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ABSTRACT

Magnetic resonance flow imaging techniques provide quantitative and qualitative in-

formation that can be attributed to flow related clinical pathologies. Clinical use

of MR flow quantification requires fast acquisition and reconstruction schemes, and

minimization of post processing errors. The purpose of this work is to provide im-

provements to the post processing of volumetric phase contrast MRI (PCMRI) data,

identify a source of flow bias for cine PCMRI that has not been previously reported in

the literature, and investigate a dynamic approach to image bulk cerebrospinal fluid

(CSF) drainage in ventricular shunts. The proposed improvements are implemented

as three research projects.

In the first project, the improvements to post processing are made by proposing a

new approach to estimating noise statistics for a single spiral acquisition, and using

the estimated noise statistics to generate a mask distinguishing flow regions from

background noise and static tissue in an image volume. The mask is applied towards

reducing the computation time of phase unwrapping. The proposed noise estimation

is shown to have comparable noise statistics as that of a vendor specific noise dynamic

scan, with the added advantage of reduced scan time. The sparse flow region subset of

the image volume is shown to speed up phase unwrapping for multidirectional velocity

encoded 3D PCMRI scans. The second research project explores the extent of bias

in cine PCMRI based flow estimates is investigated for CSF flow in the cerebral

aqueduct. The dependance of the bias on spatial and temporal velocity gradient

components is described. A critical velocity threshold is presented to prospectively

determine the extent of bias as a function of scan acquisition parameters. Phase

contrast MR imaging is not sensitive to measure bulk CSF drainage. A dynamic

approach using a CSF label is investigated in the third project to detect bulk flow

in a ventricular shunt. The proposed approach uses a preparatory pulse to label
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CSF signal and a variable delay between the preparatory pulse and data acquisition

enables tracking of the CSF bulk flow.
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• Ragunathan S and Pipe JG, ”RF Saturation Induced Bias in Aqueductal Cere-

brospinal Fluid Flow Quantification Obtained using 2D Cine Phase Contrast

Magnetic Resonance Imaging”, Magnetic Resonance in Medicine, 2017 (Under

Review). (Chapter 4).
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Chapter 1

INTRODUCTION

Phase contrast magnetic resonance imaging (PCMRI) is a commonly used approach to

obtain quantitative flow information of blood or cerebrospinal fluid (CSF) flow in the

brain. The diagnostic utility of PCMRI can be affected by slow reconstruction due to

computationally complex post-processing methods, inaccuracies in flow quantification

introduced by magnitude and phase errors during acquisition, and the inability of

PCMRI to detect the slow CSF drainage into the venous system. The goal of this

work is to investigate the accuracy of velocity estimates obtained using 2D PCMRI,

propose improvements to the post processing of PCMRI data and explore alternatives

to the PCMRI technique for applications in CSF flow imaging.

The process of flow quantification involves multiple stages of post processing in-

cluding background noise suppression, and segmentation of flow regions. The focus

of the proposed improvements to PCMRI post-processing, is to develop an intrinsic

method of noise estimation for spiral trajectories and use multidirectional velocity

encoding [95] to improve noise suppression and identification of flow regions. Accu-

racy of phase contrast measurements have been shown to be affected by bias in flow

estimates due to resolution, partial volume and intra-voxel flow dephasing. However,

RF saturation effects on velocity estimates have not been well characterized. These

effects are expected to bias velocity estimates obtained from 2D PCMRI. The objec-

tive here is to understand the factors influencing the bias. Cerebrospinal fluid flow

alterations have been associated with pathological conditions such as normal pres-

sure hydrocephalus (NPH). Currently, PCMRI is the primary imaging technique that

provides dynamic CSF flow information. Phase contrast approaches however, have
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not been successful in quantifying bulk CSF drainage. A solution is proposed by

implementing a dynamic approach using single shot spin echo techniques using RF

preparation to label CSF flow.

This work begins with an introduction to MR imaging fundamentals and presents

the concepts related to MR flow imaging in Chapter 2. Chapter 3 describes the noise

estimation approach for spiral MRI and its application to speed up phase unwrap-

ping. The extent of RF saturation induced bias in quantitative CSF flow estimates

in the cerebral aqueduct obtained using cine PCMRI based acquisitions is presented

in Chapter 4. Chapter 5 introduces a dynamic labeling approach to detect bulk CSF

drainage in the cerebral aqueduct and in a ventricular shunt. Chapter 6 summa-

rizes the improvements proposed to flow imaging techniques and Chapter 7 outlines

opportunities for future work on these projects.
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Chapter 2

FUNDAMENTALS OF MAGNETIC RESONANCE IMAGING

Magnetic resonance imaging (MRI) is a medical imaging modality that utilizes

the principles of nuclear magnetic resonance (NMR) and electromagnetic induction to

generate a spatial and temporal map of an anatomical region of interest. The history

of development in MRI can be summarized through some of the pivotal breakthroughs

in the field. Some of the earliest work in studying magnetic properties of atomic nuclei

can be credited to Sir Isidor Isaac Rabi in the 1930s [74]. A decade later, Felix Bloch

and Edward Mills Purcell demonstrated the concept of NMR in condensed matter

[3, 73]. One of the most important contributions to the field of NMR/MRI was the

discovery of the spin echo by Erwin Hahn in the 1950s [30]. High resolution NMR

spectroscopy was developed by Richard R Ernst in the 1960s [20]. Sir Peter Mansfield

and Paul Lauterbur were the first to introduce spatial localization to produce the first

MR images [43, 50].

This chapter explains the fundamental concepts related to MRI and introduces

quantitative flow imaging in the brain. Section 2.1 provides a brief overview of MR

physics. Section 2.2 presents the commonly used pulse sequences to image fluid flow

in the human body. The quantitative aspects of flow imaging will be explained in

detail in Section 2.3. For further reading on topics related to MRI concepts and to

understand the quantitative aspects of MRI, [9, 29, 45] are recommended references.

2.1 From individual spins to an image

The fundamental concept of generating an MR image is best explained using three

conditions : (i) The structure being imaged has a measurable magnetic moment from
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its protons (this work is focused towards 1H MR imaging), (ii) Using the principles

of on-resonant excitation, the magnetization vector can be perturbed in a controlled

fashion by an RF waveform, and (iii) The rotating magnetization vector induces a

measurable signal in a receive coil. Each of the three stages will be described in the

following subsections.

2.1.1 The measurable magnetization of an object

Every nucleus can be described by a unique set of quantum numbers. The quan-

tum characteristic relevant to MRI is the spin quantum number, denoted by I. The

spin quantum number takes a discrete set of values that are either integer (0, ±1, ±2,

...) or half-integer (±1/2, ±3/2, ±5/2, ...). 1H spins have I = 1/2, and such a system

is called spin-1/2 system. The microscopic magnetic moment (~µ) can be obtained

from the spin quantum number as,

~µ =
γh

2π

√
I(I + 1), (2.1)

where γ is the gyromagnetic ratio and is equal to 42.577 MHz/T for 1H, and h is the

Planck’s constant (6.6 x 10−34 J/s). The magnetic moment vector can have (2I+1)

possible orientations. For 1H spins, this value is 2. Essentially, when 1H spins are

placed in a static magnetic field (B0), the spins either align with the magnetic field

or against it. These spins will experience a torque which is equal to the rate of change

of angular momentum, and causes the spins to precess about the axis of B0 (the Bz

component). The precession frequency of the spins is called the Larmor frequency,

and is given by ω0 = γB0.

The collective behavior of a spin system is the relevant property that will hence-

forth be of interest, and can be described by the macroscopic magnetization vector
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Figure 2.1: Polarization of protons in the presence of a static magnetic field.

( ~M) such that

~M =
N∑
n=1

~µn (2.2)

where N is the total number of spins in the object being imaged.

When the object is placed in the static field B0, ~M now precesses about Bz at

frequency equal to ω0 given by

ω0 = γB0. (2.3)

In the presence of B0 (Fig. 2.1), each magnetic moment orientation experiences a

different energy interaction with the static magnetic field. For the specific case of 1H

spins, the two energy states are described as

E↑ = −1

2
γh̄B0 (2.4)

and

E↓ =
1

2
γh̄B0. (2.5)

The spin population difference is provided by the difference in the two energy states.

The net magnetization is then obtained by substituting the difference in Eq. 2.2.
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Figure 2.2: Simulation of the excitation of a spin isochromat on to the transverse

plane using a RF pulse.

2.1.2 RF Excitation

When an object is placed in a static magnetic field (B0), the 1H spins precess

about B0 with frequency ω0. This state shall be referred to as the initial state, when

discussing the MR experiment and image generation. The magnetization M at any

given time be described by it’s two orthogonal components, the longitudinal (Mz)

and the transverse (M⊥) components. At the initial state, M⊥ = 0.

It is important to mention here that the transverse component of the precessing

magnetization is the source of measurable MR signal. Signal measurement is possible

due to Faraday’s principle of induction, where a rotating magnetic field will induce

current in a coil. The process of ’tipping’ the magnetization to the transverse plane
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Figure 2.3: The evolution of transverse (Mt) and longitudinal (Mz) magnetization as

a function of time as a result of RF excitation using four different flip angles.

is achieved by applying an oscillating magnetic field (B1) with the same frequency

as ω0. Due to the phenomenon of resonance, M interacts with the B1 field while

continuing to precess around B0 as shown in Fig. 2.2. This interaction results in

the tipping of M on to the transverse plane. Once in the transverse plane, the spins

continue to precess about B0 and as a result of principle of induction, a measurable

signal is detected in a RF receive coil. This process is also called RF excitation. The

simulation of RF excitation of a single spin isochromat is depicted in Fig. 2.2.
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The amount of transverse magnetization measured from RF excitation differs for

varying degrees of tipping of the magnetization vector away from the longitudinal

axis. The angle of excitation, also known as the flip angle (θ), is defined as the angle

made by M on application of the RF excitation pulse and is given by

θ(t) = γ

∫ t

τ=0

B1(τ)dτ. (2.6)

Figure 2.3 shows the time evolution of longitudinal and transverse magnetization

as a result of RF excitation for some commonly used flip angles. Small values of flip

angles such as 10o is sufficient to produce an appreciable transverse magnetization

without a substantial loos in longitudinal magnetization. This is useful in fast scan-

ning applications that employ gradient echo based sequences. Alternatively, a flip

angle of 90o tips all of the magnetization on to the transverse plane. This is useful in

spin echo based imaging and in applications that incorporate RF pulses for magneti-

zation preparation such as in fat saturation, or T2 preparation for example. A 180o

flip angle is typically used in inversion recovery sequences where contrast generation

is based on nulling the signal from a particular tissue or fluid.

2.1.3 Relaxation phenomenon and contrast generation

The RF excitation phenomenon causes the bulk magnetization to reach a higher

energy state. The magnetization remains in this higher energy state for the duration

of the RF excitation pulse. Once the RF pulse is not applied, the magnetization starts

to go back to the lower energy or initial state. The process is called relaxation and

has two components, namely: transverse relaxation characterized by the exponential

time constant T2, and longitudinal relaxation characterized by the exponential time

constant T1. Both T1 and T2 relaxations occur simultaneously, and their durations

vary depending on the object, or tissue sample being imaged.
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Longitudinal relaxation is the process by which the bulk magnetization M returns

to it’s initial value parallel to the static magnetic field. This process is also called the

spin-lattice relaxation. When M returns to it’s original state, the energy of the system

decreases. This release of energy occurs into the surrounding structure (lattice). The

relaxation process takes different times for different 1H spin environments, and is

characterized by the time constant T1. T1 is defined as the time taken for the z-

component of M to reach 63% of its maximum value. The process can be described

as

Mz(t) = Mz(0)(1− e−
t
T1 ). (2.7)

Transverse relaxation is the process by which the M⊥ component of the bulk

magnetization decays in the transverse plane. This process is also called spin-spin

relaxation. In addition to the spin-lattice interactions, the proximity of spins gives

rise to variations in the magnetic field experienced by the interacting nuclei changing

its precession frequency by a small amount, briefly. This causes the exponential decay

of the magnetization in the transverse plane over time and is characterized by the

time constant T2. T2 is defined as the time taken for the transverse magnetization

to decay to 37% of its initial value. The mathematical expression for T2 relaxation

is given by

M⊥(t) = M⊥(0)e
− t
T2 . (2.8)

Both T1 and T2 relaxation are based on the intrinsic properties of the object or

tissue being imaged. The transverse relaxation process can be further accelerated

due to the influence of external factors such as variations in the static magnetic field

due to improper shimming, susceptibility variations due to the presence of metallic

objects or implants in close proximity to the imaging object. This contributing factor
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to transverse relaxation is represented as T
′
2. The accelerated relaxation is given as

1

T ∗2
=

1

T2
+

1

T
′
2

(2.9)

The T∗2 effects from the phase incoherence of the transverse magnetization can be

compensated by using refocussing RF pulses in spin echo based pulse sequences, a

topic that is discussed in detail in section 2.2.2.

There are two frames of reference, the laboratory frame and the rotating frame

of reference generally used to describe MRI phenomenon. The laboratory frame of

reference is fixed with respect to the scanner orientation. The bore of an MRI system

lies along the Z
′

axis, while the X
′

and Y
′

axes are defined using the right handed

Cartesian coordinate system. The rotating frame of reference is obtained by rotating

the X
′
Y
′

plane of the laboratory frame around the Z
′

axes at an angular frequency

equal to ω0. Nomenclature distinction between the two frames is achieved by labeling

the axes of the rotating frame as X, Y and Z with their corresponding unit vectors

denoted by x̂, ŷ and ẑ. Therefore, a spin isochromat precessing at ω0 in the laboratory

frame will appear to be stationary in the rotating frame of reference.

It is important to note that both the relaxation phenomena occur concurrently

and last for different durations. The transverse relaxation typically is much faster

than the longitudinal relaxation. The Bloch equations describe the time dependent

evolution of magnetization incorporating the effects of longitudinal and transverse

relaxation. The magnetization ( ~M) at any given instant t in the rotating frame of

reference is given as

d ~M

dt
= γ ~M × ~B − Mxx̂−Myŷ

T2
− (M0 −Mz)ẑ

T1
. (2.10)

The first term on the right hand side of 2.10 describes spin precession, the second

term describes the T2 relaxation process while the last term describes T1 relaxation.
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2.1.4 Spatial Localization

The previous section described the basic experiment to detect an MR signal. The

signal detected is essentially the sum of contributions from all the spins in the system,

which must be spatially resolved in order to generate images. This spatial localization

is performed using magnetic field gradients. Gradients in MRI refer to the deliberate

spatial variations of the magnetic field B0 produced by specialized hardware compris-

ing of gradient coils, and its driving sources. Magnetic field gradients along the three

orthogonal axes of the Cartesian coordinate system are generated using three sepa-

rate gradient coils. There are three types of gradients that are used for localization

namely : frequency encoding, phase encoding, and slice selective gradients. These are

not the only gradients used, but in some way represent the minimum requirements

for a conventional imaging experiment. Other gradients can be termed functional, or

application specific such as flow encoding gradients, diffusion gradients, spoilers, etc.

Flow encoding gradients will be further explained in detail later in this chapter, as

they are important for flow quantification.

Frequency encoding gradients assign unique precession frequencies to each spin

isochromat at a distinct spatial location in the direction of the gradient application

during signal measurement. The frequency encoding gradient can be applied in any

direction. The frequency encoding gradient waveform in Fourier encoded pulse se-

quences typically consists of a prephaser gradient lobe that is opposite in polarity to

the readout gradient lobe. Data acquisition is performed at the onset of the readout

gradient lobe. This arrangement is used in the generation of an echo. Assuming that

the frequency encoding gradient Gx is applied along some direction X (with no loss in

generalization), the spatial encoding of unique precession frequencies is demonstrated
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Figure 2.4: Larmor frequency versus position along the slice selection gradient di-

rection. The bandwidth of the RF pulse and the gradient strength determine the

thickness of the slice.

using Eq. 2.11.

ω
′
(x, t) = γ(B0 +Gx(t)x) (2.11)

Phase encoding is used to create a linear spatially varying phase of the trans-

verse magnetization. It is implemented by applying a constant gradient lobe prior to

application of the frequency encoding gradient. The area under the phase encoding

gradient lobe changes for every TR to acquire multiple lines in K-space (explained

in section 2.1.5). This is a typical implementation for data acquired on a Cartesian

grid. If the frequency encoding gradient is applied along X, then the phase encoding

gradient Gy is typically applied along Y for single slice acquisitions. In the case of

volumetric acquisitions, phase encoding gradients are applied in both Y and Z direc-

tions (assuming frequency encoding occurs along X). The combination of frequency

and phase encoding constitutes spatial localization in MR.

Slice selection is performed by applying a constant gradient concurrently with a

spatially selective RF pulse (excitation, refocusing, inversion, spatial preparation).
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The amplitude of the gradient lobe applied and the bandwidth of the RF pulse de-

termine the slice thickness, as shown in Fig. 2.4. The gradient Gz1 is stronger than

Gz2, and hence for the same RF bandwidth, Gz1 results in a thinner slice than when

Gz2 is applied. Slice selection gradient application results in phase dispersion across

the slice. Therefore, a slice rephasing gradient is applied which is opposite in polar-

ity to the slice selection gradient to compensate for the phase dispersion. The slice

thickness can be obtained as

∆z =
2π∆f

γGz

. (2.12)

2.1.5 K-Space

K-space is essentially an multidimensional array representation of the object being

imaged in the Fourier domain of the object. In essence, K-space represents the spatial

frequencies of the imaged object. In MRI experiments, the MR signal is measured in

K-space and then Fourier transformed to obtain a map of the signal object in image

space. K-space is mathematically defined as

~k(t) =
γ

2π

∫ t

0

~G(τ)dτ (2.13)

where ~G(τ) is the applied imaging gradient. Therefore, K-space traversal is gov-

erned by the application of frequency, phase and slice encoding gradients. While the

position in K-space at any given time is governed by the area under the gradient lobe,

the gradient amplitude determines the speed of K-space traversal. Figure 2.5 shows

the effect of K-space coverage on the image. Most of the contrast information is con-

tained at the center of K-space, while the high spatial frequencies contain information

about the edges or sharp transitions in the image. If the resolution of the image is

denoted by res and the field of view by FOV , the extent of K-space is equal to 1/res,

and the distance between successive K-space samples is equal to 1/FOV . Improper
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Figure 2.5: (a), (c) and (e) show images generated when K-space is sampled fully,

regions around center of K-space are sampled, and when everything but the center is

sampled respectively. (b), (d) and (f) show the corresponding K-space data.
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Figure 2.6: (a) Cartesian sampled K-space. Each blue line indicates a K-space line

that is acquired in a single TR. (b) A single spiral interleaf in K-space.

K-space sampling can lead to the presence of artifacts in the image. If the extent of

sampled K-space is not large enough, ringing can be observed in regions with sharp

transitions in the image. The image overall also appears blurred when compared to

a higher resolution image. Decreasing the K-space sampling density could result in

aliasing artifact in the image.

The path mapped out by K-space as a result of the imaging gradients is called

the K-space trajectory. This trajectory is governed by the amplitude and temporal

profile of the imaging gradients applied in the pulse sequence. K-space trajectories

can be two or three dimensional. The most commonly used K-space trajectory is

rectilinear K-space sampling also known as the Cartesian trajectory. Chapter 5 of

this work uses a Cartesian trajectory in acquiring K-space. In a typical Cartesian

trajectory based pulse sequence, K-space is filled at the rate of one line per TR.

Each line is associated with a unique value of the phase encoding gradient. This

makes Cartesian based MR imaging very slow. The reconstruction of data acquired
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using Cartesian trajectories is as straightforward as applying the Fourier transform

to the K-space data. Non-Cartesian approaches to acquiring K-space have gained

popularity in recent times owing to decreased scan time, and in some cases, the

incoherent nature of artifacts such as image aliasing. The non-Cartesian trajectory

used in Chapters 3 and 4 of this work, is a spiral trajectory. Spiral K-space can

be obtained by playing out readout gradients simultaneously along what would have

been the frequency and phase encoding directions for a Cartesian MR pulse sequence.

Spiral trajectories do not have a phase encoding gradient for each slice. The entire

K-space can be obtained in a single TR using a single shot spiral acquisition. Blurring

can become an issue with spiral data acquisition and the effect increases as the readout

duration increases. When data acquisition is stretched over multiple TRs, the readout

gradient duration decreases reducing the effect of blurring, which might still need

further correction. Aliasing artifacts for spiral MRI are less coherent than Cartesian

MRI. There are some aspects of non-Cartesian data acquisition that have to be taken

into consideration. The reconstruction is no longer straightforward. Spiral data

acquisition for example, results in non uniform sampling of K-space and the data have

to first be mapped on to a cartesian grid and corrected for sampling density variations

before being Fourier transformed to obtain the image. Gridding reconstruction can

be computationally intensive. Trajectory correction is also an important step in the

reconstruction of spiral data. References [60, 68, 70] are suggested for further reading

on spiral trajectory design and reconstruction. An example Cartesian and spiral

K-space trajectory is shown in Fig. 2.6.

2.2 The basic pulse sequences

A pulse sequence is a timing diagram that describes the sequential and concurrent

interaction of RF pulses, gradient waveforms and data acquisition. Any form of MR
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experiment will have its unique pulse sequence, that contains information on the

trajectory used for data acquisition or the contrast being generated. There are two

basic pulse sequences (gradient and spin echoes) that are explained as part of this

section. These sequences can then be used as building blocks to build more complex

sequences that are application specific such as flow, perfusion, diffusion, elastography,

cardiac function, tagging, etc. Since this work is focussed towards flow, a typical

angiographic pulse sequence is described in section 2.3.1 as part of velocity encoding

strategies.

2.2.1 Gradient Echo Imaging

Gradient echoes are formed by employing imaging gradients to achieve phase

coherence of the various spin isochromats tipped on to the transverse plane by the

RF excitation pulse. This is achieved by using gradients to dephase and rephase

the spin isochromats in the transverse plane without the incorporation of RF pulses

for this purpose. These sequences are also commonly known as Gradient Recalled

Echoes (GRE) or Field Echoes (FE). An example GRE pulse sequence for a single

TR is shown in Fig. 2.7.

Gradient echo based sequences are popular for fast imaging applications. This is

because a refocusing pulse is not required to generate echoes, and the use of low flip

angle RF excitation pulses. The use of low flip angles implies that a only a small

fraction (1-cos θ) of Mz is lost every TR, while maintaining an appreciable amount

of measured signal (sin θ). As a result, less T1 recovery is needed. This reduces

the TR when compared to spin echo based sequences (discussed in section 2.2.2),

and therefore the scan time. Reduced scan time is not the only reason for the wide

applicability of GRE sequences. Application specific contrast generation is another

reason for the use of GRE sequences. Hyperintense blood signal and T1 reduction
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Figure 2.7: A single TR in a gradient echo pulse sequence.

using contrast agents have resulted in GRE based angiographic sequences being used

in clinical environments. Since gradient echo formation does not use a refocusing

RF pulse, GRE based approaches are useful in detection of hemorrhage due to the

T ∗2 weighting. Excessive T ∗2 weighting can however result in signal loss and is also

one of the disadvantages of using GRE based approaches when imaging near metallic

implants. GRE sequences can be further classified as spoiled or steady state free

precessing (SSFP) depending on the evolution of the transverse magnetization at the

end of a single TR. Since this work uses spoiled GRE sequences for flow imaging, a

brief description is provided in the following subsection.
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Spoiled gradient echo imaging

Spoiling refers to the attenuation of transverse magnetization prior to the application

of a successive RF excitation pulse. Spoiling can be achieved by specifying a TR that is

much longer than T2, but this approach is inefficient due to increased scan times. More

commonly used approaches that utilize the speed of GRE based sequences employ

either gradient based or RF based spoiling. With the case of perfect spoiling, the

transverse magnetization is zero when the RF excitation pulse is applied for any given

TR. This RF pulse will only excite the longitudinal magnetization recovered from the

previous TR. At some point in this process the recovered longitudinal magnetization

between two successive TRs will cease to vary. This phenomenon is called the steady

state. Henceforth every RF excitation will tip the same amount of magnetization

onto the transverse plane. The steady state signal from an gradient refocused echo

(SGRE) is obtained as

SGRE =
M0 sin θ(1− e−TR/T1)

1− cos θe−TR/T1
e−TE/T

∗
2 . (2.14)

Under steady state conditions, the flip angle that maximizes the measured signal is

called the Ernst angle and is calculated as

θErnst = arccos(e−TR/T1). (2.15)

2.2.2 Spin Echo Imaging

The spin echo was first discovered by Erwin Hahn in 1950 [30]. RF spin echoes

are generated using excitation pulses followed by one or multiple refocusing pulses.

Typical values of flip angles used for RF excitation and RF refocusing are 90o, and

180o respectively. Spin echo based sequences are commonly used in clinical MRI with

applications in head, spine and knee imaging. They are also used in black blood

and diffusion weighted imaging applications. An example spin echo pulse sequence is
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shown in Fig. 2.8. The signal measured from a spin echo sequence can be calculated

using Eq. 2.14 for a flip angle of 90o. This simplifies to

SSE = M0(1− e−TR/T1)e−TE/T2 . (2.16)

An important advantage of using spin echo based sequences is that they are better

at imaging near metallic implants when compared to gradient echo based sequences.

This is because spin echoes employ RF refocusing pulses that can rephase the spins

that accrue phase over time due to field inhomogeneities. However, spin echoes can

still not recover the loss due to spin - spin interactions. Hence spin echo based

imaging is sensitive to T2 weighting of the imaging region of interest. Generating T2

weighted images requires a sufficiently long TE and TR, which can result in fairly long

scan times. Thus, scan acceleration becomes an important factor. Rapid acquisition

with refocused echoes (RARE) proposed by Henning et al. is a spin echo accelerates

spin echo based acquisition by collecting multiple lines in K-space for the series of

RF refocusing pulses following a single RF excitation pulse [31]. The commercial

implementation of this sequence across vendors is also commonly known as Fast Spin

Echo (FSE) or Turbo Spin Echo (TSE). As each line in K-space is associated with an

echo formation, the acquisition of multiple K-space lines results in the formation of

an echo train. Single shot sequences acquire all of K-space in the echo train following

a single RF excitation pulse. Multi shot sequences acquire all of K-space over 2 or

more RF excitation pulses followed by a shorter echo train.

Specific Absorption Rate (SAR) is the total RF energy deposition that occurs

in a sample over the time of exposure to RF energy. Since spin echo sequences

incorporate the repeated use of RF pulses, the SAR in these sequences can increase

beyond safe limits. The energy deposition is proportional to θ2. As a result, a

more practical approach to spin echo implementation involves using flip angles <180o
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Figure 2.8: A single TR in a spin echo pulse sequence.

for the refocusing pulses. An alternate approach is to use variable flip angle for

successive refocusing pulses, but might affect the contrast mechanism desired. Further

acceleration in data acquisition can be obtained by combining parallel imaging or

partial fourier techniques with a FSE implementation of the sequence. The work

described in chapter 5 uses a 2D single shot turbo spin echo sequence with SENSE

to dynamically monitor CSF flow in the aqueduct and in a ventricular shunt.

2.3 Concepts related to MR flow imaging

This work focusses on different stages of MR flow imaging, utilizing phase contrast

MRI for flow quantification. The subsequent parts of this section will introduce

the fundamental concepts required to understand phase contrast MR imaging. The
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discussion will begin with the introduction of velocity encoding followed by describing

the phase sensitive reconstruction method, and finally discussing the important image

processing involved post reconstruction to mitigate artifacts and quantification errors.

2.3.1 Velocity Encoding

Velocity encoding is the process of using gradient waveforms to encode velocity

information in the phase of the MR signal. This is achieved with the use of bipolar

gradients along the direction requiring velocity encoding. A figurative representation

of a bipolar gradient is shown in Fig. 2.9a. The velocity encoding gradients can be

applied along one, two, or all three axes to independently encode the three orthogonal

components of the velocity vector. The application of a gradient enforces the spin

isochromats to accrue phase proportional to the area under the gradient waveform.

When a bipolar gradient is applied, the static spins accrue a phase proportional to

G0T0 for the positive gradient lobe and the same phase in the opposite direction for

the duration of the negative gradient lobe. This net phase accrual of static spins is

zero. With spins that move with some nonzero velocity, the net phase accumulation

is nonzero (as will be shown when discussing first moments). Therefore the velocity

is encoded in the phase of the MR signal. A second data acquisition with the same

bipolar gradient amplitude and duration but reversed polarity will again result in net

zero phase for static spins, while a nonzero phase for spins with nonzero velocities.

The phase difference of the two acquisitions provides an estimate of the velocity, and

forms the basis of phase contrast MRI (PCMRI). The toggling of bipolar gradient can

be independently or simultaneously performed along the three axes depending on the

velocity components required. The bipolar gradients are applied after RF excitation

and prior to data acquisition. They can also be combined with slice select or phase

encoding gradients to minimize TE.
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Figure 2.9: (a) A figurative representation of a bipolar gradient with gradient ampli-

tude G0, and duration 2T0. (b) Zero and first order gradient moment evolution with

time.

The relationship between phase and velocity can be derived using the gradient

moment approach. In the case of macroscopic coherent flow, the position (x(t)) of

spins at any given time t can be expressed from its Taylor series expansion.

x(t) = x0 + v.t+
at2

2
+ ......., (2.17)

where v is the velocity of the spins and a their acceleration. Typically, only the

velocity term is considered from the series, although gradient waveform sensitization

to higher order terms can be achieved by extending the concept for the first order

term. The phase accrual during the application of bipolar gradient is given as

φ1 = γ

∫ T

0

G(t)x(t)dt. (2.18)

Replacing x(t) from Eq. 2.17,

φ1 = γ

∫ T

0

G(t)[x0 + vt]dt (2.19)

= γ[x0

∫ T

0

G(t)dt+ v

∫ T

0

G(t)tdt] (2.20)

The first integrand on the right hand side of Eq. 2.20 is the zero order moment (m0)

of the gradient, while the second integrand is the first order moment (m1). The first
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order term is associated with the static spins and the phase accrual over the bipolar

gradient duration is zero. Therefore Eq. 2.20 reduces to

φ1 = γvm1. (2.21)

For the second acquisition the bipolar gradient is toggled to obtained the second phase

accrual φ2, which has the same phase magnitude as Eq. 2.21.

φ2 = −γvm1 (2.22)

The difference in phase provides an estimate of the spin velocity and is given as

v =
∆φ

2γm1

. (2.23)

The evolution of m0 and m1 over time due to the application of bipolar gradients

is shown in Fig. 2.9b where two bipolar gradients are mirrored and concatenated.

As the moment is calculated from the area of the gradient lobe, a time efficient im-

plementation of the gradient can be achieved by doubling the amplitude and halving

the duration (while maintaining system limits). When phase coherence is achieved,

the value of the gradient moment if zero. This process is called gradient moment

nulling, and is used to mitigate phase contributions from the nulled moment during

phase difference reconstruction. Figure 2.9 illustrates that implementing a bipolar

gradient will null moment contribution from stationary spins, but encode the mo-

ment contribution from flowing spins in the phase difference. Extending the bipolar

gradient arrangement one more time will result in first order moment nulling. Fur-

ther extension of the bipolar gradient arrangement will continue to null higher order

moments. For practical implementation purposes most sequences employ either zero

or first order moment nulling. A basic implementation of a phase contrast MR pulse

sequence is represented in Fig. 2.10. Flow compensation is implemented along all

three directions. The toggling bipolar velocity encoding gradient is shown in red.
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Figure 2.10: Pulse sequence for phase contrast MRI.

2.3.2 Reconstruction and Post-Processing

The reconstruction pipeline to generate velocity maps from the acquired data

is shown in Fig. 2.11. Phase difference reconstruction is performed using the four

quadrant arctangent denoted by ATAN2. For flow encoding along one direction, the

phase difference calculated as

∆φ = ATAN2

(
Im(Z1Z

∗
2)

Re(Z1Z∗2)

)
, (2.24)

where Z1 and Z2 are the complex reconstructed images for the two bipolar gradient

segments respectively. The ATAN2 function extends the dynamic range of the arc

tangent operation from (−π/2,π/2) to [−π,π]. The velocity sensitivity is determined
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Figure 2.11: The reconstruction pipeline to generate velocity maps from K-space data

obtained using a PCMRI based pulse sequence

by the encoding / aliasing velocity denoted as Venc. When the velocity estimate is

equal to Venc, ∆φ = π. For data obtained using a multichannel coil array, Bernstein

et al. [8] recommended performing the coil combination prior to performing the phase

difference reconstruction. The phase difference maps calculate ∆φ for each pixel.

Phase aliasing occurs when the value of ∆φ exceeds the dynamic range of the

ATAN2 operation. The aliasing manifests itself as abrupt transitions in phase and are

represented by a value within [−π,π]. Aliasing results in incorrect velocity estimation

and has to be corrected for. A simple solution to the problem of aliasing is to specify

a sufficiently high enough Venc. Applications that require high velocity to noise ratio

use a value of Venc lower than the expected maximum velocity. In these cases, some

form of phase unwrapping has to be performed for accurate flow quantification. The

phase unwrapping algorithm used in Chapter 3 of this work is described in [95].

Two major sources of phase errors are due to contributions from concomitant field

gradients and eddy current based phase offsets. Concomitant fields are nonlinear

spatially varying magnetic fields generated as a consequence of Maxwell’s equations

in the presence of an activated linear gradient. The concomitant magnetic fields

result in an additional spatially varying phase ∆φc(x, y, z) to ∆φ. The value of

∆φc(x, y, z) can be exactly calculated and removed from the phase difference maps

as demonstrated in [10]. Eddy currents based phase offsets on the other hand cannot

be exactly determined and are harder to compensate. These phase errors arise due

to rapidly changing gradients during acquisition. Eddy currents can be particularly
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troublesome when imaging slow flow regimes such as CSF flow due to the presence

of high velocity encoding moments. Limiting the slew rate of the flow encoding

gradients will help mitigate these effects but also result in increased TE. A common

practice to correct for these errors is to fit the phase of stationary tissue to a second or

third order polynomial and subtract the fitted phase from the phase difference maps.

More advanced approaches such as the use of magnetic field monitoring to estimate

background tissue phase offset have resulted in accurate flow quantification [24].

Velocity estimates (v̂) on a voxel by voxel basis are obtained from the phase

difference maps as

v̂ =
∆φVenc
π

. (2.25)

The velocity estimates are obtained concurrently for each velocity encoding direction

with the root mean squared of the three velocity components providing the magnitude

of the velocity vector. The flow rate is estimated as the sum of the product of the

velocity estimate per voxel and the area of the voxel, over the entire flow region of

interest. Specific flow quantitative metrics are further explained in Chapter 4.
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Chapter 3

USING NOISE STATISTICS FOR FASTER PHASE UNWRAPPING OF 3D

PCMRI DATA

Phase contrast magnetic resonance imaging (PCMRI) is a technique that encodes ve-

locity information of the imaging region of interest in the phase of the image. This ap-

proach has been widely used to obtain quantitative flow information in vivo for cardio-

vascular, neuro, and peripheral MR imaging applications. Developments in PCMRI

can be traced back to the 1980s with the use of magnetic field gradients sensitive to

flow and its effects on MR imaging[5, 53]. The linear relationship between velocity

and MR signal phase was introduced by Bryant et al[15]. Phase contrast angiography

was applied as a noninvasive quantitative flow imaging technique in cardiovascular

applications using 2D acquisitions synchronized to the cardiac cycle[55, 58, 67], and

with volumetric acquisitions[19] using efficient velocity encoding strategies[66]. The

primary concern with respect to PCMRI data acquisitions was long scan times. With

the advent of spatial and temporal image acceleration techniques such as SENSE,

GRAPPA and k-t methods [26, 37, 71], scan times for PCMRI have been signifi-

cantly reduce with the ability to obtain high resolution velocity maps and study of

dynamic flow quantitation [11, 51, 80]. Recently quantitative PCMRI has been used

successfully in research studies involving clinical outcomes [17, 23, 42, 52, 61–63].

Extraction of quantitative information from PCMRI data involves multiple stages

of post-reconstruction processing. The reconstructed phase difference maps are cor-

rected for background phase offsets due to concomitant field and eddy currents

[10, 17, 32, 79, 86]. This is followed by phase unwrapping [44, 85], after which, the

vessels of interest are manually segmented and quantitative information is computed
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from the segmented region of interest. Visualization of PCMRI based velocity maps

can be affected due to the presence of background phase noise. Thresholding using

magnitude image information is a common method applied to suppress background

noise for improved flow region visualization [8, 86]. Zwart and Pipe proposed a mul-

tidirectional velocity encoding method which used multiple flow encoding directions

and a single low Venc to improve the velocity to noise ratio (VNR) [95]. The shared

information between the different non-orthogonal flow encoding directions was used

to correct for velocity aliasing. These multiple flow encoding directions can also be

used to distinguish background noise from stationary tissue and flow regions using a

statistical approach. An important step during the post processing of phase differ-

ence reconstruction involves phase unwrapping to correct for velocity aliasing. For

typical 3D volumetric data acquisitions, the unwrapping algorithms can become com-

putationally intensive. A flow mask that identifies all the flow regions in an imaging

volume could potentially reduce the computation time of phase unwrapping.

This work develops a new approach to estimate noise statistics for spiral MRI and

apply the estimated noise in identifying flow regions within a image volume obtained

using multidirectional velocity encoded PCMRI. The work masks the background

noise and static tissue voxels in the imaging volume, and performs phase unwrapping

only on the sparse flow segmented regions. This process is expected to reduce the

execution time of the phase unwrapping algorithm by approximately 30%− 40%, as

the flow regions are estimated to comprise of 2% − 3% of the imaging volume. The

work is presented as three stages of development. The first stage (Section 3.1) presents

a novel approach for noise estimation in spiral MRI. The second stage (Section 3.2)

discusses the development of a tri-level mask using the noise statistics from stage

one, that is shown to identify and separate background noise, static tissue, and flow

regions in an imaging volume. The final stage of development (Section 3.3) involves
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a demonstration of phase unwrapping speedup by performing the algorithm on only

the flow segmented regions in the volume.

3.1 Noise estimation in spiral MRI

Signal to noise ratio (SNR) is an important quantitative measure of MR image

quality. It is therefore desirable to be able to quantify noise in MR images as ac-

curately as possible. Although noise estimation is a problem of notable importance,

and the focus of extensive research, there does not exist a gold standard method

to estimate noise statistics. A list of some of the existing approaches towards noise

estimation is presented, following which the proposed method is briefly outlined.

Extensive research has been conducted detailing the statistical properties of noise

present in an MR image [27, 48, 54]. Establishment of the noise distribution in MR

images led to the development of statistical models to estimate noise such as using the

distribution of local moments [1], or the use of mean absolute deviation estimators in

the wavelet domain as described in [65]. The statistical models however exhibit signal

dependency, which may decrease the efficiency of the estimator. Another method

developed to estimate noise was based on the selection of an appropriate background

region of interest (ROI). The work done by Constantinides, et. al [18], explored

estimating noise variance from background ROI by obtaining measurements from coil

arrays. A major limitation of estimation methods in the image domain is that it

can be difficult to select a region of interest with no signal. Noise estimation based

on a histogram of the image was also proposed in [34]. However, methods that use

the mode of the background data to estimate noise variance, as is the case with the

histogram of the image, depend on the assumption that every MR image has sufficient

background data required for this method.
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The outlined methods attempt to estimate MR noise properties in the image

domain, and can be categorized with other post processing techniques that add to

the overall implementation time. The objective of this work is to eliminate any signal

dependencies during the noise estimation process, and to make the implementation an

integral part of the reconstruction process. In this regard, a new method is proposed

that utilizes the oversampling of data at low spatial K-space frequencies to eliminate

the signal in K-space, generating pure noise in K-space. The method was implemented

for single coil data acquired using spiral K-space trajectories.

Data acquired along a spiral K-space trajectory are oversampled at lower spatial

frequencies and critically sampled at higher spatial frequencies. The oversampling of

spiral trajectories at low spatial frequencies presents the possibility of reconstructing

unaliased low-resolution images using only a fraction of the acquired samples. Specif-

ically, the region of K-space oversampled by a factor of 2 or more can be used to

reconstruct 2 unaliased images. One can then effectively remove the redundant signal

content from these two datasets by appropriate subtraction. The noise content in the

two datasets, being independent, adds in the difference image. This difference image

contains only noise and can be used to estimate the noise in acquired dataset.

The proposed method was used to generate noise by reconstructing K-space data

points in non-Cartesian trajectories oversampled by a factor of 2 or more. The sub-

section on noise image generation provides a detailed description of the modifications

to the gridding process to eliminate the signal in K-space. The variance estimates

of the noise generated using the proposed method are derived in the subsection on

noise image analysis. This is followed by a brief description of the data acquisition

parameters used.
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Figure 3.1: (a) During spiral reconstruction, the K-space region oversampled by

a factor of 2 or more is used to modify the corresponding SDC weights (b) SDC

weights (WT ) used in spiral reconstruction compared with the modified and scaled

SDC weights (αWN)

3.1.1 Noise Image Generation

Data were collected using a stack of spiral trajectory (T points per interleaf) with

sampling density along each interleaf as illustrated in Fig. 3.1(a). The corresponding

sampling density compensation (SDC) weights [60], are denoted by WT . The arrow in

Fig. 3.1(a) denotes the point prior to which K-space is obtained with an oversampling

factor of 2 or more (N data points). A second set of weights WN , were generated

from WT as follows. For the first N points along each interleaf, the weights with odd

indices were scaled by −1. The remaining SDC weights for WN after these N points

were set to zero. Gridding reconstruction was performed twice, once using WT , and

once using WN as the SDC weights. All other steps in the reconstruction process
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Figure 3.2: Flowchart of the noise variance estimation algorithm for spiral MRI :

Generating the low resolution noise image during spiral reconstruction in GPI

were identical in both cases. The Fourier transform of the data weighted by WN and

then gridded resulted in a noise image.

The noise generated from N data points was scaled when compared to the noise

in the fully sampled data. The scaling factor (α) is quantified as shown in the next

subsection. With an appropriate value of α applied to the noise standard deviation

obtained using the proposed method (σN), an estimate of the noise standard deviation

in the fully sampled data (σT ) was obtained. The gridding reconstruction, Fourier

transform and variance calculations were performed offline using the Graphical Pro-

gramming Interface (GPI) [59] software platform. The proposed approach to generate

noise data in K-space is shown in Fig. 3.2.

3.1.2 Noise Image Analysis

The standard deviation of noise in the image domain is related to the standard

deviation of noise in K-space according to:

σimage = Cσkspace
√

ΣW 2, (3.1)
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where, σimage and σkspace are the standard deviations in image and K-space respec-

tively, W denotes the sampling density compensation weights, and C is a scaling

constant. As mentioned in the previous subsection, the proposed method makes use

of the first N samples. The noise standard deviations of the images using WT and

WN were obtained from Eq. 3.1 as

σT = Cσkspace

√
ΣW 2

T , (3.2)

σN = Cσkspace

√
ΣW 2

N , (3.3)

Dividing Eq. 3.2 by Eq. 3.3 gives

σT = ασN , (3.4)

where

α =

√
ΣW 2

T

ΣW 2
N

. (3.5)

The value of σN was estimated from the noise image, then scaled by α to obtain an

estimate of σT . This scaling factor α was in practice applied to the wieghts; thus

images were created using WT and αWN , as illustrated in Fig. 3.1(b). Equation 3.4

therefore represents the noise standard deviation estimate in a spiral acquisition, in

terms of the noise standard deviation of the reconstructed 2x oversampled region in

K-space and scaled appropriately.

3.1.3 Data Acquisition

Phantom data were obtained on a Philips 3T Ingenia scanner using a 2D spiral

gradient echo scan with the following acquisition parameters - FOV/Res: 240 mm/0.8

mm; 48 spiral interleaves; τ : 9.612 ms; T = 2226 samples; N = 132 samples. Thirty

repetitions of the phantom scan were performed to obtain noise statistics.
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Seven volunteer datasets were obtained on the 3T Ingenia scanner using a stack of

spiral gradient echo scan with the following acquisition parameters - FOV/Res: 220

mm/1.0 mm; 48 spiral interleaves; τ : 6.162 ms; T = 1802 samples; N = 398 samples.

A noise reference scan was obtained from the scanner using the same protocol, but

with the RF excitation turned off.

A standard Philips noise dynamic scan was performed for both phantom and

volunteer experiments and used as the ground truth to evaluate the accuracy of the

noise statistics obtained using the proposed method. Noise variance estimates were

calculated in GPI separately for the real and imaginary channels of the reconstructed

complex noise images for the proposed method and the reference noise dynamic.

Real and imaginary channel histograms were generated for the complex noise images

obtained using the proposed approach. A T-test was performed to determine if there

was a significant difference in the noise standard deviation estimates obtained using

the proposed approach when compared to the ground truth.

3.1.4 Results and Discussion

The output of the gridding algorithm produced a single coil complex noise image.

Figure 3.3 shows the reconstructed images. The first column shows the phantom

image and the volunteer brain image, while the second column shows the noise im-

age obtained using the proposed method. The volunteer/phantom images and their

corresponding noise images were obtained were obtained using a single GPI network.

The values of the standard deviation of the complex noise obtained by the proposed

method was compared with that of a noise reference scan obtained using the same

scan parameters. The comparison is summarized in Table 3.1 by separating the com-

plex noise into the real and imaginary channel. A histogram of the real and imaginary
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Figure 3.3: 2D phantom and volunteer images acquired using spiral trajectories (a,

c), and their respective reconstructed noise images (b, d) obtained using the proposed

method.

Table 3.1: Noise Standard Deviation Estimates (σT )

Phantom (mean ± σ) Volunteer (mean ± σ)

RF off Proposed Method RF off Proposed Method

Real Channel 60.26 ± 0.60 61.2407 ± 0.08 81.28 ± 0.40 81.04 ± 0.08

Imaginary Channel 60.23 ± 0.67 60.9678 ± 0.08 81.29 ± 0.37 81.50 ± 0.08

channels of the reconstructed noise image was obtained as shown in Fig. 3.4 to provide

a visual representation of the noise distribution.
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Figure 3.4: Histogram of the reconstructed noise image from phantom and volunteer

data depicting the noise distribution in the real channel (a) and the imaginary channel

(b).

Table 3.1 shows that the standard deviation estimates of the noise obtained using

the proposed method are comparable to those obtained using a noise reference scan.

However, it is important to note that the noise generated using the proposed method

is not the same noise as is present in the acquired data. Since the 2x oversampling

region in K-space corresponds to low spatial frequencies, the high spatial frequency

content is masked resulting in a reconstructed noise image that has a lower resolution

than the image reconstructed from the original dataset using all K-space data. This

effect is also illustrated in Fig. 3.3(b) and in Fig. 3.3(d), where the noise images were

reconstructed using different values of N . Quantitatively, the effect is compensated

by introducing a scaling factor as shown in Eq. 3.4, to obtain an accurate quantitative

estimate of the noise standard deviation. The histograms of complex noise generated

using the proposed approach were indicative that there was no substantial deviation

from zero mean of the real and imaginary noise channels of phantom and volunteer

data. Hypothesis testing comparing the noise standard deviations of the proposed ap-

proach and the ground truth revealed that there was no significant difference between

the statistics obtained from the two methods.
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The noise estimation method proposed in this work was evaluated for 2D spirals

and stack of spiral trajectories. In theory, this method would be applicable to any

trajectory that has oversampling in the readout direction. Although the readout

direction for Cartesian trajectories may be oversampled, nonlinear filtering or post

processing techniques could affect the accuracy of the proposed method, since the

underlying assumption is that the reconstruction is a linear process preserving the

complex Gaussian nature of noise. Currently this approach has been evaluated for

single coil reconstruction. The proposed method would not work for a sum of squares

coil combination as this process is nonlinear. This method should work for a linear

combination of data weighted by coil sensitivities, provided the off diagonal elements

have low amplitudes when compared to the main diagonal components.

3.1.5 Summary

A new method was proposed to estimate the noise standard deviation for spiral

imaging. The method incorporated the oversampling of data at low spatial frequen-

cies, to eliminate the signal content during the reconstruction process. The appro-

priate scaling factors were incorporated while generating the SDC weights and hence

avoided unnecessary post processing of the reconstructed noise image. An added ad-

vantage of the integrated implementation is the ability to reconstruct the original data

and the noise image concurrently for SNR applications. The proposed method does

not require multiple acquisitions, or dependency on a background region of interest.

3.2 Flow region identification for multidirectional velocity encoded PCMRI

Phase contrast magnetic resonance imaging (PCMRI) has been repeatedly shown

to be the method of choice for in vivo fluid flow quantification. PCMRI uses motion

sensitizing gradients to encode velocity information. Phase difference reconstruction
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involves the subtraction of the phase images obtained using acquisitions for each

flow encoding gradient, and the flow compensated acquisition. Velocity estimates are

obtained from the phase difference images as shown in Eq. 3.6.

ṽ =
∆φ

Venc
. (3.6)

Extraction of quantitative information from PCMRI data involves multiple stages of

post-reconstruction processing. The phase difference reconstruction is performed us-

ing a 4 quadrant arctangent operation commonly denoted by the function ATAN2.

This function is defined only in the interval [−π/2, π/2]. Flow quantification ac-

curacy is primarily affected due to phase errors. Eddy currents introduce nonzero

background phase variations in static tissues. These errors can be compensated for

by estimating a polynomial fit to the background phase. Phase errors can also arise

due to contributions from concomitant field gradients, which can be estimated ana-

lytically and corrected. Incorrect velocity estimates can also be obtained as a result of

phase aliasing. This occurs when the Venc specified is not higher than the maximum

velocity in the image volume. To obtain an accurate estimate of the velocity, the

phase difference images have to first be checked for phase wraps.

Visualization of PCMRI based velocity maps can be affected due to the pres-

ence of background phase noise. Thresholding using magnitude image information

is a common method applied to suppress background noise for improved flow re-

gion visualization[11]. Zwart and Pipe proposed a multidirectional velocity encoding

method which used multiple flow encoding directions and a single low VENC to im-

prove the velocity to noise ratio (VNR) [95]. The mutual information among the

different velocity encoding directions was used to correct for velocity aliasing. These

multiple flow encoding directions can also be used to improve noise suppression and

distinguish background noise from stationary tissue and flow regions. For typical 3D
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Figure 3.5: Example phase contrast MRI image using a flow phantom, with the

regions representing background noise, no flow and directional flow highlighted as

shown.

volumetric data acquisitions, the unwrapping algorithms are computationally inten-

sive. In such cases, a flow mask can be useful in reducing the number of voxels that

need to be unwrapped, by identifying the flow regions in an imaging volume. The

objective of the proposed method of identifying flow regions is not to achieve accu-

rate segmentation, but to be able to identify all flow voxels in a volume and reduce

computational time of the phase unwrapping approach used by Zwart and Pipe [95].

3.2.1 Differentiation of voxel characteristics

Phase contrast MRI based velocity maps have three distinct regions (noise, static,

and flow) as highlighted in Fig. 3.5. A single voxel representation of the three regions

is shown in Fig. 3.6. The first stage in the mask development was the suppression
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Figure 3.6: A single voxel from an example volunteer dataset representing the three

distinct regions in a phase contrast image, measured along the six flow encoding

directions is shown in the complex plane.

of background noise. The reconstructed complex image and the noise variance were

used for this purpose. A T-test comparing the means of real and imaginary channel

of the reconstructed complex data to zero independently, was used to determine if a

voxel could be characterized as noise. The output of the hypothesis testing is a binary

dataset with voxel value 0 if noise or voxel value 1 if signal. The binary mask was

then multiplied with the phase difference dataset. The second stage was to identify

flow regions from the non-zero voxels in the phase difference dataset. The standard

deviation of phase noise is inversely proportional to the SNR of the magnitude image.

A Chi square test was performed comparing the phase deviation across different

velocity encoding directions to the standard deviation of phase noise in a voxel. The
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SNR NL = 90 NL = 95 NL = 98

1 29.55% 40.73% 54.84

2 0.14% 0.35% 1.00%

5 0.00% 0.00% 0.00%

10 0.00% 0.00% 0.00%

Table 3.2: Fraction of pixels incorrectly characterized as noise for varying values of

SNR and noise masking confidence levels (NL).

addition of the noise and flow masks constituted a tri-level mask with 0 representing

noise, 1 representing static tissue and 2 representing flow regions.

3.2.2 Numerical Simulations: Methods

A complex gaussian noise dataset was simulated with zero mean and known stan-

dard deviation. This dataset was used to test the performance of the noise mask by

verifying the number of output non-zero voxels were equal to residual value for each

confidence level. The test for identifying flow regions comprised of another synthetic

dataset that simulated phase variation in one dimension, and magnitude variation

from 0 to 3σnoise in the second dimension. Complex gaussian noise with zero mean

and standard deviation σnoise was added to the synthetic dataset.

The effect of SNR on mask performance was evaluated using a simulated data

with a constant signal magnitude over the entire field of view. Complex gaussian

noise of known standard deviation was added to the K-space data to generate images

with SNR equal to 1, 2, 5, and 10. The performance of the mask was evaluated by

the fraction of pixels incorrectly characterized as noise by the proposed algorithm.
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Figure 3.7: Tri-level mask performance on (a) simulated noise; (b) simulated phase

variation with additive gaussian noise. NL (noise level) represents the threshold for

the t-test hypothesis, and NR (noise refinement) represents the the umber of iterations

of binary opening performed on the output of the mask.

3.2.3 Numerical Simulation: Results

Figure 3.7a shows the output of the mask on simulated complex gaussian noise

with known standard deviation. The noise mask was set at 98% confidence level.

The number of voxels the were not masked out were found to be 1.9% of the imaging

volume, which was close to the expected performance error of 2%. The mask per-

formance with phase variation in the presence of noise is shown in Fig. 3.7b. The

mask was most sensitive at phase values of 0o, 90o, 180o, 270o, and 360o. The mask

was least sensitive when the real channel was the same as the imaginary channel. The

mask was likely to detect noise if either the real channel or the imaginary channel

was noise. The noise mask had a performance error of 4.9% for a confidence level of

95%, and a performance error of 9.7% for a confidence level of 90%.
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Figure 3.8: (a) Numerical simulation of signal with additive gaussian noise for SNR

values of 1, 2, 5 and 10 (left to right). The performance of the noise mask for the

four SNR values at (b) noise masking confidence level (NL) of 90%, (c) noise masking

confidence level (NL) of 95%, and (d) noise masking confidence level (NL) of 98%.

The performance of the mask for SNR values of 1, 2, 5 and 10 is shown in Fig. 3.8.

At low SNR the likelihood of identifying a false positive in the case of noise masking

was higher than at a higher SNR. The mask performance error with changing SNR is

depicted in Table 3.2. For an SNR or 2 and more, it is clearly evident that the mask

is accurate in differentiating between signal and noise. For SNR < 2, many pixels

were incorrectly identified as noise. Since the flow region identification depends on
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phase deviations, pixels identified as noise in the first stage of the mask algorithm,

have a high likelihood of being categorized as regions with flow.

3.2.4 Phantom Experiments : Methods

A gravity feed based flow phantom was used to acquire phase contrast data. The

design specifications of the flow phantom are provided in Appendix A. A 3D stack of

spiral trajectory was used to acquire data with 6 velocity encoding directions. Other

MR acquisition parameters were: TE/TR = x ms / 29 ms, θ = 10o, FOVXY Z = 150

mm x 150 mm x 60 mm, ∆x x ∆y = 0.8 mm x 0.8 mm x 0.8 mm. The flow in the

phantom was along the FH direction. The peak velocity was determined to be 9 cm/s.

Venc was set at 15 cm/s. Data were acquired using a birdcage coil and the recon-

struction was performed in GPI. Noise images were reconstructed from the acquired

data as described in section 3.1. The reconstructed low resolution scaled noise, re-

constructed complex data, and phase difference data were input to the tri-level mask

algorithm to obtain the noise and flow masks. Tri-level masks were obtained for all

possible combinations of noise confidence levels (90%, 95%, 98%) and flow confidence

levels (90%, 95%, 98%). Different morphological image processing techniques (binary

opening after noise stage, binary dilation after flow stage) with user discretion, were

applied after each stage of the algorithm, to improve the mask performance. A stan-

dard 3x3 structuring element was used for morphological image processing.

3.2.5 Phantom Experiments: Results

The velocity maps and the corresponding output of the tri-level mask algorithm

are shown in Fig. 3.9(a,b) for sagittal slice orientation and in Fig. 3.9(c,d) for axial

slice orientation. The mask algorithm was able to identify background noise, regions
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Figure 3.9: Flow phantom data were obtained using 6 directional flow encoding. (a)

Velocity map obtained using sagittal slice orientation with flow in the left-right direc-

tion; (b) Tri-level mask output for sagittal slice orientation with noise masking at 98%

confidence level and flow region identification at 98% confidence level. One iteration

of binary opening was performed on the noise mask; (c)Velocity map obtained using

axial slice orientation with flow into and out of the image; (d)Tri-level mask output

for axial slice orientation with noise masking at 98% confidence level and flow region

identification at 98% confidence level. One iteration of binary erosion was performed

on the noise mask. [Black/0 : Noise, Blue/1 : No flow, Red/2: Flow]
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without and with flow successfully for both slice orientations. Spurious noise voxels

were masked out after performing one iteration of binary erosion.

3.2.6 In Vivo Experiments: Methods

Three sets of volunteer data were acquired using 3D stack of spiral trajectories

with 6 directional velocity encoding. Other MR acquisition parameters were: TE/TR

= x ms / 19 ms, θ = 10o, FOVXY z = 240 mm x 240 mm x 80 mm, ∆x x ∆y = 0.8 mm

x 0.8 mm x 0.8 mm. Venc was set at 80 cm/s. Data were acquired using a birdcage

coil and the reconstruction was performed in GPI. Noise images were reconstructed

from the acquired data as described in section 3.1. The reconstructed low resolution

scaled noise, reconstructed complex data, and phase difference data were input to the

tri-level mask algorithm to obtain the noise and flow masks. Tri-level masks were

obtained for all possible combinations of noise confidence levels (90%, 95%, 98%) and

flow confidence levels (90%, 95%, 98%). Different morphological image processing

techniques (binary opening after noise stage, binary dilation after flow stage) with

user discretion, were applied after each stage of the algorithm, to improve the mask

performance. A standard 3x3 structuring element was used for morphological image

processing. A representation of the flow region sparsity in the image volume was

provided by the flow region volume fraction. The flow region volume fraction was

calculated as the ratio of the number of flow voxels to the total number of voxels in

the image volume.

3.2.7 In Vivo Experiments: Results

The reconstructed velocity maps for flow component in the slice direction for the

three volunteers is shown in Fig. 3.10(a-c). For each of these volunteers the tri-level

mask output was computed (Fig. 3.10(d-f)) and the corresponding velocity magnitude
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Figure 3.10: In vivo data from three volunteers were obtained using 6 directional

velocity encoding. (a-c) Velocity maps of an axial slice are shown for the three

volunteers; (d-f) Tri-level mask output corresponding to the three volunteers for an

axial slice orientation with noise masking confidence at 98%, and flow identification

confidence at 90%. Three iterations of binary opening were performed on the noise

mask; (g-i) Flow masked maximum intensity projections along slice direction for

the three volunteers provide information on the velocity magnitude within the flow

regions.
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Figure 3.11: (a) Magnitude masked speed MIP; (b) Tri-level masked speed MIP

maximum intensity projections (MIPs) along the slice direction were also generated

by first computing the flow masked velocity magnitude from the individual velocity

component maps and then collapsed with respect to the maximum value in the slice

direction, as shown in Fig. 3.10(g-i). The background noise across all volunteers was

effectively suppressed by the mask algorithm, and repeatability of the algorithm to

identify flow regions among in vivo data was also observed. The sporadic distribution

of isolated flow voxels at the edge of the brain image can be attributed to the low

SNR of the magnitude image at the edge of the field of view in the slice direction

(Fig. 3.11b). The flow region volume fraction was estimated at 2.3% for the MIP

shown in Fig. 3.11b.

3.2.8 Discussion

Conventional approaches for flow visualization employ magnitude based threshold-

ing of the phase difference reconstructed maps to suppress background noise [8, 12].

Static tissue suppression for cine PCMRI sequences has been achieved using the
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through time standard deviation of voxel phase [86]. A new method for voxel charac-

terization as noise, static tissue or flow is presented using the noise statistics estimated

in section 3.1 in conjunction with signal magnitude and phase deviations. The method

was evaluated for PCMRI data obtained using 3D spiral acquisitions with multidi-

rectional velocity encoding. The purpose of the mask algorithm was not intended to

produce highly accurate flow segmentation, but produce a sufficiently sparse image

volume to reduce the number of voxels that would require phase unwrapping. Hence,

static tissue voxels inaccurately classified as flow were less concerning than flow voxels

erroneously identified as background noise or static tissue.

The mask performance was evaluated with noise and signal simulations at dif-

ferent SNR and statistical confidence levels. The mask was observed to successfully

distinguish the three regions for SNR ≥ 2. The mask was able to ascertain flow

regions irrespective of the slice orientation and direction of flow. The ability of the

mask to distinguish between noise and flow regions was affected when SNR was less

than 2. This performance issue was observed primarily at the edge of the field of

view in the slice direction. Morphological image processing was used to improve the

performance of the mask in background noise suppression and ensuring that edge

voxels of the vessels were accurately identified as flow regions. The noise suppression

stage of mask development incorporated a 3x3 structuring element to remove isolated

noise pixels in the background by first performing binary erosion followed by binary

dilation of the mask. A single iteration of erosion was determined to be sufficient in

noise removal and a single iteration of dilation was performed to minimize the loss of

edge signal pixels from the erosion stage. The flow region identification stage of mask

development utilized one iteration of binary dilation using the same 3x3 structuring

element used in the noise suppression stage. Dilation was used to include additional

pixels around the flow periphery regions ensuring that all pixels corresponding to
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vessels were included in the mask. The disadvantage of using binary dilation to refine

the flow mask was that a small fraction of pixels (≈ 10%) corresponding to static

tissue may be misclassified as flow regions in the mask. This is expected to result in a

small increment in the computation time of the phase unwrapping algorithm, but not

substantial enough to negate the speedup in phase unwrapping obtained as a result

of the mask. A noise mask confidence level (NL) of 98 was identified as the optimal

masking level for background noise suppression. A single iteration of binary erosion

was observed to be sufficient to suppress all of the background noise for NL = 98. The

optimal flow identification confidence level (FL) was determined to be 90. At this

level, a single iteration of dilation was sufficient to include all the vasculature in the

mask. The performance of the mask is dependent on statistical power for both noise

and flow identification. Increasing the number of flow encoding directions is therefore

expected to improve the mask performance. However, this approach would invariably

increase scan time and therefore is not ideal. Six velocity encoding directions was

determined to be the optimal number according to Zwart and Pipe [95].

The proposed approach is expected to reduce the computational time of the phase

unwrapping algorithm significantly as a result of the reduced flow region fraction in

the imaging volume. The proposed tri-level mask development could be used for

flow visualization, and for estimating background phase. This work did not explore

the mask refinement with respect to these applications but will be part of future

development.

3.3 Application to phase unwrapping : Improvements using the tri-level mask

The accuracy of flow quantification using PCMRI based approaches can be affected

by phase aliasing. Phase aliasing occurs when the measured velocity component is

greater than the maximum encoded velocity denoted by Venc. Since the dynamic
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range of phase differences is bounded by [-π, π], phase differences values outside this

range get wrapped into the dynamic range providing an incorrect velocity estimate.

Phase unwrapping can be performed prospectively, or as part of post processing.

A common prospective approach to correct for phase wraps has been proposed by

Lee et. al [44], where the authors recommend the acquisition of high and low Venc

datasets to remove phase aliasing while maintaining a high velocity to noise ratio

(VNR). An example of a post processing approach to phase unwrapping is provided

by Loecher et. al [46] incorporating spatial and temporal continuity with minimal user

intervention. The work by Untenberger et. al [85] also utilizes phase continuity in the

temporal direction to unwrap phase. The algorithm used in this work was proposed

by Zwart and Pipe [95], where unwrapping was performed by identifying the most

consistent solution to the reconstructed velocity estimate in a two dimensional or

three dimensional solution space.

The tri-level mask algorithm presented in section 3.2 can be used to only output

the flow regions. This binary dataset is termed the flow mask, and is then used with

the phase difference maps to only check those voxels in the volume that correspond to

a non-zero value on the flow mask, for phase wraps. The unwrapped flow voxels are

then combined with the original phase difference map prior to velocity estimation.

This process was implemented on all acquired in vivo datasets. The motivation of

this work was to reduce the computation time of the phase unwrapping approach

used in [95].

3.3.1 Data Acquisition and Implementation

Six volunteer datasets were obtained using 3D stack of spiral trajectories with 6

directional velocity encoding. Other MR acquisition parameters were: TE/TR = x

ms / 19 ms, θ = 10o, FOVXY z = 240 mm x 240 mm x 80 mm, ∆x x ∆y = 0.8 mm
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x 0.8 mm x 0.8 mm. Venc was set at 30 cm/s. Data were acquired using a birdcage

coil and the reconstruction was performed in GPI. The tri-level mask was obtained

as described in section 3.2.

The tri-level mask was modified to generate a binary mask (flow mask) with

nonzero voxels representing flow regions within an imaging volume. The phase dif-

ference data for each of the six flow encoding directions were multiplied with the flow

mask. The phase unwrapping approach described in [95] was implemented in GPI.

Phase unwrapping was performed on the phase difference datasets with and with-

out the application of the flow mask. The velocity estimates were obtained for the

unaliased phase difference data with and without the masks. The difference of the

two velocity estimate maps was performed to observe the effects of flow masking the

phase difference data. The phase unwrapping algorithm execution times were noted

in GPI for both instances. A flowchart of the approach is provided in Fig. 3.12.

The time improvements due to the application of the mask were quantified by a

speed-up factor called Fractional Unwrapping Speed-up (FUS) defined as

FUS =
timewithoutmask

timewithmask
(3.7)

The unaliased velocity maps in each of the six directions were visually assessed for

errors in unwrapping using the mask.

3.3.2 Results and Discussion

The unaliased phase difference data with and without the mask are shown in

Fig. 3.13. The performance of the flow mask can be explained with reference to three

specific cases of phase aliasing in the example in vivo dataset. For both elliptical ROIs

(denoting flow regions along different flow encoding directions), the performance of the

phase unwrapping algorithm was not affected by the use of the flow mask or without
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Figure 3.12: Algorithm to determine the performance of the unwrapping algorithm

with and without the mask.

its use. The red arrow is used to represent static tissue in the phase difference data

(Fig. 3.13A). Without the use of the mask some of the voxels in this region were

falsely identified as flow regions with phase aliasing and underwent unwrapping, as

observed along the v3 direction in Fig. 3.13B. On application of the flow mask, these

regions were identified as static tissue and did not undergo phase unwrapping (Fig.

3.13C). The FUS (mean ± σ) was determined to be 33.26 ± 1.47. The average

fraction of flow voxels in the image volume for volunteer datasets was 3%. The FUS

was observed to be inversely proportional to the fraction of voxels checked for phase

aliasing.

Phase unwrapping is essential for accurate quantitative flow estimation using

PCMRI but can be computationally expensive for high resolution 3D datasets. The

tri-level mask provided two distinct improvements to the performance of the phase

unwrapping algorithm. The primary improvement was faster execution of the phase
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Figure 3.13: This figure compares the output of the phase unwrapping algorithm with

and without the use of the tri-level mask. The elliptical ROIs for each color highlight a

specific case of phase aliasing, and the corresponding output of phase unwrapping with

and without the mask. The arrow highlights the additional improvement provided

by the mask in distinguishing between static tissue and vasculature.
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unwrapping algorithm by a factor of 33x, as a result of the sparsity of the flow regions

within an imaging volume. The second improvement mitigated the incorrect unalias-

ing of static tissue phase in regions with low SNR, resulting in inaccurate velocity

estimates.

3.4 Conclusion

A new approach to improve the execution speed of phase unwrapping of data

acquired using multidirectional flow encoding was discussed. The proposed approach

consisted of three stages of development. The first stage introduced a novel method to

estimate noise statistics from a single fully sample spiral acquisition. The algorithm

was integrated into the gridding reconstruction pipeline by appropriate weighting and

scaling of the density compensation coefficients to concurrently produce the recon-

structed image and a low resolution noise dataset. The statistics of the reconstructed

noise were found to be comparable to the noise measured using a noise dynamic scan

on the fully sample data.

The second stage incorporated the noise statistics, image magnitude data, and

phase deviation from the phase difference maps to generate a tri-level mask that could

successfully identify and separate background noise, static tissue, and the vasculature

in the acquired image volume. The flow regions fraction of the imaging volume was

found on average to represent only 2% of the entire image volume. The mask was also

able to provide sufficient noise and static tissue suppression while generating speed

MIPs.

The tri-level mask was used in the final stage of development to check for aliased

phase only in the voxels classified as flow by the mask. This increased GPI execution

speed of the phase unwrapping algorithm on average by 33 times. The mask was
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also able to mitigate the fraction of incorrectly unaliased voxels, most of which were

associated with the static tissue region.
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Chapter 4

RF SATURATION INDUCED BIAS IN AQUEDUCTAL CEREBROSPINAL

FLUID FLOW QUANTIFICATION USING CINE 2D PCMRI

Phase contrast magnetic resonance imaging has been the method of choice for quan-

titative flow imaging. Although technical advancements in PCMRI have primarily

focussed on cardiovascular applications, there exists a growing interest in its use in

the study of disorders attributed to alterations in CSF flow dynamics. Cerebrospinal

fluid is a clear liquid primarily produced in the choroid plexus, and present in the

brain ventricles and subarachnoid space. Cerebrospinal fluid flow dynamics are crit-

ically important in maintaining intracranial pressure and neuronal metabolic activ-

ity. Cerebrospinal fluid flow dynamics are complex, with an oscillatory component

governed by the cardiac cycle, and a bulk flow component associated with the circu-

lation and reabsorption of CSF in the jugular venous system [72, 77]. The cerebral

aqueduct is considered as an important region of interest to ascertain the validity

of PCMRI based CSF flow quantitation, particularly with respect to characterizing

hydrocephalus. Although PCMRI is sufficiently sensitive to quantify the oscillatory

flow component, imaging bulk flow has been a problem, especially in the cerebral

aqueduct. System limits may inhibit the use of large gradient moments to achieve,

in some cases, sufficient sensitivity to accurately measure slow flow.

Phase contrast MRI has several known challenges. The accuracy of flow quan-

tification is affected by concomitant field effects that can be accurately characterized

and compensated [10]. Eddy current based phase offsets can be highly problem-

atic for slow CSF flow due to large gradient lobes used for slow flow sensitization.

Eddy current based phase offset compensation can be achieved by a polynomial fit of
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the background stationary phase [86], estimating the phase offset using a stationary

phantom [22], or using a field camera to monitor spatiotemporal phase variations [24].

Motion artifacts are also a cause for concern for PCMRI data acquired using Carte-

sian trajectories. Artifacts due to pulsatile flow observed in Cartesian acquisitions

can be mitigated using non-Cartesian acquisitions [56, 57]. In this work, the in vivo

data were collected using spiral trajectories to mitigate these effects. In addition,

the aqueduct has a diameter of 2 - 3 mm in adults, requiring high spatial resolution

during data acquisition to minimize partial volume effects [83]. Apart from these

sources of error, RF saturation effects could result in a bias in estimated velocities

using 2D PCMRI which, to our knowledge, hasn’t been explored in detail before.

The velocity distribution of spins in a voxel causes each spin to experience a

velocity dependent number of successive RF excitations as part of the gradient echo

sequence before it exits the excited slice. The slower spins are saturated to a greater

extent than the faster spins in a voxel, biasing the signal weighted estimate of mean

velocity in that voxel towards the faster moving spins in that voxel. This effect is

a positive bias and increases as the velocity distribution becomes larger within a

voxel. The focus of this work is to gain a better understanding of the influence of

MR acquisition parameters on the extent of RF saturation induced bias on CSF flow

quantification.

An important clinical utility of CSF flow imaging has been in the study of patients

with normal pressure hydrocephalus (NPH). PCMRI based CSF flow quantification in

patients with NPH has undergone extensive research, with some studies determining

that adults diagnosed with NPH with hyper-dynamic CSF flow rates respond well

to the ventriculoperitoneal shunting procedure [13]. This hyper-dynamic CSF flow

results in higher aqueductal CSF stroke volume (ACSV) [13, 78]. Interestingly, while

some of the previous work show correlation between PCMRI based CSF flow estimates
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and the outcome of diagnosing NPH patients or evaluating NPH patients’ successful

response to shunts [47, 78, 92], there have also been studies that have stated that

flow estimates obtained from PCMRI may not be solely used in successful shunt

response determination, or in evaluating shunt patency [2, 38]. The use of different

MR acquisition parameters in these studies relate to the investigation of RF saturation

induced bias in CSF flow quantification presented in this work. It is important to

note that variations in MR acquisition parameters are one among multiple factors

potentially influencing the outcome of the reported studies.

This work considers CSF flow quantification errors due to variations in flip angle

(θ), with the expectation that an increase in θ will increase the bias in regions with a

large velocity spin distribution. Also, this particular source of error could contribute

to the inconsistencies in reported results on using cine PCMRI in studies involving

NPH patients. The first section introduces theoretical background on the dependance

of signal saturation on the velocity distribution. Section 4.2 provides information

on the experimental setup for data acquisition and analysis in a gravity feed based

flow phantom and the cerebral aqueduct in healthy volunteers. Sections 4.3 and

4.4 sections present arguments supporting the effects of RF saturation on CSF flow

quantification and its relevance to clinical applications.

4.1 Theory

A mathematical model incorporating the effects of RF saturation is developed

for steady flow as a function of spin velocity. The bias introduced is shown to be

dependent on slice thickness (∆z), repetition time (TR), and flip angle (θ). Equation

4.1 describes the saturation effects on the signal (Sv) from a spin moving through a

∆z thick slice approximated by a decaying exponential. Assuming the spin travels

60



with uniform velocity (v), and takes time (T = ∆z/v) to travel through the slice,

Sv ≈
∫ T

0

e−t/TAdt = TA(1− e−T/TA), (4.1)

ignoring T1 recovery and defining

TA =
−TR
ln(cosθ)

. (4.2)

The variable TA is defined as the time constant describing the rate at which magne-

tization is removed from the system by RF pulses, and was introduced by Pipe and

Robison [69]. The relative signal magnitude of a voxel, incorporating the effects of

saturation due to the velocity spin distribution, is obtained using Eq. 4.3.

S =

∫
voxel

1− e−V0/v

V0/v
e
−iπv
Venc dv, (4.3)

where

V0 =
∆z

TA
. (4.4)

V0 is called the critical velocity, and can be interpreted as the velocity below which

spins experience substantial saturation effects. The integrand of Eq. 4.3 (Sv) was

used to theoretically portray effects of saturation as a function of estimated velocity

(Fig. 4.1a). For different values of V0 calculated using Eq. 4.4 and MR acquisition

parameters from referenced literature [2, 35, 76, 82, 88], the effect of saturation in-

creased with increasing V0, for a given velocity estimate v. The choice of θ for the

phantom and volunteer experimental sets was determined based on the range of V0

values used in these studies (Fig. 4.1b).

Relative signal is defined as the ratio of signal magnitude from stationary spins

to that from flow spins. Edge voxels of the cerebral aqueduct that contain part CSF

flow and part stationary tissue exhibit a decrease in the relative signal values (0.5 to

0.2) as θ increases from 10o to 30o. Increasing θ saturates the stationary tissue to a
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greater extent and also increases the signal from CSF flow, as shown in an example in

vivo dataset (Fig. 4.2). Incorporating the contributions of partial volume in Eq. 4.3

introduces a velocity bias at the edge voxel that is supplemental to the bias introduced

from RF saturations effects, as shown in Fig. 4.1(c-f). Figure 4.1c and Fig. 4.1d

show the individual effect of partial volume and RF saturation on velocity estimates

with increasing partial volume fraction (pv) of CSF flow. The combined effect of RF

saturation and partial volume is shown in Fig. 4.1e. The velocity estimate bias (v30o

- v10o) for all three contributions is shown in Fig. 4.1f. While partial volume only

influences velocity bias at the edge voxel, RF saturation contributes to velocity bias

at the edge voxel and flow voxels with spin velocities less than V0.

4.2 Methods

RF saturation effects were studied in a flow phantom and in the cerebral aqueduct

of healthy volunteers. The data for all experiments were collected on a 3.0T Philips

Ingenia scanner. Cartesian data were reconstructed on the scanner and the complex

images exported to a workstation for further analysis. Data reconstruction for spiral

scans, and the analysis of all data were performed on an offline workstation using

GPI [96].

4.2.1 Phantom Experiment

Data were obtained using a gravity feed flow phantom, built in-house to create

fully developed steady flow with laminar profile. The phantom consisted of two par-

allel cylindrical flow tubes each 45 cm long with an inner diameter of 3 mm, part of

which were immersed in an enclosed water bath. The two tubes had flow in opposite

directions, and satisfied the entrance length condition for fully developed laminar

flow. The limiting peak velocity to maintain this condition was calculated to be 20
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Figure 4.1: Extent of RF saturation effects (integrand of Eq. 4.3) as a function of (a)

velocity, for different values of V0, obtained from referenced CSF flow quantification

studies; and (b) velocity, obtained in this work for flip angles of 10o (V0=0.38 cm/s),

and 30o (V0=3.6 cm/s). The contribution from (c) partial volume effects only, (d) RF

saturation effects only, and (e) combined effects of partial volume and RF saturation

towards velocity bias is shown for varying values of fractional CSF spins in a voxel.

The ’Truth’ represents velocity estimates obtained without the presence of partial

volume or RF saturation effects. (f) The bias for each of the cases shown in (c-e) was

obtained as the difference in velocity estimates for the two flip angles. [In (c-f) pv

stands for partial volume fraction]
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Figure 4.2: An example axial reconstructed magnitude image is shown for (a) θ =

10o, and (b) θ = 30o. The red line represents the 1D cross-section of the aqueduct

used to obtain magnitude signal profiles for both flip angles as shown in (c).
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cm/s. The flow phantom setup was determined to accommodate the observed range

of CSF flow velocities, through the cerebral aqueduct among healthy adults from ex-

isting literature [6, 36, 64, 84]. A single experimental set consisted of obtaining data

for θ = 10o, followed by the same protocol except θ = 30o. Repeated measures of the

experimental set were obtained to determine variations in the velocity estimate. Flow

information was obtained using a 2D Cartesian phase contrast scan with flow encod-

ing enabled along the slice direction, and the following MR acquisition parameters:

TE/TR = 6.9 ms/20 ms, in-plane resolution = 0.6 mm x 0.6 mm, slice thickness = 5

mm, NSA = 10, Venc = 12 cm/s, FOV = 150 mm x 150 mm. The maximum gradient

strength and slew rate were limited to 31 mT/m and 120 mT/m/s respectively.

4.2.2 Volunteer Experiment

Data were obtained from 6 healthy volunteers (5 male and 1 female) aged between

25 and 45 years. The cerebral aqueduct was used as the flow region of interest. The

cerebral aqueduct was localized using a sagittal T2-weighted multislice TSE scan. The

MR acquisition parameters for the sagittal localizer were TE/TR = 80 ms / 3000 ms,

θ = 90o, in-plane resolution = 0.55 mm x 0.65 mm, slice thickness = 2 mm, FOV =

200 mm x 200 mm x 26 mm, TSE factor = 15, and the scan time was 2 minutes. An

example slice of the sagittal localizer depicting the aqueduct is shown in Fig. 4.3a,

where the highlighted region denotes the slice orientation of the cine phase contrast

scan shown in Fig. 4.3b. Retrospectively cardiac gated 2D phase contrast MRI scans

using a 2D spiral trajectory [70] with mixed interleaf ordering [68], were obtained

for an angulated slice located orthogonal to the cerebral aqueduct, as prescribed

in Fig. 4.3a. Data acquisition using a spiral trajectory was chosen for volunteer

studies due to greatly reduced coherent artifacts from non-repeatable flow compared

to data acquisition using a Cartesian trajectory. A single experimental set consisted
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Figure 4.3: (a)T2 weighted midline sagittal localizer identifying the cerebral aqueduct.

The yellow line denotes the angulation of the slice profile for the phase contrast scans.

(b) Velocity map obtained from highlighting the flow through the aqueduct, which is

identified by the arrow.

of obtaining phase contrast data for θ = 10o followed by θ = 30o, with rest of the MR

acquisition parameters being TE/TR = 4.2 ms / 30 ms, in-plane resolution = 0.6 mm

x 0.6 mm, slice thickness = 5 mm, FOV = 240 mm x 240 mm, # of spiral interleaves =

63, Venc = 12 cm/s with 16 cardiac phases. The maximum gradient strength and slew

rate were limited to 31 mT/m and 120 mT/m/s respectively. Physiological waveform

monitoring was performed using a Philips Peripheral Pulse Unit (PPU). Six repeated

measures for the experimental set were obtained for each volunteer, to average the

effects of variations in the velocity estimates. The total scan time for each volunteer

was 12 minutes 36 seconds.
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4.2.3 Data Analysis

For the flow phantom data, velocity maps were calculated after appropriate post-

processing and phase corrections on the scanner, and the following analysis was per-

formed in GPI. The flow region of interest (ROI) was identified using an iterative

thresholding approach described in [75]. Student’s T hypothesis testing was per-

formed comparing the mean velocity on a voxel-by-voxel basis for θ = 10o and θ = 30o,

to identify regions with significant change in velocity estimates (P < 0 .05 ).

For volunteer data, background phase error correction was implemented in GPI

using the approach described by [86]. Static tissue regions were identified using the

temporal standard deviation of the signal. A second order polynomial was used to fit

the static phase and subtracted from the uncorrected phase difference maps to obtain

the phase offset corrected maps. The velocity maps were obtained from the phase dif-

ference images using the prescribed value of Venc. The flow ROI was identified using

the approach described in [75]. Velocity difference (bias) maps for each volunteer were

obtained by subtracting the velocity maps for θ = 10o from θ = 30o (averaged over

the repeated acquisitions per volunteer). Changes in velocity estimates across the

aqueduct cross-section were described by spatial velocity gradient maps and changes

in velocity estimates over time in the voxel were described by the temporal velocity

gradient maps. The spatial and temporal velocity gradient maps were calculated from

the velocity maps using finite differences, and the spatiotemporal gradient maps were

computed using the root-sum-of-squares of the spatial and temporal gradient com-

ponents of the velocity estimates. Temporal variations over the cardiac cycle of the

following flow metrics were generated for both values of θ: average velocity estimate

at the center of the aqueduct, average velocity estimate at a single location on the

aqueduct periphery, average flow rate, and aqueductal stroke volume. The average
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Figure 4.4: (a) Velocity profiles were obtained as a function of voxel location for fluid

flow through the highlighted region of the velocity map. The average value of true

velocity was calculated to be 4.6 cm/s. (b) Bias in measured velocity estimates when

compared with the true velocities observed for velocity estimates lower than V0 = 3.6

cm/s.

flow rate was calculated as a summation of the product of velocity estimate in a voxel

and the voxel area, over all the voxels in the prescribed ROI. The aqueductal stroke

volume was calculated as the average of the systolic and diastolic stroke volumes. The

velocity difference maps were compared against the spatial, temporal, and spatiotem-

poral velocity gradient maps. A Wilcoxon signed rank test was performed comparing

the aqueductal stroke volume estimates (combined across volunteers; N = 36) for

θ = 10o and θ = 30o.

4.3 Results

The measured velocity estimates are compared with the true velocity profile as

shown in Fig. 4.4. Deviations from true velocity were observed for velocity estimates

lower than V0. Figure 4.5 shows the flow phantom velocity maps and p-value analysis
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Figure 4.5: (a)Flow phantom axial slice velocity map; (b) P-value map of the same

axial slice, showing regions with significant change in velocity estimates (P < 0 .05 ),

as a result of flip angle variation between 10 and 30 degrees. The flow regions have

been identified by green circles.

showing regions with significant change in velocity estimates between θ = 10o, and θ

= 30o. The flow regions were highlighted by the green ROIs. In Fig. 4.5b, the voxels

with no significant change in velocity estimates were masked. Within the ROI, the

majority of voxels undergoing a significant change in velocity estimate due to change

in θ were concentrated at the flow region periphery.

The velocity map for one volunteer is shown in Fig. 4.3b. The cerebral aqueduct

was identified as shown by the red arrow. Based on the flow encoding direction,

negative velocity estimates corresponded to the diastolic phase of the cardiac cycle,

and positive velocity estimates corresponded to the systolic phase of the cardiac cycle

(Fig. 4.6a). During systole, the velocity difference (between θ = 30o and θ = 10o data)

was observed to be positive and the difference magnitude increased until peak systole.

Similarly, during diastole the velocity difference was observed to be negative and

increased in magnitude until the peak diastolic phase of the cardiac cycle (Fig. 4.6b).

The velocity estimate at the center of the aqueduct cross-section for θ = 10o (Fig.

4.6a) is shown to provide a representative example on the CSF flow dynamics over the

cardiac cycle. At peak systole and diastole, the contribution of spatial component was

higher than the temporal component towards the spatiotemporal velocity gradient.
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Figure 4.6: (a) Single voxel velocity estimate over one cardiac cycle; (b) Velocity

difference map (FA:30 - FA:10); (c) Spatial velocity gradient; (d) Temporal velocity

gradient; (e) Gradient echo magnitude image highlighting the flow region of interest

(aqueduct); (f) Representation of the voxel dimensionality of in-plane resolution and

temporal duration of each cardiac phase. The data were obtained for a single volunteer

averaged over six experimental sets.
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Figure 4.7: (a) Single center voxel (represented by the dark voxel within the yellow

ROI) velocity estimate comparison for flip angles 10 and 30 degrees; (b) Single pe-

ripheral voxel (represented by the dark voxel within the yellow ROI) velocity estimate

comparison for flip angles 10 and 30 degrees; (c) Flow rate estimate comparison for

flip angles 10 and 30 degrees; (d) Bias in flow rate estimates were obtained by sub-

tracting flip angle 10 flow rate estimates from flip angle 30 flow rate estimates. The

data obtained were averaged over six experimental sets for each volunteer.
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The temporal component influenced the spatiotemporal gradient to a greater extent

during transition from systole to diastole and vice versa, as depicted in Fig. 4.6(b-d).

The temporal profiles of aqueductal flow quantities were compared for θ = 10o, and

θ = 30o, as illustrated in Fig. 4.7. With the higher flip angle, the velocities were

overestimated, particularly during peak systole and diastole. The location of the

velocity estimates at the aqueduct center and periphery were highlighted using an

ROI (Fig. 4.7a & 4.7b). The bias in velocity estimates was observed to be higher at

the aqueduct periphery when compared to the center of the aqueduct. The flow rate

was calculated as a summation of the product of velocity estimate per voxel and the

voxel area, over all the voxels within the yellow ROI. The temporal profile of the bias

in flow rates demonstrated an overestimation by as high as 28% during systole, and

as high as 19% during diastole by increasing θ from 10o to 30o. At peak systole and

diastole there was good correlation between the spatial velocity gradient and bias,

as depicted in Figs. 4.8(a-c), while the temporal variations in velocity did not seem

to influence the bias, as shown in Figs. 4.8(d-f). During transition between systole

and diastole however, the temporal velocity gradients had greater influence on the

bias than the spatial velocity gradients, as shown in Figs. 4.8(g-i). The aqueductal

stroke volumes for each experimental set acquired are shown in Fig. 4.9. The mean

aqueductal stroke volume estimates separated by the volunteer is provided in Table

4.1. The Wilcoxon signed rank test determined that data obtained using θ = 30o

had significantly higher aqueductal stroke volume estimates than data obtained using

θ = 10o (P < 0.05).

4.4 Discussion

The focus of this work was to study the extent of RF saturation induced bias in

CSF flow quantification, manifested by variation in MR acquisition parameters. Spins
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Figure 4.8: Correlation between bias measured as the velocity difference and (a, d, g)

spatiotemporal velocity gradient, (b, e, h) spatial velocity gradient, (c, f, i) temporal

velocity gradient for (a - c) peak diastole, (d - f) peak systole, and (g - i) transition

from systole to diastole. The velocity gradient spans the spatial dimensions for (b,

e, h), the temporal dimension for (c, f, i), and both spatial and temporal dimensions

for (a, d, g).

with lower velocities in a given voxel will experience a larger number of successive RF

excitations, and are therefore saturated to a greater extent than spins with higher
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Figure 4.9: Comparison of the aqueductal stroke volume estimates for θ = 10o and

θ = 30o for six volunteers, with six experimental set acquisitions per volunteer. The

mean aqueductal stroke volumes were 23.05µl(θ = 10o) and 25.54µl(θ = 30o).

velocities. This effectively biases the mean velocity estimate of that voxel, and is more

pronounced in voxels with a larger spin velocity distribution. This saturation effect is

observed in 2D imaging, and can be mitigated by obtaining data using 3D volumetric

scans. However, 2D cine PCMRI is still the clinical standard with respect to CSF flow

quantification. Although CSF flow is complex, previous studies have shown that CSF

flow through the aqueduct maintains a laminar profile [40]. Therefore, RF saturation

effects are expected to bias flow at the aqueduct periphery to a greater extent than

its center.

The manifestation of bias can occur due to variation in multiple acquisition pa-

rameters such as flip angle, slice thickness, and TR. The Theory section introduced

74



Table 4.1: Mean and standard deviation of aqueductal stroke volumes for θ = 10o

and θ = 30o

V olunteer
ASV (mean± σ)µl

θ10o θ30o θ30o − θ10o

1 22.33 ± 0.52 25.20 ± 0.73 2.87 ± 0.39

2 23.07 ± 2.05 25.74 ± 1.67 2.68 ± 0.93

3 24.23 ± 0.69 26.20 ± 1.14 1.97 ± 1.21

4 23.41 ± 0.50 25.15 ± 1.03 1.74 ± 0.66

5 23.36 ± 0.38 25.76 ± 1.09 2.40 ± 0.92

6 21.93 ± 0.78 25.18 ± 0.96 3.25 ± 0.56

the concept of critical velocity (V0) as means of determining the combined effect of all

three acquisition parameters. With increasing V0, the likelihood of bias in measured

velocity increases, as can be inferred from Fig.4.1b. These values of V0 were computed

from MR acquisition parameters obtained from five previously conducted studies on

the use of PCMRI for CSF flow quantification in the aqueduct [2, 35, 76, 82, 88].

Based on the signal saturation effects from the data used to generate Fig.4.1, the

experimental setup of using 10o and 30o for flip angles was chosen. The values of V0

for our experimental set of θ = 10o, and 30o, were calculated to be 0.38 cm/s and 3.6

cm/s respectively.
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Table 4.2: Computation of critical velocities from relevant literature

Author(ref) Study Description Spatial Resolution† (mm2) Cardiac Phases? V0 (cm/s)

E Kapsalaki et al[39] Quantification of normal CSF flow in aqueduct in cine

PCMRI at 3T

N/A N/A 0.8

M Ozturk et al[64] Aqueduct CSF flow dynamics using PCMRI in normal

pediatric cases

1.25 x 0.40 N/A 0.3

J H Lee et al[36] CSF flow using PCMRI in aqueduct for normal volun-

teers

0.54 x 0.40 15 0.1

F Barkhof et al[6] PCMRI of normal aqueductal CSF flow 1.00 x 1.00 9 - 17 5.0

O Unal et al[84] cine PCMRI evaluation of normal aqueductal CSF flow

according to age and sex

0.83 x 0.63 N/A 0.1

O Algin et al[2] PCMRI in diagnosis of NPH and shunt response predic-

tion

1.20 x 0.45 N/A 3.0

M Jaeger et al[35] Relationship between ICP and PCMRI derived mea-

sures in NPH

0.55 x 0.55 N/A 0.5

P Luetmer et al[47] Using PCMRI to diagnose NPH 0.63 x 0.84 16 0.8

M R Weinzierl et al[88] Value of PCMRI to predict hydrocephalus 0.63 x 0.63 N/A 1.0

G Ringstad et al[76] Comparing ASV using PCMRI with ICP scores for NPH

patients

0.60 x 0.80 30 - 40 0.3

B Kahlon et al[38] Is ASV using PCMRI a good predictor for shunt re-

sponds in NPH

N/A N/A N/A

G Chen et al[16] Application of PCMRI in endoscopic aqueductoplasty of

patients with hydrocephalus

1.10 x 1.45 N/A N/A

C Beggs et al[7] CSF flow in aqueduct in cerebrospinal venous insuffi-

ciency +ve and -ve patients using PCMRI

N/A 32 0.6

M Yousef et al[93] Use of PCMRI based CSF flow rates to differentiate

NPH from involutional brain changes

0.70 x 0.35 N/A 0.6

J F Giner et al[21] PCMRI for identifying patients with NPH 0.33 x 0.33 25 0.5

A Scollato et al[78] Changes in ASV for unshunted NPH using PCMRI 0.63 x 0.47 16 0.1

S M Stivaros et al[81] ETV outcome with PCMRI 1.04 x 0.40 16 3.0

El Sankari et al[82] PCMRI support for diagnosis of aqueductal stenosis 0.63 x 0.94 16 1.9

N S Kurwale et al[41] PCMRI of intracranial shunt tube to diagnose VP shunt

malfunction

N/A N/A N/A

N/A : Data Unavailable

† : lower is better

? : higher is better
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Table 4.3: MR acquisition parameters for referenced literature in Table 4.2 (TA is

defined as the rate of magnetization loss from the system due to RF pulses).

Reference
Flip angle

(deg)

TR

(ms)

Slice Thickness

(mm)

TA

(ms)

E Kapsalaki et al 20 30 4 482

M Ozturk et al 10 31 5.5 2041

J H Lee et al 10 45 4 2939

F Barkhof et al 45 52 7.5 150

O Unal et al 10 43 3 2809

O Algin et al 30 29 6 202

M Jaeger et al 15 34 5 981

P Luetmer et al 30 57 3 396

M R Weinziel 15 18 5 519

G Ringstad et al 10 24 4 1568

B Kahlon et al N/A 44 N/A N/A

G Chen et al 15 N/A 10 N/A

C Beggs et al 20 40 4 643

M Yousef et al 15 22 4 635

J F Giner et al 10 16 5 1045

A Scollato et al 10 54 5 3527

S M Stivaros et al 30 29 6 202

El Sankari et al 20 20 6 322

N S Kurwale et al 15 17 N/A 490

N/A : Data Unavailable
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Data presented in Table 4.2 on the use of PCMRI to quantify CSF flow in clinical

applications, highlight the ongoing discussion in the research community on the role

of PCMRI as a clinical diagnostic tool for CSF based pathological conditions. Algin

et al [2] found that PCMRI was unable to predict successful shunt response among

NPH patients. The study by Luetmer et al [47] on the diagnostic utility of PCMRI

among an NPH patient population had a negative outcome. On the other hand,

Giner et al [21] was able to show a successful outcome in the role of PCMRI for

identifying patients with NPH, and the work done by Kurwale et al [41] shows that

PCMRI could be used to identify ventriculoperitoneal shunt malfunction. There have

also been positive and negative study outcomes on the accuracy of aqueductal stroke

volume estimates obtained using PCMRI in the prediction of shunt responsiveness

among NPH patients [38, 76, 78]. Although dependance of quantitative CSF metrics

on sex and age [6, 84], or combining CFD and PCMRI data to provide patient specific

CSF quantification [40] have been studied, there has not been significant work on

understanding bias in CSF flow estimates due to varying MR acquisition parameters.

It is compelling to note that the value of V0 was different in each of the afore mentioned

studies. Based on the literature survey, there were four studies with V0 ≥ 1.8 cm/s,

two of which had a V0 of 3 cm/s, and one study had V0 as high as 5 cm/s. In

these studies, we expect the extent of bias contribution from saturation effects to

be similar as that observed from the data presented in this work. In particular, the

study by Barkhof et al [6] (V0 = 5 cm/s) reported peak systolic and diastolic flow

rates averaged among adults as 0.34 ml/s and 0.19 ml/s respectively. These values

were comparable to the peak systolic (0.33 ml/s) and peak diastolic (0.20 ml/s) flow

rates obtained for θ = 30o (V0 = 3.6 cm/s), from our experimental data (averaged

over six volunteers) while the corresponding unbiased values (θ = 10o) were 0.26 ml/s

and 0.15 ml/s respectively. This literature survey was not an exhaustive list of the
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studies on CSF flow quantification using PCMRI, but rather intended to demonstrate

the clinical relevance of understanding the bias due to saturation.

CSF flow in the aqueduct is approximately laminar [40] with almost equal flow

in the caudal and cranial direction over the cardiac cycle. Bias in CSF flow esti-

mates depends on the velocity spin distribution in each voxel within the flow ROI.

The velocity estimate of each voxel is characterized by two spatial and one temporal

dimensions (Fig. 4.6f). The largest spatial distribution of spin velocities is observed

at the aqueduct periphery and the largest temporal distribution of spin velocities is

observed at the center of the aqueduct. Spatial and temporal velocity gradients de-

scribe spin distribution dependent flow variations across the aqueduct cross-section,

and over the cardiac cycle respectively. In the obtained volunteer data, bias in single

voxel velocity and average flow rate estimates were predominantly influenced by the

spatial velocity gradient during systolic and diastolic cardiac phases, with the tempo-

ral velocity gradient having a dominant influence during transition between systolic

and diastolic cardiac phases (Fig. 4.8). The bias is not only dependent on V0 but

also on the spatial and temporal resolutions. Reducing the voxel size and increasing

the number of acquired cardiac phases would help in mitigating the effects of RF

saturation.

The bias in CSF flow estimates are an important source of error in studies utilizing

2D PCMRI as the sole diagnostic tool to determine clinical outcome. For example,

Kurwale et al [41] reported on the utility of PCMRI based CSF velocity estimates

in determining shunt malfunction. The study showed a significant change in peak

and mean velocity (< 2 cm/s), between the control (shunt functioning) and test

(shunt malfunction) groups. Bradley et al [13] discussed the role of PCMRI based

aqueductal stroke volume quantification in NPH studies . In a previous study by the
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same authors, NPH patients with aqueductal stroke volumes less than 42µl had a

successful shunt response rate of 50%.

Limitations of this work include a simplified theoretical framework with focus on

unidirectional steady flow. Incorporating the oscillatory flow profile is being consid-

ered as part of future work. Inaccuracies in flow quantification could also arise from

background phase offsets, particularly for slow CSF flows as determined by Wentland

et al [89]. To minimize the effect of eddy current based errors, the gradient strength

and slew rates were limited to 31 mT/m and 120 mT/m/s respectively during data

acquisition, followed by subtracting the phase of stationary tissue during post process-

ing. Partial volume effects could also have a supplementary effect to RF saturation on

flow bias. The contributions from partial volume and RF saturation were shown for

varying flow partial fractions (Fig 4.1). This analysis was limited to a linear velocity

distribution. While partial volume influenced velocity estimates only for the partially

occupied flow voxels, RF saturation had an additional effect on fully occupied flow

voxels with velocities less than V0. This observation was also supported in vivo with

the bias in aqueductal velocity estimates prevalent in multiple voxels interior of the

aqueduct in addition to the peripheral voxels (Fig. 4.6).

In this work, the aqueductal stroke volume estimates for θ = 30o were found to

be greater than those for θ = 10o for every single experimental set acquired (Fig4.9).

RF saturation effects biased the aqueductal stroke volumes by 12%. Although a 12%

bias may not significantly affect a shunt responsiveness study outcome involving NPH

patients with high aqueductal stroke volumes, this bias is a substantial source of error

in CSF flow quantification that should be taken into consideration in studies using

PCMRI based CSF flow quantification to determine clinical outcomes.
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4.5 Conclusion

The work presented here shows the extent of RF saturation induced bias in CSF

flow estimates in the aqueduct, as a result of variation in MR acquisition parameters.

The combined effect of RF saturation from MR acquisition parameters is described

by V0, spatial and temporal resolution. The bias depends on the velocity distribution

of spins in a voxel, and was shown to be more prevalent at the aqueduct periphery,

during the systolic and diastolic cardiac phases. The bias observed in CSF flow rates

and aqueductal stroke volumes were significant, and should be taken into consider-

ation when utilizing PCMRI based CSF flow estimates in studies involving clinical

outcomes.
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Chapter 5

A LABELING APPROACH FOR BULK CSF FLOW DETECTION IN

VENTRICULAR SHUNTS

Cerebrospinal fluid (CSF) is a clear fluid generated primarily in the choroid plexus

and is present in the ventricles, cranial and subarachnoid spaces. CSF is essential

in maintaining the intracranial pressure, and in transport of essential nutrients in

the brain. CSF production in healthy adults typically ranges from 400 - 600 ml

per day [72]. Cerebrospinal fluid is produced at an average rate of 0.3 ml/min with

approximately 100 ml of CSF present in the brain at any given time [14]. The

CSF pathway is defined by its circulation and reabsorption functionalities. CSF is

initially contained in the lateral ventricles, and passes through the foramen of Monro

to the third ventricle, following which it reaches the fourth ventricle via the cerebral

aqueduct. The cerebral aqueduct is an important anatomical region of interest due

to its utility in testing MR based CSF flow imaging sequences. From the fourth

ventricle, the CSF passes into the cisterna magna though the foramen of Luschka

and Magendie. Thereafter the CSF pathway is split with one part directed into

the cranial subarachnoid space, while the other into the spinal subarachnoid space.

The CSF is reabsorbed into the venous system by the arachnoid granulation. This

occurs as a result of a pressure gradient across the arachnoid granulations. The

rate of CSF reabsorption is directly proportional to the intracranial pressure (ICP).

CSF has complex flow dynamics, as observed by previous studies on CSF physiology

[72, 77]. CSF flow can be described by two simultaneous components. The first is

an oscillatory flow component that is primarily governed by cardiac pulsations. The
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second is a much slower bulk flow component that as described above, is responsible

for the transport of CSF and its reabsorption in the jugular venous system.

The quantification of CSF flow has been primarily achieved with the use of phase

contrast magnetic resonance imaging (PCMRI) with cardiac synchronization to mon-

itor temporal variations in CSF flow. This technique has been successful in quanti-

fying the oscillatory component of CSF flow, but has not been shown to consistently

and accurately quantify the bulk drainage of CSF, particularly through the aque-

duct. There have been alternative approaches that utilize an approach similar to

spin labeling to continuously monitor the flow of CSF [91]. Perturbations in the flow

dynamics of CSF has been associated with pathological conditions such as normal

pressure hydrocephalus (NPH), Chiari I malformations, and aqueductal stenosis.

Normal pressure hydrocephalus is a CSF based pathological condition that usually

results in enlarged ventricles due to the accumulation of CSF, and could result in

varying levels of intracranial pressure. Normal pressure hydrocephalus is often kept

in check with the use of a surgically implanted shunt catheter. The shunt has a

pressure valve that triggers the drainage of CSF through the shunt, and into the

abdominal space, when there is excessive build up of intracranial pressure due to

improper CSF drainage through its pathways. The shunt is a mechanical device

and needs to be examined on a periodical basis for any signs of malfunction. In the

United States, 40,000 or more shunt interventions are performed annually, majority of

which can be attributed to patients with hydrocephalus [87]. In the same article, the

authors attribute approximately 50% of all shunt failures to mechanical issues with

the proximal catheter, while shunt malfunction due to infection can occur as early as

6 months post shunt placement, and account for less than 10% of all failures. While

these sources can be categorized as device issues, expected CSF flow through the

shunt could also be affected by physiological factors such as the presence of ventricular
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loculations, and over drainage of CSF in the initial period soon after shunt placement

could result in the formation of a subdural hematoma [87]. shunted hydrocephalus

patients could also exhibit shunt malfunction symptoms if the shunt valve hasn’t be

set or programmed accurately. Phase contrast MRI is a commonly used technique

used in flow quantification. While PCMRI has been shown to accurately quantify

the oscillatory component of CSF flow, it is not sensitive enough to detect bulk

CSF drainage. The flow in the shunt is expected to be slower than the bulk flow

rates of CSF through its normal pathways. This, combined with the inability of

PCMRI to accurately quantify bulk CSF flow, renders the technique unreliable. In

addition, the accuracy of PCMRI is also dependent on correction of eddy current

based phase errors, appropriate background phase suppression, and concomitant field

compensation. Long scan times for high spatial and temporal resolution PCMRI

scans has an impact on the feasibility of the technique as a quick check of shunt

malfunction.

This work introduces an alternative approach to PCMRI to detect bulk CSF flow

in the aqueduct and also in a ventricular shunt (for NPH patients). The proposed

approach employs spatial labelling of CSF flow and monitors the labeled region over

multiple dynamics. Section 5.1 provides a description of the pulse sequence for the

proposed method. This is followed by the methods section (5.2) that describes the

experimental setup for obtaining phantom and in vivo data. Two experimental sce-

narios with respect to the flow phantom are presented, with and without flow. The

in vivo data acquisition is also divided into two stages. The first stage describes an

experimental setup to evaluate the performance of the proposed method in healthy

volunteers using the cerebral aqueduct as the flow region of interest. The second stage

describes the experimental setup to evaluate the proposed method in a single shunt

volunteer. Section 5.3 presents the data analysis techniques employed to evaluate the
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method’s performance. The results section (5.4) presents the images obtained and the

outcome of data analysis, for each experimental setup. The chapter then concludes

with a discussion section (5.5) highlighting the key aspects of the proposed method,

and also presents scenarios when the method might not work as expected.

5.1 Pulse sequence description

The pulse sequence developed for this project is based on saturating the hyper-

intense signal obtained from CSF from T2 weighted images. An adiabatic inversion

prepared single shot T2 weighted turbo spin echo (TSE) sequence with variable ”rest

delay” is used. The rest delay is the time delay between the onset of the inversion

pulse and the excitation pulse. The data acquisition is prospectively triggered with

the cardiac cycle using a peripheral pulse-oximetry unit (PPU). The protocol is set

up as a dynamic study with 2 or 3 dynamics. The rest delay is incremented by a

value equal to the R-R interval for each dynamic obtained. The first dynamic has a

delay that is much shorter when compared to the R-R interval. This delay is specified

by a user defined parameter. The repetition time (TR) is set at 5 seconds to accom-

modate the recovery of CSF after each dynamic. The data acquisition is performed

during the diastolic phase of the cardiac cycle. Spatial saturation of the CSF signal

in the flow region of interest is achieved using the inversion pulse and a variable delay

(rest delay). The rest delay increments for the subsequent dynamics of the study, is

intended to force the data acquisition to skip one or more systolic events. A systolic

event corresponds to CSF flow in the aqueduct from the third to the fourth ventricle.

Skipping multiple systolic events, is therefore expected to cause the saturated signal

across the CSF ROI, also referred to as the ’labeled flow’, to be displaced in the

direction of the CSF flow. A 3 dynamic study is adopted for easy visualization of

the labeled flow displacement. The pulse sequence development follows multiple code
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Figure 5.1: The proposed method represented as a timing diagram with markers

denoting start and stop scan, saturation pulse onset, data acquisition, and the R

peak trigger.
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validation stages on a virtual machine environment before being ported to scanner as

a patch. A figurative representation of the pulse sequence is shown in Fig. 5.1.

5.2 Methods

There were four stages of development for the proposed method described in

detail in this section. 1) The first imaging experiment was implemented using a

static phantom with a proximal shunt catheter immersed in a water bath. 2) An

IV phantom with constant flow using a gravity feed setup was used to obtain data

using the proposed method. 3) The proposed method was applied using the cerebral

aqueduct of healthy volunteers as the anatomical region of interest. 4) The final stage

involved obtaining data from shunt patients. In this particular case, the shunt data

corresponds to a single adult volunteer.

5.2.1 Static Phantom

The static phantom comprised of a proximal ventricular shunt catheter, with outer

diameter 2.5 mm and inner diameter 1.3 mm immersed partially in a water bath. The

catheter was injected with water, multiple times to avoid the presence of air pockets

within the catheter. The part of the catheter outside the water bath was sealed using

a plastic stop cork.

A sagittal T1 weighted TFE sequence was used as a localizer to identify the shunt

catheter orientation. The MR acquisition parameters for the localizer were: TE/TR

= 4.1 / 8.9 ms; θ = 8o; SENSE = 2; FOV (XxYxZ) = 240x240x60 mm3; In plane

resolution = 0.9x0.9 mm2; slice thickness = 0.9 mm; and scan time = 1 minute 54

seconds. The shunt flow protocol, was prescribed to capture the shunt catheter in

plane using a prospectively triggered axial T2 weighted single shot TSE sequence

with the following MR acquisition parameters: TE/TR = 80 ms / 5R-R; SENSE =
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3; FOV (XxY) = 240x240 mm2; In plane resolution = 0.55x0.75 mm2; slice thickness

= 3 mm; and scan time = 37 seconds.

A single experimental set consisted of the survey, a sagittal localizer and five

repeated scans of the shunt flow protocol. The experimental set was repeated for

multiple combinations of in-plane resolutions, ranging from 0.55 mm isotropic to 1.25

mm along the phase encoding direction, maintaining 0.55 mm resolution along the

frequency encoding direction. The repeated scans were used in a noise sensitivity

study.

5.2.2 Flow Phantom

A modified version of the static phantom was used for flow experiments due to

the inability to extract fluid from the water bath through the proximal catheter tip.

A gravity feed based flow phantom setup was designed to generate very slow flow

rates, to mimic bulk CSF flow motion. The bulk flow component of CSF in a shunt is

expected to be unidirectional, based on the functionality of the pressure valve. Hence

an IV bag with water was used as the source, and the other end of the IV tubing was

connected to an empty container (5 gallon capacity) serving as the sink. The imaging

section comprised of a proximal shunt catheter inserted into the water bath with a

U-bend such that both ends of the catheter were outside the bath. Images of the

flow phantoms used in this work are presented in Appendix A. The IV tubing had a

control valve to restrict the flow rates on the order of observed bulk flow of CSF.

Phantom data were obtained using flow in and out of a gravity feed phantom with

flow velocities under 1 cm/s. The flow rate was maintained constant at 4.6 ml/h. The

proposed method was setup as a 3 dynamic scan. A sagittal slice was obtained with

the labeled region (thickness = 10 mm) orthogonal to the slice, and a rest delay of

10 ms. Physiological waveforms with cardiac frequency of 60 bpm were simulated for
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trigger detection using the peripheral pulse-oximeter unit (PPU). The MR acquisition

parameters for the localizer were: TE/TR = 4.1 / 8.9 ms; θ = 8o; SENSE = 2; FOV

(XxYxZ) = 240x240x60 mm3; In plane resolution = 0.9x0.9 mm2; slice thickness =

0.9 mm; and scan time = 1 minute 54 seconds. The MR acquisition parameters for

shunt protocol were: TE/TR = 80 ms / 5R-R; SENSE = 3; FOV (XxY) = 240x240

mm2; In plane resolution = 0.55x0.75 mm2; slice thickness = 3 mm; and scan time =

37 seconds.

A single experimental set consisted of the survey, a sagittal localizer and five

repeated scans of the shunt flow protocol. Ten repeated trials of the experimental set

were obtained. Data analysis was performed on each experimental set to ascertain

if flow detection was possible from the monitoring of the saturation band across the

flow region.

5.2.3 Healthy Volunteer

The cerebral aqueduct was identified as an appropriate flow region of interest

among healthy volunteers without a shunt. The CSF dynamics here are sufficiently

complex that if the proposed method was successful in the detection of bulk flow in

the aqueduct, then the method should also be robust when attempting to detect flow

within a shunt.

In vivo data was obtained using the cerebral aqueduct as the flow region of interest.

A sagittal slice was prescribed along the midline of an axial TSE multi slice scout

image to capture the aqueduct. The labelling slice was placed orthogonal to the

aqueduct, between the third and fourth ventricle. The MR acquisition parameters

for the localizer were: TE/TR = 163 / 4880 ms; SENSE = 2; FOV (XxYxZ) =

230x230x69 mm3; In plane resolution = 0.47x0.58 mm2; slice thickness = 3 mm.

The MR acquisition parameters for shunt protocol were: TE/TR = 80 ms / 5R-R;
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SENSE = 3; FOV (XxY) = 240x240 mm2; In plane resolution = 0.55x0.75 mm2; slice

thickness = 3 mm; and scan time = 37 seconds.

A single experimental set consisted of the survey, a sagittal localizer and the shunt

flow protocol. The total scan time for each volunteer was approximately 3 minutes.

The experimental set was repeated for six healthy volunteers (aged between 25 and

45 years). Data analysis was performed on the combined data obtained from all

volunteers to adjudicate if CSF bulk flow was detected by the proposed method.

5.2.4 Shunt Volunteer

The volunteer had a ventriculoperitoneal shunt embedded in the lateral ventricle

of the brain and contained a non-programmable valve to adjust the CSF flow through

the shunt.

In vivo data using the shunt as the flow region of interest was obtained on the

Philips 3T Ingenia scanner. An oblique slice orientation was used to capture a ma-

jority of the shunt in-plane. The slice orientation of the shunt protocol was specified

parallel to the shunt angulation with respect to the brain midline. The labeling slice

was placed orthogonal to the shunt, proximal to the lateral ventricles. The MR acqui-

sition parameters for the localizer were: TE/TR = 163 / 4880 ms; SENSE = 2; FOV

(XxYxZ) = 230x230x69 mm3; In plane resolution = 0.47x0.58 mm2; slice thickness

= 3 mm. The MR acquisition parameters for shunt protocol were: TE/TR = 80 ms

/ 5R-R; SENSE = 3; FOV (XxY) = 240x240 mm2; In plane resolution = 0.55x0.75

mm2; slice thickness = 3 mm; and scan time = 37 seconds.

A single experimental set consisted of the survey, an oblique angulated localizer

and the shunt protocol with variations in slice thickness to ascertain optimal slice

thickness values to avoid loss of CSF signal due to averaging effects from the shunt

90



lumen and surrounding static tissue. Data analysis was performed on the dataset

obtained to determine if bulk CSF flow could be detected in the shunt.

5.3 Data Analysis

5.3.1 Displacement estimates

A nonzero displacement of the labeled flow in the direction of flow is a positive

indication of bulk CSF in the region of interest. A center of mass based approach is

utilized to obtain displacement estimates of the labeled flow. Center of mass based

approaches have been previously used to correct for misregistration artifacts due to

respiratory motion [28], and in translational motion correction for radial acquisitions

[4].

The reconstructed real images are used for displacement estimation. The Fourier

data are zero padded by a factor of 6.6 to provide sub-voxel displacement estimates.

The images are scaled such that the labeled region appears hyper-intense while CSF

flow appears hypo-intense in the grayscale image representation. A 1D line profile

within the flow region of interest is identified for center of mass analysis to obtain the

displacement estimates. Let the position of the jth pixel on the 1D profile be {xj},

and the corresponding pixel magnitude be I(xj). The first moment of the profile is

S1(x) = ΣjI(xj)xj. (5.1)

The ratio of the first and zero order moments provides the center of mass. Changes

in the center of mass are attributed to inter-dynamic displacement of the profile. The

experimental setup in this comprises of three dynamics, resulting in three images de-

scribing the time evolution of the flow region of interest. Two displacement estimates

were obtained form the center of mass difference: between dynamics 1 and 2 (D12),

and between dynamics 1 and 3 (D13). In the case of shunt catheter flow phantom,
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the flow is uniform and unidirectional. Therefore, a straight line fit was obtained

using the model y = mx whose slope provided an estimate of the flow velocity. The

estimation of velocity was only valid for the phantom experiments.

A paired t-test was performed on the displacement estimates between successive

dynamics using the repeated data acquisition of the proposed method without flow

in the shunt catheter. This approach was implemented to determine the limits of

variance in displacement estimates due to noise. Assuming that the sources of error

would be consistent when there is flow in the shunt catheter, and in the in vivo

data acquisitions, this variance in displacement estimates can be used in the other

experiments to determine if the displacement estimates obtained are significantly

larger than those due to noise.

5.3.2 Flow rate estimates

The average CSF bulk flow rate Q (ml/min), was estimated as

Q =
D

Tdelay
.A (5.2)

where D the average displacement of the labeled CSF (cm) measured over 3 dynam-

ics, Tdelay is equal to the average R-R interval (minutes) of the volunteer, and A is

the aqueductal cross-section area (cm2). The aqueduct cross-section was estimated

using the magnitude image for each volunteer. In the case of flow phantom data,

D represented the average displacement of labeled fluid (cm), and R-R interval was

constant at 1 second. The inner diameter of the shunt catheter was used to calculate

the flow cross-section area.
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Figure 5.2: No flow condition simulated using a shunt catheter and in a water bath.

The resolution was varied in the AP (vertical) direction from 0.55 mm to 1.25 mm.

Figure 5.3: Signal profile for all three dynamics for a user selected line proximal to

the center of the flow region in the shunt catheter phantom with no flow through the

shunt
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Figure 5.4: The displacement estimate of the labeled CSF region for dynamics 2 and

3 with respect to dynamic 1 obtained for repeated trials of the proposed approach on

a shunt catheter phantom with no fluid flow in the catheter.

5.4 Results

5.4.1 Static Phantom

The images reconstructed from each dynamic are shown in Fig. 5.2. The degree

of saturation in the labeled region was observed to diminish over the course of three

dynamics due to T1 recovery during the incremental delays between the onset of the

inversion pulse, and data acquisition. The relative signal magnitude of the 1D profiles

from each dynamic is shown in Fig. 5.3. The location specified along the X axis of

Fig. 5.3 spans the length of the 1D profile. The signal magnitude curves did not

appear to be shifted along the profile direction. This is expected since there is no

flow in the shunt catheter. However, the signal profile can be affected by noise in

the image or by signal recovery in the duration between application of the inversion
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pulse and data acquisition. This would cause a reduction in the saturation extent

of the labeled flow, particularly in the third dynamic. These factors could produce

an apparent displacement, which may occur in the direction of flow or against it.

The D12 and D13 estimates (mean ± std. dev) averaged over 9 repeated trials were

0.002±0.005 mm and 0.002±0.006 mm respectively and are shown in Fig. 5.4. The

D12 and D13 estimates were found to not be statistically significant from zero mean

displacement.

The 95% confident intervals of the displacement estimates with no flow in the

shunt were established as [-0.0118 mm , 0.0118 mm] for D12, and as [-0.0138 mm,

0.0138 mm] for D13.

5.4.2 Flow Phantom

The images reconstructed from each dynamic are shown in Fig. 5.5 (a-c). The

reconstructed magnitude and velocity maps from the phase contrast scan are shown

in Fig. 5.5 (d-e). The red and green arrows indicate flow in opposite directions.

The 1D profile for center of mass assessment was defined on the side of the labeled

shunt catheter with the flow direction coming out of the phantom water bath (red

arrow). The relative signal magnitude for the defined 1D profile is shown in Fig.

5.6. In comparison to the no flow scenario, initial observation of the relative signal

magnitude across the three dynamics indicates a substantial shift in the direction of

flow. Figure 5.7 shows the displacement estimates for each of the 10 trials performed.

The average D12 estimate over 10 trials was 0.453 mm and the average D13 estimate

was 0.895 mm. The average flow rate was estimated to be 4.81 ± 0.63 ml/hr. The

difference between the average flow rate and the experimentally prescribed flow rate

of 4.6 ml/hr was found to be not statistically significant.
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Figure 5.5: (a-c) Displacement of flow label in the direction of flow over the three

dynamics of the proposed method. (e-f) Axial slice magnitude image and velocity map

obtained for the same shunt catheter flow phantom. The red arrow points focusses

on the displacement of labeled fluid in the direction of bulk flow, and the green arrow

highlights the contrast generated by the inflow of fresh fluid into the labeled region.

The results of an independent two tailed t-test comparing the mean displacement

estimates at the end of Dynamics 2 and 3 with respect to those obtained for the static

phantom indicated a significant displacement of the labeled flow between Dynamic 1

and Dynamic 2, and between Dynamic 1 and Dynamic 3.

5.4.3 Healthy Volunteers

Figure 5.8 shows the images obtained from each of the 3 dynamics for a single

healthy volunteer dataset. The region around the aqueduct with the labeled flow was
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Figure 5.6: Signal profile for all three dynamics for a user selected line proximal to the

center of the flow region of a U-shaped shunt catheter phantom with flow velocities

approximated at 1.5 mm/sec through the shunt

magnified (green ROI). The circular ROI highlights the displacement of the labeled

flow in the craniocaudal direction over the 3 dynamics. The signal profile is presented

in Fig. 5.9. The signal profile provided a visual indication of substantial shift of the

labeled flow in the craniocaudal direction. The reduction in signal saturation due

to recovery effects was observed in regions located at the start of the 1D profile

and regions located up to 2 mm along the length of the profile. The relative signal

magnitude in Fig. 5.9, at these locations increased with each dynamic.

The displacement estimates obtained for each dataset acquired at Site1 and Site2

are illustrated in Fig. 5.10 and Fig. 5.11 respectively. Data at Site1 were acquired

from adult healthy volunteers, while data at Site2 were acquired from an adult and
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Figure 5.7: The displacement estimate of the labeled CSF region for dynamics 2 and

3 with respect to dynamic 1 obtained for repeated trials of the proposed approach on

a shunt catheter phantom with unidirectional steady fluid flow in the catheter.

pediatric population. D12 estimates were observed to be approximately half of D13

estimates in the volunteer data except for Vol1 at Site1. The values of D12 and D13

averaged over all trials (Site1 and Site2 combined) were calculated to be 0.838 mm

and 1.688 mm respectively, corresponding to an average flow rate of 0.33 ± 0.103

ml/min. This average flow was found to be comparable to normal CSF production

rates of 0.3 ml/min.

The mean displacement estimates for D12 and D13 (over all data) were found to

be significantly higher than the displacement estimates at 95% confidence level for

the flow phantom with no flow through the shunt catheter.
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Figure 5.8: Dynamic study detecting CSF flow in aqueduct (Volunteer). (A), (B),

and (C) show the images reconstructed from each dynamic [there is an incremental

delay of 1 R-R for each dynamic]

Figure 5.9: Signal profile for all three dynamics for a manually selected line proximal

to the center of the aqueduct in a healthy adult volunteer
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Figure 5.10: The displacement estimates for dynamics 2 and 3 with respect to dynamic

1 of the labeled CSF in the cerebral aqueduct using the proposed approach on multiple

healthy volunteers at Site1.

5.4.4 Shunt Volunteer

The reconstructed magnitude images obtained using the proposed method on a

shunt volunteer are shown in Fig. 5.12 (a-c). The square green ROI was magnified

to highlight the embedded shunt. A visual inspection of the three dynamics does not

provide a clear indication of the presence of flow through the shunt. The 1D signal

profile at the center of the shunt, and spanning the labeled region is presented in Fig.

5.13. Visual inspection of the signal profile evolution over three dynamics indicated a

small but definite shift of the center of mass in the direction away from the ventricular

shunt source. A clear distinction of CSF inflow was observed into the labeled region

across the three dynamics. There was a clear distinction in the outflow of the labeled

CSF at the opposite end of the labeled region between the first two dynamics. The
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Figure 5.11: The displacement estimates for dynamics 2 and 3 with respect to dynamic

1 of the labeled CSF in the cerebral aqueduct using the proposed approach on multiple

healthy volunteers at Site2.

signal profile curves for the second and third dynamic displayed distinctive outflow

effect but not to the same extent as observed for CSF inflow.

Figure 5.12 and Fig. 5.13 are shown for the trial during which a Valsalva maneuver

was performed by the volunteer. The displacement estimates for each trial performed

are shown in Fig. 5.14. There was a substantial difference in the displacement

estimates between the trial when the Valsalva maneuver was performed (Trial 3), and

the remaining trials (without performing the Valsalva maneuver). The D12 estimate

for Trial 3 was 0.12 mm and the D13 estimate was 0.21 mm. The D12 and D13 estimates

were found to be higher than the upper limit of the 95% confidence interval with no

flow in the phantom.
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Figure 5.12: Dynamic study for detecting CSF bulk flow in a ventriculoperitoneal

shunt. (A), (B), and (C) show the images reconstructed from each dynamic [there is

an incremental delay of 1 R-R for each dynamic]

Figure 5.13: Signal profile for all three dynamics for a manually selected line proximal

to the center of the shunt catheter for measurement in a volunteer with a ventricu-

loperitoneal shunt
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Figure 5.14: The displacement estimates for dynamics 2 and 3 with respect to dy-

namic 1 of the labeled CSF in the proximal catheter of the ventricular shunt in a

single volunteer are shown over multiple trials using the proposed approach. The

displacement estimates corresponding to Trial 3 were obtained while the volunteer

performed a Valsalva maneuver.

5.5 Discussion

This work presented a labeling approach to detect bulk CSF flow in the aqueduct

among healthy volunteers and demonstrated the potential utility towards bulk CSF

flow detection in ventricular shunts. The discussion section on the proposed approach

begins with detailing some of the existing methodologies to evaluate shunt malfunc-

tion. This is followed by highlighting the key aspects of the proposed approach,

drawing comparisons to the existing methodology. The discussion section concludes

with some insight into the sources of error that can affect the displacement estimate

accuracy, and some of the limitations of this approach.
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5.5.1 Existing Methodology

According to the Hydrocephalus Association, ventricular shunt malfunction is

suspected to have occurred due to the appearance of symptoms such as headaches,

vomiting, vision problems, loss of coordination or balance, and swelling along shunt

tract, among others. The imaging modalities used to detect shunt malfunction are ra-

diography, radionuclide imaging, CT and MRI [49, 87]. Radiographs are typically the

cheapest option, and quick to use in an emergency room environment. Radiographs

provide evaluation of the shunt integrity, and can identify breaks or disconnects in the

shunt catheter. CT and MRI techniques have been extensively used to monitor ven-

tricular size both pre and post shunt placement [25, 49, 87, 94]. MRI techniques used

to image the ventricular size are primarily single shot spin echo based sequences.

There have been multiple studies specific to pediatric imaging, using Quick Brain

MRI which is based on single shot spin echo sequences [33, 94]. However, increase

in intracranial pressure doesn’t always result in enlarged ventricles as demonstrated

in [90]. Therefore CT and current MRI protocols cannot always provide a confident

evaluation of shunt patency.

In the event of inconclusive evaluation of shunt malfunction using imaging, invasive

methods are used to determine if the shunt is functional. A common approach is the

performance of a shunt tap to measure the intracranial pressure. This is performed in

the distal catheter and its accuracy can be affected due to occlusion in the proximal

catheter. Radionuclide imaging involves the injection of a radioactive material such as

Technetium-99m (99mTc). The material is injected into the reservoir and propagates

into the ventricles. The presence of the tracer is then detected at the ventricles and in

the peritoneal space from imaging to determine if the shunt was successful in flushing

out the tracer through the proximal and distal catheters. This is also currently the
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most commonly used method to evaluate flow physiology in the shunt. However, it is

an expensive method in conjunction with the injection of radioactive material albeit

in small doses. It is also the only clinically used technique that provides dynamic

information on CSF flow. This underlines the importance of developing an MRI

based technique that can also provide dynamic information, while being noninvasive.

5.5.2 Proposed Approach

The proposed method uses a dynamic study to acquire 3 images depicting bulk

CSF flow through the displacement of the labeled shunt ROI across the 3 dynamics.

The protocol was based on a single shot TSE with SENSE (R=3), thus resulting

in a short scan time of 37 seconds. The proposed method was developed with the

motivation of ascertaining existence of CSF flow in a ventricular shunt to rule out

shunt malfunction.

CSF appears bright on an image generated from T2 weighted spin echo sequences

due to a long T2. The slice selective inversion pulse therefore, has a time dependent

saturation effect on the CSF signal in the inverted slice. The contrast between the

labeled CSF region and CSF signal from outside the inverted slice generates the basis

for determining displacement of the labeled CSF in the direction of flow.

The phantom experiments were performed to evaluate the performance of the

proposed approach for different flow rates. The static phantom experiments provided

a platform to determine the extent of noise interference in obtaining displacement

estimates of the labeled flow region over the three dynamics.

The cerebral aqueduct resembles a straight tube, and was therefore identified as

an appropriate ROI for in vivo testing of the proposed approach. The complex flow

dynamics of CSF in the aqueduct was also used as a basis to test the temporal ro-

bustness of the proposed approach for a wide range of cardiac frequencies (48 bpm
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- 95 bpm). The proposed approach was sensitive to flow velocities an order of mag-

nitude slower than those detectable by phase contrast in the flow phantom datasets.

The phase contrast protocol was not part of the experimental setup for healthy vol-

unteers and the shunt volunteer. The aqueduct data was obtained at two different

sites, on MR scanners running two different versions of the MR software. Site 2 did

not have the option of adaptive cardiac frequency update, and required additional

pulse sequence programming. The cardiac interval was updated as the average of

the 5 previous R-R interval values. The protocol run at site 1 was able to update

the cardiac frequency from the physiology monitor data. The latency between the R

peak detected by the plethysmograph and the true systolic event was approximated

at 400 ms. Instructions were provided to healthy and shunt volunteers to minimize

arm movement to minimize corruption of the physiological waveform data measured

using the finger plethysmograph with noise.

A center of mass based approach was used to obtain displacement estimates be-

cause it was easy to implement yet accurate, and less sensitive to the dispersion effect

of the labeled region across dynamics. The problem formulation was binary in nature:

determining if there was flow in the shunt or not. Therefore, a one dimensional signal

profile at the flow region center, and across the labeled region was adjudged sufficient

to determine the presence or absence of flow. In the case of the flow phantom, the

center of the shunt catheter provided the maximum displacement, and could be used

to determine the maximum fluid velocity (assuming a laminar flow profile). Deter-

mining velocities becomes complicated in vivo due to the complex nature of CSF

flow. Hypothetically, flow in the shunt is expected to be unidirectional, but there

haven’t been many studies determining the flow profile of CSF in the shunt. The im-

ages reconstructed for each dynamic were scaled independently to obtain a uniform
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range of signal values in order to minimize the effect of contrast on the center of mass

evaluation.

The displacement estimates obtained using the proposed approach for flow phan-

tom and aqueduct measurements were found to be significantly higher than the 95%

confidence interval of displacement due to noise alone. The average flow rates es-

timated from the displacement measurements were found to be comparable to the

reference values for the flow phantom and in the aqueduct. The signal profile shown

in Fig. 5.9 was obtained from Vol3 (Site 2) who had the most consistent inter-

dynamic cardiac frequency. The data acquisition occurred at the approximately the

same time point in the R-R interval providing an accurate representation of bulk flow.

This translated to consistent delays between the peak signal magnitude across two

successive dynamics. Vol1 data from site 1 on the other hand demonstrated varying

displacement estimates across successive dynamics. This could be attributed to large

fluctuations in the inter-dynamic cardiac frequency. The displacement estimates ob-

tained from the shunt volunteer data did not provide sufficient visual evidence of flow

in the shunt. This was confirmed with the displacement estimates obtained for trials

1, 2, 4 and 5. During trial 3, the volunteer was asked to perform the Valsalva maneu-

ver, to ascertain if forced pressure would result in CSF flow through the shunt. The

displacement estimates obtained corresponding to trial 3 indicated in the affirmative.

There was also a strong indication that the CSF physiology in the shunt volunteer

could have returned to normal due to the absence of shunt malfunction symptoms

even with minimal to no flow in the shunt.

5.5.3 Assumptions and Study Limitations

The sensitivity of the labeled region displacement estimates to noise needs to be

characterized. Displacement due to noise could be a potential source of error. The
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variation in displacement estimates were characterized from the phantom data with

no flow in the shunt catheter. Assuming comparable SNR in the phantom and in

vivo, the noise deviation in displacement estimates provided the confidence interval

to determine if the displacement estimates obtained with flow in shunt catheter and in

vivo were affected by noise. While the physiology of CSF flow in the cerebral aqueduct

is well characterized, there is still active discussion on the CSF flow physiology in a

shunt catheter. The expectation is that CSF flow is unidirectional, flowing outward of

the ventricles and into the abdominal space. The CSF flow is regulated by the pressure

valve with the objective of maintaining acceptable levels of intracranial pressure. The

current approach is based on the assumption of unidirectional flow and has not been

evaluated for the potential existence of a regurgitant component of CSF flow in the

shunt catheter. The flow phantom developed for evaluating the proposed approach is

not designed with the appropriate entrance length of the catheter to support laminar

flow profiles. Since flow profiles were not measured directly from the images obtained

using the shunt catheter phantom, this design consideration was not expected to

influence the accuracy of the obtained displacement estimates.

The primary limitation of the this study is the evaluation of the proposed ap-

proach on a single shunt volunteer. There was lack of a priori information available

on the existence of flow in the shunt. Although visual confirmation of flow in the

shunt was not obtained with confidence, the displacement estimates from the dataset

corresponding to the Valsalva maneuver were indicative of flow in the shunt. It is

also not clearly understood if a shunt patient lying in the supine position on the

scanner bed will immediately have flow through the shunt. Alternatively, the quick

brain MRI approach to evaluate shunt malfunction focusses on the ventricular size

and not the flow physiology in the shunt, and hence cannot be used to provide ad-

ditional information on CSF flow. Inter-dynamic motion also needs to be evaluated
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in further detail as part of future work. The accuracy of the displacements can be

affected by voluntary and involuntary motion occurring in between dynamics. The

number of dynamics is currently limited to 3 due to the lack of contrast between CSF

flow region that is and is not labeled. Further increase in the number of dynamics

inhibits the ability to use the signal magnitude to obtain displacement estimates.

5.6 Conclusion

A labeling approach to detect CSF bulk flow in a ventricular shunt is proposed

with the objective of identifying shunt malfunction in a quick and noninvasive manner.

The proposed approach is a dynamic setup with incremental delay between the label

application and data acquisition for successive dynamics. The displacement of the

labeled CSF in the direction of flow was estimated using a center of mass approach.

The proposed method was shown to be able to detect flow in a shunt catheter based

flow phantom for different flow rates. This approach was also successful in detecting

bulk CSF flow in the cerebral aqueduct of healthy volunteers, and was indicative

of the presence of flow in a single volunteer’s ventricular shunt. Future work would

involve obtaining data from multiple shunt volunteers with a priori knowledge of flow

in the shunt, to evaluate the performance of the proposed approach with statistical

significance.
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Chapter 6

DISCUSSION

The purpose of this work was to propose improvements to different aspects of MR

flow imaging in the brain. Chapter 3 focussed on proposing improvements to the

reconstruction pipeline for intracranial velocity maps obtained using multidirectional

velocity encoding strategy, while Chapters 4 and 5 focussed on the two distinct CSF

flow components.

A new approach to estimate noise statistics for a fully sampled spiral acquisition

was presented in Chapter 3. Sampling density compensation weights were modified

such that the region of K-space oversampled by a factor of two or more were split

into odd and even data points with opposing polarity, masking out the remainder

of K-space. Gridding reconstruction with the modified weights resulted in a scaled

noise image with the same statistics as that of noise in a fully sampled dataset. The

noise statistics were used in the development of a mask identifying background noise,

static tissue and flow regions in an image volume. The implementation of the mask

was shown for multidirectional velocity encoded PCMRI data. The tri-level mask was

found to speed up the computational time of phase unwrapping of multidirectional

velocity encoded data by a factor greater than 30x.

Multiple research studies have used MRI based CSF flow quantification in deter-

mining clinical outcome for conditions such as hydrocephalus. Chapter 4 of this work

explored the extent of bias introduced in CSF flow estimates as a result of RF satu-

ration effects. A new parameter called the critical velocity was proposed as an initial

check for bias. The critical velocity was a threshold value to avoid RF saturation

effects on measured velocities. The critical velocity is dependent on flip angle, TR,
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and slice thickness. The CSF flow bias was also shown to highly correlate with the

spatiotemporal velocity gradient. Aqueductal stroke volume estimates obtained from

PCMRI data were found to be biased by as much as 12% for flip angle change from

10o to 30o.

Cerebrospinal fluid drainage is important to maintain appropriate levels of ICP.

Ventricular shunts are used as surgical intervention when improper CSF drainage

leads to elevated levels of ICP. However, evaluating shunt patency is still a major

concern with the only MRI approach being a qualitative evaluation of ventricular

size. Chapter 5 proposes a dynamic labeling approach to track CSF drainage through

the ventricular shunt. The proposed approach uses incremental delays for successive

dynamics between the preparation RF pulse (to label CSF) and the data acquisition

to track displacement of the labeled CSF in the direction of drainage. A customized

shunt catheter based flow phantom was designed for testing the proposed approach.

The method was successfully evaluated in the aqueduct of healthy volunteers at two

different research sites. The proposed approach was able to detect flow in the ventric-

ular shunt of a 32 year old shunt volunteer performing a valsalva maneuver. Further

work has to be performed in testing the approach in patients with shunts to show

repeatability and reproducibility.
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Chapter 7

FUTURE WORK

The noise estimation algorithm proposed in this work was performed on data acquired

using spiral trajectory, but could be extended to any non-Cartesian trajectory or a

Cartesian trajectory with oversampling in the readout direction. This would make the

approach universally applicable to obtain accurate SNR, without the need to acquire

multiple scans or a separate noise scan. The tri-level mask developed was applied

towards speeding up phase unwrapping. Other potential applications for the mask

would be estimating background phase errors by masking out noise and flow, and the

use of the mask for flow visualization. Spurious noise voxels from edge of the field of

view in the slice direction could affect flow visualization. Mask refinement techniques

could be explored to mitigate the effect of the spurious voxels.

The effects of RF saturation were explored for CSF flow in the aqueduct. The

aqueduct is a suitable flow ROI for the purposes of hydrocephalus applications. How-

ever, future work could also explore these effects for CSF flow in the cervical spine

section, for example. The effects of partial volume when compared to RF saturation

were presented with simulations run using the proposed theoretical framework. De-

lineating the effects of partial volume from RF saturation for phantom or in vivo data

would help determine the severity of the bias for specific clinical applications.

The labeling approach to dynamically study CSF drainage was shown to success-

fully determine displacement estimates of the labeled flow over multiple dynamics for

a phantom setup and in the aqueduct of healthy volunteers. Obtaining in vivo shunt

data would enable testing of the labeling approach in identifying flow or no flow in a

ventricular shunt.
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APPENDIX A

FLOW PHANTOM
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Figure A.1: (a) Design of the flow phantom used in data acquisition for chapters 3
and 4. (b) Schematic of the phantom setup in the scanner
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Figure A.2: (a) Design of the flow phantom used in data acquisition for chapter 5
experiments. The IV bag was used as the source and the outflow shunt catheter was
connected to a 1000 ml beaker acting as the drain. (b) An typical ventricular shunt
catheter is shown with the proximal catheter section and the distal catheter section
connected using a programmable valve. (c) The imaging section of the shunt catheter
phantom consists of a ’U’ shaped proximal catheter immersed in a water bath.
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