 capture and storage, and 200 potential 

arcs and 10 available diameters of pipes. The 34 transshipment nodes and their 

corresponding arcs are not displayed in this figure. The maximum flow through this 

network based on various capacities of source, sinks and pipes is 39.1 megatons of CO2 

per year.  

This problem was tested for different targets on Gurobi 7.0.2 solver working on a 

Core(TM) i7-5500 CPU@2.4 GHz consisting of 2 cores and 4 logical processors with 8 

GB of RAM. For a target capture of 90 % of the maximum flow of CO2, it took 31379 

seconds for MIP to obtain the optimal solution of $6874.73 million while MIP’ could 

solve for the same optimal cost in 6,620 seconds. This presents a speedup of about five 

times. The optimal solution of $687.95 million for a target of 10% of the maximum flow 

was solved by MIP in 12 seconds whereas MIP’ took 2.5 seconds to solve it. For 50 % of 

the maximum flow, MIP solved for an optimal cost of $3481.31 in 400 seconds while 
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MIP’ solved it in 55 seconds. In general, MIP’ solves this problem faster than MIP 

because of the improved linear relaxations and tighter feasible region. 

 
 

Figure 11. Map of oil sands in Alberta  

 
 
 

Figure 12. Alberta network for SimCCS, screenshot of the map from SimCCS integrated 
application. 

[By NormanEinstein (Own work) [Public domain], via Wikimedia Commons] 
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3.3 Testing MIP’ on generated datasets 

The promising results of MIP’ on Alberta network established its benefits for that 

structure of data. However, the solution time speedup of MIP’ could change based on the 

network configuration, density, cost structure and target. Hence, we test our 

developments on randomly generated instances of a SimCCS network. The purpose of 

these experiments on various networks is to test the limits of using MIP’. 

The main factors for this test were network site, density, number of diameters, and 

percentage of maximum flow of CO2. We used a network grid of nodes with different 

configurations to generate instances for testing MIP’.  A grid is defined by the number of 

sources, reservoirs and transshipments, assumed to be disjoint sets. Nodes are arranged 

from left to right as shown in Figure 13. Sources are connected to each other by arcs and 

the west most layer of transshipment nodes is connected to the adjacent sources. 

Correspondingly, arcs connect all reservoirs to each other and the east most layer of 

transshipment nodes is connected to the adjacent reservoirs. For sparse networks, arcs 

connect each transshipment node to the existing node east, north, west or south of itself. 

For dense networks, along with the previous arcs, diagonal arcs connect each 

transshipment to any adjacent transshipment node. Figures 13 and 14 illustrate a 

generated sparse and dense network respectively with the stated rules for a 20-node 

instance consisting of 5 sources, 5 reservoirs and 10 transshipment nodes. The double 

arrows indicate arcs between a pair of nodes in both directions. We also designed grids of 

3 other configurations of 39, 78 and 117 nodes. 
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Figure 13.  Sparse network of 5 nodes, 5 reservoirs and 10 transshipments 

 

 
Figure 14.  Dense network of 5 nodes, 5 reservoirs and 10 transshipments 

 

We use 3 levels of pipe-diameter, consisting of 3, 7 and 10 diameters. We used the same 

pipe costs and capacities as in the Alberta problem data. The percentage of maximum 

flow had 3 levels - 10%, 50% and 90%. The costs and capacities for sources and 

reservoirs were randomly generated with a uniform distribution U (a, b), where ‘a’ and 

‘b’ represent the extreme limits of the range of costs derived from historical data. To test 

for data variability, we generated 4 replicates of datasets for each combination were 

generated using Python 2.7.12. 
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3.3.1 Computational results  

We executed the maximum-flow LP problem for every network to calculate the 

maximum amount of CO2 that can flow through it. The target τ value in the problem was 

then set to the percentage of maximum flow of the respective combination. We solved all 

instances on Gurobi 7.0.2 solver until optimality or time-limit of 1 hour, whichever 

occurred earlier. Tables 3.a and 3.b display the comparison of MIP and MIP' for each 

combination of parameters tested on the same machine used for the Alberta problem. 

Each row is one arrangement of network configuration, density, diameter and percentage 

of maximum flow for the CCS network. The time reported in each cell is the average of 

the 4 corresponding replicates. An ‘x’ mark indicates that all replicates timed out. The 

comparison parameter for speedup is calculated using the formula:   

Speedup =   
Solution time for MIP

  Solution time for MIP′
 

Speedup is calculated when at least one instance is solved for both MIP and MIP’. An 

average speedup greater than 1 indicates faster MIP’ solution for an instance. We also 

report the percentage of instances solved to optimality before reaching time limit for 

every combination in Table 3. In terms of average speedup, MIP’ is faster than MIP in 34 

of the 47 combinations which solved to optimality within an hour.  MIP’ times out for all 

instances in sparse networks of 78 with 7 diameters, and 50% of the maximum flow. 

However, it solves a CCS problem on 78-node dense network with 10 possible pipes and 

50% of the maximum flow in 413 seconds where MIP times out. All instances for 117- 

node sparse networks after 7 diameters start timing out for both MIP and MIP’, so we did 

not test the dense networks.  
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Table 3. (a) Solution times of randomly generated instances – 20 and 39 nodes 

Network 
config:        
|S|/ |R|/ 

|T| 

Density 
|A|/|N| 

Dia-
meter 

|D| 

% max-
flow 

MIP'(MIP + VI) MIP Average 
speedup 

(Speedup 
[instance]= 

MIP 
time/MIP' 

time ) 

Average 
time 

(seconds) 

% of 
instances 
solved to 
optimality 

Average 
time 

(seconds) 

% of 
instances 
solved to 
optimality 

5/ 5 /10 

sparse 
(74/20) 

3 
10 0.12 100% 0.25 100% 2.2 
50 0.08 100% 0.07 100% 0.8 
90 0.20 100% 0.10 100% 0.5 

7 
10 0.16 100% 1.62 100% 10.9 
50 0.72 100% 2.98 100% 4.3 
90 1.54 100% 4.10 100% 2.7 

10 
10 0.14 100% 1.02 100% 6.9 
50 0.95 100% 8.47 100% 7.8 
90 2.86 100% 21.14 100% 10.5 

dense 
(92/20) 

3 
10 0.15 100% 0.99 100% 6.8 
50 0.09 100% 0.05 100% 0.6 
90 0.28 100% 0.24 100% 0.9 

7 
10 0.30 100% 5.48 100% 21.4 
50 0.48 100% 3.13 100% 7.3 
90 3.90 100% 10.38 100% 2.4 

10 
10 0.67 100% 6.35 100% 16.4 
50 0.65 100% 6.32 100% 16.0 
90 5.86 100% 37.66 100% 13.7 

10/ 10 /19 

sparse 
(252/39) 

3 
10 0.29 100% 2.31 100% 8.3 
50 0.60 100% 0.31 100% 0.5 
90 3.02 100% 0.64 100% 0.2 

7 
10 1.32 100% 23.77 100% 24.0 
50 31.07 100% 46.13 100% 5.6 
90 148.45 100% 175.86 100% 2.8 

10 
10 0.86 100% 15.19 100% 21.5 
50 51.08 100% 188.89 100% 11.9 
90 487.12 100% 545.67 100% 1.6 

dense 
(296/39) 

3 
10 0.24 100% 1.80 100% 7.5 
50 0.71 100% 0.30 100% 0.5 
90 6.60 100% 3.58 100% 0.8 

7 
10 0.53 100% 48.41 100% 94.7 
50 117.76 100% 346.26 100% 2.4 
90 2621.95 100% 940.83 100% 0.4 

10 
10 0.52 100% 45.29 100% 86.6 
50 43.49 100% 348.30 100% 25.2 
90 721.97 100% 1003.75 100% 3.6 

 

 



  34 

 
Table 3. (b) Solution times of randomly generated instances -78 and 117 nodes 

Network 
config:        
|S|/ |R|/ 

|T| 

Density 
|A|/|N| 

Dia-
meter 

|D| 

% max-
flow 

MIP'(MIP + VI) MIP Average 
speedup 

(Speedup 
[instance]= 

MIP 
time/MIP' 

time ) 

Average 
time 

(seconds) 

% of 
instances 
solved to 
optimality 

Average 
time 

(seconds) 

% of 
instances 
solved to 
optimality 

20/ 20 /38 

sparse 
(920/78) 

3 
10 1.44 100% 3.70 100% 2.6 

50 718.41 100% 356.84 100% 0.4 
90 217.81 100% 185.69 100% 0.9 

7 
10 8.45 100% 651.71 100% 79.5 
50 x 0% 2457.70 25% - 
90 x 0% x 0% - 

10 
10 12.05 100% 2439.34 100% 199.8 
50 x 0% x 0% - 
90 x 0% x 0% - 

dense 
(1022/78) 

3 
10 1.51 100% 3.08 100% 2.0 
50 x 0% x 0% - 
90 247.91 100% 1253.92 100% 6.9 

7 
10 10.38 100% 1305.57 100% 173.3 
50 x 0% x 0% - 
90 x 0% x 0% - 

10 
10 34.53 100% 1885.44 100% 105.5 
50 412.16 25% x 0% - 
90 x 0% x 0% - 

30/ 30 /57 sparse 
(1984/117) 

3 
10 2088.34 25% 2531.92 75% 0.9 
50 x 0% x 0% - 
90 352.59 100% 216.05 100% 0.6 

7 
10 66.41 25% 2123.89 25% 31.98 
50 x 0% x 0% - 
90 x 0% x 0% - 

10 
10 x 0% x 0% - 
50 x 0% x 0% - 
90 x 0% x 0% - 
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In all 10- diameter instances, MIP’ always beats MIP since all speed-ups are greater than 

1.  Additionally, MIP’ loses to MIP in only 2 of the 21 combinations of 7 diameters. For 

those 3-diameter instances, MIP’ solves slower than MIP in 11 of the 21 combinations. 

The advantage of MIP’ over MIP is clear as the number of possible diameters increase. 

This is illustrated in the scatterplot in Figure 15.  

In the instances with 10% of maximum flow of CO2, speedup is higher than 1 for 18 of 

the 19 combinations which solve to optimality, the odd one being a dataset with 3 

available diameters of pipes. For 50% and 90% targets, MIP’ beats MIP consistently for 

arrangements of 7 and 10 diameters, but it has mixed results when only 3 pipe diameters 

are available. Figure 16 shows the effect of the maximum flow parameter with respect to 

speedups. 

We compare the objective function values of MIP and MIP’ for instances that timed out 

using an index calculated as: Total cost at timeout ratio =   Objective function at timeout for MIP
  Objective function at timeout for MIP′

. 

This index compares the objective of the best integer solution found within an hour. The 

average of this ratio is reported in Table 4. A ratio greater than 1 indicates that MIP’ 

provides a better solution than MIP when neither solved a problem to optimality. MIP’ 

obtained a less expensive solution than MIP in 13 of the 17 combinations which did not 

solve to optimality. The results for 117-node networks are significant because the total 

cost at timeout ratio is greater than 1 for all its combinations. Although the speedup and 

total cost ratio depend on the instance structure as expected, the presented tests on 

randomly generated instances reveal a fairly successful impact of VI’s on the SimCCS 

model.  
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Figure 15.  Scatter diagram of speed-up vs number of pipes 

 

 
Figure 16.  Scatter diagram of speed-up vs percentage of max-flow 
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Table 4. Objective function ratio of instances that time-out 

Network 
config:        

|S|/ |R|/ |T| 
Density |A|/|N| 

Diameter 
|D| 

% max-
flow 

Total cost 
at timeout 

ratio  

20/ 20 /38  

sparse 
(920/78) 

3 50 1.000 

7 
50 1.009 

90 1.000 

10 
50 1.007 

90 1.002 

dense 
(1022/78) 

7 
50 1.002 

90 0.994 

10 
50 0.999 

90 0.997 

30/ 30 /57  
sparse 

(1984/117) 

3 
10 1.000 

50 1.000 

7 

10 1.001 

50 1.005 

90 1.004 

10 

10 1.080 

50 1.103 

90 0.996 
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3.3.2 Consistent improvement in linear relaxation 

 
In section 3.1 we validated each VI in MIP’ by observing changes in the linear 

relaxations.  Here, we test the magnitude of improvement in the linear relaxation for all 

combinations of the randomly generated networks. Tables 5. (a) and 5. (b) present the 

improvement of linear relaxation of MIP’ over MIP when solved for the same instances 

reported in Table 3. The averaged comparison parameter is:   

Linear relaxation improvement index =   Linear relaxation for MIP′
  Linear relaxation for MIP

    

An index higher than 1 signifies an improvement in linear relaxation for that combination 

of network. Tables 5. (a) and 5. (b) establish a minimum improvement of 6% of linear 

relaxation over MIP. MIP’ obtained a better initial root node even in those instances 

where MIP was faster (13 of the 47 combinations). We visualize the proximity of the 

linear relaxation to its optimal solution in Figure 17.

 

Figure 17.  Proximity of linear relaxation to an optimal solution 
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Table 5. (a) Linear relaxation index of randomly generated instances – 20 & 39 nodes 

Network 
config :        

|S|/ |R|/ |T| 
Density |A|/|N| 

Dia-
meter 

|D| 
% max-flow 

Average 
speedup 

(Speedup 
[instance]= MIP 
time/MIP' time ) 

Linear relaxation 
improvement 

index (MIP' LP 
relax/ MIP LP 

relax) 

5/ 5 /10 

sparse (74/20) 

3 
10 2.2 2.55 
50 0.8 1.08 
90 0.5 1.06 

7 
10 10.9 1.75 
50 4.3 1.11 
90 2.7 1.10 

10 
10 6.9 1.97 
50 7.8 1.20 
90 10.5 1.13 

dense (92/20) 

3 
10 6.8 2.57 
50 0.6 1.07 
90 0.9 1.06 

7 
10 21.4 1.86 
50 7.3 1.12 
90 2.4 1.07 

10 
10 16.4 1.79 
50 16.0 1.18 
90 13.7 1.12 

10/ 10 /19 

sparse (252/39) 

3 
10 8.3 1.62 
50 0.5 1.07 
90 0.2 1.06 

7 
10 24.0 1.36 
50 5.6 1.08 
90 2.8 1.07 

10 
10 21.5 1.44 
50 11.9 1.12 
90 1.6 1.10 

dense (296/39) 

3 
10 7.5 1.64 
50 0.5 1.07 
90 0.8 1.06 

7 
10 94.7 1.31 
50 2.4 1.06 
90 0.4 1.05 

10 
10 86.6 1.43 
50 25.2 1.12 
90 3.6 1.10 
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Table 5. (b) Linear relaxation index of randomly generated instances – 78 & 117 nodes 

Network 
config :        

|S|/ |R|/ |T| 
Density |A|/|N| 

Dia-
meter |D| 

% max-flow 

Average speedup 
(Speedup 

[instance]= MIP 
time/MIP' time) 

 
Linear relaxation 

improvement 
index (MIP' LP 
relax/ MIP LP 

relax) 

20/ 20 /38 

sparse (920/78) 

3 
10 2.6 1.12 

50 0.4 1.06 
90 0.9 1.05 

7 
10 79.5 1.16 
50 - 1.05 
90 - 1.06 

10 
10 199.8 1.22 
50 - 1.10 
90 - 1.09 

dense (1022/78) 

3 
10 2.0 1.11 
50 - 1.06 
90 6.9 1.06 

7 
10 173.3 1.14 
50 - 1.06 
90 - 1.06 

10 
10 105.5 1.22 
50 - 1.10 
90 - 1.08 

30/ 30 /57 sparse (1984/117) 

3 
10 0.9 1.06 
50 - 1.06 
90 0.6 1.05 

7 
10 - 1.11 
50 - 1.05 
90 - 1.06 

10 
10 - 1.16 
50 - 1.09 
90 - 1.08 
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4.0 CONCLUSIONS AND FUTURE WORK 

Carbon capture and storage is an important technological alternative for climate change 

mitigation [1,4]. The SimCCS model helps in determining the best network configuration 

in a CCS problem. However, the complexity of this variant of the FCNF problem, 

increases with the network size, making it difficult and long to solve. Commercial solvers 

are well equipped with various features but they often need to be coupled with innovative 

algorithms and constraints to solve such problems efficiently. In this work, we examined 

the structure of the problem and found a path of improvement. We identified problem-

specific structures that solvers could not pick up, and that lead to the development of 

crucial valid inequalities to improve the SimCCS formulations. The analysis of 

redundancy of the VIs, results of a real large scale application, and computational 

experiments, established the significance of our improved formulation for SimCCS. 

Randomly generated datasets assist in testing the model for variations in structure of 

costs and capacities of capture, storage and transport. The wide range of network 

configurations help determine the scope of implementation of MIP’.  

As future work, we plan to solve variants of the SimCCS model, such as SimCCS-Price, 

to determine the effectiveness and benefits of our VIs. 

 

After examining the SimCCS problem and its configuration, we identified the possible 

causes for long solution times to this problem. At first, we conjectured that the Benders 

decomposition approach would solve it efficiently. This involved decomposition of this 

problem into a network design master problem consisting of binary variables and a 
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network flow sub-problem with continuous variables. In this case, we expected a faster 

solution by decomposing the problem into two easier problems rather than solving one 

difficult integer problem.  The modern Benders approach with the help of callbacks was 

integrated to test and solve CCS datasets. However, we observed a very slow 

convergence because of the problems evaluating many possible network alternatives. The 

faster decomposed problems accumulated a long time to solve because of many 

iterations. A large number of pipe-selection variables led to a difficult master problem 

with a large solution space. Moreover, we realized that more sophisticated techniques are 

needed to improve the flow of information between master and sub-problem. We realized 

that a modification of this approach would be needed to get competent results. 

 

The future scope of optimization work on SimCCS would involve development of 

algorithms that avoid the shortcomings of the Benders approach. A method using 

decomposition of the problem based on typical solution structures could help solve large 

scale instances efficiently. An infinitesimal ratio of the number of pipes selected in a 

solution to the total available pipes could be a clue towards developing a method. An 

algorithm considering such sparse solution indices with selective decisions at iterations 

could be developed. Discovery of more valid inequalities based on assessment of 

complex solutions is another possibility. The benefits of VI’s could be applied to similar 

other generalized FCNF problems involving pipeline design. 
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APPENDIX A 

MIP’ CONSISTING OF CONSTRAINTS ((1) TO (14), (V1) TO (V11)) 
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Minimize ∑ (F s +∈ V a ) + ∑ ∈ ∑ ∈ ∑ F  y       

+ ∑ ∈ ∑ V x∈   + ∑  (F r∈ + V b )      (1) 

x − ∑ Q y  ∈  ≤ 0 , ∀ i ∈ I, j ∈ N       (2) 

x − ∑ Q y  ∈  ≥ 0 , ∀ i ∈ I, j ∈ N       (3) 

∑ x −  ∑ x  − a + b∈ = 0,   ∀i ∈ I ∈        (4) 

a − Q s  ≤ 0, ∀ i ∈ S         (5) 

b − Q r  ≤ 0, ∀ j ∈ R        (6) 

∑ a∈  ≥ τ          (7) 

∑ y∈  ≤ 1, ∀ i ∈ I, j ∈ N         (8) 

y ∈ {0,1}, ∀ i ∈ I, j ∈ N  , d ∈ D        (9) 

 s ∈ {0,1}, ∀ i ∈ S          (10) 

 r ∈ {0,1}, ∀j ∈ R         (11) 

 x ≥ 0, ∀ i ∈ I, j ∈ N          (12) 

 a ≥ 0, ∀ i ∈ S          (13) 

 b ≥ 0, ∀ j ∈ R          (14) 

 t ∈ {0,1}, ∀ i ∈ I          (15) 

  τ ≤ ∑ Q∈  r          (V1) 

 s ≤ ∑ ∑ ∈ y  + r  , ∀ i ∈ I       (V2) 

    r ≤ ∑ ∑ ∈  y  + s     , ∀ i ∈ I          (V3) 

    y  ≤ ∑ ∈ ∑ ∈  y  + r  , i, k ∈ I: (i, k) ∈ A, d ∈ D : Q = 0    (V4) 

    y  ≤ ∑ ∈ ∑ ∈  y  + s  , ∀ k, i ∈ I: (k, i) ∈ A, d ∈ D : Q = 0    (V5) 
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t + s  ≤  1, ∀ i ∈ I         (V6-A) 

t + r  ≤  1, ∀ i ∈ I         (V6-B) 

∑ ∈ ∑ ∈ ∑ ∈ y  ≥ ∑ ∈ s  +  ∑ ∈ t        (V7-A) 

 
∑ ∈ ∑ ∈ ∑ ∈ y  ≥ ∑ ∈ r  +   ∑ ∈ t        (V7-B) 

∑ ∈ x  ≤  
τ t , ∀  i ∈  T  

τ(t + s ), ∀  i ∈ S
τ(t + r ), ∀  i ∈ R

       (V8-A) 

∑ ∈ x  ≤  
τ t , ∀  i ∈ T  

τ(t + s ), ∀  i ∈ S
τ(t + r ), ∀  i ∈ R

       (V8-B) 

y ≤  
t  , ∀  i ∈ T , j ∈ N  , d ∈ D 

(t + s ), ∀  i ∈ S , j ∈ N  , d ∈ D 
(t + r ), ∀  i ∈ R , j ∈ N  , d ∈ D

      (V9-A) 

y ≤  

t , ∀  j ∈ T, i ∈ N  , d ∈ D

t + s , ∀  j ∈ S, i ∈ N , d ∈ D 

t + r , ∀  j ∈ R, i ∈ N  , d ∈ D

      (V9-B) 

t ≤ ∑ ∑ ∈  y    , ∀ i ∈ I               (V10-A) 

t ≤ ∑ ∑ ∈  y    , ∀ i ∈ I               (V10-B) 

∑ ∈ y  +  ∑ ∈ y  ≤ 1  ∀ (i, j) ∈ A, ℎ ℎ  i ∈ I and j ∈ N   (V11) 


