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ABSTRACT

With the penetration of distributed renewable energy and the development of

semiconductor technology, power electronic devices could be utilized to interface re-

newable energy generation and the distribution power grid. However, when directly

connected to the power grid, the semiconductors inside the power electronic devices

could be vulnerable to the power system transient, especially to lightning strikes.

The work of this research focuses on the insulation coordination of power elec-

tronic devices connected directly to the power distribution system. The Solid State

Transformer (SST) in Future Renewable Electric Energy Delivery and Management

(FREEDM) system could be a good example for grid connected power electronic

devices. Simulations were conducted in Power Systems Computer Aided Design

(PSCAD) software. A simulation done to the FREEDM SST showed primary re-

sults which were then compare to simulation done to the grid-connected operating

Voltage Source Converter (VSC) to get more objective results.

Based on the simulation results, voltage surges caused by lightning strikes could

result in damage on the grid-connected electronic devices. Placing Metal Oxide Surge

Arresers (MOSA, also known as Metal Oxide Surge Varistor, MOV) at the front filter

could provide effective protection for those devices from power transient. Part of this

research work was published as a conference paper and was presented at CIGRE US

National Conference: Grid of the Future Symposium [1] and North American Power

Symposium [2].
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Chapter 1

INTRODUCTION

1.1 Statement of Problem and Motivation

In the smart grid, the application of Distributed Renewable Energy Resources

(DRERs) and Distributed Energy Storage Devices (DESDs) is getting more and

more attention. Grid-connected power electronic devices, for instance, the Static

VAR Compensator (SVC), Voltage Source Converter (VSC), Static Compensator

(STATCOM) and Solid State Transformer (SST), are utilized to integrate DRERs

and DESDs into power distribution systems. However, when directly connected to

transmission and distribution lines, those solid-state devices might be exposed to volt-

age surges caused by lightning strikes. For this reason, the insulation coordination of

the grid-connected power electronic devices should be studied.

The purpose of insulation coordination is to organize the insulation strength,

making it high enough for Metal Oxide Surge Arreser (MOSA) to operate but low

enough to be economical. Compared with power circuit components, power electronic

devices have very poor over-voltage withstanding capability. Even transient voltages

with comparatively small magnitudes could damage these devices. For this reason, it

is of great importance to have surge protection and insulation coordination for these

power electronic devices. Taking the Insulated Gate Bipolar Transistor (IGBT) as an

example [8]. For a 6.5 kV IGBT, its rated current is 250 A. The impulse characteristics

of this IGBT are:

max
dV

dt
= 16.25kV/µs (1.1)

max
dI

dt
= 0.63kA/µs (1.2)

1



Based on IEC 61000 [9], for the 60 kV 1.2/50 µs voltage impulse, the voltage

increasing rate is:

max
dV

dt
=

60kV

1.2µs
= 50kV/µs (1.3)

In conclusion, when directly connected to the power distribution system, the power

electronic devices need to be protected.

1.2 The Scope of This Research and Objectives

The main focus of this thesis deals with the lightning protection of power elec-

tronic devices when they operate in power distribution network. The SST in Future

Renewable Electric Energy Delivery and Management (FREEDM) system is taken as

an example for analysis. The dynamic performance and protection of typical elements

in the FREEDM SST will be studied. Similar simulations will also be done to other

directly connected power electronic devices, namely the Voltage Source Converter

(VSC).

The FREEDM system is a highly distributed, scalable, automated and flexible

power system. The SST is the fundamental component of the FREEDM system. It

could manage distributed renewable energy resources (DRERs), distributed energy

storage devices (DESDs) and loads, acting as an energy router. Since the SST is

directly connected to the power distribution primaries, the SST front filter or the

semiconductor components inside the SST might be damaged by the voltage surge

caused by lightning strikes. The protection of the SST under lightning strike could be

a good example of the insulation coordination of solid state devices when connected

directly to the distribution primaries.

According to the IEC 61000 and IEC 60071 [9][10], the SST or other electronic

components must be tested by short duration impulse. They must withstand the

1.2/50 µs impulse with a peak value defined by the IEC standards [10]. The peak

2



value of this impulse is called the Basic Lightning Impulse Insulation Level (BIL).

Depending on the rated AC voltage, the BIL could vary. For example, the BIL at 15

kV line-to-line distribution level would be 60 kV instantaneous phase-to-ground.

The standard allows that the tested equipment is protected by MOSAs. The surge

arrester is a nonlinear resistance, which has high resistance at the rated AC voltage,

but the resistance is reduced by the increasing voltage. This diverts the lightning

current to the ground and protects the equipment.

Simulations are conducted to the FREEDM SST under non-operating and op-

erating conditions respectively. To do so, simulations are done in Power Systems

Computer Aided Design (PSCAD) software. According to the simulation results, the

lightning strike could be harmful to the grid-connected power electronic devices. In-

stalling MOSAs could protect them from the voltage surge caused by power transient

and lightning strikes.

1.3 Thesis Outline

Chapter 1 provides a brief introduction including statement of problem, motiva-

tion for the research, and the objective of the thesis.

Chapter 2 comprises background literature review related to the application and

protection of power electronic devices connected directly to transmission lines, the

concept of insulation coordination, and the role the SST plays in the FREEDM

system. The set-up, standards and testing method for lightning test is also introduced

in Chapter 2.

In Chapter 3, the over-voltage response and protection of typical components in

the SST are analyzed when a single-phase SST, in FREEDM system, is stricken by

lightning under non-operating conditions.
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Chapter 4 deliberates the dynamic performance and insulation coordination of the

SST when a single-phase SST, in the FREEDM system, is struck by lightning under

operating conditions.

In Chapter 5 similar simulations are done to grid-connected operating VSCs to

get more objective results. The robustness of the VSCs are tested under 60 kV 1.2/50

µs over-voltage, and the protection methodology is analyzed for VSC protection.

Chapter 6 includes significant conclusions for the research and discusses future

work that can be taken into consideration.
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Chapter 2

BACKGROUND LITERATURE REVIEW

2.1 Application of Solid State Devices in Power System

With the development of semiconductor technology, the application of power elec-

tronic devices in the power system has gained increasing popularity. Grid-tied power

electronic facilities are widely applied in Flexible Alternating Current Transmission

Systems (FACTS) because of their excellent dynamic performance. An LCL filter

is usually adopted for those facilities to decrease harmonic distortion and to have

better dynamic performance [11] [12]. This increases the probability that those grid-

connected power electronic devices, like, grid-connected Voltage Source Converters

(VSCs), Static VAR Compensators (SVCs), Static Compensators (STATCOMs), and

Solid State Transformers (SSTs), might be subjected to voltage surges caused by

lightning or circuit switching. The protection provided by the filter capacitor is rea-

sonable but limited [13]. Thus, transient overvoltage is lethal to the LCL front filter

or semiconductor components inside the devices.

For these grid-tied power facilities, there are insulation standards which are deter-

mined by power system nominal voltages and voltage surges induced by lightning. In

order to fulfill the requirements, the MOSAs are used to decrease the voltage strength

to protect the power devices. In this chapter, several grid-tied power electronics fa-

cilities and the insulation standards are introduced. Furthermore, the mechanism of

lightning and MOSA protection methods are also investigated.
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2.1.1 Static VAR Compensator (SVC)

SVC is a set of power electronic device connected in shunt with transmission lines

to provide reactive power quickly and reliably. It can be a combination of Thyristor

Controlled Reactor (TCR), Thyristor Switched Capacitor (TSC), Harmonic filter,

Mechanically Switched Capacitor bank (MSC) or Mechanically Switched Reactor

bank (MSR). At least one of the elements in the SVC should include thyristors.

As indicated in Fig 2.1, it can be operated at inductive or capacitive compensation

when it is in the form of TCR or TSC, respectively [14]. The high-power harmonic

filters are adopted to eliminate the undesirable harmonics caused by the switches and

thyristors.

Figure 2.1: Single Phase Diagram of SVC Compensated Power System [3]

SVC is one of the most popular type of FACTS devices to improve power system

performance. It could regulate the grid voltage, which is usually influenced by load

variation and system operating condition changes [15], and adjust the power factor

to unity by dynamically compensating the reactive power in the power grid to avoid

voltage collapse in a weak distribution network [16] [17]. It could also improve power

system stability, and alleviate power system oscillation by producing supplementary
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control signals to the point where voltage is set as certain value [15] [18]. In addition,

it helps to transfer power economically, minimize active power loss in the power

system, and achieve optimal power flow [3] [19].

2.1.2 Grid-Connected Voltage Source Converter (VSC)

VSC is adopted to convert electric power from direct current (DC) to alternating

current (AC) using insulated-gate bipolar transistors (IGBTs). IGBTs give the VSC

more controllability. Unlike other converters based on thyristors, IGBTs do not de-

pend on the external AC system to turn it off. For this reason, VSC can have a higher

switching frequency and better harmonic performance. It could be more compact in

size because it needs less harmonic filtering. Fig 2.2 shows a VSC connected to the

grid through an LCL filter.

Figure 2.2: A VSC Connected to the Grid Through an LCL Filter [4]

VSC is vital for power system control [20]. Firstly, it could be adopted to interface

renewables, such as solar panels, thermoelectric generators and wind turbines, with

the distribution network. Also because the fuel cells have low output voltages, a static
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converter is needed to increase the source voltage magnitude to match the regulated

DC bus [21].

Secondly, VSCs could be used to improve power system stability, regulating ac-

tive and reactive power delivered to the power grid [22]. For instance, VSC-based

Interphase Power Controllers (IPC) are able to control power flow and limit short

circuit current [23]. In addition, VSCs could be applied to incorporate Static Series

Synchronous Compensators (SSSCs) and Static Synchronous Compensators (STAT-

COMs) in FACTS to correct power factor and improve power quality [4].

2.1.3 Static Synchronous Compensator (STATCOM)

The STATCOM (also known as a static synchronous condenser, STATCON) is a

VSC-based device. Between the VSC and the AC power grid are inductors. On the

DC side of a VSC, a capacitor and energy storage device are connected. The electrical

structure of STATCOM is shown in Fig 2.3. DC voltage provided by a storage device

is converted by VSC into balanced three-phase AC voltage. Reactive power will be

injected into the system from STATCOM if voltage at a STATCOM terminal is higher

than system voltage; under this condition, STATCOM would behave like a capacitor.

Similarly, if the voltage at a STATCOM terminal is lower than the voltage of the

power system, the STATCOM would act like an inductor, and reactive power can be

absorbed from the power system [24]. Compared with SVC, STATCOM has a shorter

response time because the IGBTs in the VSC could switch on and off quickly.

The STATCOM is also one of the core components of FACTS controller used as

the shunt compensator to control reactive power in the transmission and distribution

system. It is used to provide power system with power factor correction and voltage

regulation. STATCOM without a storage system could provide voltage support for

the grid, control power flow [25], mitigate power loss [26], suppress harmonic currents
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Figure 2.3: Basic Structure of STATCOM [5]

[5], and balance loading. Equipping the STATCOM with a storage system across

the DC capacitor could increase its active power capability. In this way, STATCOM

could also regulate the power system frequency, improve power quality, correct power

factor, and provide uninterruptable power supply (UPS) service [27].

STATCOM is widely used to advance power system stability and improve power

system dynamic performance because of its fast speed, small size and wide operation

range [5].

2.1.4 Solid State Transformer(SST)

The SST combines power electronics and high frequency technology to reach ad-

justable power conversion, the FREEDM Gen II SST will be used as an example.

The SST consists of three parts, rectifier, Dual-Half-Bridge (DHB) and inverter, as

shown in Fig 2.4. The parameters of FREEDM GEN II SST are stated in Table 2.1.

Lg, Lf , Rg, Rf , and Cf in Table 2.1 are the inductances, resistances and capacitance

in the SST front filter.

The section following the front filter is the high voltage rectifier that converts 3.6
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Figure 2.4: Basic Structure of SST [1]

kVrms AC to 6 kV DC voltage. The control of this section regulates grid currents and

high voltage DC-link voltage using Pulse Width Modulation (PWM) [1]. The second

part is the DHB that transfers 6 kV high DC voltage to 400 V low DC voltage. The

high frequency transformer with a turns ratio of 15:1 in the DHB makes it possible for

DHB to provide isolation between high and low voltage circuits. On the primary side

of transformer in Fig 2.4, L1 and Lm are leakage inductance and magnetic inductance

respectively. Then, the low voltage inverter converts 400 V DC to 120 Vrms AC

voltage, supplying power on the load side [28] [29].

For the SST front filter, at least one inductance should be working as the filter

on the AC side of the rectifier part. If a single inductance is chosen as the filter, the

value of the inductance can influence the Total Harmonic Distortion (THD) of the

current on the grid side according to the equation below. Systems with lower THD

has better power quality, and larger inductance can reduce THD in the system. In

the equation, I1 is the rated RMS value of the line current fundamental component,

Ts is the switching time period, Vdc is the DC voltage, Vacpk is the peak voltage on
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Table 2.1: GEN II SST Parameters [1]

Rectifier Parameters

Grid Voltage RMS 3.6 kV HV DC Voltage 6 kV

Lg 121.3 mH Rg 36.87 Ω

Lf 170 mH Rf 11 Ω

Cf 0.04 µF Switching Frequency 6 kHz

Ch1, Ch2 42 µF Sampling Frequency 12 kHz

DHB Parameters

Lm 44 mH Cf1, Cf2 500 µF

Lf 6.77 mH Switching Frequency 15 kHz

Turns ratio n:1 15:1 Sampling Frequency 12 kHz

Inverter Parameters

Lo 1.686 mH Switching Frequency 10 kHz

Co 30 µF Sampling Frequency 20 kHz

AC side,

THD =
IRMS

I1
100% (2.1)

IRMS =
1√
12π

Ts
Vdc
L

Vacpk
Vdc

√
3π

8
(
Vacpk
Vdc

)
2

− 8

3

Vacpk
Vdc

+
π

2
(2.2)

For FREEDM GEN II SST, the calculation for inductor L is as follows:

The DC voltage is Vdc = 6 kV, the RMS AC voltage is VacRMS = 3.6 kV. So the

peak AC voltage is

Vacpk =
√

2 VacRMS = 5.09 kV (2.3)

The switching frequency of the rectifier part of FREEDM SST is fs = 6 kHz, so

the switching time is

Ts =
1

fs
(2.4)

The SST capacity is S = 10 KVA, the rated RMS AC voltage is 3.6 kV, so the
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rated RMS value of the line current I1 is

I1 =
S

V
= 2.778 A (2.5)

Set THD=6%, then

IRMS = I1 THD = 0.167 A (2.6)

According to Equation 2.2, the total inductance value is

LT = 328 mH (2.7)

For the FREEDM SST, the front filter is updated from an inductor to an LCL

filter. If a single inductance is adopted to decrease current harmonics, the inductance

has to be of comparatively high value, which would be very expensive since the

capacity of the system is very large. However, the LCL filter has the advantage of

smaller inductances and capacitance, faster dynamic response and better performance

[30] [31].

For FREEDM GEN II SST, the calculation for LCL filter is as follows:

The base impedance is

Zb =
(VacRMS)2

S
= 1296 Ω (2.8)

The power system frequency is f = 60 Hz, so the value of the base capacitance is

Cb =
1

2π f Zb

= 2.047 µF (2.9)

Assume that the capacitor absorbs 2% of the reactive power under the rated

condition, set x equals to 2%, so the base capacitance value is adjusted as

Cf = x Cb = 0.041 µF (2.10)

Assume the current ripple is decreased from 36% to 6%, set the desired attenuation

as

k =
6%

36%
= 0.165 (2.11)
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The first filter inductor can be calculated as

Lg =

√
1

k2
+ 1

Cf (2 π fsw)2
= 121 mH (2.12)

The second inductor can be calculated as

Lf = LT − Lg = 197 mH (2.13)

From the data sheet ASU received as listed in Table 2.1, the values for the induc-

tances and capacitance in SST front filter is Cf = 0.04 µF, Lg = 121.3 mH, and Lf

= 170 mH. The calculations above are very closed to the value provided by the data

sheet.

The bode plot of the frequency response of the filter with a single inductance and

the LCL filter can be plotted in Matlab software is shown in Fig 2.5,

For the 60 kV 1.2/50 µs lightning impulse, according to the bode plot, when at

high frequency f = 10 kHz, the magnitude attenuation for L filter is approximately

-100 dB, but for LCL filter is around -120 dB. So the LCL filter has better attenuation

for high frequency transient.

The SST, enabled by power semiconductor devices, is one promising technology

to interconnect Medium Voltage (MV) and Low Voltage (LV) networks, to interface

between the generation sources and the main grid, and to manage the end-user and

local renewable resources [28]. It could be adopted as an empowering technology for

the modernized power distribution system where renewable energy is taking a more

and more important role [32]. This power electronic device can act as a potential

replacement for the conventional bulk size distribution transformer, particularly in

renewable energy applications and smart grids [33].

Compared with traditional low frequency transformer, the SST has significant ad-

vantages. It is smaller in size, lighter in weight, and is more environmentally friendly
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Figure 2.5: L Filter and LCL Filter Frequency Response (a) L Filter Frequency
Response (b) LCL Filter Frequency Response

[34]. Most importantly it has the capability to facilitate the operating conditions

of the distribution system, regulating voltage on the load side dynamically, control-

ling reactive power and correcting power factor simultaneously. Besides, it can also

achieve isolation, operational efficiency improvement, overload capability increase,

and fault current limitation. Therefore, it is beneficial to enhancing power system

performance, improving power quality, ensuring domestic power system network flex-
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ibility and strengthening power system stability [29].

2.2 Basic Insulation Level (BIL) and Insulation Coordination

In power transmission and distribution networks, insulation is provided to all

equipment in the system. In IEEE standard [35], it is stated that insulation coor-

dination is the arrangement of electrical insulation strength to acquire an accepted

failure risk when the system is under expected over-voltages. The main purpose of in-

sulation coordination is to protect the system from insulation failure both practically

and economically, that is, to provide the system with reliable protection at minimum

cost. In order to conduct insulation coordination analysis, the system voltage stresses

need to be analyzed first. The over-voltage stress could be evaluated by the maximum

crest value, a statistic crest value distribution or a statistic over-voltage value. In ad-

dition, the insulation strength should be determined to achieve the required failure

rate.

Insulation level of a power system is determined based on its ability to withstand

surge voltage caused by lightning. The minimum level of all the components in the

system is called basic insulation level. According to IEEE standard [35], Basic Light-

ning Impulse Insulation Level is usually expressed by the crest value of a standard

lightning impulse, representing the electrical strength of the insulation.

IEEE standard [36] addresses Metal-Oxide Surge Arresters (MOSAs) that can

suppress voltage surges by allowing surge discharge current to pass through MOSA,

so as to protect the power system itself or equipment directly connected to it from

harmful over-voltages caused by lightning. The arrester should function below the

minimum insulation level in order to protect the system or equipment from surges.

The selection of MOSA is also suggested in standard [36] (Appendix A).

This research focuses on the protection of power electronic devices connected di-

15



rectly to the power system. Different from power circuit components, power electronic

devices function at lower power and voltage levels. For this reason, the power elec-

tronic devices, when connected directly to the power grid, is very vulnerable when

exposed to power transient, for instance, the voltage surge caused by lightning strike.

The study of insulation coordination of power electronic devices that connect directly

to the power system is of great importance.

2.3 Voltage Surge Caused by Lightning

2.3.1 Lightning Induced Power System Transient

A transient is a sudden voltage or current surge that is generated in or injected to

the power system. It could damage the system or any component connected to the

system. In [13] it is stated that over-voltage or over-current events contributed to more

than 75% of the field failures of the power electronic systems. Over-voltage happens

when the system voltage is ten times higher than the nominal rated voltage. It can

result in damage to the electrical component or insulation failure of the equipment

[37]. Transient over-voltage in power system is mainly caused by power system re-

energizing, arcing, short circuiting, capacitor switching and lightning [32] [31]. Since

those complicated power electronic devices are extremely vulnerable to voltage surges

[13], transient over-voltage caused by lightning is one of the primary concerns of the

electrical or electronic components damage in power system.
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Figure 2.6: Lightning Strike: Insulator Flash-Over, Shielding Failure and Indirect
Lightning

Lightning is the electrical discharge between cloud and earth or between clouds.

It can cause severe and unpredictable damage to power electronic devices [13]. The

frequency of lightning impulse is very high, ranging from tens of kilohertz to several

megahertz [38]. Lightning strikes can affect the power system in two ways. One is

direct injection, during which the lightning discharge directly from the cloud to the

subject component. It is related to the lightning current, energy and heating [39]. As

indicated in Fig 2.6, for high voltage power system, grounded shield conductors are

placed at the top of the tower to protect transmission lines, the lightning current flows

directly to the ground when the lightning hits the shield wire. In this case, when the

impulse resistance of the ground is high, the lightning is not able to be discharged,

this can cause flash-over on insulators. During shielding failure, the lightning directly

hits the phase conductor. The other way that lightning strikes affect the power system

is indirect strike, during this event, traveling waves are induced when charged clouds

suddenly discharge to earth or other clouds, which is indicated in Fig 2.6. It is related
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to induced transient over-voltage in directly connected power electrical and electronic

systems. Direct strike is usually the most severe, while indirect strike happens more

frequently in the power distribution system [13]. Hence, the voltage surge caused by

indirect lightning strike is studied in this research.

Figure 2.7: 1.2/50 µs Lightning Impulse

The rated voltage for FREEDM system is designed to be 15 kV phase-to-phase,

according to IEC 60076 [40], the rated lightning impulse withstand voltage for the
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transformer winding is set to be 60 kV. Based on IEC 61000 [9], the standard lightning

waveform 60 kV 1.2/50 µs is adopted for this research. This waveform (Fig 2.7)

denotes the surge wave that increase to 60 kV (its peak value) in 1.2 µs and drops to

30 kV (half of its peak value) in 50 µs.

In Fig. 2.7, V1 = 30% Vpeak = 18 kV, V2 = 90% Vpeak = 54 kV, V3 = 50% Vpeak

= 30 kV. The front time Tf = 1.67 T = 1.2 µs, the duration is TD = TW = 50 µs.

2.3.2 Lightning Protection Using MOSA

Power electronic devices connected directly to the power grid contain semicon-

ductor components which could be jeopardized by voltage surge caused by lightning

[41]. Thus, it is necessary to properly select and install Surge Protection Devices

(SPDs) to protect those power electronic devices from electrical transient resulted

from lightning stroke, to reduce number of failures caused by lightning strike, so as

to ensure both the safety of the electronic devices and an uninterrupted power supply

[13] [42].

Surge Protection Device (SPD) are the devices that can protect power elec-

tronic equipment from electrical transients [43]. Over-voltage suppressors, break-over

diodes, and MOSAs could act as protective devices for power electronic equipment

and also improve power system reliability [41]. Despite the fact that installing MOSA

will cause undesirable energy consumption, the MOSA wins its reputation for small

size, high surge current capability and tight voltage regulating ability [13] [44]. It is

an economic option for over-voltage protection in this research.

MOSA is a ZnO based voltage dependent semiconductor ceramic device [36]. It

works like an insulator at normal voltages, but works as a conductor under high volt-

ages. In this way, it diverts current into the ground and constrain both positive and

negative over-voltage [13]. When 10 kA current flows through the MOSA, the voltage
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across the MOSA is defined as V10 [45]. Fig 2.8 indicates the V-I characteristics of a

12 kV MOSA, with a V10 of 23.93 kV. Little current flows through the MOSA until

the voltage reaches approximately 20 kV. Until then the voltage across the MOSA

can be considered the same as the surge voltage. When the voltage across the MOSA

is larger than 20 kV, the MOSA diverts current into the ground to restrain voltage

surge.

Figure 2.8: MOSA V/I Characteristic Curve

Fig 2.9 describes the MOSA model defined by the IEEE Working Group 3.4.11.

The RL filter separates non-linear resistance A0 and A1 into two parts. When slow-

front surge occurs, the RL filter has low impedance. In this way, the non-linear
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resistance A0 and A1 are connected in parallel. As for fast-front surge, the impedance

of RL filter is high, the current flows mostly through non-linear resistance A0 [46]

[47].

Figure 2.9: MOSA Model Defined by IEEE

2.4 Future Renewable Electric Energy Delivery and Management (FREEDM)

System

2.4.1 Future Grid and the FREEDM System

The energy generation depend heavily on fossil fuel that is non-sustainable and

not environmentally-friendly. This may lead to many side effects, for instance, the

uncertainty of resource supply, the non-renewable essence of the resource and the

environmental pollution. Burning the fossil can release carbon dioxide, which is one

of the major reason for global warming. In addition, during the combustion, nitrogen

dioxide, sulfur dioxide and carbon monoxide could also be released and cause serious

air pollution. In order to alleviate these issues, renewable energy resources should be

utilized widely and efficiently.

The FREEDM Engineering Research Center (ERC) is sponsored by National Sci-

ence Foundation (NSF) in 2008 [6], it is consisted of five universities, namely, North

Caroline State University, Arizona State University, Florida State University, Missouri
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University of Science and Technology, and Florida Agriculture and Technological Uni-

versity. The FREEDM system is an innovative and efficient smart power grid that can

integrate highly distributed renewable power generation and storage facilities. This

proposed infrastructure enables a sustainable electric power system, which could help

to avoid the energy crisis [7]. The FREEDM system structure is shown in Fig 2.10.

Figure 2.10: FREEDM System Diagram [6]

2.4.2 FREEDM System Structure

The architecture of this FREEDM system could be described as Energy Inter-

net, a network of DRERs that can manage power intelligently using advanced power

electronics, communication technology and control system. It is a plug-and-play in-

terface for highly distributed resource generation. It makes possible flexible energy

sharing among DRERs (such as solar power and wind power) on the residential side,

Distributed Energy Storage Devices (DESDs) and the power distribution grid. The

basic objective of the FREEDM system is to automatically manage load, storage

22



and generation in the power system using power electronics, control and information

technology [6].

Figure 2.11: FREEDM System Structure [7]

2.4.3 The Role SST Play in the FREEDM System

The 12.47 kV FREEDM loop is a major element of the FREEDM system, it is

divided into different parts. SST, together with the communication interface and

Distributed Grid Intelligence (DGI) software, form the Industrial Ethernet Module

(IEM) node to enable the plug-and-play of large amounts of DRER, DESD and loads,

making the FREEDM system compatible and flexible [7].

Previously it was stated that FREEDM system could be described as Internet of

Energy, then the SST could be compared to the router in the energy Internet, which is

a fundamental part in the FREEDM system. It is a power electronic device that not

only performs voltage step-down function like traditional distribution transformer,

but could also control both power and energy in the system and respond in very

short time, because of the fast switching of the semiconductors inside SST. SST is
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also able to isolate the power grid from the harmonics and disturbances from DRER

and DESD, making the power system more stable [7]. It could also help to transport

high quality electric energy efficiently, supplying reactive power and correct power

factor if necessary [48].

2.5 The Lightning Test Set-up

Simulation is done in PSCAD platform in order to evaluate the robustness of the

grid-tied power electronic devices when they are under lightning strike, and analyze

the proper protection methodology. A 60 kV 1.2/50 µs voltage surge will be applied

at the filter front end, the FREEDM GEN II single-phase SST switching model is

adopted for simulation. The SST is under non-operating and operating conditions

respectively.

Similar simulation is done to grid-tied operating VSC to get more objective results.
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Chapter 3

SST ROBUSTNESS TEST AND PROTECTION UNDER NON-OPERATING

CONDITION

3.1 Non-Operating SST Robustness Test

In this robustness test, the FREEDM GEN II single-phase SST switching model

(Fig 3.1) is adopted for simulation. The SST is under non-operating condition, the

control of rectifier, DHB and inverter is not functioning, the grid voltage is set as

zero. This simulation is done in PSCAD platform.

Simulation of SST over-voltage response is conducted when the SST front end

witnesses a voltage surge of 60 kV 1.2/50 µs, according to IEC standard [10]. The

voltage across the front filter components and semiconductors in SST is measured

and analyzed when this impulse is applied. MOSA is selected and implemented to

protect the semiconductors and the SST front filter from lightning strike.

The voltage impulse is applied at the filter front end at 0.12 s. According to IEC

standard [10], the voltage surge due to transmission line direct lightning is simulated,

the parameters used for impulse wave shape are: T1 = 1.2 µs, T2 = 50 µs, Vpeak = 60

kV. This wave shape is automatically defined in PSCAD software.

The voltage impulse caused by lightning strike on the grid side mainly affects

the front filter, the rectifier and the DHB front part in the SST, the behavior of the

semiconductors in DHB front part is the same as the ones in rectifier under lightning

strike. Therefore, the voltage and current across inductances and the capacitance in

the front filter and semiconductors in the rectifier are simulated and analysed.
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The increasing rate of the voltage and current across each component is determined

by the derivative calculation modules in PSCAD software (Fig 3.2). Take the voltage

across the front filter inductance Lg (VLg) as an example. The voltage across Lg (VLg)

is measured by the voltmeter in Fig 3.1, and the voltage value is put at the input

terminal of the derivative module. The value of the increasing rate of the voltage

(dVLg/dt) can be obtained at the output terminal of the derivative module.

Figure 3.2: The Derivative Modules in PSCAD Software [1]

3.1.1 The Voltage and Current Across Front Filter Inductance Lg

As shown in Fig 3.3, the maximum values and increasing rates of voltage across

front filter inductance Lg (VLg.pk) and current through front filter inductance Lg

(ILg.pk) are:

maximum voltage across Lg: VLg.pk = 57.41 kV,

maximum increasing rate: max
dVLg

dt
= 0.91 kV/µs,

maximum current through Lg: ILg.pk = 25.71 A,

maximum increasing rate: max
dILg

dt
= 0.48 A/µs.

The magnitudes of the voltage and current surges on Lg are excessive as seen in

this case, the insulation of the inductance winding is under risk. The American Wire
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Figure 3.3: VLg ILg When Impulse Is Applied

Gauge (AWG) for the inductance winding is chosen as 10 based on the maximum

impulse current [49], the maximum voltage it can withstand is 20 kV [50]. However,

the peak voltage across the inductance is 57.41 kV, higher than rated. Measures

should be taken to protect Lg in the front filter.

3.1.2 The Voltage and Current Across Front Filter Inductance Lf

As shown in Fig 3.4, the maximum values and increasing rates of voltage across

front filter inductance Lf (VLf ) and current through front filter inductance Lf (ILf )

are:

maximum voltage across Lf : VLf.pk = 31.26 kV,

maximum increasing rate: max
dVLf

dt
= 2.85 kV/µs,
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maximum current through Lf : ILf.pk = 22.56 A,

maximum increasing rate: max
dILf

dt
= 0.18 A/µs.

Figure 3.4: VLf ILf When Impulse Is Applied

The magnitudes of the voltage and current surges on Lf are excessive as seen in

this case, the insulation of the inductance winding is under risk. The AWG for the

inductance winding is chosen as 10 based on the maximum impulse current [49], the

maximum voltage it can withstand is 20 kV [50]. However, the peak voltage across

the inductance is 31.28 kV, higher than rated. Measures should be taken to protect

Lf in the front filter.
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3.1.3 The Voltage and Current Across Front Filter Capacitance Cf

As shown in Fig 3.5, the maximum values and increasing rates of voltage across

front filter capacitance Cf (VCf ) and current through front filter capacitance Cf (ICf )

are:

maximum voltage across Cf : VCf.pk = 31.47 kV,

maximum increasing rate: max
dVCf

dt
= 0.54 kV/µs,

maximum current through Cf : ICf.pk = 21.46 A,

maximum increasing rate: max
dICf

dt
= 0.48 A/µs.

Figure 3.5: VCf ICf When Impulse Is Applied

The magnitudes of the voltage and current surges on Cf are excessive as seen in

this case. The highest withstanding voltage of a commercial 0.04 F capacitance is 10

kV [51], but the impulse voltage can reach up to 31.37 kV, higher than rated, so the
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insulation of the capacitance is under risk. Measures should be taken to protect Cf

in the front filter.

3.1.4 The Voltage and Current Across Semiconductors

a. Lower Semiconductor

Fig 3.6 is an example of voltage and current surges on semiconductors in the

rectifier. The maximum values and increasing rates of voltage across the lower semi-

conductor in the rectifier (Vr1) and current through lower semiconductor in rectifier

(Ir1) are:

maximum voltage across lower IGBT: Vr1.pk = 1.54 kV,

maximum increasing rate: max dVr1

dt
= 1.48 kV/µs,

maximum current through lower IGBT: Ir1.pk = 1.92 A,

maximum increasing rate: max dIr1
dt

= 0.07 A/µs.

Figure 3.6: Vr1 Ir1 When Impulse Is Applied
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The shape of Vr1 waveform can be explained as follows. In PSCAD simulation,

when the system is under non-operating condition, the IGBTs are considered open

circuit, and the equivalent circuit for the rectifier part could be derived as in Fig 3.7.

When the current is going through the diode on upper side, the voltage across D1 is

almost zero, and all the impulse voltage is on D3.

Figure 3.7: Simplified Model to Analyze the Lower Semiconductor

The cut off in Vr1 is due to the fluctuates of voltage (Vcf ) on Cf . When Vcf crosses

zero, the current changes its direction to D2 and D3, causing the voltage drop to zero.

Since the rating of the semiconductors is 6.5 kV, which is much higher than the

1.54 kV maximum over-voltage, and SST will witness larger rising rate when it is

under operating condition, the over-voltage and over-current on semiconductors are

tolerable. Compared with the impulse characteristics of IGBT in Chapter 1, the

maximum increasing rates of voltage and current for 6.5 kV IGBT are 16.25 kV/µs

and 0.625 kA/µs, which is much higher than the increasing rates of voltage and

current on lower semiconductor. Thus, the increasing rates of voltage and current on

lower semiconductor are tolerable.

b. Upper Semiconductor

The maximum values and increasing rates of voltage across upper semiconductor
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in rectifier (Vr2) and current through upper semiconductor in rectifier (Ir2) are:

maximum voltage across lower IGBT: Vr2.pk = 1.54 kV,

maximum increasing rate: max dVr2

dt
= 1.48 kV/µs,

maximum current through lower IGBT: Ir2.pk = 22.56 A,

maximum increasing rate: max dIr2
dt

= 0.18 A/µs.

Figure 3.8: Vr2 Ir2 When Impulse Is Applied

The shape of Vr2 waveform can be explained as follows. In PSCAD simulation,

when the system is under non-operating condition, the IGBTs are considered open

circuit, and equivalent circuit for the rectifier part could be derived as in Fig 3.9.

When current is going through the diode on lower side, the voltage across D3 is

almost zero, and all the impulse voltage is on D1.

The cut off in Vr2 is due to the fluctuates of voltage (Vcf ) on Cf . When Vcf crosses
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Figure 3.9: Simplified Model to Analyze the Upper Semiconductor

zero, the current changes its direction to D1 and D4, causing the voltage drop to zero.

Since the rating of the semiconductors is 6.5 kV, which is much higher than

the 1.54 kV maximum over-voltage, and SST will witness larger rising rate when

it is under operating condition, the over-voltage and current on semiconductors are

tolerable. Compared with the impulse characteristics of IGBT in Chapter 1, the

maximum increasing rates of voltage and current for 6.5 kV IGBT are 16.25 kV/µs

and 0.625 kA/µs, which is much higher than the increasing rates of voltage and

current on higher semiconductor. Thus, the increasing rates of voltage and current

on higher semiconductor are tolerable.

3.1.5 The Voltage and Current Across Capacitance Ch

As shown in Fig 3.10, the maximum values and increasing rates of voltage across

capacitance Ch (Vdc.hi) and current through capacitance Ch (Idc.hi) are,

maximum voltage across Ch: Vdc.hi.pk = 1.54 kV,

maximum increasing rate: max dVdc.hi

dt
= 1.07 V/µs,

maximum current through Ch: Idc.hi.pk = 22.56 A,

maximum increasing rate: max dIdc.hi
dt

= 0.18 A/µs.
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Figure 3.10: Vdc.hi Idc.hi When Impulse Is Applied

Under operating condition, the voltage across this DC capacitance is higher than

6 kV. Now the over-voltage on capacitance Ch is 1.54 kV, so the over-voltage on

capacitance Ch is tolerable in this design.

3.1.6 The Voltage and Current Across Capacitance Cl

As shown in Fig 3.11, the maximum values of voltage across capacitance Cl (Vdc.lo)

and current through capacitance Cl (Idc.lo) are,

maximum voltage across Cl: Vdc.lo.pk = 5.42 ∗ 10−9 V,

maximum current through Cl: Idc.lo.pk = 7.35 ∗ 10−10 A,

Therefore, the lightning has little effect on the components after the high frequency

transformer.
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Figure 3.11: Vdc.lo Idc.lo When Impulse Is Applied

3.1.7 Conclusions

Lightning impulse could cause unacceptable high voltage surges across filter induc-

tances and capacitance in the SST. Under 60 kV 1.2/50 µs lightning voltage surge, the

maximum voltage on Lg reaches 57.41 kV, and the maximum voltage on Lf reaches

31.28 kV, much higher than the rated 20 kV. The maximum over-voltage across Cf

can reach up to 31.37 kV, much larger than the rated 10 kV. The over-voltage and

over-current on semiconductors in SST rectifier are tolerable. The components after

the high frequency transformer are barely affected. Accordingly, the components in

the SST front filter need to be protected.
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3.2 Improvement of the Non-Operating SST Front Filter

According to the simulation results, the lightning impulse could damage the

FREEDM SST. Thus, MOSAs are implemented to protect the SST and the SST

front filter is improved.

For the lightning protection of non-operating SST, as shown in Fig 3.13, a surge

arrester is placed in parallel with the capacitance Cf in the front filter to protect Cf ,

Lf and semiconductors from the voltage surge. The filter inductances are designed

as three inductances connected in series, since the maximum voltage the inductance

winding can withstand is 20 kV [50] [49], and the total voltage impulse is 57.41 kV.

Same topology is applied for front filter inductance Lf .

According to Fig 3.12, the energy consumed by the MOSA is

Q = P × t = 147.48 kW × 0.0004 s = 0.059 kJ (3.1)

Figure 3.12: Energy Consumed by MOSA When Impulse Is Applied

Since AC voltage on the filter front terminal is set as 3.6 kVrms, the peak AC

voltage is

Vacpk =
√

2× 3.6 = 5.1 kV (3.2)
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The rating for MOSA is selected as 5.1 kV. Similar result is indicated according

to the ANSI standard (Appendix A). During the simulation, the voltage impulse is

applied at the filter front end at 0.12s.

Table 3.1 compares the performance of non-operating SST before and after the

front filter improvement. The reduction ratio is calculated using equation 3.3.

Reduction Ratio =
Value without MOSA− Value with MOSA

Value without MOSA
∗ 100% (3.3)

Table 3.1: Performance of SST Before and After the Front Filter Improvement

Model Property With MOSAs
MOSAs

Value Reduction Ratio (%)

VLg.pk/kV 57.41 19.98 60.20

ILg.pk/A 25.71 22.15 13.85

VLf.pk/kV 31.26 2.73 91.27

ILf.pk/A 22.56 14.97 33.64

VCf.pk/kV 31.47 8.21 73.91

ICf.pk/A 21.46 11.46 46.60

Vr1.pk/kV 1.54 1.25 18.83

Ir1.pk/A 1.92 0.00 100.00

Vr2.pk/kV 1.54 0.78 49.35

Ir2.pk/A 22.56 14.97 33.64

Vdc.hi.pk/kV 1.54 1.25 18.83

Idc.hi.pk/A 22.56 14.97 33.64
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3.2.1 The Voltage and Current Across Front Filter Inductance Lg

The voltage surge on the front filter inductance Lg is reduced from 57.41 kV to

19.98 kV, current surge drops from 25.71 A to 22.15 A. Over-voltage on Lg caused by

lightning strike is significantly reduced. Oscillations of voltage and current are both

reduced. Since the maximum voltage the inductance winding can withstand is 20 kV

[50][49], the front filter inductance Lg is well protected.

Figure 3.14: VLg ILg After the Filter Improvement

40



3.2.2 The Voltage and Current Across Front Filter Inductance Lf

The voltage surge on the front filter inductance Lf is reduced from 31.26 kV to

2.73 kV, current surge drops from 22.56 A to 14.97 A. Over-voltage on Lf caused by

lightning strike is significantly reduced. Oscillations of voltage and current are both

reduced. Since the maximum voltage the inductance winding can withstand is 20 kV

[50][49], the front filter inductance Lf is well protected.

Figure 3.15: VLf ILf After the Filter Improvement
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3.2.3 The Voltage Across Front Filter Capacitance Cf

The voltage surge on the front filter capacitance Cf is reduced from 31.47 kV to

8.21 kV, current surge drops from 21.46 A to 11.46 A. Over-voltage on Cf caused by

lightning strike is significantly reduced. Oscillations of voltage and current are both

reduced. The highest withstanding voltage of a commercial 0.04 µF capacitance is 10

kV [51]. Thus the front filter capacitance Cf is well protected.

Figure 3.16: VCf ICf After the Filter Improvement
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3.2.4 The Voltage and Current Across Semiconductors

a. Lower Semiconductor

The voltage surge on the lower semiconductor is reduced from 1.54 kV to 1.25 kV,

current surge drops from 1.92 A to 2.50 ∗ 10−3 A. Oscillation of voltage is reduced.

Figure 3.17: Vr1 Ir1 After the Filter Improvement
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b. Upper Semiconductor

The voltage surge on the upper semiconductor is reduced from 1.54 kV to 0.78

kV, current surge drops from 22.56 A to 14.97 A.

Figure 3.18: Vr2 Ir2 After the Filter Improvement

3.2.5 The Voltage and Current Across Capacitance Ch

The voltage surge on capacitance Ch is reduced from 1.54 kV to 1.25 kV, current

surge drops from 22.56 A to 14.97 A.
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Figure 3.19: Vdc.hi Idc.hi After the Filter Improvement

3.2.6 Conclusions

It can be seen in the table and figures that the surge arrester has effects on over-

voltage and over-current protection if lightning happens, reducing the amplitudes of

voltage and current surges on Lg, Lf and Cf by almost 90%.
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Chapter 4

SST ROBUSTNESS TEST AND PROTECTION UNDER OPERATING

CONDITION

4.1 Operating SST Robustness Test

In this test, the SST is under operating condition, the control of the rectifier,

DHB and inverter is functioning. The grid voltage is set as 3.6 kVrms. Assuming the

equation for the sine wave is:

Vac = 3.6 sin(2 π 60 + α)kV (4.1)

When the 60 kV 1.2/50 µs voltage impulse is applied at α = 0
◦
, 90

◦
, 270

◦
, the

impulse and sinusoidal AC supply voltage is shown in Fig 4.1. According to equation

2.3, the peak AC voltage on the filter front terminal is Vacpk = 5.1 kV, so

Vacpk
VLightning

=
5.1kV

60kV
= 8.5% (4.2)

Compared with lightning voltage surge, the effect of grid voltage can be neglected.

Accordingly, the value of α (where the voltage surge is applied) has little effect on

the simulation results. Therefore, the voltage impulse is applied at filter front end at

0.12 s during the analysis, when α = 90
◦
, and the grid voltage has maximum positive

value. Fig 4.2 is the schematic of operating SST in PSCAD.
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Figure 4.1: The Impulse and Sinusoidal AC Supply Voltage When the Voltage Impulse
Is Applied at α = 0

◦
, 90

◦
, 270

◦
Respectively



F
ig

u
re

4.
2:

S
ch

em
at

ic
of

O
p

er
at

in
g

S
S
T

in
P

S
C

A
D

[1
]



4.1.1 The Voltage and Current Across Front Filter Inductance Lg

As shown in Fig 4.3, the maximum values and increasing rates of voltage across

front filter inductance Lg (VLg.pk) and current through front filter inductance Lg

(ILg.pk) are:

maximum voltage across Lg: VLg.pk = 60.23 kV,

maximum increasing rate: max
dVLg

dt
= 0.91 kV/µs,

maximum current through Lg: ILg.pk = 34.42 A,

maximum increasing rate: max
dILg

dt
= 0.50 A/µs.

Figure 4.3: VLg ILg When Impulse Is Applied

The magnitudes of the voltage and current surges on Lg are excessive as seen in

this case, the insulation of the inductance winding is under risk. The AWG for the

inductance winding is chosen as 10 based on the maximum impulse current [49], the

maximum voltage it can withstand is 20 kV [50]. However, the peak voltage across
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the inductance is 60.23 kV, higher than rated. Measures should be taken to protect

Lg in the front filter.

4.1.2 The Voltage and Current Across Front Filter Inductance Lf

As shown in Fig 4.4, the maximum values and increasing rates of voltage across

front filter inductance Lf (VLf ) and current through front filter inductance Lf (ILf )

are:

maximum voltage across Lf : VLf.pk = 31.24 kV,

maximum increasing rate: max
dVLf

dt
= 141.52 kV/µs,

maximum current through Lf : ILf.pk = 29.78 A,

maximum increasing rate: max
dILf

dt
= 0.18 A/µs.

Figure 4.4: VLf ILf When Impulse Is Applied
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The magnitudes of the voltage and current surges on Lf are excessive as seen in

this case, the insulation of the inductance winding is under risk. The AWG for the

inductance winding is chosen as 10 based on the maximum impulse current [49], the

maximum voltage it can withstand is 20 kV [50]. However, the peak voltage across

the inductance is 31.24 kV, higher than rated. Measures should be taken to protect

Lf in the front filter.

4.1.3 The Voltage and Current Across Front Filter Capacitance Cf

As shown in Fig 4.5, the maximum values and increasing rates of voltage across

front filter capacitance Cf (VCf ) and current through front filter capacitance Cf (ICf )

are:

maximum voltage across Cf : VCf.pk = 37.34 kV,

maximum increasing rate: max
dVCf

dt
= 0.54 kV/µs,

maximum current through Cf : ICf.pk = 21.99 A,

maximum increasing rate: max
dICf

dt
= 0.50 A/µs.

The magnitudes of the voltage and current surges on Cf are excessive as seen in

this case. The highest withstanding voltage of a commercial 0.04 µF capacitance is

10 kV [51], but the impulse voltage can reach up to 37.34 kV, higher than rated, so

the insulation of the capacitance is under risk. Measures should be taken to protect

Cf in the front filter.

51



Figure 4.5: VCf ICf When Impulse Is Applied

4.1.4 The Voltage and Current Across Semiconductors

a. Lower Semiconductor

Fig 4.6 is an example of voltage and current surges on semiconductors in the rec-

tifier. The maximum values and increasing rates of voltage across the lower semicon-

ductor in the rectifier (Vr1) and current through the lower semiconductor in rectifier

(Ir1) are:

maximum voltage across lower IGBT: Vr1.pk = 7.38 kV,

maximum increasing rate: max dVr1

dt
= 70.81 kV/µs,

maximum current through lower IGBT: Ir1.pk = 25.72 A,

maximum increasing rate: max dIr1
dt

= 73.55 A/µs.
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Figure 4.6: Vr1 Ir1 When Impulse Is Applied

Since the voltage rating of the semiconductors is 6.5 kV, which is lower than the

7.38 kV maximum over-voltage, the semiconductors in rectifier part need over-voltage

protection. The current rating of the semiconductors is 250 A, so the 25.72 A current

surge is tolerable in this design.

The increasing rates of voltage and current are not accurate in this simulation

model. During the simulation, the IGBTs in the rectifier are operating under ideal

condition, which does not coincide with physical models.

The voltage and current characteristics of a 6.5 kV IGBT can be found in the

data sheet [8]. Accordingly, the maximum increasing rates of the voltage and current

across the semiconductors in SST rectifier are:

max
dV

dt
= 18.45kV/µs (4.3)
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max
dI

dt
= 0.06kA/µs (4.4)

Compare with the impulse characteristics of IGBT in Chapter 1,

max
dV

dt
= 16.25kV/µs (4.5)

max
dI

dt
= 0.63kA/µs (4.6)

The increasing rate of current is within limit, but the increasing rate of voltage is

higher than rated. The lower semiconductors in SST rectifier part need protection.

b. Upper Semiconductor

The maximum values and increasing rates of voltage across upper semiconductor

in rectifier (Vr2) and current through upper semiconductor in rectifier (Ir2) are:

maximum voltage across lower IGBT: Vr2.pk = 7.25 kV,

maximum increasing rate: max dVr2

dt
= 70.81 kV/µs,

maximum current through lower IGBT: Ir2.pk = 29.78 A,

maximum increasing rate: max dIr2
dt

= 73.68 A/µs.

Since the voltage rating of the semiconductors is 6.5 kV, which is lower than the

7.25 kV maximum over-voltage, the semiconductors in rectifier part need over-voltage

protection. The current rating of the semiconductors is 250 A, so the 29.78 A current

surge is tolerable in this design.

The increasing rates of voltage and current are not accurate in this simulation

model. During the simulation, the IGBTs in the rectifier are operating under ideal

condition, which does not coincide with physical models.

The voltage and current characteristics of a 6.5 kV IGBT can be found in the

data sheet [8]. Accordingly, the maximum increasing rates of the voltage and current

across the semiconductors in SST rectifier are:

max
dV

dt
= 18.13kV/µs (4.7)
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Figure 4.7: Vr2 Ir2 When Impulse Is Applied

max
dI

dt
= 0.07kA/µs (4.8)

Compared with the impulse characteristics in equation 4.5 and 4.6, the increasing

rate of current is within limit, but the increasing rate of voltage is higher than rated.

The upper semiconductors in SST rectifier part need protection.

4.1.5 The Voltage and Current Across Capacitance Ch

As shown in Fig 4.8, the maximum values and increasing rates of voltage across

capacitance Ch (Vdc.hi) and current through capacitance Ch (Idc.hi) are,

maximum voltage across Ch: Vdc.hi.pk = 7.38 kV,

maximum increasing rate: max dVdc.hi

dt
= 1.45 V/µs,

maximum current through Ch: Idc.hi.pk = 30.32 A,

maximum increasing rate: max dIdc.hi
dt

= 205.38 A/µs.
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Figure 4.8: Vdc.hi Idc.hi When Impulse Is Applied

The over-voltage and over-current on capacitance Ch in rectifier are tolerable in

this design.

4.1.6 Conclusions

Lightning impulse could cause unacceptably high voltage surges across filter in-

ductances and capacitance in the SST. Under 60 kV 1.2/50 µs lightning voltage

surge, the maximum voltage on Lg reaches 60.23 kV, and the maximum voltage on

Lf reaches 31.24 kV, much higher than the rated 20 kV. The maximum over-voltage

across Cf can reach up to 37.34 kV, much larger than the rated 10 kV. The value

and increasing rate of over-voltage on semiconductors in SST rectifier are also higher

than rated. Accordingly, the components in the SST front filter and semiconductors

in rectifier need to be protected.
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4.2 Improvement of the Operating SST Front Filter

According to the simulation results, the lightning impulse could damage the

FREEDM SST. Thus, MOSAs are implemented to protect the SST and the SST

front filter is improved. According to Fig 4.9, the energy consumed by the MOSA is

Q = P × t = 219.32 kW × 0.0008 s = 0.175 kJ (4.9)

Figure 4.9: Energy Consumed by MOSA When Impulse Is Applied

The lightning protection of operating SST is shown in Fig 4.10, the same as the

topology described in Chapter 3. Table 4.1 compares the performance of operating

SST before and after the improvement of the front filter.
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Table 4.1: Performance of Operating SST Before and After the Front Filter Im-
provement

Model Property With MOSAs
MOSAs

Value Reduction Ratio (%)

VLg/kV 60.23 19.08 68.32

ILg/A 34.42 29.53 14.21

VLf/kV 31.24 4.14 86.75

ILf/A 29.78 11.03 62.96

VCf/kV 37.34 8.25 77.91

ICf/A 21.99 5.96 72.90

Vr1/kV 7.38 6.40 13.28

Ir1/A 25.72 11.00 57.23

Vr2/kV 7.25 6.28 13.38

Ir2/A 29.78 12.18 59.10

Vdc.hi/kV 7.38 6.28 14.91

Idc.hi/A 30.32 13.29 56.17
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4.2.1 The Voltage and Current Across Front Filter Inductance Lg

The voltage surge on the front filter inductance Lg is reduced from 60.23 kV to

19.08 kV, current surge drops from 34.42 A to 29.53 A. Over-voltage on Lg caused by

lightning strike is significantly reduced. Oscillations of voltage and current are both

reduced. Since the maximum voltage the inductance winding can withstand is 20 kV

[50][49], the front filter inductance Lg is well protected.

Figure 4.11: VLg ILg After the Filter Improvement

60



4.2.2 The Voltage and Current Across Front Filter Inductance Lf

The voltage surge on the front filter inductance Lf is reduced from 31.24 kV to

4.14 kV, current surge drops from 29.78 A to 11.03 A. Over-voltage on Lf caused by

lightning strike is significantly reduced. Oscillations of voltage and current are both

reduced. Since the maximum voltage the inductance winding can withstand is 20 kV

[50][49], the front filter inductance Lf is well protected.

Figure 4.12: VLf ILf After the Filter Improvement
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4.2.3 The Voltage Across Front Filter Capacitance Cf

The voltage surge on the front filter capacitance Cf is reduced from 37.34 kV to

8.25 kV, current surge drops from 21.99 A to 5.96 A. Over-voltage on Cf caused by

lightning strike is significantly reduced. Oscillations of voltage and current are both

reduced. The highest withstand voltage of a commercial 0.04 F capacitance is 10 kV

[51]. Thus the front filter capacitance Cf is well protected.

Figure 4.13: VCf ICf After the Filter Improvement
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4.2.4 The Voltage and Current Across Semiconductors

a. Lower Semiconductor

The voltage surge on the lower semiconductor is reduced from 7.38 kV to 6.40

kV, lower than rated 6.50 kV. Voltage increasing rate max
dV

dt
= 16.00kV/µs, lower

than rated max
dV

dt
= 16.25kV/µs. Current surge drops from 25.72 A to 11.00 A.

The lower semiconductor is protected.

Figure 4.14: Vr1 Ir1 After the Filter Improvement
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b. Upper Semiconductor

The voltage surge on the upper semiconductor is reduced from 7.25 kV to 6.28

kV, lower than rated 6.50 kV. Voltage increasing rate max
dV

dt
= 15.30kV/µs, lower

than rated max
dV

dt
= 16.25kV/µs. Current surge drops from 29.78 A to 12.18 A.

The upper semiconductor is protected.

Figure 4.15: Vr2 Ir2 After the Filter Improvement

4.2.5 The Voltage and Current Across Capacitance Ch

The voltage surge on capacitance Ch is reduced from 7.38 kV to 6.28 kV, current

surge drops from 30.32 A to 13.29 A. Thus the capacitance Ch is well protected, and
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voltage surge on high DC output caused by lightning strike is significantly reduced.

Figure 4.16: Vdc.hi Idc.hi After the Filter Improvement

4.2.6 Conclusions

It can be seen in the table and figures that the surge arrester has effects on

over-voltage and over-current protection if lightning happens, reducing amplitudes of

voltage and current surges on Lg, Lf and Cf by almost 86%.
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Chapter 5

VSC ROBUSTNESS TEST AND PROTECTION UNDER OPERATING

CONDITION

5.1 Operating VSC Robustness Test

The Voltage Source Converter (VSC) is a grid-tied power electronic device that

can be adopted to convert DC power to AC power using IGBTs. Simulation of

robustness test and protection is done to VSC similar to that of SST in Chapter 4. In

this test, the VSC is under operating condition, the control of rectifier is functioning.

Since the three phase distribution line voltage in the FREEDM system is 12 kV, the

AC voltage for this single phase VSC is set as 7.2 kVrms. The voltage surge is applied

at filter front end at 0.12 s (Fig 5.1). The schematic of the operating VSC in PSCAD

is described in Fig 5.2.

Figure 5.1: Impulse and Sinusoidal Grid Voltage
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5.1.1 The Voltage and Current Across Front Filter Inductance Lg

As shown in Fig 5.3, the maximum values and increasing rates of voltage across

front filter inductance Lg (VLg.pk) and current through front filter inductance Lg

(ILg.pk) are:

maximum voltage across Lg: VLg.pk = 60.45 kV,

maximum increasing rate: max
dVLg

dt
= 0.91 kV/µs,

maximum current through Lg: ILg.pk = 34.30 A,

maximum increasing rate: max
dILg

dt
= 0.51 A/µs.

Figure 5.3: VLg ILg When Impulse Is Applied

The magnitudes of the voltage and current surges on Lg are excessive as seen in

this case, the insulation of the inductance winding is under risk. The AWG for the

inductance winding is chosen as 10 based on the maximum impulse current [49], the
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maximum voltage it can withstand is 20 kV [50]. However, the peak voltage across

the inductance is 60.45 kV, higher than rated. Measures should be taken to protect

Lg in the front filter.

5.1.2 The Voltage and Current Across Front Filter Inductance Lf

As shown in Fig 5.4, the maximum values and increasing rates of voltage across

front filter inductance Lf (VLf ) and current through front filter inductance Lf (ILf )

are:

Figure 5.4: VLf ILf When Impulse Is Applied

maximum voltage across Lf : VLf.pk = 36.10 kV,

maximum increasing rate: max
dVLf

dt
= 251.20 kV/µs,

maximum current through Lf : ILf.pk = 28.10 A,

maximum increasing rate: max
dILf

dt
= 0.50 A/µs.
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The magnitudes of the voltage and current surges on Lf are excessive as seen in

this case, the insulation of the inductance winding is under risk. The AWG for the

inductance winding is chosen as 10 based on the maximum impulse current [49], the

maximum voltage it can withstand is 20 kV [50]. However, the peak voltage across

the inductance is 36.10 kV, higher than rated. Measures should be taken to protect

Lf in the front filter.

5.1.3 The Voltage and Current Across Front Filter Capacitance Cf

As shown in Fig 5.5, the maximum values and increasing rates of voltage across

front filter capacitance Cf (VCf ) and current through front filter capacitance Cf (ICf )

are:

Figure 5.5: VCf ICf When Impulse Is Applied

maximum voltage across Cf : VCf.pk = 43.30 kV,

maximum increasing rate: max
dVCf

dt
= 0.65 kV/µs,

70



maximum current through Cf : ICf.pk = 24.58 A,

maximum increasing rate: max
dICf

dt
= 0.59 A/µs.

The magnitudes of the voltage and current surges on Cf are excessive as seen in

this case. The highest withstanding voltage of a commercial 0.04 F capacitance is 10

kV [51], but the impulse voltage can reach up to 43.30 kV, higher than rated, so the

insulation of the capacitance is under risk. Measures should be taken to protect Cf

in the front filter.

5.1.4 The Voltage and Current Across Semiconductors

a. Lower Semiconductor

Fig 5.6 is an example of voltage and current surges on semiconductors in the

rectifier. The maximum values and increasing rates of voltage across the lower semi-

conductor in the rectifier (Vr1) and current through lower semiconductor in rectifier

(Ir1) are:

maximum voltage across lower IGBT: Vr1.pk = 12.72 kV,

maximum increasing rate: max dVr1

dt
= 120.38 kV/µs,

maximum current through lower IGBT: Ir1.pk = 20.96 A,

maximum increasing rate: max dIr1
dt

= 54.59 A/µs.

Since the voltage rating of the semiconductors is 15 kV, which is higher than

the 12.72 kV maximum over-voltage, the over-voltage is tolerable in this design. The

current rating of the semiconductors is 20 A, which is lower than the 20.96 A maximum

over-current. The semiconductors in rectifier part need protection.

The increasing rates of voltage and current are not accurate in this simulation

model. During the simulation, the IGBTs in the rectifier are operating under ideal

condition, which does not coincide with physical models.
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Figure 5.6: Vr1 Ir1 When Impulse Is Applied

According to the impulse characteristics of the IGBT in Chapter 1, the maximum

increasing rates of the voltage and current across the semiconductors in VSC rectifier

are:

max
dV

dt
= 31.80kV/µs (5.1)

max
dI

dt
= 0.40kA/µs (5.2)

Compare with the voltage and current characteristics of 15 kV 20 A IGBT [52],

the voltage and current increasing rates can reach up to:

dV

dt
= 45kV/µs (5.3)

dI

dt
= 0.63kA/µs (5.4)

The increasing rates of voltage and current is within limit.

72



b. Upper Semiconductor

The maximum values and increasing rates of voltage across upper semiconductor

in rectifier (Vr2) and current through upper semiconductor in rectifier (Ir2) are:

maximum voltage across lower IGBT: Vr2.pk = 12.72 kV,

maximum increasing rate: max dVr2

dt
= 126.47 kV/µs,

maximum current through lower IGBT: Ir2.pk = 28.34 A,

maximum increasing rate: max dIr2
dt

= 54.52 A/µs.

Figure 5.7: Vr2 Ir2 When Impulse Is Applied

Since the rating of the semiconductors is 15 kV, which is higher than the 12.72

kV maximum over-voltage. The over-voltage is tolerable in this design. The current

rating of the semiconductors is 20 A, which is lower than the 28.34 A maximum over-

current. The semiconductors in rectifier part need protection. Same as above, the

increasing rate of voltage and current is within limit.
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5.1.5 The Voltage and Current Across Capacitance Ch

As shown in Fig 5.8, the maximum values and increasing rates of voltage across

capacitance Ch (Vdc.hi) and current through capacitance Ch (Idc.hi) are,

maximum voltage across Ch: Vdc.hi.pk = 12.72 kV,

maximum increasing rate: max dVdc.hi

dt
= 2.84 V/µs,

maximum current through Ch: Idc.hi.pk = 28.26 A,

maximum increasing rate: max dIdc.hi
dt

= 109.10 A/µs.

Figure 5.8: Vdc.hi Idc.hi When Impulse Is Applied

The over-voltage and over-current on capacitance Ch in rectifier are tolerable in

this design.
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5.1.6 Conclusions

Lightning impulse could cause unacceptable high voltage surges across filter induc-

tances and capacitance in the VSC. Under 60 kV 1.2/50 µs lightning voltage surge, the

maximum voltage on Lg reaches 60.45 kV, and the maximum voltage on Lf reaches

36.10 kV, much higher than the rated 20 kV. The maximum over-voltage across Cf

can reach up to 43.30 kV, much larger than the rated 10 kV. The over-voltage and

over-current on semiconductors in VSC rectifier are tolerable. Accordingly, the com-

ponents in the VSC front filter need to be protected.

5.2 Improvement of the Operating VSC Front Filter

According to the simulation results, the lightning impulse could damage the VSC.

Thus, MOSAs are implemented to protect the VSC and the VSC front filter is im-

proved. As shown in Fig 5.10, the protection topology is the same as non-operating

SST in Chapter 2.

According to Fig 5.9, the energy consumed by the MOSA is

Q = P × t = 376.52 kW × 0.001 s = 0.38 kJ (5.5)

Figure 5.9: Energy Consumed by MOSA When Impulse Is Applied
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Table 5.1 compares the performance of VSC before and after the improvement of

the front filter.

Table 5.1: Performance of VCS Before and After the Front Filter Improvement

Model Property With MOSAs
MOSAs

Value Reduction Ratio (%)

VLg/kV 60.45 19.09 68.42

ILg/A 34.30 32.69 4.69

VLf/kV 36.10 7.54 79.11

ILf/A 28.10 4.68 83.35

VCf/kV 43.30 12.97 70.05

ICf/A 24.58 5.59 77.26

Vr1/kV 12.72 12.43 2.28

Ir1/A 20.96 5.07 75.81

Vr2/kV 12.72 12.43 2.28

Ir2/A 28.34 5.57 80.35

Vdc.hi/kV 12.72 12.43 2.28

Idc.hi/A 28.26 5.57 80.29
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5.2.1 The Voltage and Current Across Front Filter Inductance Lg

The voltage surge on the front filter inductance Lg is reduced from 60.45 kV to

19.09 kV, current surge drops from 34.30 A to 32.69 A. Over-voltage on Lg caused by

lightning strike is significantly reduced. Oscillations of voltage and current are both

reduced. Since the maximum voltage the inductance winding can withstand is 20 kV

[50][49], the front filter inductance Lg is well protected.

Figure 5.11: VLg ILg After the Filter Improvement
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5.2.2 The Voltage and Current Across Front Filter Inductance Lf

The voltage surge on the front filter inductance Lf is reduced from 36.10 kV to

7.54 kV, current surge drops from 28.10 A to 4.68 A. Over-voltage on Lf caused by

lightning strike is significantly reduced. Oscillations of voltage and current are both

reduced. Since the maximum voltage the inductance winding can withstand is 20 kV

[50][49], the front filter inductance Lf is well protected.

Figure 5.12: VLf ILf After the Filter Improvement
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5.2.3 The Voltage Across Front Filter Capacitance Cf

The voltage surge on the front filter capacitance Cf is reduced from 43.30 kV to

12.97 kV, current surge drops from 24.58 A to 5.59 A. Over-voltage on Cf caused

by lightning strike is significantly reduced. Oscillations of voltage and current are

both reduced. The highest withstand voltage of a commercial 0.04 F capacitance is

10 kV [51]. Thus there should be two 0.08 F capacitances with the rating of 10 kV

connected in series to protect the capacitances from over-voltage.

Figure 5.13: VCf ICf After the Filter Improvement
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5.2.4 The Voltage and Current Across Semiconductors

a. Lower Semiconductor

The voltage surge on the lower semiconductor is reduced from 12.72 kV to 12.43

kV, current surge drops from 20.96 A to 5.07 A, lower than rated 20 A.

Figure 5.14: Vr1 Ir1 After the Filter Improvement

b. Upper Semiconductor

The voltage surge on the upper semiconductor is reduced from 12.72 kV to 12.43

kV, current surge drops from 28.34 A to 5.57 A, lower than rated 20 A.
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Figure 5.15: Vr2 Ir2 After the Filter Improvement

5.2.5 The Voltage and Current Across Capacitance Ch

The voltage surge on capacitance Ch is reduced from 12.72 kV to 12.43 kV, current

surge drops from 28.26 A to 5.57 A. Thus the capacitance Ch is well protected, and

voltage surge on high DC output caused by lightning strike is significantly reduced.
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Figure 5.16: Vdc.hi Idc.hi After the Filter Improvement

5.2.6 Conclusions

It can be seen in the table and figures that the surge arrester has effects on over-

voltage and current protection if lightning happens, reducing amplitude of voltage

and current surge on Lg, Lf and Cf by as much as 83%.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Power electronic devices are widely used to interface DRERs and DESDs with the

power grid. However, when connected directly to the power distribution system, the

power electronic devices are under the risk of being exposed to the power transient

caused by lightning strikes.

In this research, the FREEDM SST is taken as an example to simulate grid-tied

power electronic devices in PSCAD software. The insulation coordination of the SST

is analyzed under lightning strikes. The simulation is done when the devices are under

non-operating condition and operating condition respectively. Similar analysis is also

done to the VSC, another grid-tied power electronic device, to get more objective

results. Operation conditions of other rid-tied converters, like STATCOM, are similar

to that of the VSC.

The robustness of the devices is studied by applying a 60 kV 1.2/50 µs voltage

impulse based on the IEC standards to represent a lightning strike. The over-voltage

and over-current responses of the grid-tied power electronic devices are analyzed.

Since the devices are connected to the power grid with an LCL front filter, the impulse

can cause very high over-voltage on front filter components. Accordingly, the front

filter inductances and capacitance need to be protected under lightning strikes.

The insulation coordination of the two types of devices is studied, and a method-

ology to implement MOSAs to reduce the voltage surge is proposed and explained in

detail. The filter inductances are divided into three inductances in series to reduce
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the voltage surge on each one. The MOSAs are selected and implemented based on

ANSI standards. This methodology can reduce the over-voltage on the components

inside the grid-connected power electronic devices by up to 90%.

The same simulation is performed on operating grid-tied VSCs under the same

platform, the voltage surges on each element can also be reduced by up to 83% after

protection.

6.2 Future Work

Both the analysis of the devices and the study of the protection methodology

in this research are based on simulation. The protection method proposed in this

research can be verified by physical experiments.

In this research, a 60 kV 1.2/50 µs voltage impulse is applied to the grid-tied

devices to test the robustness and design the protection. In the high voltage lab in

Arizona State University, a physical 60 kV impulse generator is going to be built for

further insulation coordination tests.
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APPENDIX C

MATLAB CODE FOR FREQUENCY ANALYSIS
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% LCL Frequency Analysis
% Parameters
Lg=121.3e-3;
Lf=170e-3;
Cf=0.04e-6;
Rg=36.87;
Rf=11;
Cdc=84e-6;
fs=6000;
% Transfer Function for Voltage
Gcf=tf(1,[Cf,0]);
Gl1=tf([Lg,Rg],1);
Gl2=tf([Lf,Rf],1);
Gc=tf(1,[Cdc,0]);
T1=(Gc+Gl2)*Gcf/(Gc+Gl2+Gcf);
T2=T1/(T1+Gl1);
Gv=T2*Gc/(Gc+Gl2);
Gi=T2/(Gc+Gl2);
margin(Gv);
figure(2);
margin(Gi);
% Lightning
a1=-61.223e3;
a2=-a1;
b1=48.3472e5;
b2=0.1425e5;
Gt=tf(a1,[1,b1])+tf(a2,[1,b2]);
figure(3);
margin(Gt);
% voltage response
figure(4);
margin(Gv*Gt);
% current response
figure(5);
margin(Gi*Gt);
% margin(Gt*tf([Cdc,0],1));
% Tranferfucntion with MOVs
Gv1=Gc/(Gc+Gl2+Gl1);
figure(6);
margin(Gv1);
figure(7);
margin(tf(1,[1,0])*Gv1);
Gi2=1/(Gc+Gl2);
figure(8);
margin(Gi2);
figure(9);
margin(tf(1,[1,0])*Gv1);
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