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ABSTRACT 

Resilient acquisition of timely, detailed job site information plays a pivotal role in 

maintaining the productivity and safety of construction projects that have busy schedules, 

dynamic workspaces, and unexpected events. In the field, construction information 

acquisition often involves three types of activities including sensor-based inspection, 

manual inspection, and communication. Human interventions play critical roles in these 

three types of field information acquisition activities. A resilient information acquisition 

system is needed for safer and more productive construction. The use of various 

automation technologies could help improve human performance by proactively 

providing the needed knowledge of using equipment, improve the situation awareness in 

multi-person collaborations, and reduce the mental workload of operators and inspectors.  

Unfortunately, limited studies consider human factors in automation techniques for 

construction field information acquisition. Fully utilization of the automation techniques 

requires a systematical synthesis of the interactions between human, tasks, and 

construction workspace to reduce the complexity of information acquisition tasks so that 

human can finish these tasks with reliability. Overall, such a synthesis of human factors 

in field data collection and analysis is paving the path towards “Human-Centered 

Automation” (HCA) in construction management. HCA could form a computational 

framework that supports resilient field data collection considering human factors and 

unexpected events on dynamic job sites. 

 This dissertation presented an HCA framework for resilient construction field 

information acquisition and results of examining three HCA approaches that support 
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three use cases of construction field data collection and analysis. The first HCA approach 

is an automated data collection planning method that can assist 3D laser scan planning of 

construction inspectors to achieve comprehensive and efficient data collection. The 

second HCA approach is a Bayesian model-based approach that automatically aggregates 

the common sense of people from the internet to identify job site risks from a large 

number of job site pictures. The third HCA approach is an automatic communication 

protocol optimization approach that maximizes the team situation awareness of 

construction workers and leads to the early detection of workflow delays and critical path 

changes. Data collection and simulation experiments extensively validate these three 

HCA approaches. 
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CHAPTER 1 INTRODUCTION  

Timely, detailed, and accurate field information for decision making will improve the 

safety, quality, and productivity in construction projects (Golparvar-Fard et al. 2009a; 

Zhang et al. 2009).  The management team needs the actual or potential schedule delay or 

cost overrun within stipulated time for the early and effective response to those 

deficiencies (Golparvar-Fard et al. 2009a; Zhang et al. 2009). Early detection of defects 

in the construction processes will reduce the cost by 6-12% due to the waste of rework 

(Akinci et al. 2006). Furthermore, the key to maintaining construction safety is the time 

field information to identify the safety risks in the construction process (Garrett and 

Teizer 2009; Thevendran and Mawdesley 2004). Challenges that prevent the effective 

and efficient field inspection in construction projects include highly uncertain and 

frequently updated schedule due to contingencies (e.g., discoveries of hidden structural 

defects during field operations), multi-group coordination and communication, and 

highly uncertain human behaviors on construction sites (Le Blanc and Oxstrand 2012; 

Hameed et al. 2015; Hinze and Godfrey 2002; Muganyi and Mbohwa 2014; Obiajunwa 

2012; Utne et al. 2012).  

Construction information acquisition processes mainly involve three types of activities. 

The first type is sensor-based inspection, which requires the inspector to correctly handle 

the usage of sensors in data collection (Cheng et al. 2013; Dai et al. 2013; Montaser and 

Moselhi 2014). The second type is manual inspection, which requires the experience of 

inspectors in interpreting field data, records, and observations (Moore et al. 2001). The 

third type is communication, which means obtaining field information from other 
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inspectors for collaborative operations or preparations for pending tasks (Alsehaimi et al. 

2014; Gillard and Johansen 2004). Human interventions play important roles in all these 

three type of information acquisition activities (St. Germain et al. 2014; Oxstrand et al. 

2014, 2015).  

However, human behaviors can be unreliable in these information acquisition activities, 

especially in highly uncertain and dynamic job site environments. For sensor-based 

inspection, job site inspectors may collect missing or delayed job site data due to lacking 

the essential knowledge of using newly invented sensors and devices (Zhang and Tang 

2015b). For manual inspection, uncertain and dynamic environments will challenge new 

generations of engineers or cause an overload for current inspectors in the coming 

decades with experienced construction inspection personnel retiring (Goldman et al. 

2010). For communication in transmitting job site information, complicated social 

relationships and dynamic job sites also cause inefficient teamwork between management 

team, job site workers, and inspectors. 

A resilient information acquisition system could help achieve safer and more productive 

construction by providing new techniques that improve the reliability of human behaviors 

in acquiring construction information. In such a context, various automation 

technologies, such as sensors and digital models of construction sites, can be critical for 

assisting new generations of engineers and workers in acquiring job site information by 

proactively providing the needed knowledge of using equipment, improve the situation 

awareness in multi-person collaborations, and reduce the mental workload of operators 

and inspectors. (Billings 1991, 1997; Goodrich and Boer 2000; Pyy et al. 1998).  
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Unfortunately, limited studies or commercial automation technologies consider human 

factors for construction field information acquisition. Human errors during field 

information acquisition are difficult to resolve using previous studies. The interaction 

between the dynamic job site and the tasks that are different for every project is 

exaggerating the unpredictability of human behaviors (Zhang et al. 2017). Therefore, 

achieving the reliable human behaviors in information acquisition needs systematically 

integration the interactions between human, tasks, and construction workspace to achieve 

more efficient and effective field data collection. Such synthesis is paving the path 

towards “Human-Centered Automation” (HCA) in construction management, which is a 

computational framework that defines the automation techniques that empower human 

performance in field operations through proper consideration of human factors. HCA 

concept grows up in other domains while gaining attention in the domain of construction 

automation in recent years (Billings 1991; Goodrich and Boer 2000; Su et al. 2015; 

Zhang et al. 2017). HCA consists of automation techniques that support the resilient field 

data collection considering human factors and unexpected events on dynamic 

construction job sites. Specifically, these automation techniques for field information 

acquisition help better guide the human behaviors in information acquisition activities by 

enhancing Situation Awareness (SA) and providing the needed technical knowledge 

while reducing Mental Workloads (MW).  

The aim of this dissertation is to systematically incorporate human factors into the 

automated field information acquisition techniques. Specifically, this dissertation 

presented an HCA framework for resilient construction field information acquisition and 

results of examining three HCA approaches that support three use cases of construction 
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field data collection and analysis. The first HCA approach is an automated data collection 

planning method that can assist 3D laser scan planning of construction inspectors to 

achieve comprehensive and efficient data collection. The second HCA approach is a 

Bayesian model-based approach that automatically aggregates the common sense of 

people from the internet to identify job site risks from a large number of job site pictures 

and can guide engineers in risk detection in new photos while reducing their mental 

workload in image interpretation. The third HCA approach is an automatic 

communication protocol optimization approach that maximizes the team situation 

awareness of construction workers through automatically assessing information needs of 

workers along workflows and generating protocols that best reduce the uncertainties of 

workers and streamline the team collaboration. The integrated application of the proposed 

approaches will shed light on achieving the resilient acquisition of information in 

dynamic and complex construction fields.  

1.1 Motivating Case 

This section describes the motivation of the proposed research using case studies. 

Case 1: Sensor usage error in collection as-is geometric data 

In construction environments, laser-scanning technologies can perform rapid spatial data 

collection tasks, such as streamlining field activities, monitoring construction progress, 

and controlling construction quality. However, even the most skilled of surveyors cannot 

guarantee comprehensive laser scanning data collection on a construction site due to its 

constantly changing environment, wherein many objects are subject to different data-
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quality requirements. The current practice of manually planned laser scanning often 

produces data of insufficient coverage, accuracy, and details. Whereas redundant data 

collection can improve data quality, this process can also be inefficient and time-

consuming. There are many studies on automatic sensor planning methods for guided 

laser-scanning data collection in the literature. However, fewer studies exist on how to 

handle exponentially large search space of laser scan plans that consider data quality 

requirements, such as accuracy and levels of details (LOD).  

The Level of Detail (LOD) is one of the data quality requirements of imagery data, which 

describe the smallest object recognizable from the imagery data. Specifically, LOD of a 

point cloud measures the data density within the neighborhood of each point goal in a 

point cloud. When collecting geometric point cloud data of a job site, different point 

goals require different LODs. For example, dense data may not be needed for simple 

geometries (e.g. flat walls). Instead, LOD may need to be increased for complex shapes, 

such as edges, openings, and decorations. Insufficient LOD causes missing details in data 

for further data processing and modeling, while excessively high LOD causes extra time 

and effort in data collection.  

However, collecting laser scanning data with required LOD is difficult, even for 

professional surveyors. To show the difficulty of collecting laser scanning data with 

required LOD, I conducted a laser scanning experiment on a campus building following 

two plans generated by a 3D imaging researcher and a laser scanning professional who 

has been using laser scanners in more than ten large building projects. The experiment 

results shown in Section 2.5.2 indicate that it is difficult for manually generated laser 
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scan plans to achieve 100% coverage of point goals with required LOD. The first 

difficulty is in choosing the right scanning resolution. The second difficulty is in 

estimating the area that one scan can cover with sufficient LODs. In the case study, the 

curved shape of the studied building caused additional challenges for a human to 

precisely choose the scanning positions so that areas with required LOD would connect 

without gaps.  

Case 2: Inspection errors in identifying safety violations of the job site  

Risk assessment based on imagery data is becoming popular in construction project 

management because cheap imaging devices can capture detailed as-is job site 

information with high efficiency. However, one challenge is that image-based safety risk 

identification heavily relies on the subjective image interpretation. Well-trained 

inspectors could be a limited resource that might not always be available to meet the 

safety inspection requirements on large and busy job sites. 

Imagery has shown potentials for supporting risk management in construction and civil 

infrastructure management. In both China and the United States, civil infrastructure 

management agencies use imaging sensors for collecting detailed spatiotemporal 

information of bridges, dams, and other large structures for detailed condition assessment 

and risk analysis (Zhu and Brilakis 2010). Efficient and effective uses of imagery data for 

risk recognition is thus becoming increasingly important for establishing a data-driven 

risk management framework for civil engineering projects (Zhang and Tang 2015b).  
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Unfortunately, subjective safety inspection based on job site imagery manually conducted 

by inspectors brings uncertainties and biases in risk recognition results based on images. 

Even well-trained inspectors spend much time to achieve comprehensive and reliable risk 

recognition from images (Lagasse et al. 2009). In some cases, the uncertainties and biases 

within manual image interpretation processes can mislead the decisions about 

construction safety management and civil infrastructure maintenance (Moore et al. 2001). 

Liao et al. (Liao et al. 2016) presented the observation miss in a simulated safety 

inspection experiment of an elevator installation project. In the experiment, 40 job site 

photographs containing 30 risks taken at four typical locations (Hoistway, pit, Machine 

room, and Storeroom) from different job sites created a virtual environment of the 

elevator installation. Five inspectors from an elevator installation company with working 

age ranging from 1.5 to 25 years are then asked to identify the job site pictures with risks 

within 13 minutes. The experiment result shows that the inspectors can only identify 15-

24% safety risks correctly. Also, only 62% of answers of identified risks are correct. This 

result shows that the complexity of the checklist, including having too many items to 

check and ambiguous in descriptions will increase the cognitive control load for the 

inspectors. 

Civil engineers have been developing methods to increase the reliability of manual image 

interpretation in construction safety (Chang and Liao 2012; Lattanzi and Miller 2014; 

Papaelias et al. 2016). Some researchers examined image processing algorithms that can 

automatically extract certain features from images to assist engineers in identifying risks 

of construction (Chang and Liao 2012). However, engineers still need to decide how to 

setup and use such image processing algorithms so that the subjective factors still exist 
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(Moore et al. 2001). At present, interpretation of the images based on human intuition 

and experiences seems still unavoidable. Therefore, what the construction industry needs 

is an automation technique which can reduce the cognitive workload during the safety 

inspection. 

Case 3: Communication error in collecting productivity and progress data 

Nuclear power plant (NPP) outages involve a large number of maintenance and repair 

activities with a busy schedule and zero-tolerance for accidents. During an outage, more 

than 2,000 workers will be working around the NPP and finishing the maintenance work 

including more than 2,000 tasks within about 20 days, while the planning stage of a 

typical NPP outage is more than four months. Moreover, a one-day delay on the nuclear 

power plant outage project will cost $1.5 million loss. Therefore, these features of NPP 

outages call for a real-time, robust, effective workflow control to ensure the construction 

safety and productivity while reducing the wastes and resource consumption.  

In NPP outages, one of the major practical problems is about how to control the 

efficiency and error rates of handoffs, which are the transitional stages between tasks. 

Handoffs involve highly uncertain activities, such as transports of resources and labors, 

inter-person and human-computer communications, field preparation, mobilization, and 

waiting. The transitional nature of handoffs causes time and resource wastes, incidents or 

accidents due to the involvement of multiple groups of workers and complex 

spatiotemporal interactions between space and resource needs of tasks, and decision 

difficulties under uncertainties.  
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Handoffs between tasks represent a large portion of overall activities in construction 

workflows (Cheng and Teizer 2013; Gouett et al. 2011; Hu et al. 2016), and can 

significantly influence the project efficiency. For example, the OCC needs to have 30-

minute meetings up to every three hours to know the as-is status of the outage progress 

and performance. One major reason that aggravates the handoff time waste in NPP 

outages is the complicated organization of outage participants and processes (Petronas et 

al. 2016). The approval of each task involves multiple stakeholders to ensure safety. For 

example, an outage tasks should be confirmed by the following organizational units 

before the execution: 1) the outage control center, which determines whether the task is 

needed; 2) the schedulers, who arrange the schedules of interconnected tasks; 3) the 

maintenance shops, who arrange workforces for tasks; 4) the main control room staff, 

which configures the NPP according to the requirement of certain tasks; 5) the work 

execution center, which inspects the site preparation for safe execution of a given task. 

Complicated communications between all these organizational units are necessary for 

safety but will create long handoffs and possible time wastes. 

Also, the communication activities in NPP outages are error-prone, and communication 

errors could introduce additional communications and delays. An example from Licensee 

Event Reports (LERs, a database documenting all the abnormal events which may 

compromise the safety and productivity of NPPs) shows the error-prone nature of 

handoffs. On May 8th, 2010, Palo Verde NPP Unit 1found that the containment building 

equipment hatch was found not capable of being fully closed for six days. If any 

accidents had occurred during this time, radioactive gas could be quickly released to the 

outside atmosphere within 2 hours. Two reasons that might cause this event: First, the 
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hatch might be damaged during the maintenance on May 2nd, which could have caused by 

human errors or just a facility error. Second, the post-maintenance test procedures were 

not followed to ensure proper hatch motion, which is a communication error in the 

handoff involving the maintenance team, the post-maintenance test team, and the 

management team.  In fact,  for all the errors, incidents, and near misses documented in 

the LERs, about 50% of them are related to communication errors (Hobbins et al. 2016).  

Furthermore, extremely busy schedules with a 10-minutes level of detail delays or 

mistakes due to communication could propagate to more tasks, which could compromise 

the productivity and safety of the entire workflow and even the whole outage. Therefore, 

precisely predicting and controlling the time wasted and information loss caused by 

human errors during handoffs can improve the productivity of NPP outages (Kim et al. 

2010).  

1.2 Problem Statement 

The three motivating cases show that people could make mistakes in acquiring 

construction information in complex and dynamic environments of construction job sites. 

A resilient information acquisition should reduce human error rates by “proactively and 

adequately adapt to perturbations and changes in the real world given finite resources 

and time” (Madni and Jackson 2009). In this context, “resilient” information acquisition 

refers to the ability of proactive avoiding or quick recovery from errors, delays, 

interruptions, and changes in schedules to achieve as-planned project productivity and 

safety considering all the unexpected events in dynamic construction job site (Carayon et 

al. 2015; Madni and Jackson 2009).  
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Reducing the complexity of executing tasks by workers and engineers is the focus of 

resilience in acquiring construction field information. The high complexity of tasks is 

challenging human cognitive and physical capabilities and usually lead to reduced human 

and team performance in such tasks, which causes hardly predictable actions that lead to 

uncertain impacts on productivity and safety (Mitropoulos et al. n.d., 2005). Campbell 

(Campbell 1988) identified four types of source of task complexity: multiple potential 

ways, multiple desired outcomes to be attained; the presence of conflicting 

interdependence among paths to multiple desired outcomes; and the presence of uncertain 

or probabilistic linkages among paths and outcomes. Obviously, these source or 

complexity fulfills the tasks in construction projects, especially in information acquisition 

tasks. Such complexity poses challenges to ensuring “resilient” information acquisition, 

which requires an approach that should rapidly and proactively respond to delays, errors, 

or unexpected tasks added.  

In the domain of construction management, researchers start analyzing the complexities 

of the field tasks based on the interaction between human behaviors and dynamic 

construction project. For example, studies exist about improving the productivity and 

safety of construction field workers by analyzing and categorizing activities in 

construction tasks (Awolusi and Marks 2016; Cheng et al. 2013; Gouett et al. 2011). 

However, approaches and theories are still in need on how automation could reduce the 

information-acquisition task complexity and improve the resilience of information 

acquisition for supporting proactive project control.  Here, I summarize some of the 

practical causes of task complexity exceeding the capability of workers and engineers and 

thus result in reduced human and team performance. 
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The first cause of field workers’ and engineers’ unpredictable actions due to task 

complexity in construction information acquisition is the lack of knowledge about how to 

use the equipment. Experienced management personnel or surveyors are always the 

limited resources in a construction project, whereas novice management personnel or 

surveyor may not have the needed knowledge to acquire the job site information with 

required Level of Detail (LOD) and Level of Accuracy (LOA). For example, laser 

scanning technologies have many advantages that include high accuracy (mm level), 

faster data acquisition (up to hundreds of thousands of three-dimensional points per 

second), and more detailed spatial resolution (Boehler and Marbs 2003; Bosché et al. 

2014; Huising and Gomes Pereira 1998; Turkan et al. 2013). The use of laser scanning in 

the construction field, however, comes with some challenges.  

First, acquiring high quality 3D imagery data within the parameters of changing job sites 

and diverse projects is challenging even for experienced engineers, primarily because 

data quality, environmental conditions, scanning locations, and the technical parameters 

of laser scanners (e.g., data density options) all combine to create complex interactions 

(Akinci et al. 2006).  Second, 3D imagery data collection is time-consuming, and in a fast 

changing construction environment, the data can become quickly outdated, which leads 

to misleading information for decision makers. Finally, when using sophisticated 3D 

imagery data collection, project managers must hire experienced surveyors who can 

properly operate laser scanners and achieve high-quality data collection, which can be 

costly (Dai et al. 2013; Eid et al. 2004). 
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The second and third causes of field workers’ and engineers’ unpredictable actions due to 

task complexity are the lack of Situation Awareness (SA) and the overload of mental 

workload (MW) of field personnel, which have a mutual interaction with each other. The 

performance of field information acquisition involves significant human interventions, 

which will be directly influenced by human factors SA and MW (O’Hara 2004).  SA is 

“the perception of the elements in the environment within a volume of time and space, 

the comprehension of their meaning, and the projection of their status shortly” (Endsley 

1995). A human with good SA can properly assess the situation and take timely actions 

accordingly. Appropriate SA helps humans make a better decision according to the field 

conditions.  

MW is a measurement of mental demands on a person (Hwang et al. 2008, 2009). All 

tasks require some variations of mental effort; however, the degree to which SA and MW 

are needed can vary significantly depending on the task. Moreover, a greater need for one 

will influence the other (Chen et al. 2016). Overall, having to maintain a high SA 

increases the mental workload of an operator which can negatively influence personnel 

task performance (Endsley 1995). For example, to achieve a comprehensive assessment 

of job site safety risks (i.e. achieve high SA on job site safety), the safety inspector need 

to inspect every corner on the construction job site and compare what he/she sees with 

the huge number of safety rules in the memory, which causes high mental workload.  

Another example illustrating the relationship between SA and MW would be that several 

worker teams collaborate on a workflow in NPP outage project.  The goal of the worker 

teams needs to minimize the duration of the entire workflow by reducing the handoff 
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between tasks. Therefore, the leader of each worker team needs to communicate and 

collaborate with each other and get the information of the progress of other tasks from 

each other. The integrate knowledge of the progress of each task in the workflow is the 

“Team SA” (TSA) of these worker teams. Better TSA means more accurate information 

about the duration of each task so that the leader of each worker team can make a better 

decision about what to do next. However, better TSA requires a higher frequency of 

communication, which will interrupt the work each team is doing and causes a rise of the 

MW of each worker team leader. 

The lack of SA and overload of MW are two important factor causing human errors in 

construction information acquisition. The best task performance will be achieved when 

the related personnel can adapt to the fluctuations of MW while maintaining an 

appropriate SA. Therefore, automation techniques that can reduce the task complexity 

can help reducing the MW of field personnel. Also, the optimization of the 

communication protocol between different workers according to the dynamic 

construction site and tasks can balance the TSA and MW of the workers and will achieve 

reliable human behavior in the communication activities in busy construction workflows. 

1.3 Vision  

This research focuses on a systems approach with the goal of increasing system resilience 

and best-utilizing human and machine capabilities. Resilience engineering brings a new 

approach to safety management in a complex system. It focuses on how to help people 

handle complex situations (expected or unexpected) under pressure to achieve success 

(Hollnagel et al., 2006). Achieving a higher degree of automation in construction projects 



  15 

is a general trend (Goldman et al. 2010), but HCA techniques need to be developed in 

information acquisition. I define HCA for acquiring construction field information by 

synthesizing relevant automation techniques on three aspects of construction project 

control (Abdelhamid and Everett 2000):  

• “Task” aspect involves the work that humans need to do according to certain 

standards, sequences, and time. For example, automatic scheduling is a typical 

automation technique for the task aspect.  

• “Workspace” aspect focuses on managing non-human objects and spaces, i.e. 

facilities, materials, and building elements. Automation techniques on this aspect 

include automated workspace data collection, site layout design, and crane planning 

through various sensors such as laser scanners, etc.  

• “Human” aspect refers to methods related to managing performance and behaviors 

of human individuals and organizations involved in the project, including workers, 

foremen, and management staff.  

The motivating cases show that achieving reliable human behavior in information 

acquisition is critical but difficult due of the complex interaction between humans, 

workspace, and tasks. Furthermore, the knowledge of how to precisely model or describe 

such interactions is missing. In the laser scanning data collection example, acquiring high 

quality 3D imagery data considering the changing job sites and diverse projects is 

challenging even for experienced engineers. This challange is primarily because data 

quality, environmental conditions, scanning locations, and the technical parameters of 

laser scanners (e.g., data density options) all combine to create complex interactions 
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(Akinci et al. 2006).  Also, 3D imagery data collection is time-consuming, and in a fast-

changing construction environment, the data can become quickly outdated, which leads 

to misleading information for decision makers. The example of safety inspection also 

shows that the complicated interaction of human, tasks, and workspace can cause 

information acquisition defects. Usually, construction safety inspectors use the checklist 

as a comprehensive reference to reducing the chance of missing safety risks during the 

inspection. However, due to the complexity of the workspace, the number of items 

increases significantly. Such increase creates significant mental workloads for the 

inspectors. Inspectors can easily omit safety risks without an automation approach to 

guide the safety inspection according to a specific description of ongoing tasks and as-is 

job site environments. 

Therefore, an HCA-based information acquisition improves the reliability of human 

behaviors of information acquisition tasks in construction fields considering the 

interactions between human, workspace, and tasks. Figure 1 visualizes the framework of 

HCA for efficiency and effectiveness of information acquisition in construction. The 

overall goal of this system is improving the safety, quality, and productivity of 

construction projects. This system will capture timely tasks, workspace, and human factor 

information to build an information model that contain sufficient information about site 

conditions, progress, and environments. Then the HCA techniques will achieve resilient 

information acquisition by reducing the task complexity in three aspects: 1) providing 

guidance to people according to the job site information when people lack the needed 

knowledge; 2) automating certain procedures of tasks to reduce the mental workload; 3) 

integrating the interaction between tasks, workspace, and human to evaluate the 
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information needs of different people for achieving optimal TSA using minimum 

communication activities. 

Currently, many automation technologies potentially useful for information acquisition 

are focusing on the of scheduling and resource allocation (Yang et al. 2015), visualization 

of construction processes (Cheng and Teizer 2013; Guo et al. 2017), and change 

detection between as-planned and as-is (Kundakci and Kulak 2016). However, only a few 

automation technologies focusing on human factors are invented and applied in the 

domain of construction information acquisition. More specifically, limited studies 

consider the human aspects of the practical problems described above – providing needed 

knowledge, improving SA, and reducing MW. Therefore, the human performance 

monitoring and robust design of information acquisition techniques that can effectively 

avoid or handle human errors becomes the bottleneck, which is the focus of the research 

studies in my dissertation.    

 

Figure 1. Challenges of Reducing Human Errors in Information Acquisition.  

Figure 2 shows an IDEF0 model of HCA techniques for information acquisition. The 

input of an HCA technique is the needed information of the field related to the safety, 
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quality, and productivity of the construction project. The constraints are: First, the 

information quality requirements. Second, the sensor model which people will use during 

the information acquisition. Third, the human behavior model related to their physical 

and mental conditions (e.g. human will walk at certain speed; people tend to 

underestimate the time they need to finish the task, etc.). Finally, the time, cost, and space 

limit of dynamic job site, which are decided by the as-is condition of the construction 

project job site. The major goal of this research is to reduce the human error during 

acquiring field information using HCA techniques by 1) helping the decision making, 2) 

Improving the SA (especially TSA), 3) reducing the MW. Thus, this research can 

improve the effectiveness and efficiency of the inspection in construction workflow. 

 

Figure 2. IDEF0 Model of HCA Techniques for Information Acquisition 

1.4 Research Objectives  

The objectives of the proposed research are as follows: 
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1. To provide technical knowledge to 3D laser scanning surveyors by developing an 

automated data collection planning method to achieve effective and efficient as-is 

information. 

2. To reduce the MW of safety engineers by automatically integrating the common 

sense of people from the internet to identify job site risks from a large number of 

job site pictures. 

3. To improve the TSA of construction workers by generating the optimal 

communication protocol according to the needs of the job site workflow to achieve 

effective and efficient information flow. 
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CHAPTER 2 RAPID DATA QUALITY ORIENTED LASER SCAN PLANNING FOR 

DYNAMIC CONSTRUCTION SITE 

2.1 Introduction 

Timely, detailed, and accurate geometrical information for decision making will improve 

the safety, quality, and productivity in construction projects (Golparvar-Fard et al. 2009a; 

Zhang et al. 2009). Reliable sensing methods and comprehensive data collection are, 

therefore, requisite and highly desirable in construction management environments. 

Compared with conventional data collection methods such as laser tapes and the Global 

Navigation Satellite System, laser scanning technologies have many advantages that 

include high accuracy (mm level), faster data acquisition (up to hundreds of thousands of 

three-dimensional points per second), and more detailed spatial resolution (Boehler and 

Marbs 2003; Bosché et al. 2014; Huising and Gomes Pereira 1998; Turkan et al. 2013). 

Researchers and project engineers, thus, have been actively exploring the uses of laser 

scanning technology in construction. 

The use of laser scanning in the construction field, however, comes with its own set of 

challenges. First, acquiring high quality 3D imagery data within the parameters of 

changing job sites and diverse projects is challenging even for experienced engineers, 

primarily because data quality, environmental conditions, scanning locations, and the 

technical parameters of laser scanners (e.g., data density options) all combine to create 

complex interactions (Akinci et al. 2006).  Second, 3D imagery data collection is time-

consuming, and in a fast changing construction environment, the data can become 

quickly outdated, which leads to misleading information for decision makers. Finally, 
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when using sophisticated 3D imagery data collection, project managers must hire 

experienced surveyors who can properly operate laser scanners and achieve high-quality 

data collection, which can be costly (Dai et al. 2013; Eid et al. 2004). 

To overcome the above challenges, this paper describes the development of a new 

automatic laser scan planning method. For a given job site, the objective is to determine a 

laser scan plan by specifying a sequence of scanning positions and parameters at each 

position as a means to minimize the data collection time while optimizing the coverage 

and quality of the data. A fast and reliable laser scan planning method can thus save costs 

related to 1) poor decision-making due to low-quality data; 2) interruptions in 

construction processes caused by data collection activities, and 3) training and hiring 

laser scanning professionals for high-quality data collection. 

This paper attempts to address three questions that have remained unresolved in previous 

studies about the laser scan planning problem in construction:  

1) how to quantify and model the relationship between 3D imagery data quality and data 

collection parameters to develop a planning algorithm that uses the quantitative 

relationship for guiding the generation and assessment of laser scan plans (Tang and 

Alaswad 2012);  

2) how to explore the extremely large search space of laser scan plans in the limited time 

of decision-making in the context of dynamic environments (Blaer and Allen 2009; 

Gordon et al. 2007);  

3) how to achieve scalability of laser scan planning so that engineers can apply the same 

scan planning method to sites of different shapes and sizes (Song et al. 2014).  
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To address the first question, I developed a 3D-imaging sensor model that shows the 

mathematical relationship between 3D data collection parameters and spatial data quality. 

To explore the second question, I propose a “divide-and-conquer” planning method for 

achieving efficient optimization of laser scan plans. To ensure the scalability of this laser 

scan planning method (question 3), the divide-and-conquer method adaptively adjusts its 

parameters according to building size and shape to produce reliable laser scan plans. 

The organization of this chapter is as follows: Section 2.2 introduces previous studies 

about laser scan planning while highlighting the contributions of this paper. Section 2.3 

provides a problem statement and a discussion of the three research questions. Section 

2.4 describes the laser scan planning method. Section 2.5 validates the developed laser 

scan planning method using case studies on real buildings. Sections 2.6 and seven present 

validation results, the conclusion, and future research plans. 

2.2 Previous Research 

Previous studies have stressed the importance of efficient and effective construction 

inspection using laser-scanning technologies. Akinci et al. (Akinci et al. 2006) and 

Gordon et al. (Gordon et al. 2007), for example, discuss how manual inspection could 

miss important site changes and defects, whereas the use of laser scanning could improve 

construction inspection through the delivery of timely and comprehensive as-built data. 

Turkan et al. (Turkan et al. 2013) emphasize the need for effective laser scan planning to 

achieve effective construction progress control. Park et al. (Park et al. 2013) illustrate the 

need for the best practices in collecting, searching and reusing defect information for 

construction quality control in the field.  
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Although construction industry practitioners acknowledge the importance of laser 

scanning, they are also confronted with the many obstacles that prevent both the effective 

and efficient use of laser scanning in construction (Nie et al. 2012; Park et al. 2007; Volk 

et al. 2014). One such obstacle is related to acquiring high-quality 3D imageries for field 

applications (Park et al. 2013). Since 3D image quality greatly influences as-built 

Building Information Model (BIM) quality (Klein et al. 2012; Tang et al. 2010; Xiong et 

al. 2013), examining quantitative relationships between data quality, scanning locations, 

and environmental factors become critical to the overall process (Anil et al. 2013; Bhatla 

et al. 2012; Granshaw 2014; Tang et al. 2009; Tang and Alaswad 2012; Weber et al. 

2010). In this context, manually reviewing a large number of such relationships is a 

challenging task, even for experienced engineers. Also, manual data quality checks of 

numerous objects on job sites against data quality requirements are tedious and error-

prone (Song et al. 2014). This second obstacle is the difficulty of optimizing data 

collection time while minimizing interferences from the data collection and productive 

activities (Akinci et al. 2006; Dadi et al. 2012; Gordon et al. 2007). It has been shown, for 

example, that a badly designed workflow may need up to 300% data collection time 

when compared to a standard workflow for the same laser scanning task (Dadi et al. 

2012). Another obstacle relates to the high cost of training and hiring laser scanning 

professionals (Eid et al. 2004; Gordon and Akinci 2005). Eid et al. found that the cost of 

laser scanning for the evaluation of forest inventory is approximate twice the cost of 

using photogrammetry (Eid et al. 2004).  

Effective laser scan planning methods are lacking in the literature to date. Many existing 

studies focus on occlusion and visibility analysis for capturing the entire surface of a 
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targeted object, but these studies lack detailed analysis of data quality (Biswas et al. 

2015; Fernández et al. 2008; Latimer et al. 2004; Lee et al. 2001; Pito 1996; Son et al. 

2002). Most are marked by high computational complexities that result in long 

computation times when generating laser scan plans (Blaer and Allen 2009; Latimer et al. 

2004; Nüchter et al. 2003). Finally, the current array of studies fails to use flexible 

scanning parameters for each scanning position, according to varying data quality 

requirements of different objects (Ahn and Wohn 2015; Blaer and Allen 2009; Pito 1996; 

Song et al. 2014). Lack of flexibility can potentially lead to unnecessary planning 

computation time as well as redundant data collection. In a recent study by Ahn et al. 

(Ahn and Wohn 2015), a semi-automatic scan planning method was used to decide the 

scanning position for achieving horizontal data quality requirements. However, it 

required manually selecting the same scanning resolution for all scans, thus failing to 

identify optimal plans that could have mixed use of scans with different resolutions. Also, 

the proposed semi-automatic method was not able to handle buildings with curve-shaped 

walls. The research methodology presented below will address this gap in order to 

improve the quality of field laser scanning significantly in dynamic construction 

environments. 

2.3 Problem Statement 

The goal of laser scan planning is to create a method that can automatically generate laser 

scan plans for the efficient collection of high-quality 3D imageries of a given job site. 

The generated laser scan plans should achieve the following: 
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• The laser scan plans should specify scanning positions and parameters at those 

positions so that an engineer with limited surveying experiences can rapidly collect 

comprehensive 3D imagery details of the job site with sufficient accuracy.  

• Following the laser scan plan, the engineer should be able to achieve optimal data 

collection time to minimize the interferences between data collection and construction 

workflows. 

• The time for generating a laser scan plan should be less than a few minutes to satisfy 

the dynamics of a construction job site.  

 

Figure 3. IDEF0 Process Model Describing the Laser Scan Planning Problem  

Figure 3 shows an IDEF0 process model describing the laser scan planning problem. The 

inputs of the IDEF0 process model are point goals, which include objects of interest or 

geometric features. Section 2.4.1.1 details the representations of point goals. The outputs 

of the IDEF0 are scanning positions and parameters, such as angular scanning resolutions 

that determine the 3D data point intensities. The controls of the IDEF0 process model 

include:  
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1) Data quality requirements: For 3D imagery data, engineers require a certain level of 

accuracy (LOA, which indicates the measurement error) and level of detail (LOD, 

which measures the data density). The LOD requirement of laser scanning data is 

presented in Section 2.4.1.2. 

2) Sensor model: An analytical sensor model describes the geometric principles of laser 

scanning, such as the relationship between laser scanning parameters and the point 

density of a laser scanning data. Given a sensor model, one can derive the scanning 

positions and the parameters at each position (e.g., angular resolution) to meet the data 

quality requirement (LOD). I use the concept of “feasible space” to visualize 

recommended data collection locations according to 3D data quality prediction based 

on a sensor model. Sections 2.4.1.3 to 2.4.1.4 present the sensor model developed in 

this research, and methods to utilize them for deriving feasible spaces of 3D data 

collection. 

3) Schedule, budget, and space limits of a job site: These controls specify the 

spatiotemporal requirements of construction activities on a construction site, as well as 

cost information for quantifying the losses due to interferences between data collection 

and field activities. 

Based on the IDEF0 model, I formulate here an optimization model of laser scan 

planning (Section 2.4.1.5). However, solving this optimization model is computationally 

expensive and challenging due to the exponentially large combinations of possible 

scanning locations and parameter values. For example, for a given a job site of 5,000 m2, 

the optimization model consists of more than 1,500 constraints, 10,000 possible scanning 

positions, and 1060 calculations for solving this model with enumeration.  
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To shorten the calculation time, I propose a “divide-and-conquer” method to calculate the 

laser scan plan in a computationally efficient way. First, an algorithm is used to divide 

the overall construction site into several parts so that the large-scale optimization problem 

becomes smaller problems that require significantly fewer computations (Section 2.4.3). 

For each part of the construction site, the algorithm generates a laser scan plan and 

examines whether the correct execution of the plan could still result in any missing data 

(Section 2.4.4). Finally, the algorithm generates laser scan plans for addressing portions 

that are still missing (if there are any) in generated plans for parts of sites; it then 

combines the scan plans of all parts of the site together to form a complete laser scan plan 

for the entire site (Section 2.4.5).  

2.4 Research Methodology 

2.4.1 Technical concepts related to a laser scan planning problem 

2.4.1.1 Point goals on construction sites 

Inspection goals are targets of construction inspection for various purposes, such as 

progress monitoring, site analysis, and quality control (Gordon et al. 2007). This study 

uses “point type” inspection goals (termed “point goals” hereafter) as the inputs of the 

laser scan planning method. The term “point goal” can be defined as important points that 

represent geometric information, e.g., the corners of a wall. For instance, if an engineer 

acquires precise midpoint and endpoint positions (considered as point goals) of a beam 

using laser scanning data, he or she can easily derive the length and deformation of this 
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beam from point goals. I plan to analyze how point goals influence other types of 

inspection goals in future studies. 

The purpose of identifying point goals on a construction site is to achieve a 

computationally efficient analysis of a site for rapid scan planning. Blaer et al. (Blaer and 

Allen 2009) used 1m3 cubes termed as “voxels” to represent the 3D model of a large job 

site during laser scan planning. However, this study found that such representation would 

be computationally expensive because the number of voxels grew exponentially with the 

size of the job site. On the other hand, the number of point goals can be around 100-200 

depending on the number of objects on site, much less than the number of voxels. 

Handling point goals thus will consume considerably less computational time than 

processing voxels.  

Point goals contain two elements of information necessary for laser scan planning: 1) 

coordinates of points and 2) the normal vector of the surface where a point goal locates. 

The latter indicates the direction from which laser scanners can capture the point goal 

(Low and Lastra 2006; Oskouie et al. 2015; Scott et al. 2003). The proposed laser scan 

planning method will conduct visibility checks of point goals, requiring both locations 

and surface orientations of point goals, as detailed in Section 2.4.3.2.  

2.4.1.2 Level of Detail (LOD) of a point cloud 

Level of Accuracy (LOA) and Level of Detail (LOD) are data quality requirements of 

point clouds. LOA represents the tolerance of positioning and dimensional errors, while 

LOD measures the data density within the neighborhood of each point goal in a point 
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cloud. In this paper, the focus is on laser scan planning based on LOD requirements; 

LOA aspects will be studied in the future. In practice, different point goals can have 

different LOD requirements. For example, dense data may not be needed for simple 

geometries (e.g. flat walls). Instead, LOD may need to be increased for complex shapes, 

such as edges, openings, and decorations. Insufficient LOD causes missing details in data 

for further data processing and modeling, while excessively high LOD causes extra time 

and effort in data collection. As a result, if engineers specify LOD requirement for each 

point goal, they can collect 3D imageries containing all required geometric information 

while avoiding unnecessary dense data, which contributes to wasted time in data 

collection and processing. 

At present, there is no widely accepted definition of LOD for 3D point clouds. 

Researchers use two different methods to quantify LOD of point clouds. Dai et al. (Dai et 

al. 2013) use the number of points in a unit area (e.g., 1 square cm, 1 square meter, etc.) 

to define the data density. MacKinnon et al. (MacKinnon et al. 2009) assume that the 

laser source of a scanner rotates vertically to generate “scanning lines,” such that the 

distance between two adjacent points along a vertical scanning line is a measurement of 

the data density along the vertical direction. In addition, the laser source also rotates 

horizontally to create scanning lines to form a 3D image. The distance between 

neighboring scanning lines defines the data density along the horizontal direction. This 

study defines LOD similar to MacKinnon et al. (MacKinnon et al. 2009). The vertical 

LOD (𝐿𝑂𝐷𝑣) is the distance between a point and the next scanned point, and the angular 

resolution 𝛿𝑣 is the difference between the elevation angles of these two adjacent points 
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on a vertical scanning line. Horizontal LOD (𝐿𝑂𝐷ℎ) is the distance between two adjacent 

scanning lines, and the angular resolution 𝛿ℎ is the difference between the azimuths of 

the two adjacent scanning lines. For normal laser scanners, 𝛿ℎ = 𝛿𝑣 ≡ 𝛿. 

2.4.1.3 3D feasible space  

The laser scan planning algorithm needs to generate scanning parameters (scanning 

positions, angular resolutions at those positions) that can ensure acquiring 3D point cloud 

data with required LOD for all point goals. Therefore, it is essential to understand the 

geometric relationship between the data collection parameters and the densities of 

collected point clouds. In this paper, I define a “3D feasible space” as the set of scanning 

positions where a laser scanner can scan a point goal with required LOD using a defined 

angular resolution. Mathematically, a 3D feasible space 𝑆𝑖 of point goal 𝑖, is the set of 

positions (𝑥, 𝑦, 𝑧) in 3D space that satisfy: 

 𝑆𝑖 = {(𝑥, 𝑦, 𝑧)| 𝑠ℎ(𝑥, 𝑦, 𝑧, 𝛿) < 𝐿𝑂𝐷ℎ, 𝑠𝑣(𝑥, 𝑦, 𝑧, 𝛿) < 𝐿𝑂𝐷𝑣}                              (1) 

where 𝛿 is the angular resolution of the laser scanner;  𝑠𝑣 is vertical surface sampling 

distance along the scanning line (Tang and Alaswad 2012) and 𝑠ℎ is the horizontal 

surface sampling distance, which is the spacing between adjacent scanning lines. If the 

scanning position is within the 3D feasible space 𝑆𝑖 of point goal 𝑖 using angular 

resolution 𝛿, the collected point cloud of point goal 𝑖 will satisfy the horizontal LOD 

(𝐿𝑂𝐷ℎ) and vertical LOD  (𝐿𝑂𝐷𝑣). 
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Figure 4. Geometric Representation of Surface Sampling Distance 

Figure 4 shows the geometric principle of horizontal/vertical surface sampling distance of 

a laser scan. Without losing generality, I set the coordinate of the point goal as (0,0,0), 

the normal vector of the surface as (0,1, 0), and the coordinate of the laser scanner 

as (𝑥, 𝑦, 𝑧). In order to derive the mathematical representation of the 3D feasible space of 

the point goal at (0, 0, 0), I derive the mathematical representations of sampling distances 

along vertical and horizontal directions: 

𝑠𝑣 =
𝛿𝐷

𝑐𝑜𝑠𝑖𝑣
=
𝛿√𝑥2 + 𝑦2 + 𝑧2

√𝑥2 + 𝑦2

√𝑥2 + 𝑦2 + 𝑧2

=
𝛿(𝑥2 + 𝑦2 + 𝑧2)

√𝑥2 + 𝑦2
, 𝑠ℎ =

𝛿𝐷

𝑐𝑜𝑠𝑖ℎ
=
𝛿(𝑥2 + 𝑦2 + 𝑧2)

√𝑧2 + 𝑦2
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where D is the laser traveling distance; 𝑖ℎ and 𝑖𝑣 are the horizontal and vertical incidence 

angle, respectively. The horizontal and vertical surface sampling distance in the point 

cloud around a point goal should satisfy the horizontal and vertical LOD requirement: 

𝑠ℎ ≤ 𝐿𝑂𝐷ℎ, 𝑦 > 0                                                           (2) 

𝑠𝑣 ≤ 𝐿𝑂𝐷𝑣, 𝑦 > 0                                                           (3) 

Figure 5(a) and (b) presents the space consisting of all scanning positions that enable 

Equation (2) and (3), respectively. In practice, the data within the neighborhood of a 

point goal should satisfy both vertical and horizontal LOD requirements. As a result, the 

3D feasible space of a point goal should be the intersection of these two 3D feasible 

spaces, as shown in Equation (4) and visualized in Figure 5(c).  

𝑆𝑖 =

{
 
 

 
 

(𝑥, 𝑦, 𝑧)|
|
(√𝑦2 + 𝑧2 −

𝐿𝑂𝐷𝑣
2𝛿

)
2

+ 𝑥2 ≤ (
𝐿𝑂𝐷𝑣
2𝛿

)
2

(√𝑥2 + 𝑦2 −
𝐿𝑂𝐷ℎ
2𝛿

)
2

+ 𝑧2 ≤ (
𝐿𝑂𝐷ℎ
2𝛿

)
2

 𝑦 > 0 }
 
 

 
 

                           (4) 
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Figure 5. 3D Feasible Space and 2D Feasible Area. (a) shows 3D feasible space of 

horizontal LOD of a point goal; (b) shows the 3D feasible space of vertical LOD of a 

point goal; (c) shows the 3D feasible space of a point goal with the wall where the point 

goals is on, which is the intersection of (a) & (b); (d) shows the intersection of 3D 

feasible space and the horizontal plane passing laser source; (e) is the 2D feasible area 

generated by process (d) 

2.4.1.4 2D feasible area 

A 2D feasible area is the horizontal cutting area of a 3D feasible space at the height of the 

selected laser scanner. If a surveyor installs the laser scanner on the ground, then the 2D 

feasible area of point goal 𝑖 (𝐴𝑖) should show the scanning positions on the ground to 

scan the point goal 𝑖 with LOD requirements, as shown in Figure 5(d) and described in 

the equation below: 



  34 

𝐴𝑖 = {(𝑥, 𝑦)|𝑠ℎ(𝑥, 𝑦, 𝛿) < 𝐿𝑂𝐷ℎ, 𝑠𝑣(𝑥, 𝑦, 𝛿) < 𝐿𝑂𝐷𝑣} 

where 𝑠𝑣 is the vertical surface sampling distance;  𝑠ℎ is the horizontal sampling distance; 

𝛿 is the angular resolution (see 3.2.3). Considering a case where all point goals are on the 

surface perpendicular to the ground, such as points on a vertical wall, I set up the laser 

scanner position as (𝑥, 𝑦, ∆ℎ), where ∆ℎ is the vertical distance between the point goal 

and the laser scanner. The mathematical representation of the 2D feasible area of a point 

goal is as Equation (5) below. Figure 5(e) visualize this 2D feasible space.  

𝐴𝑖 =

{
 
 

 
 

(𝑥, 𝑦)
|

|

𝛿(𝑥2 + 𝑦2 + ∆ℎ2)

√𝑦2 + ∆ℎ2
≤ 𝐿𝑂𝐷ℎ

  
𝛿(𝑥2 + 𝑦2 + ∆ℎ2)

√𝑥2 + 𝑦2
≤ 𝐿𝑂𝐷𝑣

𝑦 > 0

 

}
 
 

 
 

                                                 (5) 

The set 𝐴𝑖 in Equation (5) should not be an empty set; otherwise, no positions can 

achieve the required LOD for point goal i. To guarantee that 𝐴𝑖 is non-empty, 𝛿, ∆ℎ, 

𝐿𝑂𝐷ℎ, and 𝐿𝑂𝐷𝑣 should meet certain requirements described in Equation (6): 

{
 
 

 
 ∆ℎ ∙ 𝛿ℎ ≤

𝛿(𝑥2 + 𝑦2 + ∆ℎ2)

√𝑦2 + ∆ℎ2
≤ 𝐿𝑂𝐷ℎ

2∆ℎ ∙ 𝛿𝑣 ≤
𝛿(𝑥2 + 𝑦2 + ∆ℎ2)

√𝑥2 + 𝑦2
≤ 𝐿𝑂𝐷𝑣

  ⇒  𝛿 ≤ 𝑚𝑖𝑛 (
𝐿𝑂𝐷𝑣
2∆ℎ

 ,
𝐿𝑂𝐷ℎ
∆ℎ

)                 (6) 

The maximum value of 𝛿 that satisfies Equation (6) will be the sparsest resolution 

𝛿𝑠𝑝𝑎𝑟𝑠𝑒𝑠𝑡 qualified to capture a certain point goal with the required LOD. Otherwise, the 

feasible spaces of these points could have no intersections with the horizontal plane 
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passing through the laser source, so that no positions on the ground could achieve the 

required LOD for the considered point goal.  

2.4.1.5 Optimization model for the laser scan planning problem  

This section uses an optimization model to show the computational complexity of solving 

the laser scan planning problem. The decision variables of this optimization model are:  

1) The number of scans needed is 𝑘 . When solving the optimization model, the 

optimal number of scans needed for the entire job site is unknown. As a result, I 

will try different iterations of k increasing from 1 to m, where m is the possible 

upper limit of the number of scans.  

2) Angular resolution of the scanner 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑗,𝑘 , which is the scanning angular 

resolution used at the scanning position j when the total number of scans is 𝑘.  

The objective function of the optimization model is the scanning time T: 

𝑀𝑖𝑛: 𝑇 = ∑ 𝑇(𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑗,𝑘)
𝑘
𝑗=1 , 𝑗 ≤ 𝑘, 𝑘 ≤ 𝑚                                         (7)  

where 𝑇(𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑗,𝑘)is the scanning time of the jth scan, a function of 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑗,𝑘.  

The constraints of this optimization model (Equation 8) should be that at least one scan 

exists within the feasible area of every point goal. In these constraints, six parameters 

form the representation of a point goal: [𝑥𝑖 ,  𝑦𝑖,  𝑧𝑖, 𝑥𝑜𝑖, 𝑦𝑜𝑖, 𝐿𝑂𝐷𝑖]. (𝑥𝑖 ,  𝑦𝑖,  𝑧𝑖) represents 

the coordinates of point goal 𝑖. The number of point goals is 𝑛. (𝑥𝑜𝑖, 𝑦𝑜𝑖) represents the 

unit normal vector of the surface where point goal 𝑖 locates. This is because this study 

assumes that all point goals are on flat surfaces perpendicular to the ground (i.e., vertical 
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walls). 𝐿𝑂𝐷𝑖 represents the level of detail requirements of 𝑖. ℎ is the height of the laser 

scanner. In addition, [𝑥∗, 𝑦∗] is the horizontal coordinates of scanning position in the 

local point goal coordinate system, which has the origin at point goal 𝑖, y-axis is the 

normal vector of the surface where point goal 𝑖 locates, and z-axis is the zenith direction. 

[𝑥𝑗,𝑘, 𝑦𝑗,𝑘] is the horizontal coordinate of the scanning position 𝑗 in the global coordinate 

system. 𝑠𝑖
𝑗,𝑘

 shows whether the scan at scanning position 𝑗 covers point goal 𝑖. When 

𝑠𝑖
𝑗,𝑘
= 1, the scan at scanning position covers the point goal 𝑖 with sufficient LOD with 

the angular resolution 𝛿𝑗,𝑘 when the number of scans is 𝑘.  

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝑠𝑖
𝑗,𝑘
=

{
 
 
 
 

 
 
 
 

1, 𝑖𝑓 

{
 
 
 

 
 
 
(𝑥∗2 + 𝑦∗2 + (ℎ − 𝑧𝑖)

2)𝛿𝑗.𝑘

√𝑥∗2 + 𝑦∗2
≤ 𝐿𝑂𝐷𝑖

(𝑥∗2 + 𝑦∗2 + (ℎ − 𝑧𝑖)
2)𝛿𝑗,𝑘

√𝑦∗2 + (ℎ − 𝑧𝑖)2
≤ 𝐿𝑂𝐷𝑖

[
𝑥𝑗,𝑘
𝑦𝑗,𝑘

] = [
𝑥𝑖
𝑦𝑖
] + [

𝑦𝑖𝑜 −𝑥𝑖𝑜
𝑥𝑖𝑜 𝑦𝑖𝑜

] [
𝑥∗

𝑦∗
]

 

0, 𝑒𝑙𝑠𝑒

 , 𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1, 𝑘]

∑𝑠𝑖
𝑗,𝑘
≥ 1, 𝑖 ∈ [1, 𝑛]

𝑘

𝑗=1

𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑗,𝑘 ∈ {1,
1

2
,
1
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,
1
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,
1
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,
1
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,
1

16
,
1

20
,
1

32
}

𝛿𝑗,𝑘 =
𝜋

20000 ∗ 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑗,𝑘

         (8) 

Assuming that 10,000 possible scanning positions and 200 point goals are in the whole 

job site. Also, the maximum number of scans necessary is 20. I need to solve 

200×3×∑ 𝐶10000
𝑘20

𝑘=1 ×9 = 2.182 ∗ 1065 (“9” is the number of resolution options 

available from the laser scanner) inequalities and equations to find the solution using 

exhaustive searching, which is infeasible using any existing computing platform. I thus 
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explore a new approach for solving such a large-scale optimization problem in a more 

efficient way, namely, the “divide-and-conquer” approach, as described in the following 

section. 

2.4.2 Overview of the “divide-and-conquer” method  

In order to reduce the computational complexity of the optimization problem described in 

the previous section, the laser scan planning algorithm developed in this study first 

divides the job site into parts. It generates a laser scan plan for each part of the job site 

and then combines the solutions of these job site parts into a comprehensive laser scan 

plan for the whole job site. I term this approach as the “divide-and-conquer” method of 

laser scan planning.  

The inputs of this divide-and-conquer method are point goals. Field engineers can derive 

point goals from as-designed models of job sites, field photos, or sparse 3D imageries. 

Specifically, some studies generate point goals based on as-designed building 

information models (Akinci et al. 2006). Some image analysis methods can identify parts 

of the images where detailed spatial data is necessary, such as parts that have 

discontinuities of color and changes in curvatures (Zhang and Tang 2015b). Given point 

goals extracted from various data sources, the proposed algorithm can then automatically 

generate the laser scan plan through three steps, as shown in Figure 6:  
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Figure 6. A Framework of the Divide-And-Conquer Method of Laser Scan Planning. (a) 

Top view of all point goals of a building. (b) Clustering the point goals into clusters. (c) 

Determine scanning positions in each cluster. Some scans may only cover a few point 

goals at the borders between clusters (e.g. scan 1b in the orange group and scan 2b in the 

blue group) so that adding them into the plan would cause redundancies. (d) Identify 

point goals that are at the borders between clusters and causing redundant scans as 

“garbage,” and determine scanning positions and resolutions for “garbage.” 

1. Clustering the point goals into different clusters according to contradicting visibility 

relationship analysis (Section 2.4.3, Figure 6b): 

Different areas on a job site may require different LODs, leading to different angular 

resolution requirements. If the algorithm configures scanning resolution for each point 
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goal, the computational complexity of the algorithm will be high. On the other hand, if 

the algorithm configures the angular resolution for all point goals as a whole, the 

imaging plan will always satisfy the most LOD-demanding point goals, and thus waste 

time on generating unnecessary dense data for point goals that require lower LODs. 

Instead of using the above two inefficient planning strategies, the divide-and-conquer 

method will first cluster point goals that have similar LOD requirements and locate 

close to each other and then determine laser scanning positions and resolution for each 

cluster. 

Overall, the algorithm automatically detects whether a single scan can capture two 

point goals with sufficient data quality, termed as the “contradicting visibility 

relationship” between two goals. Then the algorithm groups all point goals that have 

no contradicting visibility relationship with each other into one cluster, so that the 

number of clusters is the minimum number of necessary scans to satisfy the data quality 

requirements of all point goals. 

2. Determining scanning positions and resolutions for clusters of point goals to satisfy the 

data quality requirements (Section 2.4.4, Figure 6c): 

Within each cluster, the algorithm first derives the feasible area (discussed in Section 

2.4.1.4) for every point goal. The algorithm then determines the minimum scanning 

positions according to the feasible areas, ensuring the coverage of all point goals in the 

current cluster. Some scans may only cover a few point goals at the borders between 

clusters (e.g., scan 1b in the orange group and scan 2b in the blue group in Figure 6c) 

so that adding them into the plan would cause redundancies. The algorithm thus ignores 

any scans that only cover a small portion of total point goals in order to address most 
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point goals with least number of scans to improve scanning efficiency. In the next step, 

the planning algorithm will address those missed point goals through a “garbage 

collection” step. 

3. Addressing point goals not covered by the laser scan plan through “garbage collection” 

(Section 2.4.5, Figure 6d) 

After determining scanning positions and the angular resolution for each cluster of 

point goals, the algorithm identifies point goals at the borders between clusters and 

assigns redundant scans as “garbage.” The algorithm then combines these point goals 

into a new cluster, thereby determining the angular resolution and positions of this new 

cluster. This particular algorithm is named as “garbage collection” in this paper. Finally, 

the algorithm combines all scanning positions and their respective angular resolutions 

to form the laser scan plan based on plans that address clusters of point goals. 

2.4.3 Divide: clustering of point goals  

The proposed laser scan planning method uses two levels of simplification to reduce the 

computational complexity. The first level of simplification generates point goals to 

represent critical information requirements across the whole job site. The second level of 

simplification clusters point goals to decompose the job site into parts and generates laser 

scan plans for each cluster of point goals, which are parts of the job site. The objective of 

point goal clustering is to divide them into the minimum number of clusters so that the 

planning method would consider fewer clusters while having as many possible point 

goals within one cluster that are visible to a single scanning position. This two-level 

simplification enables the algorithm to choose the optimal scanning position and 
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resolution for the point goals in each cluster. Therefore, the method strives to minimize 

the number of scans for covering all point goals, thereby improving the overall 

computational efficiency.  

Figure 7 shows that the clustering algorithm uses several rules to assess whether every 

pair of point goal is visible at certain scanning positions, hereby termed as “contradicting 

visibility relationship.” For example, if two point goals are on two sides of a wall, the 

visibility of these two points contradicts with each other. Another example of 

contradicting visibility relationship is two point goals that are too far away from each 

other. The rules assessing the contradicting visibility relationship of point goals (Section 

2.4.3.2) involve three variables: 1) the angle between the surface orientation at two point 

goals, 2) the distance between two point goals, and 3) “featured length” of the job site 

determined by the elevation and LOD of all point goals (Section 2.4.3.1). Knowing the 

contradicting visibility relationship of any pair of point goals, the clustering algorithm is 

able to cluster point goals without contradicting visibility relationship into the same 

cluster, in order to obtain the minimum number of clusters. Section 2.4.3.3 presents the 

algorithm of clustering point goals according to the visibility-contradict assessment rules.  

 

Figure 7. Overview of the Point Goals Clustering Algorithm  
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2.4.3.1 Featured length 

Generally, the clustering algorithm will cluster all the point goals that one single scan can 

cover. The clustering algorithm thus needs to determine the likelihood of capturing 

certain point goals in one scan. The “featured length” of a building facade is the 

horizontal range that one single scan will cover using the sparsest angular resolution that 

can secure all goals on the façade with the required LOD, which is equal to the width of 

the 3D feasible space of the point goal requiring the densest scanning resolution. If the 

distance between two point goals is longer than the featured length, a sparse scan will not 

capture both goals, and increasing the data density will cause a significant increase in 

scanning time. 

Figure 8 demonstrates the geometric concept of featured length. The distance between 

point goals A and B in Figure 8 (a) is 15 m, while the distance between point goals A’ 

and B’ in Figure 8 (b) is 25 m. A and B are 4 m above the height of the laser scanner, 

while A’ and B’ are 24 m above the scanner. The LOD requirements of all four goals (A, 

B, A’, B’) are 0.025 m. Among all the point goals in the building shown in Figure 8 (a), 

A and B require the densest scanning resolution to meet the LOD requirement because of 

their elevation. According to Equation (6) in Section 2.4.1.4, engineers need to choose 

the scanning angular resolution of 2.51×10−3 rad to scan the wall that AB is on in order 

to satisfy the LOD requirements. In the point cloud of the wall, the horizontal range with 

required LOD is equal to the width of the 3D feasible space of the point goal A or B, 

which is around 4.97 m. I identify this length as the featured length of the building in 
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Figure 8 (a). Similarly, the featured length of building (b) is l’ = 39.78 m because 

engineers need to use a much denser angular resolution of 3.14×10−4 rad to scan A’ and 

B’. Therefore, AB > 3l while A’B’ < l’, which means that it is efficient to scan point A’ 

and B’ in a single sparse scan in (b), while it is not necessary to cover A and B in one 

scan in (a) because that needs denser scanning that significantly increases the data 

collection time. Section 2.4.3.2 will show more details about how featured length will 

help the grouping of point goals. 

The first step of deriving the featured length is to determine the sparsest angular 

resolution that can cover any point goal on all facades of the building on the job site with 

required LOD,𝛿𝑗𝑜𝑏𝑠𝑖𝑡𝑒, which relates to the elevation and LOD of each point goal: 

𝛿𝑗𝑜𝑏𝑠𝑖𝑡𝑒 = min(𝛿𝑠𝑝𝑎𝑟𝑠𝑒𝑠𝑡,𝑖) , 𝑖 = 1,2,3…𝑛 

where 

𝛿𝑠𝑝𝑎𝑟𝑠𝑒𝑠𝑡,𝑖 ≤
𝐿𝑂𝐷𝑖
2∆ℎ𝑖

 

where n is the number of point goals at the job site, and i refers to any point goals at the 

job site. 𝛿𝑠𝑝𝑎𝑟𝑠𝑒𝑠𝑡,𝑖 is the sparsest resolution applicable for point goal i, and ∆ℎ𝑖 is the 

vertical distance between point goal i and the laser scanner (Section 2.4.1.4).  

The second step in deriving the featured length 𝑙 is determining the range that one single 

scan can cover based on 𝛿𝑗𝑜𝑏𝑠𝑖𝑡𝑒 and the LOD of the point goals that need to be scanned 

with 𝛿𝑗𝑜𝑏𝑠𝑖𝑡𝑒: 
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𝑙 = max (𝐿𝑂𝐷𝑗/(2𝛿𝑠𝑝𝑎𝑟𝑠𝑒𝑠𝑡,𝑗)), 𝑗 ∈ (𝑗|𝛿𝑠𝑝𝑎𝑟𝑠𝑒𝑠𝑡,𝑗 = 𝛿𝑗𝑜𝑏𝑠𝑖𝑡𝑒) 

 

Figure 8. Comparison Between Point Goals of Buildings with Different Feasible Lengths. 

Yellow shades indicate the approximate range one laser scan can cover with required 

LOD using an adequate angular resolution. 

2.4.3.2 Contradicting visibility relationship analysis using featured length and 

orientations 

Contradicting visibility relationship analysis determines the likelihood of having one scan 

cover two point goals with required LOD. This also means the possibility of having the 

3D feasible spaces of two point goals intersect. Instead of calculating the 3D feasible 

spaces of all point goals and then checking for overlaps, which is time-consuming, this 

approach will instead calculate the contradicting visibility relationship using a fast and 

approximate approach. The inputs of the contradicting-visibility-relationship analyzing 

algorithm include the distances between pairs of point goals, angles between the surface 

orientations at pairs of point goals, and the featured length of the job site. In the 

clustering stage, the algorithm assumes the angular resolution used as 𝛿𝑗𝑜𝑏𝑠𝑖𝑡𝑒 (defined in 

4.3.1). This algorithm utilizes an extensive library that contains a number of visibility-
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contradict analysis rules generated from geometric relationships of 2D feasible areas of 

point goals and experimental results. The following rules are some examples selected 

from this library: 

 

Figure 9. Examples of Rules for Contradicting Visibility Relationship Analysis. 

1. Figure 9 (a) shows two point goals, A and B, and the possible outer boundaries of 

their feasible areas, which are the projections on the x-y plane of the 3D feasible 

spaces of these two point goals. Figure 9 (a) shows that if the distance between A 

and B is larger than four times of the featured length l, then the two point goals 

contradict in visibility. Hence, it is not efficient to use unnecessarily high scan 

resolution to cover distance goals, A and B, in the same scan, because other areas 

covered in this scan will be over sampled. No matter what the orientations of point 

goal A and B are, it is impossible for the feasible spaces to intersect with each other 

if the distance between A and B is larger than four times the featured length.  
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2. Figure 9 (b) shows two point goals that have the surfaces between them form a 90-

degree angle. According to the geometric relationship of  two feasible areas of point 

goals shown in Figure 9 (b), if the distance between A and B is larger than (2 +

√2) times of the featured length l, and the angle between the surfaces at A and B 

varies from 90 to 180 degrees, then the two point goals have contradicting visibility 

relationship. If the distance increases or the angle decreases, then it is impossible 

for the two feasible spaces to intersect with each other.  

3. Figure 9 (c) shows two surfaces with 305-degree angles and close to each other. If 

the angle between the surfaces at A and B was between 305 and 360 degrees, then 

the two point goals have contradicting visibility relationship. One example is that 

two point goals are on two sides of a wall. In this case, the orientation angle of two 

point goals is 180 degrees. If two point goals are close enough, their feasible area 

may intersect. However, this case is very rare on actual job sites. Therefore, two 

point goals are in contradicting visibility relationship as long as the angle of the 

surface is larger than 305 degrees.  

4. Figure 9 (d) shows that two point goals A and B are occluded by an object, which 

has point goals A’ and B’ on its two sides. In practice, A is often occluded by the 

object when B is visible, and vice versa. Therefore, A and B have a contradicting 

visibility relationship due to the occlusion of the object between A and B. 

Furthermore, such an object between A and B often contains point goals with 

contradicting visibility relationships, shown in rule 3 (A’ and B’ in Figure 9d). As 

a result, this rule means that A and B have a contradicting visibility relationship if: 

1) two point goals (A and B) are “close” to another pair of point goals (A’ and B’) 
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with contradicting visibility relationship described in (3); and 2) the distance AB is 

greater than A’B’. Here, “close” is defined as “the length of AA’ (or BB’) in x-y 

plane is less than 10% of the featured length.” 

2.4.3.3 Clustering of point goals 

The clustering algorithm will group all point goals that satisfy two conditions. The first 

condition is that the point goals without contradicting visibility relationships are in the 

same clusters while ensuring the least possible number of clusters. The second condition 

is that the point goals in the same cluster should be close to the geometric center of the 

cluster.  

The first clustering condition uses the following statement: n vertices are in a graph to 

represent n point goals; an edge connects two vertices if they are contradicting in 

visibility. The algorithm will label two connected vertices as different colors to indicate 

that they belong to different clusters. So the least number of colors needed to color the 

whole graph, called the 'chromatic number' of the graph (Berge 1973), is the smallest 

positive integer k that allows the algorithm to partition the set of point goals into k parts 

containing point goals not contradicting with each other. Vertices coloring is a heavily 

discussed topic in modern graph theory and there are multiple coloring algorithms 

available in the literature (Caramia and Dell’Olmo 2008; Elghazel et al. 1918; Kučera 

1991). The clustering algorithm uses the greedy coloring algorithm, which considers the 

vertices of the graph in sequence and assigns each vertex its first color without 

contradiction (Kučera 1991). The “divide” algorithm will run greedy coloring algorithm 

repeatedly and choose a clustering result with the minimum number of clusters as the 
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starting point for further optimization of the clustering result. Figure 10 (a and b) shows 

the clustering of point goals according to the first clustering condition. 

The result of the coloring of graph nodes using a greedy algorithm is not unique (Kučera 

1991). There could be multiple clustering results achieving the same minimum number of 

clusters. Therefore, the “divide” algorithm will further improve the clustering results 

according to the second clustering condition. Without losing generality, a clustering 

result has k clusters, and a cluster i has ni point goals. In one cluster, the performance 

index of clustering results is the sum of the square distance between point goals and the 

geometric center of clusters: 

𝐶 =∑∑[(𝑥𝑗𝑖 − 𝑥𝑐𝑖)
2
+ (𝑦𝑗𝑖 − 𝑦𝑐𝑖)

2
]

𝑛

𝑗=1

𝑘

𝑖=1

                                             (9) 

where 𝑥𝑗𝑖 and 𝑦𝑗𝑖 are the (x, y) coordinates of the jth point goal in cluster i, respectively. 

𝑥𝑐𝑖 and 𝑦𝑐𝑖 are the (x, y) coordinates of the center point of cluster i, respectively. Based 

on the clustering result that satisfies the first clustering condition (Figure 10b), the divide 

algorithm will iteratively improve the result by moving the point goals between clusters 

to minimize 𝐶 defined in Equation (9), keeping the point goals having contradicting 

relationship in different clusters (the first clustering condition). Figure 10 (b and c) shows 

the algorithm for improving the performance of the clustering result. The result shown in 

Figure 10c is different from the starting point (Figure 10b), because of moving point 

goals between clusters to minimize C. 
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Figure 10. Point Goal Clustering Algorithm. (a) Top view of all point goals in a job site. 

(b) one clustering result shown by color and shape of points. This result involves the first 

rule of point goal clustering (visibility contradict). The number of clusters is the 

minimum, but the points in the same cluster are more sparsely distributed. (c) Optimized 

point goal clustering result. This clustering result has a minimum number of clusters, and 

point goals in the same cluster are close to the geometric center of the cluster. 

2.4.4 Conquer: generating laser scan plans for clusters of point goals 

After clustering point goals, the algorithm will generate a laser scan plan for each cluster 

called the “conquer” algorithm. These laser scan plans for clusters are thus parts of a 

complete laser scan plan that covers the whole job site. The pseudo code of the conquer 

algorithm below shows the process of scanning position detection and resolution 

configuration in each cluster. 

 This algorithm of generating “local” plans includes four steps: first, the “conquer” 

algorithm will set a sparse angular resolution value for initializing the generations of 

feasible spaces of point goals within a cluster. Second, the “conquer” algorithm will 

generate scanning positions according to the feasible areas, called “next-best-view” 

algorithm (Connolly 1985; Song et al. 2014; Zhang and Tang 2015a). Third, the 
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algorithm will progressively densify the angular resolutions and repeat step 2, and then 

compare the total scanning time of the plans generated based on different angular 

resolution values. In this way, the “conquer” algorithm will find the most time-efficient 

combination of scanning resolution and positions for this cluster of point goals. In the 

fourth step, the algorithm will identify the point goals that were ignored by the “next-

best-view” algorithm, for the algorithm ignores a percentage of total point goals when 

scanning those single goals can significantly increase the data collection time. Parameter 

“a” is the function of the number of clusters, the highest resolution used in all clusters, 

and the resolution determined in the current cluster. For example, in one of the case 

studies, the algorithm ignored two point goals in one cluster, which is less than 1% of 

total point goals. If the algorithm planned a scan for the ignored point goals, the total 

scanning time would have increased by about 10%.  

The outputs of this algorithm of generating laser scan plans for clusters of point goals 

include the scanning positions and the corresponding angular resolutions, as well as 

“garbage” - point goals that remain un-scanned in the current cluster. Section 2.4.5 

presents a garbage collection algorithm that addresses these remaining point goals. 

Pseudo code of the “Conquer” algorithm 

1: Input: point goal information in one cluster 

2: Output: Scanning positions in the cluster; scanning resolution; point goals un-

scanned  

3: resolution ← sparsest_resolution_in_current_cluster // set initial value of 

scanning resolution 
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4: [scanning_position] ← next_best_view(pointgoals, resolution) // Use next-best-

view algorithm to generate the scanning positions according to initial scanning 

resolution 

5: scan_time_previous ← scan_time_initial 

6: scan_time_current ← scan_time_initial 

7: while scan_time_current <=  scan_time_previous do // find the optimal 

scanning resolution  

8: scan_time_previous ← scan_time_current 

9: [scanning_position, scan_time_current, un-scanned_point_goals] ← 

next_best_view(pointgoals, resolution) 

10: resolution ← higher_resolution (resolution) 

11: end while 

12: return scan_position, scan_time_current, un-scanned_point_goals 
 

 

2.4.5 Combine: “garbage collection” and finalizing scan configurations 

The “conquer” algorithm only requires the scans to cover most of the point goals in one 

cluster and ignore some difficult point goals that significantly increase the data collection 

time.  

For each cluster, the algorithm will collect point goals that remain un-scanned after 

determining the local laser scan plans. These un-scanned point goals from all clusters 

form a new cluster, and the algorithm will carry out the laser scan planning for this new 

cluster using the same process described in the previous section. I name this algorithm as 

“garbage collection”. The pseudo code of “garbage collection” algorithm below shows 

the detailed information of this step. 

 



  52 

Pseudo code of the “Garbage collection” algorithm 

1: Input: all point goals remain un-scanned from all clusters, scanning positions 

from other clusters 

2: Output: Scanning position(s) and scanning resolution for “garbage” cluster 

3: if  scanning positions from other clusters cover any un-scanned_pointgoals do 

4: delete current un-scanned_ pointgoals 

5: end if // Because the scans for Cluster A may cover the “garbage” point goals in 

Cluster B, the algorithm examines whether previous scans have already covered 

any of the point goals from other clusters. If so, delete these point goals from 

the “garbage” cluster. 

6: [scanning_position, scanning_resolution, pointgoals_covered_in_each_scan] ← 

“Conquer” algorithm(un-scanned_pointgoals) 

7: for each scanning_position 

8: if pointgoals_covered_in_each_scan < a% * total_number_of_ pointgoals do 

9: delete current scan_position 

10: end if 

11: end for // If a scan will only cover a% of the total number of point goals, I 

consider it inefficient and discard this scan. This is a trade-off between data 

quality and scanning efficiency. In addition, doing this improves the robustness 

to outlier point goals due to inaccurate data or model. 

12: return scanning_positions,  angular_resolutions 
 

 

2.5 Validation  

2.5.1 Runtime analysis of the laser scan planning algorithm 

In this study, I conducted big-O analysis (Latimer et al. 2004) to show the upper bound 

on the runtime of the laser scan planning method. The inputs of the planning method are 

point goals, so the big-O analysis examines how the computational time increases with 

the number of point goals n. The runtime of “divide” algorithm is O(n2) because the 

algorithm needs to check the contradicting visibility relationship between all goals. The 
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runtime of “conquer” and “combine” is also O(n2) because the algorithm needs to 

calculate the feasible area for each point goal. As a result, the computational complexity 

of the laser scan planning method developed in this study is O(n2). 

In order to validate the big-O analysis, I executed the developed laser scan planning 

algorithm for multiple sites with different numbers of point goals and buildings of 

various shapes. I developed the laser scan planning algorithm using Matlab R2014b, and 

tested the algorithm on a computer with 3.60 GHz CPU and 32 GB RAM. Figure 11 

shows that the square root of the running time of this algorithm increases linearly with 

respect to the number of point goals, and so does the square root of the number of 

contradicting visibility relationships between point goals. This reveals a computational 

complexity of 𝑂(𝑛2). Looking into these results, I found that in one case study, the 

number of a large campus building with a gross area of 13,015 m2 had 258 point goals. 

The runtime of the algorithm for this building was 381.6 s, about 6.36 minutes. This 

shows the potential of achieving real-time laser scan planning on construction sites that 

require timely and detailed spatiotemporal information for proactive project control. 



  54 

 

Figure 11. Relationship between Number of Point Goals, Number of Contradicting 

Visibility Relationships and Program Running Time 

2.5.2 Case study: a campus building of complex shape 

To validate the proposed laser scan planning method, I conducted laser scanning on a 

campus building based on the optimal plan automatically identified by the algorithm and 

several plans generated by a 3D imaging researcher and a laser scanning professional 

who has been using laser scanners in more than ten large building projects. Figure 10a 

shows the as-designed model of this campus building at Arizona State University (ASU). 

All the automatic and manual laser scan plans use 258 point goals specified by an 

engineer on the as-designed model (Figure 10b-c) of the building, according to the 

General Services Administration (GSA) manual of laser scanning for building facades 

(U.S. General Services Administration 2009).  The point goals include the corners of 

windows, points along the edges of walls, and the corners of walls. In addition, I set the 

LOD requirement of each goal as 25mm (one inch), which is GSA Level 2, a commonly 

adopted standard for building exterior design and renovation (U.S. General Services 

Administration 2009).  
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Figure 12. A Campus Building in Arizona State University (ASU): (a) As-designed 

model with point goals (red crosses). (b) Elevation view of all the point goals. (c) Top 

view of all the point goals. 

2.5.2.1 Overview of performance evaluation  

In the study of the campus building, I compared the performance of three laser scan 

plans. Plan A: a plan automatically generated by the developed laser scan planning 

algorithm; Plan B: a plan manually created by a 3D imaging researcher, and Plan C: a 

plan manually created by a laser scanning professional from a general contractor who 

built this studied building. 

This study uses two metrics to measure the performances of laser scan plans: 1) data 

collection time, and 2) data quality. The data collection time consists of scanning time, 

time for moving scanners between stations, and time for setting up at each station. The 

data quality assessment focuses on the level of detail (LOD) captured in the collected 

data. The metric of data quality is the percentage of point goals captured with their 

required LODs (P). 

The evaluation of a laser scan plan has three phases: Phase 1, collecting laser scanning 

data of the building according to the developed plan; Phase 2, calculating the percentage 
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of point goals captured with their required LODs; Phase 3, performing additional scans 

for addressing point goals that were missing or lacking details. Overall, I compared laser 

scan plans in terms of: (1) Percentage of point goals captured with the required LODs 

(P); (2) time for completing the scans in phase 1; (3) time for completing the scans in 

phase 1 plus additional time required to perform scans in phase 3. 

2.5.2.2 Generating laser scan plans 

Given the point goals as the inputs for manual laser scan planning, the developed 

algorithm generated the automated scanning plan (Plan A). The researcher and the laser 

scanning professional generated plans B and C, respectively, by following the Building 

Information Model Guide for Laser Scanning of the United States General Services 

Administration (GSA BIM Guide) (U.S. General Services Administration 2009). GSA 

BIM Guide specifies that the distances between adjacent scanning locations should be 

between 20 m to 40 m to capture high-quality data. The yellow stars in Figure 11(a) (b) 

and (c) show the scanning positions of the three laser scan plans. In these plans, the 

numbers next to the scanning positions (e.g. 1/5, 1/4, etc.) are the scanning resolutions 

used at those scanning positions. The noise level of laser scanning data was kept at 

constant for all scans, which is the other parameter influencing the laser scanning time. 

The corresponding angular resolution of 1/5, for example, equals to 𝛿1/5 =
𝜋

20000∗(
1

5
)
=

 7.85×10−4 rad (Faro ® Laser Scanner Focus 3D Manual 2010). 
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2.5.2.3 Comparison of manually planned and automatically generated data collections 

The data quality of the 3D laser scanning point clouds of the studied campus building 

was evaluated using the software “CloudCompare”(Girardeau-Montaut 2013). Figure 14 

visualizes all points where the LOD requirements were satisfied in the point clouds 

collected through the three compared plans. The red circles in these figures highlight 

areas where the point cloud does not satisfy the GSA Level 2 LOD requirements due to 

poorly designed scanning positions and resolutions.  

 

Figure 13. Laser Scan Plan Comparison: (a) a plan automatically-generated by the 

proposed method (b) a plan manually created by an experienced 3D imaging researcher, 

and (c) a plan manually created by a laser scanning professional. Note: Yellow stars show 

the scanning positions of the above laser scan plans in Phase 1. Red stars show the 

additional scanning positions for the point goals that were missed during the previous 

scans according to each laser scan plan in Phase 3.  Numbers beside the stars are the 

respective scanning resolution. 

Figure 14a shows that the data collected according to the automatically generated plan 

cover more areas with sufficient LODs compared with the data collected according to 

manually generated plans. In the results of automatic laser scanning planning (Figure 
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14a), all 258 point goals were with the required GSA Level 2 LOD (denser than 25 mm 

along both vertical and horizontal directions). However, only 151 out of 258 point goals 

have the required GSA Level 2 LOD in data collected through manual planning by the 

experienced laser scanning researcher (Figure 14b). Only 195 out of 258 point goals meet 

LOD requirement in data collected according to the plan manually created by a laser 

scanning professional (Figure 14c).   

In order to address point goals missed by manual planning, I conducted five additional 

scans for Plan B, and four additional scans for plan C. Red stars and corresponding 

numbers in Figure 13(b) and (c) shows the locations and resolutions of these extra scans. 

Table 1 shows a detailed comparison of the performances of manual and automatic laser 

scan planning. 
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Figure 14. Data Quality Comparison of Point Clouds Collected According to Three 

Different Plans: (a) a plan automatically-generated by the proposed method (b) a plan 

manually created by an experienced laser scanning researcher, and (c) a plan manually 

created by a laser scanning professional. Red circles highlight the areas with low data 

quality. Fig (d) shows details of three areas marked as having insufficient LOD in (c). 
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Table 1 Statistics comparing manual and automatic laser scan planning 

Laser scan 

plans 

No. of 

scans in 

Phase 1 

Scanning 

time in Phase 

1 

Index of 

data 

quality (P) 

No. of 

scans in 

Phase 3 

Scanning 

time in 

Phase 3 

Total scanning 

time 

Automatic 11 8495s 100% 0 0s 8,495s 

Manual plan 

by the laser 

scanning 

researcher 

12 6788s 58.5% 5 5201s 11,989s 

Manual plan 

by the laser 

scanning 

professional 

13 7017s 75.6% 4 4652s 11,669s 

 

 

The above results indicate that it is difficult for manually generated laser scan plans to 

achieve 100% coverage of point goals with required LOD. The first difficulty is in 

choosing the right scanning resolution. For example, for these areas shown in Figure 14d, 

only scanning with the resolution of 1/2 can ensure the LOD because the elevation of 

these areas is high above the ground. The second difficulty is in estimating the area that 

one scan can cover with sufficient LODs. In the case study, the curved shape of the 

studied building caused additional challenges for a human to precisely choose the 

scanning positions so that areas with required LOD would connect without gaps.  

The case study of this campus building shows that the coverage of automatically planned 

laser scanning is better than that of manually planned laser scanning (100% point goals in 

automatic planning versus 58.3% (researcher) and 75.6% (surveying professional) point 

goals in manual planning satisfy the required LOD), although the data collection time of 

automatically generated laser scan plan is longer than that of the manually generated 
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plan. This is because the laser scan planning method uses data quality requirements as the 

priority. When both automatic and manual planning generates high-quality 3D imageries, 

automatic laser scan planning is time-efficient (8495s versus 11989s and 11669s) because 

the laser scan planning method will optimize the data collection time while ensuring that 

data quality requirements are satisfied. 

2.6 Discussions 

The developed new laser scan planning method in this study comes with some limitations 

as detailed next, which serve as objectives for future research.  

1. The generation of point goals for the laser scan planning algorithm is manual. In future 

research, I plan to explore methods that can automatically identify point goals based on 

patterns in collected imageries (images, videos, etc.) that will help guide the divide-

and-conquer method, particularly if the as-designed model of the building is not 

available. In a separate publication, I have explored the use of pictures and the 

“structure from motion” method (Westoby et al. 2012) to generate sparse 3D point 

clouds of a building, and then identify areas that are visually complex in the point cloud 

as point goals for guiding scan planning (Zhang and Tang 2015b). In addition, I will 

extend the job site presentation from point goals to goals of different geometric 

elements, including lines, planes, cylinder surfaces, and spheres. The analytical 

solution of scanning goals of different geometric elements could simplify the scan 

planning process. 

2. Different construction environments and tasks have different LOD requirements. 

Currently, the developed approach still requires engineers to specify LOD requirements 
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of point goals based on GSA requirements and the experiences of experts. Future 

studies will focus on automatically deriving the LOD of every point goal to fully reflect 

the dynamic properties and visual information requirements (e.g., shapes and colors) 

for comprehensive monitoring of different kinds of building features and structures. 

3. In the proposed method, contradicting visibility relationship analysis is able to help 

identify the scanning locations where no point goal blocks the visibility of any other 

point goal. However, objects that do not have a point goal (e.g., vegetation) may block 

the visibility of other point goals during laser scanning, thus causing occlusion 

problems in the collected point data. Therefore, utilizing previously collected sparse 

3D imagery data, future studies will develop a time-efficient visibility checking process 

to reduce the influence of the unknown environment on data quality. 

4. This study does not cover how the laser scanning positions and parameters influence 

the accuracies of 3D measurements, and how to coordinate multiple scanning stations 

to achieve accurate and detailed imageries. In surveying science, there is a theory about 

arranging surveying positions for maximum accuracy by ensuring the “strength of 

figure” of the network consisting of all surveying positions (Brinker and Minnick 1995), 

which I believe could be applied to the laser scan planning method.  In the future, I plan 

to enable the scan planning algorithm to cover all given point goals with sufficient LOD 

and LOA by maximizing the strength of figure of the automatically generated scan 

plans.  

5. In addition, I will try to integrate the laser scan planning method with construction 

scheduling. I expect that the optimization of construction workflows for inspection 
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activities will realize real-time and proactive construction quality control while 

minimizing interferences between data collection activities and construction workflows.  

2.7 Conclusion 

This paper describes the development of a rapid laser scan planning method that 

generates scanning positions and recommends angular resolutions for different positions 

in order to achieve efficient and effective laser scanning data collection. Compared with 

previously developed sensor planning methods, this new approach not only guarantees 

the density of collected 3D data but also optimizes the data collection time. Moreover, the 

new laser scan planning method is able to achieve a computational complexity of 𝑂(𝑛2), 

which is more efficient than previously developed algorithms. Evaluation results on 

different buildings show the effectiveness of the proposed method. Laser scan plans 

generated by the new method will benefit high quality data collection without wasting 

time and resources. In future research, I will focus on the automation of point goal 

generation in order to achieve an automatic data-driven workflow of 3D data collection 

on dynamic job sites. 
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CHAPTER 3 IMAGERY-BASED RISK ASSESSMENT USING CROWDSOURCING 

TECHNOLOGY IN COMPLEX WORKSPACES 

3.1 Introduction 

Imagery has shown potentials for supporting risk management in construction and civil 

infrastructure management. In both China and the United States, civil infrastructure 

management agencies use imaging sensors for collecting detailed spatiotemporal 

information of bridges, dams, and other large structures for detailed condition assessment 

and risk analysis (Zhu and Brilakis 2010). Efficient and effective uses of imagery data for 

risk recognition is thus becoming increasingly important for establishing a data-driven 

risk management framework for civil engineering projects (Zhang and Tang 2015b). 

Unfortunately, subjective image interpretation manually conducted by inspectors brings 

uncertainties and biases in risk recognition results based on images. Even well-trained 

inspectors spend much time for achieving comprehensive and reliable risk recognition 

from images (Lagasse et al. 2009). In some cases, the uncertainties and biases within 

manual image interpretation processes can mislead the decisions about construction 

safety management and civil infrastructure maintenance (Moore et al. 2001). Civil 

engineers have been developing methods to increase the reliability of manual image 

interpretation in construction safety (Chang and Liao 2012; Lattanzi and Miller 2014; 

Papaelias et al. 2016). Some researchers examined image processing algorithms that can 

automatically extract certain features from images to assist engineers in identifying risks 

of construction (Chang and Liao 2012). However, engineers still need to decide how to 

setup and use such image processing algorithms so that the subjective factors still exist 
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(Moore et al. 2001). At present, interpretation of the images based on human intuition 

and experiences seems still unavoidable.  

Recently, crowdsourcing is becoming a promising tool for reducing the training costs of 

professional inspectors while maintaining or even improving the reliability of inspection 

(Brabham 2008; Kittur et al. 2008). A “crowdsourcing” approach collects risk 

recognition results through online image interpretation games, and aggregates answers 

from game players into hopefully more comprehensive and reliable risk recognition 

results (Brabham 2008; Poetz and Schreier 2012). Crowdsourcing integrates the 

recognition power of human individuals into formal reasoning and pattern classification 

algorithms for solving image analysis tasks that are challenging state-of-the-art computer 

vision methods. Examples of such tasks include image segmentation, object recognition, 

and scene understanding (Brabham 2008; Poetz and Schreier 2012; Ranard et al. 2014).  

Unfortunately, while applying such methods to risk assessment based on images, 

unreliable answers from some game players who lack professional inspection training can 

cause biases in the aggregated results. As a result, taking the answer of the majority as the 

risk assessment result could be wrong (Burnap et al. 2015). New theories are thus 

necessary to overcome the limitation of majority-based approach to alleviate the 

distortions caused by biased or unprofessional answers.  

This research presents a study showing that without knowing the actual risks on 

construction sites, human-image interaction behavior analyses of anonymous online 

image interpreters can overcome the limitation of the majority-based approach and 

acquire reliable risk detection from job site imageries. I conducted this study with the 
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following steps: 1) train anonymous interpreters in a few minutes on limited safety rules 

and then have them assess a few images to identify violated safety rules, and 2) 

automatically aggregate the risk assessments of trained interpreters using a Bayesian 

network model into results. I validate this method using an online image-based risk 

assessment experiment in elevator installation projects. The risk assessment results of the 

experiment show that the proposed method can achieve reliable results compared with the 

result following the majority’s vote. 

3.2 Motivating Case 

The overall goal of this research is to test the hypothesis that without knowing the actual 

risks on construction sites, the crowdsourcing-based risk assessment method can 

automatically aggregate risk assessments of anonymous people who just took simple 

training about construction safety rules into reliable risk evaluations. Figure 15 visualizes 

such a bias of groups of anonymous online image interpreters the majority of who 

provide a wrong answer about the risk captured in an image.  Specifically, Figure 15(A) 

shows a crowd-sourced risk assessment result of a job site picture that contains a 

violation of a construction safety rule. In the assessment result, the majority (65.5%) of 

the online anonymous image interpreters correctly identified the violated construction 

safety rule after observing the picture. Figure 15(B) shows the result of a job site picture 

that contains no violation, wherein the blue region shows the number of correct answers, 

which is “no violation.” Unfortunately, in this case, the majority of the answers about the 

type of safety rule violated in that picture mistakenly identified that the scene captured in 

the picture violated a particular safety rule due to the lack of knowledge about that 
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particular rule (green region). Figure 1(B) also shows that the second largest portion of 

the game players chose “no violation,” which is quite close to 23.8%, the majority, and 

other answers are not very far behind. Such diverse answers reflected confusions and 

disagreements among people about the image contents, and slight biases can easily cause 

a switch of the “majority answer.” 

 

Figure 15. Crowdsourced Risk Assessment Result of Different Job Site Pictures. A: 

picture with a violation of “wearing or holding metallic objects around live equipment”; 

B: a picture with no violation. 

3.3 Previous Research 

3.3.1 Construction safety inspection 

Construction is one of the most hazardous industries with high fatality and injury rate, because 

the uniqueness, dynamic, and complexity of construction sites increases not only workers’ 

exposure to hazards, but also the difficulty in identifying these hazards(Chen et al. 2016; Cheng 

and Teizer 2013; Fang et al. 2004; Seo et al. 2015). Researchers and industry propose many 

techniques to maintain safety before and during construction projects. These techniques 

include: 1) designing safety, which is the consideration of the safety of construction 

workers in the design of a project (Gambatese et al. 2005); 2) safety training (Ho and 

Dzeng 2010; Su et al. 2015); measuring and improving the safety climate (Flin et al. 
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2000; Hallowell et al. 2013; Hinze et al. 2013; Liao et al. 2013), and 4) safety planning 

which identifies of all potential hazards along with the corresponding safety responses 

(Zhang et al. 2015). A frequently used technique to prevent safety hazards in construction 

projects is safety inspection during the construction process (Lu et al. 2015; Reese and 

Eidson 2006). Job site inspection works as the final line of defense against the accidents 

when safety training, safety planning, and other front-end techniques occasionally fail.  

However, the manual job hazard analysis is time-consuming, and even error-prone (Liao 

et al. 2016; Seo et al. 2015). Currently, construction safety inspection mainly relies on 

manual works. Inspection personnel needs to go to the job site frequently to identify and 

resolve the potential hazard related to the job site environment, worker behavior, and 

facility usage (Seo et al. 2015). Manual safety inspections are costly, time-consuming, 

and error prone because they require manual observations and documentations by 

experienced supervisors or safety personnel (Awolusi and Marks 2016; Levitt and 

Samelson 1993; Wang and Boukamp 2011). Liao et al. (Liao et al. 2016) presented the 

observation miss in a simulated safety inspection experiment of an elevator installation 

project. In the experiment, 40 job site photographs containing 30 risks taken at four 

typical locations (hoist way, pit, machine room, and storeroom) from different job sites 

created a virtual environment of the elevator installation. Five inspectors from an elevator 

installation company with working age ranging from 1.5 to 25 years are then asked to 

identify the job site pictures with risks within 13 minutes. The experiment result shows 

that the inspectors can only identify 15-24% safety risks correctly. Also, only 62% of 

answers of identified risks are correct. This result shows that the complexity of the 

checklist, including having too many items to check and ambiguous descriptions increase 
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the cognitive control load for the inspectors. Therefore, new technology is needed to 

reduce the workload and improve the effectiveness of safety inspection work.   

Researchers are trying to achieve automatic safety inspection on the job site using 

computer vision. For example, Rubaiyat et al. (Rubaiyat et al. 2016) automatically detect 

the users of construction helmets from the construction surveillance images. Han and Lee 

(Han and Lee 2013) propose a framework of vision-based unsafe action detection in a 

construction site. This research uses job site videos to reconstruct 3D human skeleton 

models containing motion information, which is used to detect predefined unsafe action 

in the data.  However, current computer vision for construction safety can only focus on 

one aspect (e.g. worker behavior.), and the interaction between worker, facility, and job 

site environment make the computer-vision based hazard identification very difficult. Seo 

et al. (Seo et al. 2015) review the previous attempts of using computer vision 

technologies for safety and health monitoring. In this research, I identify the following 

technical and practical issues that commonly arise when applying diverse computer 

vision techniques for safety and health monitoring at real construction sites: 1) the lack of 

task-specific and quantitative metrics for evaluating unsafe conditions and acts; 2) 

dynamic conditions on construction sites create obstacles such as occlusions, selections 

of appropriate camera positions, and needs for comprehensive image datasets with 

diverse viewpoints; and 3) privacy issues due to continuous monitoring at construction 

sites.  Therefore, the integration of human and automation technology is a possible 

solution to resolve all these issues of pure manual or automatic approach for construction 

safety inspection. 
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3.3.2 Crowdsourcing 

To overcome the current limitations of construction safety inspection, crowdsourcing 

technology can utilize the intelligence of non-expert to identify the potential job site 

risks. Crowdsourcing, which is a human-automation integration technology can 

effectively achieve reliable job site safety inspection while avoiding the drawbacks of 

computer vision techniques. Crowdsourcing is defined as decision making based on 

aggregating the opinions of agents for higher quality than based on the opinions of single 

individuals (Bachrach et al. 2012; Howe 2006). For example, Ranard et al. reviewed the 

application of crowdsourcing in the health domain. This research identified many 

successful cases although the use of crowdsourcing in health research is at an early stage, 

such as solving protein structure problems, improving the alignment of promoter 

sequences, tracking H1N1 influenza outbreaks, classifying colonic polyps, etc. A few 

applications of crowdsourcing have been applied in civil engineering and construction 

domain.  Liu and Golparvar-Fard (Liu and Golparvar-Fard 2015) proposes 

crowdsourcing the task of workforce assessment from job site video streams to overcome 

the limitations of labor intensiveness and erroneous results. 

However, challenges exist in the application of crowdsourcing techniques. Some 

crowdsourcing research focuses on the optimization problems that have a clear 

performance function to evaluate the performance of each answer (Ren et al. 2016). The 

research questions for which the correct or best answer is unknown results in challenges 

to aggregate the answer from the crowd-sourcing participants and derive the correct 

answer. Furthermore, the performance of crowdsourcing will be greatly compromised 
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when most the participants’ answers are wrong (Radanovic et al. 2016; Zhao and Zhu 

2014).  Drapeau et al. (Drapeau et al. 2016) mentioned many techniques for dealing with 

cases in which the majority may be wrong. The most commonly used approach is to add 

questions with known answers to the crowdsourcing question pool to evaluate the 

intellectual capability and identify gaming of the participants. Tournament voting (Sun 

and Dance 2011) allows the crowdsourcing participants to evaluate other answers and 

vote to delete the most unreliable answers. Bayesian Truth Serum (Prelec 2004; 

Witkowski and Parkes 2012) asks the participants to predict the distribution of the 

answers. Then this method  “assigns high scores not to the most common answers but to 

the answers that are more common than collectively predicted, with predictions drawn 

from the same population” (Prelec 2004). MicroTalk (Drapeau et al. 2016) allows the 

participant's chat and debate when answering the crowd-sourcing questions to seek a 

consensus solution. However, all these methods cannot guarantee the identification of job 

site risk considering the complex and dynamic nature of the job site. Furthermore, these 

methods have a common limitation: they bring extra work to the participants, which is a 

big problem considering the huge amount of job site images and the timely needs of 

safety inspection results of job sites. Also, extra tasks will increase the cost of 

crowdsourcing risk analysis, which makes it less competitive to the traditional manual 

work. 

To fully utilize the advantage of the integration of human and automation, 

crowdsourcing-based job site risk analysis needs to solve the problem caused by the cases 

in which the majority is wrong in an effective way while minimizing the workload of the 

participants. 
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3.4 Methodology 

3.4.1 Overall problem description and methodology overview 

Figure 16 shows the IDEF0 model of the proposed crowd-based assessment method. Its 

inputs consist of three parts: 1) pre-defined safety rules of the construction activities; 2) 

job site pictures that may contain cases that violating safety rules; 3) the common sense 

of safety from anonymous participants on the internet. The output is the probability of the 

event that the assessed job site picture violates each safety rule in the predefined list of 

rules. The constraints are the Bayesian’s rule and the training data set. The mechanisms 

of this crowdsourcing-based risk assessment involve the training process of anonymous 

image interpreters, the testing process for collecting risk assessments of these 

interpreters, and the decision-making process that determines the probabilities of the 

image certain rule violations.  

 

Figure 16. IDEF0 Model of Crowdsourcing-Based Risk Assessment 

The assumptions I made in this research are as follows: 
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• Assessors are independent, i.e., the assessment of one design from one assessor will 

not be affected by the assessment of other assessors. 

• The probability of each rule is violated in a given image is independent of each 

other, which is obviously not true in the real job site. I will explore the correlation 

that different rules are violated in one job site picture in future research. 

• Each job site picture may contain at most one violation.  

I also made the assumptions about the participants’ common sense which the participants 

need to use in the crowdsourcing system: 

• They can recognize the objects used on a construction job site in the pictures if they 

know the shape of the objects. 

• They can understand the spatial logic between objects by looking at the pictures 

(e.g. object A is under object B). 

• They have the basic knowledge about how people can be hurt (e.g. people fall from 

high elevation will be injured or killed; people touching objects with the electric 

current will be injured or killed). 

3.4.2 Crowd-sourcing system design 

Figure 17 shows the process of the crowdsourcing-based risk assessment. Job site 

pictures that may contain violations will be uploaded to the online crowdsourcing 

platform. Then the platform will set up a violation assessment game played by 

anonymous participants to identify the violations of safety rules based on images 

collected on the job site. The game consists of three steps: the training process, the 
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assessing process, and the risk-detection process. In the training process, the participants 

are divided into groups and then asked to learn about a section of safety rules using the 

training materials. In the testing process, these participants will become “risk assessors” 

and identify potential violations of each safety rule they have learned in the training 

process. Finally, the decision-making process will aggregate the answers from the 

assessors and then uses the Bayesian network to determine whether a job site picture 

contains the violation against any safety rules. Among answers from different groups of 

assessors, the safety-rule violation that received the highest probability in the picture is 

considered as the actual violation captured in the picture. 

 

Figure 17. The Process of the Crowdsourcing-Based Risk Assessment 

3.4.2.1 The training process on the crowdsourcing platform 

The purpose of the training process was to provide the anonymous participants basic 

understanding about the safety rules in a short period. The training process should be 

informative and easy to understand for normal people. In the training process of the 

crowdsourcing platform, all the safety rules were divided into sections and learned by a 

different group of assessors to reduce the cognitive workload of the assessors. The 

training material of each safety rule showed the dangerous and safe scenes. This training 

module used word description combined with pictures to enhance both the heuristic and 



  75 

analytical ability of job site risk analysis. Figure 18 shows the training material of an 

exemplary safety rule. 

3.4.2.2 The assessing process  

The risk detection process consisted of the assessing process and the decision-making 

process. The assessing process collected the assessments of job site pictures. Then the 

assessors assessed whether each picture violated any safety rules they had just learned in 

the training process. The test pictures might have violations of the safety rules that the 

assessors had not learned in the training process, in which case the assessors were asked 

to select "no violation" to avoid ambiguity.  

Then the decision-making process used a Bayesian network model to calculate the 

probability of each safety rule was violated using the answers from the assessing process. 

Section 3.4.3 will introduce the Bayesian network model in detail.  

 

Figure 18. Training Materials of a Safety Rule “Improper Working Platforms on Scaffold 

Structure.” 
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3.4.3 A Bayesian network model for crowdsourcing risk detection 

The Bayesian network model aims at determining the probability that a violation of a rule 

exists in a job site picture, given all the assessments from one group of assessors who 

learned one section of safety rule and then assessed that image on the crowdsourcing 

platform. Without losing the generality, the whole crowdsourced risk assessment 

platform involves I job site pictures, N anonymous online image assessors, and K safety 

rules. The input of the Bayesian network, which is the assessment of picture i from N 

assessors, is: 

𝐴𝑖 = {𝑎𝑖0, 𝑎𝑖1, … 𝑎𝑖𝑘, … 𝑎𝑖𝐾},∑𝑎𝑖𝑘 = 𝑁

𝐾

𝑘=0

 

where k denotes a certain safety rule. Notice that the assessors can also choose “no 

violation” in the picture, noted as 𝑘 = 0. Therefore, 𝑎𝑖0 denotes the number of people 

that think the picture i contains no violation against the rules they have learned in the 

training process, while 𝑎𝑖𝑘 (𝑘 ≠ 0) denotes the number of people that think the picture i 

contains violations against safety rule k.  

I define  𝑟𝑛𝑖𝑘 as the assessment of picture i from the assessor n for rule k. 𝑟𝑛𝑖𝑘 = 1  means 

that the assessor n thinks picture i is violating rule k, while 𝑟𝑛𝑖𝑘 = 0 means no violation. 

The ground truth of picture i capturing a violation k or no violation is defined as Φ𝑖 =

0,1,2, … , 𝐾. I assume that the probability of choosing the wrong options in this image 

assessment game are the same. The assessment 𝑟𝑛𝑖𝑘 is modeled as a random variable 

following a categorical distribution, as detailed by Eq. (10): 
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 𝑃(𝑟𝑛𝑖) = 𝑓(𝑟𝑛𝑖 = 𝑘 |𝒑) = 𝑝𝑘 =

{
 
 

 
 

𝑝𝑡𝑝, 𝑤ℎ𝑒𝑛 𝑘 = 𝛷𝑖 ≠ 0

1 − 𝑝𝑡𝑝

𝐾
, 𝑤ℎ𝑒𝑛 𝑘 ≠ 𝛷𝑖 𝑎𝑛&𝑑 𝛷𝑖 ≠ 0

𝑝𝑡𝑛,  𝑤ℎ𝑒𝑛 𝑘 = 𝛷𝑖 = 0
1 − 𝑝𝑡𝑛
𝐾

, 𝑤ℎ𝑒𝑛  𝑘 ≠ 𝛷𝑖 = 0

 (10) 

where 𝒑 = (𝑝1,𝑝2,…,𝑝𝐾). 𝑝𝑡𝑝 is true-positive rate of an assessment 𝑟𝑛𝑖𝑘, which is the 

probability of an assessor correctly identifying the violation of a safety rule in the job site 

picture. Similarly, 𝑝𝑡𝑛 is the true-negative rate, which is the probability of an assessor 

correctly answering that there is no violation in the job site picture. I assume that the 

categorical distribution parameter 𝒑 is the same for any n, i, k. 𝑝𝑡𝑝 and 𝑝𝑡𝑛 can be 

estimated using maximum likelihood estimation through training data set.  

Now I would like to know the probability of the event “the picture contains a violation of 

rule k” when M out of N assessors chose rule k as the potential violation in picture i. I 

denote this probability as 𝑃(A |𝐵): 

 𝑃(𝐴 |𝐵) =  𝑃(𝐵|𝐴 ) ∙ 𝑃(𝐴)/𝑃(𝐵) (11) 

Where event A is that the option k represents the truth in picture i; and event B is that M 

out of N assessors chose the option k for picture i. I will discuss how to calculate the 

probability of violating the certain rule (k≠0) or no violation (k=0) based on (11) in the 

following subsections. 
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3.4.3.1 The probability of a certain rule being violated in a job site picture 

In (11), 𝑃(𝐵|A ) = 𝑓(𝑁,𝑀, 𝑝𝑡𝑝) is the probability that M out of N people are choosing 

the rule k is violated when k≠0. 𝑃(𝐴) is the probability that rule k is violated in a job site 

picture which is provided by the historical safety assessment data. 𝑃(𝐵) is the overall 

probability that M out of N people are choosing rule k no matter rule k is violated or not, 

which includes three circumstances: 1) rule k is violated in the picture (event A, 𝑘 = Φ𝑖); 

2) any other rule is violated in the picture, represented by the event 𝐴′ (𝑘 ≠ Φ𝑖, Φ𝑖 ≠ 0); 

3) no violation in the picture, represented by 𝐴′′( 𝑘 ≠ Φ𝑖 = 0). I use 𝑃(𝐵|𝐴′) =

𝑓(𝑁,𝑀, 𝑝𝑡𝑝) and 𝑃(𝐵|𝐴′′) = 𝑓(𝑁,𝑀, 𝑝𝑡𝑛) to denote the probabilities that the assessors 

mistakenly chose rule k when the truth is “other rule is violated” and “no violations”, 

respectively. As a result, 𝑃(𝐵) can be calculated by: 

𝑃(𝐵) =  𝑃(𝐵|𝐴 ) ∙ 𝑃(𝐴) + 𝑃(𝐵|𝐴′) ∙  𝑃(𝐴′) + 𝑃(𝐵|𝐴′′) ∙  𝑃(𝐴′′) 

where 𝑃(𝐴′) and 𝑃(𝐴′′) are the probability of “other rules are violated” and “no 

violations”, respectively, which are obtainable from historical risk assessment database. 

3.4.3.2 The probability of “no violation” in a job site picture 

In (11), 𝑃(𝐵|A ) = 𝑓(𝑁,𝑀, 𝑝𝑡𝑛) is the probability that M out of N people are choosing 

“no violation” when correct. 𝑃(𝐴) is the probability that the picture contains no violation. 

𝑃(𝐵) is the probability that M out of N people are choosing rule k (k =0 means choosing 

“no violation”) in both circumstances: 1) no violation in the picture (𝑘 = Φ𝑖 = 0); 2) 
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violation exists in the picture, noted as event 𝐴′ (𝑘 = 0 ≠ Φ𝑖). 𝑃(𝐵) can be represented 

with the help of 𝑃(𝐵|𝐴′) = 𝑓(𝑁,𝑀, 𝑝𝑡𝑝): 

𝑃(𝐵) =  𝑃(𝐵|𝐴 ) ∙ 𝑃(𝐴) + 𝑃(𝐵|𝐴′) ∙  𝑃(𝐴′) 

where 𝑃(𝐴′) is the probability of violating any rules. In sum, 𝑃(𝐴|𝐵 ) can be calculated 

using 𝑃(𝐵|A ), 𝑃(𝐴), and 𝑃(𝐵): 

 𝑃(𝐴|𝐵 ) = 𝑓(𝑘,𝑀,𝑁, 𝑝𝑡𝑝, 𝑝𝑡𝑛)  

3.5 Validation 

3.5.1 Experiment Setup and Performance Measures 

I designed the experiment to validate the proposed crowdsourcing safety inspection 

system using the safety rules of the elevator installation. The elevator company has 91 

rules for the safety inspection of the elevator installation. In this experiment, I picked 12 

rules that have the biggest influence on the elevator influence safety and created the 

training material using related pictures. The crowdsourcing participants need to assess the 

potential violation of the 12 safety rules in 6 job site pictures, shown in Disqualification 

percentage. 

3.5.2 Risk assessment results under different training workload 

The 12 safety rules are divided into six rules/section* 2 sections and three rules/section*4 

sections in the experiment set 1 and 2, respectively to test how cognitive workload will 

influence the assessment performance. The assessing process collected answers from 389 
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anonymous participants using the crowdsourcing platform Amazon Mechanical Turk 

(“Amazon Mechanical Turk” n.d.). 

Table 2 12 rules with the biggest influence on the elevator safety.  The risk of each 

picture is defined as Disqualification Percentage (DP) * Influence Rating (IR) 

Rule 

No. 
Description  DP IR 

Risk 

(DP*IR) 

1 Improper working platforms on scaffold structure 6.26% 4.33 0.271 

2 Improper door blocking device 4.84% 3.33 0.161 

3 
Failure to provide overhead protection while 

working in the hoist way 
3.88% 4.06 0.157 

4 
Failure to use Ground Fault Circuit Interrupters or 

equivalent protective devices 
4.07% 3.36 0.137 

5 
Inadequate electrical protection in proximity of 

work activity 
2.67% 3.24 0.086 

6 Slings not protected against sharp edges 1.50% 4.12 0.062 

7 Improper Guardrail System 1.48% 3.83 0.057 

8 
Working near unguarded drive or diverter sheaves 

or other rotating equipment 
1.19% 3.38 0.040 

9 Employees working in wet pit with power on 0.91% 3.83 0.035 

10 
Jewelry and other metallic objects worn around live 

equipment 
0.48% 3.50 0.017 

11 
Unsafe oxygen-acetylene or compressed gases 

welding, cutting, heating equipment or procedures 
0.31% 3.92 0.012 

12 
Storage of job site materials creating an unsafe 

mechanical energy source 
3.56%   
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Figure 19. Six Job Site Pictures That May Contain Violations of Safety Rules. 

Table 3 compares the true-positive rate 𝑝𝑡𝑝 and true-negative rate 𝑝𝑡𝑛 between two 

experiment sets. The true positive rates between two experimental sets are close. The 

difference between the true-negative rate may because the number of choice in Set 2 are 

significantly fewer than that of Set 1. This result supports the hypothesis that: if the 

assessors are confident when they identify a violation in the picture; the assessors are less 

confident when they didn’t find any violations in the pictures. This pattern enables the 

crowdsourcing method to identify the job site pictures containing violations of safety 

rules.  

Table 3 Parameters of 2 experiment sets 

Parameters True-positive rate True-negative rate 

Set 1, 6*2 0.7152 0.3517 

Set 2, 3*4 0.7884 0.5353 
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Table 4 shows the crowdsourcing-based risk assessment results of six job site pictures. 

The Bayesian network-based crowdsourcing assessment result is correct for all six 

texting job site pictures in both experiment sets. On the other hand, the majority voting 

result made two and one false-positive mistakes in the experiment set 1 and 2, 

respectively.  

Table 4 Risk assessment results 

Picture Number A B C D E F 

Violating 

which 

safety rule 

(“0” means 

no 

violation) 

Ground truth  

(pre-defined by experienced 

professionals) 

7 0 12 10 0 0 

Set 1, 

6*2 

Bayesian network 7 0 12 10 0 0 

Majority vote 7 0 12 10 1 3 

Set 2, 

 3*4 

Bayesian network 7 0 12 10 0 0 

Majority vote 7 0 12 10 7 0 

 

3.5.3 Impact of data set size to the assessing result 

I examine how a different number of participants will influence the performance of 

crowdsourcing-based risk assessment in construction projects. For any given crowd size 

answering each question from 10 to 55, I randomly select the answers from 100 subsets 

of participants of that size. 

Figure 20 compares the overall correct rate concerning different crowd size. Figure 20A 

shows the result of experiment Set A, where the participants are divided into two groups 

and each group learns about six safety rules, while Figure 20B shows the result of Set B, 

where the participants are divided into four groups and each group learn three rules. The 
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result shows that, for both Set A and Set B, the risk assessing the performance of using 

the Bayesian network is better than that of using majority vote. In addition, the correct 

crowdsourcing rate with the crowd size of 10 using the proposed Bayesian network is 

more than 80%. This result shows that the Bayesian network-based crowdsourcing can 

achieve good performance with small crowd size. 

 

Figure 20. The Overall Correct Rates with Respect to Different Crowd Sizes 

Figure 21 compares the true positive rate of the crowdsourcing risk assessment result of 

job site picture A, C, and D, which means the crowd correctly identify the safety 

violation in a job site picture. In both Set A and B, the true positive rate is higher than 

75% for both Bayesian network and majority vote. The result shows that the training 

module can effectively improve the capability of identifying the  

Figure 22 compares the true negative rate of the crowdsourcing risk assessment result of 

job site picture B, E, and F, which is the rate that the crowd correctly determine the 

picture with no violation.  In both Set A and B, the true negative rate using Bayesian 

network model achieves 100% at the crowd size larger than 50, while the majority vote 

can only achieve 40% or 70% true negative rate in Set A and B, respectively. Also, the 
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true negative rate of the result using the Bayesian network is higher than 80% even at the 

crowd size of 10 people, while the counterpart using majority vote is about 40%-50%. 

This result shows that the Bayesian network model can effectively improve the true-

negative rate of job site risk analysis against majority vote with only a small number of 

participants. 

   

Figure 21. The True Positive Rate of The Result of Job Site Picture A, C, and D 

  

Figure 22. The True Negative Rate of the Result of Job Site Picture B, E, and F 
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3.6 Discussion 

3.6.1 Limitation of current research 

One limitation reflected in this research is that the crowdsourcing performance will be 

compromised when two safety rules are similar. A common mistake that the 

crowdsourcing assessment made at different crowd size is that picture D is assessed as 

violating safety rule 5 while the designed ground truth of picture D is a violation of rule 

10.  If image interpreters look at Picture D shown in Figure 23 and then compare rule 5 

(inadequate electrical protection in the proximity of work activity) and rule 10 (wearing 

or holding metallic objects around living equipment), I can see the ambiguity of this 

safety rule. In the experiments, these two rules are divided into different groups. 

Therefore, reducing the ambiguity of this safety rules using more comprehensive training 

material can potentially improve the correct rate of the system. In addition, such mistake 

may also be a way to reveal ambiguity in rules so that they can be better written or 

defined. 

 

Figure 23. Comparing Rule 5 and Rule 10 Given Picture D 
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3.6.2 Analyzing the possible cognitive process of crowdsourcing participants in job site 

risk assessment. 

To further address the crowdsourcing challenge that the majority of participants might 

agree to a wrong answer, the crowdsourcing platform needs to consider the decision-

making process of the participants during the job site risk assessment. Naturalistic 

Decision Making (NDM) describes “how people make decisions in real-world settings” 

(Klein 2008). Specifically, NDM studies the decision-making problem with time 

pressure, vague problem description, missing information in familiar and meaningful 

environments (Canellas and Feigh 2016; Lipshitz and Strauss 1997). Such decision-

making problems match the issues in crowdsourced job site risk assessment. Participants 

are usually not construction safety experts so that they are not familiar with the safety 

rules directly.  However, they can identify job site risks using their experience in daily 

life, such as falling from high elevation may cause injury or death. Finally, participants 

have time pressure when doing the tasks because they want to answer as many questions 

to make more profit.   

Recognition Primed Decision (RPD) is the most accepted cognitive model of the 

decision-making process of NDM (Klein 1993). RPD argues that the following features 

of NDM allow the decision makers can use their experience to avoid painstaking 

deliberations  (Canellas and Feigh 2016; Klein 1993; Lipshitz and Strauss 1997):  

• Experience enables a person to understand a situation regarding plausible goals, 

relevant cues, expectancies, and typical actions.  
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• Decision makers can evaluate a single course of action through mental simulation. 

They do not have to compare several options. Recognitional decision strategies are 

more appropriate under time pressure and ambiguity; analytical strategies are more 

appropriate for abstract data and pressure to justify decisions. In a variety of 

operational settings, recognitional decision strategies are used more frequently than 

analytical strategies, even for difficult cases. 

• Experienced decision makers usually try to find a satisfactory course of action, not 

the best one. Experienced decision makers can usually identify an acceptable course 

of action as the first one they consider, and rarely should generate another course 

of action. 

 

Figure 24. An Example Question of Crowdsourcing Risk Assessment 

Figure 24 shows an example question of crowdsourcing risk assessment. According to 

the NDM and RPD theory, the most likely decision-making process of a crowdsourcing 

risk interpreter is as follows: After the interpreter see the job site image that may contain 

violations of safety rules, he or she will first match this picture with his/her personal 

experience and try to identify familiar objects and spatial, and logical relation of objects. 

Instead of using logic to comprehensively understand all of the safety rules and rank the 

possibility of this picture violating each listed safety rule, the integrator might scan the 
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safety rules one by one and try to find one safety rule that may be violated by the picture 

as the correct answer. The interpreter will choose “no violation” only when he/she is very 

confident that no safety rule is possibly violated by the scenario shown in the job site 

image. Such cognitive process explains why the participants tend to choose diverse 

answers instead of choosing “No violation” when the picture shows no violation. The 

limited information provided in the job site picture, the lack of professional safety 

knowledge, and the lack of logic training may cause the interpreters use experience and 

even imagination to heuristically assess which rule is violated in the job site image, 

which has a bias. Therefore, the interpreter tends to mistakenly choose one of the non-

violated safety rules as “violated” instead of correctly choose “no violation” as the 

correct answer after rejecting all the non-violated rules. 

To improve the accuracy of job site risk analysis using the crowdsourcing technique, this 

proposed crowdsourcing system needs to have the following features based on the RPD 

model to resolve the decision-making bias stated above: First, the system needs to 

provide essential knowledge to improve the capability of job site risk analysis of the non-

professional interpreters. Second, the assessing process needs to guide the cognitive 

process in order to reduce the influence of the aforementioned cognitive bias. Third, the 

crowdsourcing system should model the cognitive bias and designed a filter to integrate 

the answers to resolve such bias.  
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3.7 Conclusion 

This research shows the capability of using crowdsourcing-based assessment method to 

identify violations of safety rules based on images collected in complex construction 

workspaces. Compared with the results of majority votes, the Bayesian network-based 

crowdsourcing risk assessment is reliable in eliminating the job site pictures which 

contain no violation of any safety rules while identifying the pictures capturing 

violations. The experiment result also validates the hypothesis that the assessors are 

confident when they identify a violation in the picture; the assessors are less confident 

when they do not find any violations in the pictures. The high true-positive and true-

negative rate of the proposing risk assessment method show the potential of applying 

such risk assessment method in real-world project management to reduce the cost and 

improve the performance of safety control. The safety inspection outcomes can help the 

management team to process on-site risk identification effectively and cost-efficiently. 
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CHAPTER 4 PROACTIVE PROGRESS MONITORING FOR EARLY DETECTION 

OF DELAYS AND CRITICAL PATH CHANGES IN NUCLEAR POWER PLANT 

OUTAGES  

4.1 Introduction 

Nuclear power plant (NPP) outages are among the most challenging projects that involve 

a large number of maintenance and repair activities with a busy schedule and zero-

tolerance for accidents. During an outage, more than 2,000 workers will be working 

around the NPP and finishing the maintenance work including more than 2,000 tasks 

within about 20 days, while the planning stage of a typical NPP outage is more than four 

months. Moreover, a one-day delay in an NPP outage could cost $1.5 million. These 

features of NPP outages call for a real-time, robust, effective workflow progress 

monitoring to identify and resolve delays or critical path changes. 

However, early detection of workflow delays or critical path changes is challenging in 

busy NPP outage workflows. The first challenge is the large number of tasks in NPP 

workflows. Outage management team needs to spend much labor and resource on 

monitoring the progress of all the tasks on critical paths. Also, sometimes outage 

management team also needs to monitor the progress of the non-critical-path tasks, 

because the accumulation of delays of non-critical-path tasks may cause critical path 

change and delay the entire workflow. Therefore, the lack of progress monitoring 

personnel and resource often exists in NPP outage projects. 

Another challenge is the long communication chain caused by the complicated 

organization of outage participants and processes (Petronas et al. 2016; Tang et al. 2016; 
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Zhang et al. 2016). When a worker finishes a task in an outage, he or she needs to “…

update the task status to his or her supervisor, who often updates an outage maintenance 

coordinator who then updates the Outage Control Center (OCC) outage maintenance 

manager who then updates the paper copy of the schedule” (St. Germain et al. 2014). The 

delays in this reporting chain prevent the real-time updating of the overall outage 

schedule using the scheduling software directly to coordinate work because the tasks are 

completed long before their statuses are updated as complete in the scheduling software.  

Furthermore, changing the used communication technology already in daily use and 

modifying the organizational structures are difficult. NPPs cannot afford the risks of 

trying new communication technologies without carefully evaluating the gain of 

changing the current communication technology. Similarly, current organizational 

structure and the “report chain” are designed for the sake of safety, which cannot be 

simplified. Considering the limited personnel and resource for progress monitoring, a 

viable way of improving the progress monitoring efficiency in NPP outage workflows is 

to identify the value of progress monitoring activities by calculating the risk of each task 

is delaying the workflow or causing critical path change. Then the value of monitoring 

different tasks at different times could guide the proactive progress monitoring activities. 

In the domain of construction management, limited explorations focus on the theory of 

proactively identifying the probability of each task is delaying the workflow or causing 

critical path changes. To build such a theory, I borrowed the concept of Team Situation 

Awareness (TSA) from cognitive science domain, which describes the states of a team 

knowing what happened and what will happen. In the context of progress-monitoring, the 
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TSA of the people working on a workflow is the status of the management personnel 

being aware of the risks of workflow delay or critical path change caused by the potential 

delay of each task. This link between TSA theory and progress monitoring sheds lights 

on the early detection and resolve of workflow delays and critical path change. However, 

previous studies related to TSA have limited focus on quantitatively modeling and 

optimizing the information transmission processes in complex workflows. This research 

is trying to bridge the gap between the TSA theory and the need for evaluating the 

progress monitoring activities by quantitatively determining the risk of each task delaying 

the workflow or causing critical path change. Then the management team can acquire the 

the timely answers of “which task to monitor” and “when to monitor” in busy, complex 

NPP outage workflows. 

4.2 Background Research 

4.2.1 Construction progress monitoring 

Early detection of actual or potential delays in field construction activities is pivotal to 

project management (Golparvar-Fard et al. 2009b). Current construction progress 

monitoring research studies mostly focus on using automatically acquire progress 

information. For example, Golparvar-Fard and his research team proposed a series of new 

imagery-based construction progress monitoring and visualization method using 4D 

Building Information Models (BIM) and 3D point cloud models generated from site 

photo logs for monitoring construction progress deviations at the operational-level 

(Golparvar-Fard et al. 2009b; a; Han and Golparvar-Fard 2015). Cheng and Chen 
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developed an automated schedule monitoring system by tracking the erection of 

prefabricated structural components based on the integration of barcode and 

Geographical Information System (GIS) (Cheng and Chen 2002). However, such 

approaches cannot solve the progress-monitoring problem in NPP outages for several 

reasons. First, many NPP outage tasks do not have a visible construction component, 

such as removing the valve insulation, shutting down the electricity supply of a motor, 

etc. These tasks are difficult to be monitored by the mentioned above computer vision 

technologies. Second, the main obstacle of the progress monitoring in NPP outages is to 

transport the timely progress information of tasks from the workers to the needed 

personnel in management teams through the long reporting chain caused by the complex 

organizational structure of NPP outage team (St. Germain et al. 2014). Therefore, I need 

to identify new approaches to improve the communication to achieve effective and 

efficient progress monitoring in NPP outage workflows. 

4.2.2 Communication in NPP outage 

One of the most important factors influencing the productivity and safety of NPP outage 

workflow is the complicated organization of outage participants and processes (Petronas 

et al. 2016). The approval of each task involves multiple stakeholders to ensure safety. 

For example, an outage task should be confirmed by the following organizational units 

before the execution: 1) the outage control center, which determines whether the task is 

needed; 2) schedulers, who arrange the timing and relationship between tasks; 3) 

maintenance shops, who coordinate workforces for tasks; 4) the main control room staff, 

which configures the NPP according to tasks’ requirements; 5) the work execution center, 
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which inspects the site preparation for safe execution of tasks. Complex communications 

across all these organizational units are necessary for safety but will create long handoffs 

and possible time wastes (Gorman et al. 2006). 

4.2.3 TSA theory 

NPP outages are a command, control, communications, computers, and intelligence (C4i) 

systems (Salmon et al. 2006). Currently, there are limited mature theories of monitoring, 

commanding, and controlling such a system because of the informational complexity and 

ongoing technological evolution embedded in such a system (Salmon et al. 2014; Walker 

et al. 2006). Therefore, the theory of how to effectively and efficiently monitor the task 

progress in such dynamic NPP outage projects is missing. In such context, the theory of 

TSA can be potentially helpful in guiding the progress monitoring activities because TSA 

focuses on identifying “knowing what is going on” (Endsley 1995) in such dynamic 

environment involving multiple people and even autonomous systems.  This section 

introduces how to generate the quantitative TSA model for progress monitoring based on 

the existing approach of TSA. 

Situation awareness (SA) describes the ability of humans or automatic systems to become 

and remain informed to the changing environment to react to possible uncertainties 

(Stanton et al. 2017). The most accepted definition of SA is “the perception of the 

elements in the environment within a volume of time and space, the comprehension of 

their meaning, and the projection of their status shortly.” (Endsley 1995). Endsley 

proposes a three-level model of SA (Endsley 1995): 
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• Level 1 SA: Perception of the Elements in the Environment. 

• Level 2 SA: Comprehension of the Current Situation 

• Level 3 SA: Projection of Future Status 

SA usually describes the information about the dynamic environment held by an 

individual. In a teamwork scenario, two or more individuals (or automatic systems) share 

the common environment, timely understanding of the situation of the environment, and 

another person’s interaction with the cooperative task. To have a good understanding of 

the “what is going on” in the cooperative task the core of achieving good TSA is to make 

sure each team member knows what he/she needed to know at the correct time.  

Achieving TSA means the team acquires needed information to achieve the trajectory of 

value in a dynamic environment through information exchange at the right time with the 

right person (Salas et al. 1992). Because the team has one main goal instead of multiple 

goals, the TSA represents the team’s needed information, which is the three-level SA 

information for the team goal. Therefore, the team SA is the information perception and 

information exchange to achieve the three levels of SA for the team goal. TSA not only 

requires the information held in each team member’s mind, but it also requires the 

mechanism of ensuring to acquire the information for the team goal by different team 

members. Such mechanism of information acquisition and exchange can be derived from 

the relationship between the sub goal of each team member and the overall team goal and 

the social network between team members.  
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I extend the concept from SA to TSA by identifying how to acquire this information, and 

how to exchange this information to acquire three-level of SA information in a team, 

which is shown in Figure 25: 

• Identify the overall team goal of the progress monitoring activities. 

• Identify the relationship between the sub-goals of each team member and overall 

team goal. 

• Each team member perceives his or her situation information (Level 1 SA)  

• Each team member gets needed information at a time when this piece of 

information is needed. 

• TSA information interpretation (Level 2 and 3 SA) 

 

Figure 25. Framework of Achieving TSA in a Dynamic Environment 

4.3 Methodology 

This section will first describe the example progress monitoring problem for 

demonstrating the methodology, and then introduce the analogy between existing TSA 

theory and the progress monitoring activities, and finally, derive the quantitative model of 

TSA in progress monitoring. Figure 26 shows the IDEF0 model of the proposed proactive 

progress monitoring method. The input of the proactive workflow progress monitoring 
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method is the as planned workflow schedule, the maximum/minimum duration of each 

task, and the previous progress monitoring information. The constraints are the spatial, 

temporal, and cost constraints of NPP outage projects as well as the Interactive Team 

Cognition (ITC) theory (Cooke et al. 2013) that describes the TSA of the people working 

on the workflow. The output is the proactive progress monitoring plan: which task to 

monitor, when to monitor, and who should talk to whom to monitor the progress of tasks. 

 

Figure 26. IDEF0 Model of Resilient Workflow Progress Monitoring 

The organization of the rest of this section is as follows: in Section 4.3.1 introduces a 

simple workflow as the example problem for demonstrating this methodology. Section 

4.3.2 discusses how to model the TSA in a workflow consisting of multiple tasks and 

how the TSA model can guide the progress monitoring activities using the example 

workflow. Section 4.3.3 shows the quantitative process of identifying the optimized 

answer of “when to monitor,” “which task to monitor” and “who should talk to whom to 

monitor the progress of tasks.”  
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4.3.1 Example problem for demonstrating the developed progress monitoring 

methodology 

This research is trying to identify the quantitative method to guide the progress 

monitoring activities in NPP outage workflows. Although NPP outage workflows could 

consist of hundreds of thousands of tasks, I first use a simple workflow as an example to 

illustrate the methodology in this section. In this workflow model, I assume that the 

relationship between the progress and the working time of each task is linear. Figure 27 

shows the as-is task duration. The detailed as-planned workflow information is shown in 

Table 5.  

I then model the progress monitoring activities. I assume that each worker knows the 

precise progress of the task on which he/she is working. However, the supervisor of the 

team who needs to know the progress of the workflow cannot go to each task and watch 

the progress. Therefore, the supervisor needs to communicate to monitor the progress of 

each task and thus monitor the progress of the entire workflow.  Frequently monitoring 

the progress of every task is not practical because the productivity of the workers will be 

compromised and the supervisor is too busy to communicate with the workers all the 

time. Therefore, this research is trying to generate a method to define how the 

management team communicates with the people working in the workflow to acquire the 

precise progress information with a minimum number of communications. Specifically, 

two questions need to be answered:  

• When to monitor?  

• Which task to monitor, i.e. which worker to communicate? 
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Table 5 Detailed workflow information 

Task name Worker 
Expected 

duration (min) 

Min. duration 

(min) 

Max. duration 

(min) 

Task 1 1 500 400 600 

Task 2 2 300 200 400 

Task 3 1 400 300 500 

Task 4 3 600 400 800 

Task 5 2 200 150 250 

 

To answer these questions, I need to find the indicator to quantify the need for monitoring 

under different conditions, say, the workflow is part of the critical path or not. Such an 

indicator of progress monitoring need can help people decide what progress monitoring 

to use analytically instead of purely based on human experience. Then I need to find a 

way to quantitatively evaluate the information collected by the progress monitoring 

activities to determine whether the need of monitoring is satisfied.  

 

Figure 27. Simple Example NPP Outage Workflow 
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4.3.2 Analogy between TSA framework & proactive progress monitoring 

Previous research studies proposed five steps for achieving TSA: Identify the overall 

team goal; identify the relationship between the sub-goals; each team member acquires 

individual SA; communication; and TSA interpretation. If the team goal is defined as 

“understand the progress of the workflow,” the TSA framework can be applied to 

progress monitoring tasks. TSA defines the process of how to acquire needed information 

to achieve the team goal in dynamic environments, which provides the reference of 

modeling the information needs of progress monitoring in a workflow. In NPP outage 

projects, resilient project monitoring is achieving good TSA in the dynamic project 

workflows. Based on the TSA model I propose five steps to achieve resilient progress 

monitoring, which is shown in Figure 28: 

 

Figure 28. Analogy between TSA Framework & Proactive Progress Monitoring 

1. Modeling the information need of workflow progress monitoring. The information need 

of progress monitoring is to identify the percent of overall workflow is done and then 

estimate the finishing time of the workflow.   
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2. Modeling the relationship between workflow progress and progress of individual tasks. 

In this step, I need to identify the relationship between the progress and each task and 

the overall progress of the workflow per the as-planned schedule.  

3. Each worker monitors the progress of his/her task continuously. In this research, the 

situation information of each team member refers the as-is progress information of each 

task in the workflow.  The worker working on each task knows the ground truth of their 

task progress. Therefore, this step is automatically completed. 

4. Determine the communication protocol between team members for proactive progress 

monitoring. The ideal case of progress monitoring in this problem is that the supervisor 

continuously monitors the progress of all tasks, which is not achievable in most of the 

workflows. This step can derive which task to monitor its progress at what time based 

on 1 and 2.  

5. Use the monitored progress information for the early detection of workflow delays and 

critical path changes. This step will calculate the estimated workflow progress 

according to acquired progress information. Then the supervisor can calculate the 

expectation and distribution of workflow finishing time according to the as-planned 

schedule of tasks not completed for early detection of workflow delays and critical path 

changes. 

4.3.3 Proactive progress monitoring based on modeling the task progress uncertainties 

The key steps of proactive progress monitoring include: Step 1 - Modeling the 

information need of workflow progress monitoring.  Step 2 - Modeling the relationship 

between workflow progress and progress of individual tasks, and Step 3 - Determine the 
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communication protocol between team members for proactive progress monitoring. This 

is because these steps will help the decision making about which task to monitor and 

when to monitor and the knowledge enabling these steps does not exist yet. This section 

will introduce how to achieve these steps by modeling the information needs, the 

relationship between sub-goal and overall team goal, and the communication protocol.  

 

Figure 29. Framework of Proactive Progress Monitoring 

4.3.3.1 Modeling information need of overall workflow progress monitoring  

The overall goal of progress monitoring is to identify the percent of overall workflow is 

done and then estimate the finishing time of the workflow. I first identify two ways to 

define the project progress: 

Percentage of progress (P𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠): Progress of completion is defined as the finished 

amount of work divided by total amount of work. For example, if one worker need to 

complete building 10-meter masonry wall and he/she has finished 6 meters, his/her 

progress of completion is 60%.  
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Percentage of time (P𝑡𝑖𝑚𝑒): Progress of time is defined as the time spent on the task 

divided by the total amount of time spend on the task: 

P𝑡𝑖𝑚𝑒 = 
𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑡𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 

=  
𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑡𝑓𝑢𝑡𝑢𝑟𝑒  
 

wherein P𝑡𝑖𝑚𝑒 is the percentage of time. 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the time the team have worked on the 

workflow currently, which is a known variable. 𝑡𝑓𝑢𝑡𝑢𝑟𝑒 is the expected duration the team 

need to work on this workflow in the future. 𝑡𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 is the expected duration of the 

entire workflow.  For example, normally the worker needs 10 hours to finish the 10-meter 

masonry wall. However, the worker spends 8 hour on the first 6 meters because of some 

rework and he/she can finish the rest 4-meter masonry wall with normal speed. At this 

time, the progress of time is 8/(8+4) = 66%.  

This research assumes that the future is independent of the past because this research 

focuses on making decisions about progress monitoring instead of estimating the 

uncertainty in the future part of the workflow. In this case  𝑡𝑓𝑢𝑡𝑢𝑟𝑒 equals to the 

expectation of the duration of the unfinished part of the workflow. With such assumption 

I can represent the relationship between P𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 and P𝑡𝑖𝑚𝑒 of the same task: 

P𝑡𝑖𝑚𝑒 = 
𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑡𝑐𝑢𝑟𝑟𝑒n𝑡 + (1 − P𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠)× 𝑡𝑎𝑠𝑝𝑙𝑎𝑛𝑛𝑒𝑑  
 

Wherein 𝑡𝑎𝑠𝑝𝑙𝑎𝑛𝑛𝑒𝑑 is the as-planned task duration. The information need of project 

progress monitoring is estimating P𝑡𝑖𝑚𝑒 or 𝑡𝑓𝑢𝑡𝑢𝑟𝑒 by monitoring P𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠 with accuracy, 



  104 

precision and efficiency. I will quantitatively define the accuracy, precision and 

efficiency of progress monitoring activities in the next section. 

4.3.3.2 Modeling the relationship between information needed for the team and each team 

members 

The previous section introduced how to calculate P𝑡𝑖𝑚𝑒 (or equivalently calculate 𝑡𝑓𝑢𝑡𝑢𝑟𝑒) 

for single-task workflows by directly monitor its P𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠. However, in a workflow, the 

P𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠 of workflows with multiple tasks loses its meaning. The supervisor can only 

acquire the P𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠 of each task included by the workflow by communicating directly 

with the worker working on each task. This section will define how to calculate 𝑡𝑓𝑢𝑡𝑢𝑟𝑒 of 

the overall workflow using the P𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠of tasks in the workflow. 

The duration of a workflow is decided by the length of its critical path. If the critical path 

of a workflow does not change from the as-planned, the supervisor can easily monitor the  

P𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠 of crucial path tasks and calculate the  𝑡𝑓𝑢𝑡𝑢𝑟𝑒 of the entire workflow. However, 

in real NPP outage workflows, the critical paths can change due to the dynamic 

environment. Therefore, the supervisor needs the progress information of all the tasks to 

estimate the as-is critical path and then calculate the 𝑡𝑓𝑢𝑡𝑢𝑟𝑒. 

Calculate 𝒕𝒇𝒖𝒕𝒖𝒓𝒆 of the workflow using current task progress information 

Without losing generality, I use the example workflow to show the identified three level 

of progress information quantitatively. Figure 30 shows the status of the workflow in 

Figure 27 at the time of 800 min. At this moment, Task 1 and two have finished; workers 
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are working on Task 3 and Task 4 for 45 and 326 min, respectively; Task 5 has not 

started yet.  The workers of each task can directly perceive the Level 1 progress 

information: task 1 has been 100% finished; Task 2 has been 100% finished; The as-is 

progress P𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠 of Task 3 is 12.9%, which is directly observed by Worker 1; The as-is 

progress P𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠 of Task 4 is 57.3%. 

 

Figure 30. The Status of the Workflow at the Time of 800 Min. 

The calculation of 𝑡𝑓𝑢𝑡𝑢𝑟𝑒 needs the input of the progress information of all ongoing 

tasks, as-planned task duration of on-going tasks and future tasks, and the pre-requisite 

relationship between tasks. The rest of Task 3 will finish in (100%-12.9%)*400= 348.4 

min. The rest of task 4 will finish in (100%-57.3%)*600= 256.2 min. Therefore, Task 3 is 

on the critical path. The total workflow will finish in 348.4 min (the rest of task 3) plus 

200 min (task 5), which is 548.4 min. I can also calculate the estimated progress of the 

entire workflow at this moment, which is 800/(800+548.4) = 59.3%  

Estimate 𝒕𝒇𝒖𝒕𝒖𝒓𝒆 of the workflow using past task progress information 

The supervisor can also calculate 𝑡𝑓𝑢𝑡𝑢𝑟𝑒 using past task progress information. If the 

supervisor does not call Worker 1 and Worker 3 to get the as-is P𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠 of Task 3 and 
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Task 4 at 800 min, he/she only knows that Task 1 and Task 3 started at the time 755 min 

and 474 min, respectively. Therefore, the supervisor can estimate the P𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠 of Task 3 

and Task 4 based on the as-planned task duration. 

The supervisor can calculate that the minimum, expected, and maximum of P𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠 of 

Task 3 is at least 45/500 = 9% , 45/400=11.25%, and 45/300=15%, respectively.  

Similarly, the minimum, expected, and maximum of P𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠of Task 4 is 40.8%, 54.3%, 

and 81.5%, respectively. Without calling the workers to inspect the progress of task 4 and 

task 3, the 𝒕𝒇𝒖𝒕𝒖𝒓𝒆 of the workflow based on the expected P𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠 of ongoing tasks is 

200+ max(45.7%*600, 88.75%*400) = 555 min. Similarly, the  𝒕𝒇𝒖𝒕𝒖𝒓𝒆 of the workflow 

based on the most optimistic and pessimistic estimation of ongoing tasks is  540 min and 

564 min. Therefore, If the supervisor calls the workers to monitor their as-is P𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠 of 

task 3 and 4 at time 800, the possible range of the 𝑡𝑓𝑢𝑡𝑢𝑟𝑒 of the workflow will change 

from a range [540, 564] to a number 548.4 min (calculated in the last section).  

I can define the accuracy and precision and efficiency of 𝒕𝒇𝒖𝒕𝒖𝒓𝒆 based on past task 

progress information to evaluate the performance of progress monitoring in a workflow: 

• The Level of Accuracy (LoA) is defined as the deviation between the 𝑡𝑓𝑢𝑡𝑢𝑟𝑒 of the 

workflow calculated using current workflow information and past workflow 

information. In this example the accuracy of progress monitoring at 800 min is 555 

– 548.4 = 6.6 min. 
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• The Level of Precision (LoP) is defined as the difference between maximum and 

minimum possible 𝑡𝑓𝑢𝑡𝑢𝑟𝑒. In this example the precision of progress monitoring at 

800 min is 564 – 540 = 24 min. 

4.3.3.3 Determine the communication protocol in progress monitoring 

The precision and accuracy of 𝑡𝑓𝑢𝑡𝑢𝑟𝑒 describes the information quality of progress 

monitoring, which can serve as the requirement of progress monitoring activities. In order 

to monitor the workflow progress with effectiveness and efficiency, the supervisor can 

define the progress information requirement according to the need of the workflow, and 

plan minimum progress monitoring activities that can satisfy the precision and accuracy 

requirement of activity. The detailed steps are described below using the example shown 

in Figure 30: 

Step 1: Define the information requirement of progress monitoring. The supervisor can 

set up a threshold of acceptable LoP and calculate the LoP of the progress monitoring 

result in the future. If the acceptable LoP is 100 min in the example workflow (shown in 

Figure 30), the supervisor needs to monitor the current workflow if the difference 

between maximum and minimum 𝒕𝒇𝒖𝒕𝒖𝒓𝒆 is larger than 100 minutes.  

Step 2: Identify the next time that the progress monitoring result will exceed the precision 

requirement. Without losing the generality, assume the supervisor needs to decide the 

next progress monitoring time at time = 755 min, which is the time task 3 starts. At this 

time the supervisor can calculate the LoP = 0 min. Then the supervisor will calculate that 
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at the time = 944 min. the LoP = 100 min. Therefore, time = 944 min is the time when the 

supervisor should process the next progress monitoring activity. 

Step 3: monitor the task which is most likely on the critical path to improving the 

accuracy of progress monitoring estimation. At the identified progress monitoring time, 

the supervisor will use the as-planned distribution of task duration of unfinished tasks to 

calculate the possibility that each ongoing task is on the critical path. Correctly estimated 

critical path task would lead to 0 min of LoA when the processing the progress 

monitoring activity. The supervisor will monitor all the on-going tasks the probability of 

which becomes on the critical path above a certain threshold. Figure 31 shows the 

progress monitoring result of the example workflow following the resilient progress 

monitoring method. The supervisor will receive the task finishing information from the 

worker of each task. Also, the supervisor monitored the progress of task 1 at 240 min., 

task 2 at 609 min., and task 3 and four at 944 min per the resilient progress monitoring 

method. The picture shows that this method controls the LoP of the progress monitoring 

result under defined threshold. 

 

Figure 31. Progress Monitoring Result of the Example Workflow 
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4.4 Validation  

This section uses the simulation result to show how different communication protocols 

will influence the duration of the entire workflow and probability of critical path change. 

Shorter workflow duration means less time cost during communication or human errors. 

Lower chance of critical path change means the management team can only focus on the 

progress of a few critical tasks to control the progress of the overall workflow so that the 

labor and resource can be saved. Section 4.4.1 and 4.4.2 will compare these two 

optimization functions under different error rate of human (i.e. the probability of the 

worker or supervisor forgetting to call when they need to) and different follow-up call 

intervals. 

4.4.1 Example NPP outage workflow for validating the proactive progress monitoring 

method 

This section introduces the experiment site layout and the as-planned schedule used in 

this experiment.  The tasks simulated in this research are valve maintenance during an 

NPP outage project on three different sites (they are on Site A, B, and C, respectively) 

which are shown in Figure 32. The workers need to complete five tasks on each site. 

Each task is assigned to a specific worker. In this workflow, the workers can only work 

on one site at a time, which makes them the shared resources.  
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Figure 32. Spatial and Temporal Relationship between Tasks in Outage Workflows 

4.4.2 Agent-based simulation platform 

Two types of human agents are in this simulation model: worker and supervisor. A 

worker agent can be of three types: the insulator, the electrician, and the mechanics. Each 

type of worker is responsible for certain tasks in the workflow. The supervisor is 

responsible for communication and collaboration with the workers. Such collaboration 

work includes receiving the task progress information from the workers and inform the 

corresponding worker which task is ready for him/her to do. 

To finish the tasks, I should have the “worker” agent. Each worker can do the following 

things: 

1. The worker can move at a certain speed. 

2. Each worker can do certain tasks according to his/her worker type. Specifically, the 

insulator can remove or re-install the insulation (Task 1 and Task 5). The electrician 

can de-term or re=term the motor operator (Task 2 and Task 4). The mechanics can 

do the maintenance work (Task 3) 
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3. The worker can communicate with each other or with the supervisor. They can 

report their progress of their current task or receive information about the progress 

of other tasks. 

4. The worker can decide what to do next after they finish their current tasks based on 

the currently available tasks. 

Based on these features of workers, I can generate the “worker” class. Each worker has 

five statuses, which are visualized in Figure 33.  

• Waiting. If no task is available to the worker, it will stay in the waiting status. 

Whenever a task is available for the worker, the status of this worker will become 

“traveling.” 

• Traveling. After the worker identifies the “current task,” it will move toward the 

location of the current task for 1 step. If the current location of the agent is the same 

as the location of “current task,” the status of the worker agent will transfer from 

“moving” to “working.” 

• Working. When the worker agent is in the working status, the remaining time of 

the current task starts counting down. After the remaining time becomes zero, the 

status of the worker will become “Reporting,” and the status of the valve will be 

changed according to the current task. 

• Reporting. When the agent enters the reporting status, the remaining time of the 

worker’s reporting activity starts counting down. When the remaining time of the 

worker’s reporting activity reaches zero, the supervisor will receive a message 
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saying that the “current task” of the worker is finished. Then the status of the worker 

becomes waiting. 

• When the worker is receiving a call from the supervisor, its status will temporarily 

become “Receiving the call from the supervisor.” In this status, the worker will 

receive the available task information. 

 

Figure 33. Status Transition of the Worker Agent 

In this NPP outage scenario, the task of the supervisor is to 1) answer the phone calls 

from the worker and record the information about the finished tasks. 2) inform the worker 

of the following task that following task is ready to be worked on after the supervisor 

received a phone call reporting a completed task. Based on the behavior of the supervisor, 

I generate the supervisor agent (shown in Figure 34), which has the following status:  

• Waiting. The supervisor will stay in the “waiting status” when no one is calling the 

supervisor and the supervisor is not calling any worker. 

• Communicating. After the worker agent call the supervisor, the supervisor’s status 

will become “communicating”. After the worker agent finishes calling, the 

supervisor will add the task that the calling worker just finished into the finished 

task list. After the supervisor finishes answering the incoming phone-call from 
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worker A, the supervisor will check all tasks which have not been started to see 

which one is ready. Then the supervisor will “make a phone call” to inform the 

worker agent B who is responsible for the successor task, which means B will add 

the successor task to its available list. 

 

Figure 34. Status Transition of the Supervisor Agent 

4.4.3 Comparing the performance of different progress monitoring plan 

This research will validate the progress monitoring result on an NPP outage workflow the 

critical path of which is changed. Table 6 shows the as-planned task duration of the NPP 

outage workflow in the simulation model. The fourth column of Table 6 shows the 

baseline duration of the task duration of all tasks in the simulation model. The as-planned 

critical path of the simulation model is A1-A2-A3-B3-C3-C4-C5 (visualized in Figure 

35), which is calculated using the mean value of the task duration. Figure 35 shows all 

the possible changes of the critical path. Among 1000 runs of the simulation model, 72% 

runs to hold the same critical path as planned. However, in other cases, the as-is critical 

path may change. The critical path of the example simulation run is A1-B1-B2-A4-C2-

C3-C4-C5. The uncertainty of workflow duration not only causes the critical path change 

but also cause the task sequence change (task A4 and task C2). 
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Figure 36 shows the progress monitoring result in the format of estimated workflow 

duration at different times. The resilient progress monitoring result can control the 

uncertainty under a limited amount. 

Table 6 Task durations in the simulation model 

No. Task name Resource As-planned Duration 

1 Remove the valve Insulator 30-60 min 

2 De-term the motor operator Electrician 45-75 min 

3 Perform valve maintenance Mechanic 60-90 min 

4 Re-term the motor operator Electrician 45-75 min 

5 Re-install the valve Insulator 30-60 min 

 

 

Figure 35. A Changed Critical Path Due to Uncertainties of Task Durations 

 

Figure 36. Estimated Workflow Duration Based on Resilient Progress Monitoring 
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Figure 37 compares the progress monitoring result of the different strategy. I still use 

estimated workflow duration as the performance function. The blue line shows the 

estimation of workflow duration under ideal progress monitoring approach, which means 

the supervisor can monitor all of the on-going tasks in real time. The orange line and the 

gray line visualize the estimation of workflow duration under resilient progress 

monitoring or only use workers’ report of task finishing time. Figure 37 shows that the 

orange curve is much closer to the blue line compared to the gray line, which means the 

result of resilient progress monitoring is better than the progress monitoring result only 

based on workers’ report of task finishing time. With the proposed proactive progress 

monitoring method, the management team can predict the risk of critical path change at 

36 minutes before a worker make the wrong decision due to he or she choosing the 

incorrect task after finishing the current one. This risk of critical path change will cause 

20 minutes’ delay of the entire workflow. On the other hand, if the management team 

only focus on the progress of the tasks on the as-planned critical path, they will identify 

the mistake after the unreliable decision has caused the workflow delay. This result 

means the resilient progress monitoring method can proactively detect the potential 

critical path change and workflow delay to maintain the resilient management of NPP 

outage project. 
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Figure 37. Comparing Different Progress Monitoring Strategy 

4.5 Discussion 

4.5.1 Extendibility of the proactive progress monitoring method 

This proactive progress monitoring method should also be potentially useful for 

automated control of other shutdown projects, such as the turnaround of petrochemical 

plants, shutdown maintenance of other types of power plants and water supply system, 

and fast bridge maintained and construction on highways. To achieve early detection of 

workflow delay or critical path change in other shut down projects, the management team 

can use the as-planned schedule, and the organization structure of the project team to 

identify which tasks need more frequent monitoring and what is the optimized time to 

monitor these tasks. 
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4.5.2 Limitation and future studies 

This research has the following limitations. First, current proactive progress monitoring 

method is based on simulated workflow data created by researchers working on NPP 

process optimization in the stead of real NPP outage data. I model the distribution of each 

task in the workflow as uniform distribution, and the progress monitoring performance 

could be improved if I use the database real NPP outage schedule to generate the task 

duration distribution. 

Second, the uncertainties involved in this research is only the task duration uncertainty. 

In reality, human errors are major sources of uncertainties, especially in communication 

activities (Hobbins et al. 2016). Furthermore, the complex organization of NPP outage 

team creates a larger number of communication activities compared to normal 

construction projects, which enlarges the impact of human error on the effective and 

efficient monitoring and management of the project. Therefore, in the future, I will 

integrate human error model into the progress monitoring.  

Considering these two limitations, I propose BIM-based simulation platform can improve 

the performance of the current progress monitoring method (Ben-Alon and Sacks 2017). 

BIM will help visualize the progress of the project and the behavior of different agents 

(e.g. workers, supervisors, management team, and so on). Also, BIM model can connect 

to the historical outage workflow database and improve the precision of the simulation 

result. Most importantly, BIM adds more types of agents to the simulation environment 

thus enables the interaction between the building component agents, environmental 

agents, and human agents. Such enrichment of agent interaction enables simulating more 
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types of uncertainties on the NPP outage workflows, such as workers being not familiar 

with the environment, error in perception of the as-is progress of certain tasks in the night 

because of the low ambient light, and so on. In a word, the integration of BIM, 

simulation, and human factor science can greatly help the efficiency and effectiveness of 

decision making in busy construction projects. 

4.6 Conclusion 

This research proposes the proactive workflow progress monitoring methodology in NPP 

outage workflows.  Using the concept of TSA from cognitive science domain, this 

method optimizes the communication protocol between field workers and management 

team according to the as-planned workflow and the previous as-is progress monitoring 

information. This method can support the early detection of the delay of the workflow 

and the prediction of critical path changes by modifying the time and tasks to monitor in 

progress monitoring activities. Simulation results show that the proposed method can 

provide valid guidance for resilient workflow control in NPP outage workflows.  



  119 

CHAPTER 5 CONCLUSIONS AND FUTURE RESEARCH 

In this research, aimed at achieving resilience for acquiring information in dynamic 

construction job sites, I developed a computational framework for enabling human 

acquiring timely, detailed information through sensor based inspection, manual 

inspection, and communication. Further, I validated this framework by applying it to 

specific applications of collecting laser scanning data collection for geometric 

information, job site risk information, and workflow progress information. The following 

sections described the contributions and corresponding validations, practical implications 

and recommended future research work. 

5.1 Summary of Research Contributions and Validation Results 

5.1.1 A laser scan planning for dynamic construction environments 

In construction environments, laser-scanning technologies can perform rapid spatial data 

collection tasks, such as streamlining field activities, monitoring construction progress, 

and controlling construction quality. However, even the most skilled of surveyors cannot 

guarantee comprehensive laser scanning data collection on a construction site due to its 

constantly changing environment, wherein a large number of objects are subject to 

different data-quality requirements. The current practice of manually planned laser 

scanning often produces data of insufficient coverage, accuracy, and details. Although 

redundant data collection can improve data quality, this process can also be inefficient 

and time-consuming. There are many studies on automatic sensor planning methods for 

guided laser-scanning data collection in the literature. However, fewer studies exist on 

how to handle the exponentially large search space of laser scan plans that consider data 
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quality requirements, such as accuracy and levels of details (LOD). This paper presents a 

rapid laser scan planning method that overcomes the computational complexity of 

planning laser scans based on diverse data quality requirements of various objects in the 

field. The goal is to minimize data collection time while ensuring that the data quality 

requirements of all objects are satisfied. An analytical sensor model of laser scanning is 

constructed to create a “divide-and-conquer” strategy for rapid laser scan planning of 

dynamic environments. In this model, a graph is generated having specific data quality 

requirements (e.g., levels of accuracy and detail) in terms of nodes and spatial 

relationships between these requirements as edges (e.g., distance, line-of-sight). A graph-

coloring algorithm then decomposes the graph into sub-graphs and identifies “local” 

optimal laser scan plans of these sub-graphs. A solution aggregation algorithm then 

combines the local optimal plans to generate a plan for the entire site. Runtime analysis 

shows that the computation time of the proposed method does not increase exponentially 

with site size. Validation results of multiple case studies show that the proposed laser 

scan planning method can produce laser-scanning data with higher quality than data 

collected by experienced professionals, and without increasing the data collection time. 

5.1.2 A crowdsourcing-based safety risk analysis method using job site images 

Risk assessment based on imagery data is becoming popular in construction project 

management because cheap imaging devices can capture reality in real time. One 

challenge is that image-based safety risk identification heavily relies on the subjective 

image interpretation. Well-trained inspectors could be a limited resource to meet the 

inspection requirements for construction safety. “Crowdsourcing” is one of the ideal 
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approaches collecting identified risks through online image interpretation games and 

aggregate answers from game players into comprehensive and reliable risk recognition 

results. Unfortunately, inputs provided by non-professional players can distort the 

aggregated results. This paper presents a study showing that without knowing the actual 

risks on construction sites, human-image interaction behavior analyses of anonymous 

online image interpreters can overcome the influences of mixed reliable and unreliable 

answers from anonymous online players and acquire reliable risk evaluations of job site 

imageries. I conducted this study with the following steps: 1) train anonymous assessors 

in a few minutes on limited safety rules and have them assess some images for collecting 

crowd-based risk detection data, 2) collect assessment results using an online 

crowdsourcing platform, and 3) automatically aggregate risk assessments using a 

Bayesian network model into the risk detection results. Results from an online image-

based elevator installation risk assessment experiment show that the proposed method 

can overcome the limitation of the majority-based voting and achieve comparable results 

as experienced safety inspection professionals. 

5.1.3 A qualitative model to evaluate information for progress mongering in NPP outage 

workflows 

Nuclear power plant (NPP) outages are challenging construction projects that involve a 

large number of maintenance and repair activities with a busy schedule and zero-

tolerance for accidents. During NPP outages, the communication activities can be time-

consuming and error-prone due to the complicated organization of outage processes and 

crews, the extremely busy schedule with a 10-minute level of detail, and a large number 
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of people working simultaneously on the job site. Furthermore, such busy schedules and 

the complicated organizations could cause communication-related delays or mistakes to 

propagate to even more tasks, which could compromise the productivity of the entire 

workflow. Therefore, precisely predicting and controlling the time wasted during 

communications and remedying miscommunications caused by human errors can 

improve the NPP outage productivity. 

To reduce the time wasted and impact of human errors in communication, I propose the 

communication protocol optimization according to the as-planned workflow. This 

communication protocol optimization study evaluates how different communication 

protocols in a team will influence the time wasted under the influence of human error, 

task duration uncertainty, and communication. This methodology has four steps: 1) 

define the outage workflow process of an NPP outage workflow; 2) identify the 

uncertainties in the workflow model, including the task duration uncertainty and random 

communication errors; 3) design the communication protocol to mitigate the identified 

uncertainties; and 4) optimize the parameters (e.g. the time interval between phone calls) 

in the communication protocol. To validate this methodology, this research uses two 

objective functions to quantify the performance of a communication protocol in a 

collaborative workflow. The first objective function used for communication protocol 

optimization is minimizing the duration of the entire workflow. The second objective 

function is minimizing the probability of critical path change in the schedule. Simulation 

result shows that the proposed method can provide a reliable reference of designing the 

communication protocol in NPP outage workflows.  
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5.2 Practical Implications 

This research defines three possible ways to improve the resilience of information 

acquisition in dynamic construction site through sensor-based inspection, manual 

inspection, and communication. All three information acquisition techniques can form a 

resilient information acquisition system.  

The laser scan planning algorithm can support a mobile app to guide the laser scanning 

surveyor’s data collection task on the job site. According to engineers in the construction 

industry, acquiring detailed as-built 3D building information model will cost tens of 

thousands of dollars, varying with the scale of the projects. As a result, full automation of 

3D site inspections will save time and money for contractors. In the future, using the 

proposed laser scan planning method, unmanned aerial vehicles (UAVs) or robots could 

enable autonomous robots that carry sensors and process 3D imagery collection with 

minimum human involvement. This will help autonomous high-quality data collection in 

remote areas that are dangerous for human inspectors, such as underwater structures, top 

of skyscrapers, or rescue missions after an earthquake. Automatic laser scan planning will 

make laser scanning autonomous, safer, more precise, and more efficient on various 

dynamic sites.  

The crowdsourcing-based job site risk assessment system could be useful real-world 

construction projects. For large public construction projects without confidential issues, 

the construction workers can collect job site images and upload them online. Then the 

public can participate in the safety assessment using the proposed crowdsourcing system 

to improve the effectiveness and efficiency of job site safety management. For the 
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construction projects which have confidential issues such as a nuclear power plant, 

uploading the job site images to the internet will trigger safety issues. In such cases, the 

idling employees can work as the participants of the crowdsourcing system to assess the 

safety risks in job site imageries, which can still reduce the workload and error rate of 

safety inspectors. 

The proposed proactive progress monitoring system can be integrated into the current 

Automatic Work Package (AWP) system, which is an automation technique that supports 

micro-level management and control of outage tasks (Blanc et al. 2012). This system 

enables the workers to track their tasks on a hand-held electronic device (e.g. tablets or 

smartphones), which can be used as the input of the progress monitoring system. Then the 

progress monitoring system will automatically push the progress monitoring order to the 

inspection personnel or even directly pull progress information from certain workers to achieve 

automatic workflow progress monitoring.  

5.3 Recommended Future Research Directions 

Although challenges related to information acquisition and modeling exists in achieving 

HCA in job site information acquisition, many techniques that have not been applied in 

real-world construction projects are potentially helpful in addressing these challenges 

mentioned above. I broadly explored various techniques developed in the domains of 

computer science, human factor and ergonomics, construction engineering, system 

science, and nuclear industry to find potential solutions to these challenges. Finally, I 

identified the following research directions as potentially useful for supporting resilient 

job site information acquisition. Computer-vision-based human tracking can provide 
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human traveling pattern information, and natural language processing can aid the 

measurement of cognitive factors as well as automatically analyzing operational histories 

of past NPP outages. The rest of this section will review these future directions to draw a 

practical research roadmap toward the goal of HCA for resilient construction information 

acquisition. 

5.3.1 Human tracking  

Human tracking is using sensing technologies to automatically capture the trajectory of 

moving people, which can address the challenges of capturing the human traveling 

pattern information in the complicated construction site. Available human tracking can be 

divided into two categories: computer-vison based and tag-based tracking. Tag-based 

human tracking utilizes the trackable devices attached to the human body, which includes 

RFID, Wi-Fi, global navigation satellite system (GNSS), etc. RFID technology is a well-

implemented technology mainly for tracking equipment. The accuracy of human tracking 

can achieve meter level (Li and Becerik-Gerber 2011; Montaser and Moselhi 2014). 

However, tag-based human tracking technologies are not suitable for NPP outages 

because of two reasons: 1) GNSS does not function in indoor and underground 

environments. Assisted GNSS (A-GNSS) extends GNSS to indoors, but it is limited and 

unreliable. On the other hand, the performance other tag-based tracking technologies 

might not satisfy the sub-meter-level tracking need of certain construction workflow, 

such as NPP outage projects; 3) trackable tasks may cause confidential issues, which is 

rejected by the labor union.  
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Meanwhile, computer vision technology can detect the presence/absence of objects as 

well as their trajectories, which can provide useful information about the motion of 

workers on the construction job site (Chaquet et al. 2013; Koch et al. 2015; Sato and 

Aggarwal 2004; Seo et al. 2015; Zaurin and Catbas 2007). Using data fusion of workers' 

position and upper body postures along with the job site environment information, 

computer-vision-based approaches can capture the positions activity types of field 

workers in real time (Chaquet et al. 2013; Cheng et al. 2013). The work activity 

information is used to perform automatic work sampling to facilitate real-time 

productivity assessment. Computer-vision-based human tracking may also enable the 

detection of abnormal human behaviors in workspaces. Using these technologies to detect 

anomalous behavior of field workers can help anticipate accidents or delays in workflow. 

It is attempting to explore using computer vision technologies to identify individuals 

whose behaviors are different from the majority (Chandola et al. 2009; Kratz and Nishino 

2009; Patcha and Park 2007; Tang et al. 2016; Zhang et al. 2016).  

However, challenges exist in achieving computer-vision-based human tracking. Current 

construction sites support videos and image as data inputs. However, these imagery 

sensors cannot be allocated everywhere across the job sites. As a result, to achieve real-

time human behavior inspection, a sensor allocation technology and new research 

focusing on the trade-off between data size and tracking performance is needed to reduce 

data collected while keeping all the needed information (Spletzer and Taylor 2003; 

Tarabanis et al. 1995). 
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5.3.2 Natural language processing 

Natural language processing (NLP) is a subfield of artificial intelligence that aims to use 

natural language text making it understandable to computers so that it is processed in a 

human-like manner (Dutta 1993). Currently, most cognitive measures used to determine 

SA and MW are survey-based and require direct input from the test takers. Unfortunately, 

requiring any additional tasks from the already over-worked operator may cause 

interruptions of ongoing work. Besides interrupting the operator, manual assessments are 

also tedious and error-prone. Furthermore, achieving timely, reliable, and comprehensive 

assessment of field personnel’s SA and MW in dynamic construction projects is nearly 

impossible. NPL has the potential to simplify this measurement process by enabling 

automatic assessment of the test takers’ SA and MW through simple, but effective oral 

assessments and in turn, reducing management’s workload and interruption caused by 

cognitive factor measurements (Verma et al. 2011).  

Additionally, NLP can help achieve the automated extraction of rich, semantic 

information from the documentation of various events during the operation and 

maintenance of nuclear plants (e.g. the Licensee Event Report system established by 

Idaho National Lab (Gertman et al. 1992; Hobbins et al. 2016; Salo and Svenson 2003; 

Schroeder and Bower 2014)) for supporting the analysis of nuclear power plant incidents. 

These incidents include technical problems, personnel errors, safety violation, inadequate 

procedure, radioactive leak, or supervision issues. Automated analysis of documentations 

can assist in understanding dynamic team processes, such as team cognition during 

outages, thereby provide insights and information about complex team skills to improve 
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team SA and reduce team MW. Furthermore, this automated analysis can suggest ideal 

interventions target cognitive underpinnings of team performance, such as training 

programs and technological support systems to increase team effectiveness (Cooke et al. 

2004; Zouaq 2011). 

5.3.3 Human-in-the-Loop Cyber-Physical Systems Research 

A Cyber-Physical System (CPS) is a mechanism that the physical world is controlled or 

monitored by computer-based algorithms, tightly integrated with the Internet and human 

users (Lee 2015; Schirner et al. 2013). In a CPS, computers monitor and control physical 

processes, usually with feedback loops, where physical processes affect computation 

processes and vice versa. Domain applications of CPS include automotive systems, 

manufacturing, medical devices, etc.(Lee 2008). In recent years, researchers proposed the 

concept of “Human-in-the-Loop Cyber-Physical Systems (HiLCPSs),” which is defined 

as “a loop involving a human, an embedded system (the cyber component), and the 

physical environment wherein the embedded system augments a human’s interaction with 

the physical world” (Schirner et al. 2013).  In HiLCPSs, the sensors and computer 

systems monitor human activities (both cognitive and physical) and translate the sensory 

measurements into close-loop control signals to aid and modify the interaction between 

human and other components in the physical world (Munir et al. 2013). HiLCPS 

combined with Building Information Modeling (BIM) enables activity-level construction 

site planning that has the potential to gradually achieve proactive improvements of 

operational and construction safety in construction projects (Cheng et al. 2013).  
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The vision of CPS in outage control is to optimize human-automation interactive decision 

making and achieve the following: 1) the performances of tasks will be automatically 

tracked in detail with abundant human factor information; 2) schedules will be 

automatically updated and adjusted while human intervention is fully supported in order 

to mitigate the impacts of delays, errors, or field discoveries; 3) detailed as-is workflow 

information including human factors can be restored in supporting data-based decision 

making for future needs. Furthermore, artificial intelligence techniques, such as statistical 

learning methods, integrated into HiLCPS for continuous improvements of the system 

based on learning from historical data and documents (Deng and Yu 2014; Liu et al. 

2015; Michalski et al. 2013; Schmidhuber 2015). In the future, I expect that computers 

would be able to automate more decision-making and control mechanisms, so that release 

human operators and decision makers to conduct more detailed diagnosis of projects and 

outage control strategies. Smarter computers and algorithms also should be able to enable 

automatic learning from human-computer interaction histories to recommend better 

human-computer interaction interfaces (van der Aalst et al. 2004; Herbst n.d.). 

Despite of significant progress into CPS and HiLCPS technology in recent years, 

building a reliable, self-learning HiLCPS for a complex system such as NPP outage 

control is still difficult because of three challenges (Lee 2008, 2015; Munir et al. 2013; 

Schirner et al. 2013): 1) sensing and modeling techniques for each system need to be 

developed specifically based on the domain needs, which is not yet supported by mature 

computational and data science (Lee 2008); 2) traditional data analysis tools are unable to 

cope with the complexity of CPS or adequately predict system behavior (Schirner et al. 

2013); 3) integrations of knowledges from different domains (e.g. computer science, 
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mechanical & civil engineering, management science, and phycology science) are 

difficult to achieve for a reliable HiLCPS because of the natural complexity and 

uncertainty of human behaviors and physical processes (Lee 2015; Munir et al. 2013). 

Fully addressing these challenges requires the breakthroughs in computer science, 

cognitive science, and system science. Therefore, the practical step forward toward 

HiLCPS is to address the identified information acquisition challenges to precisely 

monitor the as-is workflow, to comprehend and optimize the decision-making processes.  
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IRB ID: STUDY00003858 

Funding: None 

Grant Title: None 

Grant ID: None 

Documents Reviewed: • Cheng Zhang CITI training, Category: Other (to 

reflect anything not captured above); 

• HRP-503a-

TEMPLATE_PROTOCOL_SocialBehavioralV02-10- 

15.docx, Category: IRB Protocol; 

• 

Online_Survey_Form_for_Safety_Image_Analysis.pd 

f, Category: Participant materials (specific directions 

for them); 

• Pingbo Tang CITI training, Category: Other (to 

reflect anything not captured above); 

• HRP-502c - TEMPLATE CONSENT DOCUMENT 

-SHORT FORM.pdf, Category: Consent Form; 

The IRB determined that the protocol is considered exempt pursuant to Federal 

Regulations 45CFR46 (2) Tests, surveys, interviews, or observation on 2/3/2016.  

https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5B65E33349C2932B4EB1C754D4CEFB3611%5D%5D
https://era.oked.asu.edu/IRB/RMConsole/Organization/OrganizationDetails?detailView=true&Company=com.webridge.account.Party%5BOID%5BBD631790797AB6419103F124B29C2F59%5D%5D
https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5B65E33349C2932B4EB1C754D4CEFB3611%5D%5D
https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5B65E33349C2932B4EB1C754D4CEFB3611%5D%5D
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In conducting this protocol you are required to follow the requirements listed in the 

INVESTIGATOR MANUAL (HRP-103). 

Sincerely, 

IRB Administrator 

cc:  

Cheng Zhang 

 

  

 

 


