

Post-silicon Validation of

Radiation Hardened Microprocessor and SRAM arrays

by

Sai Bharadwaj Medapuram

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved July 2017 by the

Graduate Supervisory Committee:

Lawrence T. Clark, Chair

David R. Allee

John S. Brunhaver

ARIZONA STATE UNIVERSITY

August 2017

i

ABSTRACT

Digital systems are increasingly pervading in the everyday lives of humans. The

security of these systems is a concern due to the sensitive data stored in them. The

physically unclonable function (PUF) implemented on hardware provides a way to protect

these systems. Static random-access memories (SRAMs) are designed and used as a strong

PUF to generate random numbers unique to the manufactured integrated circuit (IC).

Digital systems are important to the technological improvements in space

exploration. Space exploration requires radiation hardened microprocessors which

minimize the functional disruptions in the presence of radiation. The design highly efficient

radiation-hardened microprocessor for enabling spacecraft (HERMES) is a radiation-

hardened microprocessor with performance comparable to the commercially available

designs. These designs are manufactured using a foundry complementary metal-oxide

semiconductor (CMOS) 55-nm triple-well process. This thesis presents the post silicon

validation results of the HERMES and the PUF mode of SRAM across process corners.

Chapter 1 gives an overview of the blocks implemented on the test chip 25. It also

talks about the pre-silicon functional verification methodology used for the test chip.

Chapter 2 discusses about the post silicon testing setup of test chip 25 and the validation

of the setup. Chapter 3 describes the architecture and the test bench of the HERMES along

with its testing results. Chapter 4 discusses the test bench and the perl scripts used to test

the SRAM along with its testing results. Chapter 5 gives a summary of the post-silicon

validation results of the HERMES and the PUF mode of SRAM.

ii

ACKNOWLEDGMENTS

First and fore-most, I would like to thank my parents for their unwavering support

throughout my master’s education.

I would like to sincerely thank my professor Dr. Lawrence Clark for giving me this

post-silicon validation opportunity and providing guidance and support throughout my

master’s studies. I would like to extend my gratitude to Dr. David Allee and Dr. John

Brunhaver for taking their time to serve as committee members. I am indebted to my

colleague Divya Kiran Kadiyala for his invaluable contribution, discussion and support

throughout the post silicon testing period. I would also like to thank my colleagues

Chandrasekharan Ramamurthy, Ankita Dosi, Lovish Masand, Anudeep Reddy

Gogulamudi, Parshant Rana, Manoj Vangala, and Vinay Vashistha for their invaluable

contributions, discussions, and support during the thesis work. I must also thank the

graduate advisors Toni, Sno, and Lynn for their help with all the administrative procedures.

Finally, I would like to thank Fujitsu for funding this research.

iii

TABLE OF CONTENTS

 Page

LIST OF TABLES .. vi

LIST OF FIGURES .. vii

CHAPTER

1. INTRODUCTION………………………………………………………………… 1

1.1. SRAM PUF and Radiation Effects Overview………………………………. 1

1.2. Test Chip 25 Overview……………………………………………………... 2

1.2.1. Clock Generation……………………………………………………… 3

1.2.2. HERMES Processor………………………………………………….... 5

1.2.3. SRAM Block…………………………………………………………... 6

1.2.4. DDR PLL………………………………………………………….…. 10

1.2.5. Pads of Test Chip 25………………………………………………….. 10

1.2.6. Power Supplies of Test Chip 25………………………………………. 11

1.2.7. Die Photo of the Manufactured Test Chip 25…………………………. 12

1.3. Pre-Silicon Functional Verification of TC25……………………………….. 12

1.3.1. Simulation Setup Using Modelsim……………………...……………. 13

1.3.2. Test Bench Setup of TC25……………………………………………. 14

1.3.3. Functional Verification of HERMES……………………………….... 14

1.3.4. Functional Verification of SRAM Block……………………………... 15

1.3.5. Functional Verification of DDR PLL………………………………… 16

2. POST SILICON VALIDATION SETUP………………………………………… 17

2.1. Test Setup Overview……………………………………………………….. 17

CHAPTER Page

iv

2.1.1. Custom PCB………………………………………………………….. 18

2.1.2. XEM7350 Board……...……………………………………………… 18

2.2. Top level Test Bench of TC25……………………………………………… 20

2.2.1. Clock Generator Module……...……………………………………… 22

2.2.2. Memory Module……………………………………………………… 23

2.2.3. Opalkelly Frontpanel Package………………………………………... 27

2.2.4. Opalkelly Module…………………………………………………….. 28

2.3. C++ Application Program………………………………………………….. 30

2.3.1. Program Flow………………………………………………………… 32

2.4. Bit Stream File Generation……………………...………………………….. 34

2.4.1. Mapping of Physical Pins to Logical Signals……….………………... 34

2.4.2. Input Files Required by Vivado…………………………………….... 35

2.5. Validation of Post Silicon Testing Setup of TC25…………………………. 36

2.5.1. Stuck-at 0 or 1 Pins…………………………………………………… 37

2.5.2. Power Connections on PCB………………………………………….. 38

2.6. Basic Clock Divider Test…………………………………………………… 39

3. POST SILICON TESTING OF THE HERMES PROCESSOR…………………. 40

3.1. Architectural Overview…………………………………………………….. 40

3.2. Test Bench Architecture……………………………………………………. 41

3.2.1. Reset Generation Logic………………………………………………. 42

3.2.2. Data and Instruction Memory………………………………………… 43

3.2.3. Control Logic………………………………………………………… 48

CHAPTER Page

v

3.3. Testing of the HERMES Processor………………………………………… 49

3.3.1. Trace Sample of a Test Run………………………….………………. 49

3.3.2. Hello World Test……………………………………………………... 49

3.3.3. Data and Instruction Cache Test……………...………………………. 51

3.3.4. Speed Test……………………………………………………………. 54

4. POST SILICON TESTING OF THE SRAM BLOCK…………………………… 55

4.1. Test Setup of SRAM Block………………………………………………… 55

4.1.1. Test Bench……………………………………………………………. 55

4.1.2. Automatic Control of Agilent E3646A DC Power Supply……..……. 58

4.1.3. Voltages of the SRAM 6T Array………………...…………………… 60

4.1.4. Test Data Acquisition………………………………………………… 61

4.1.5. Test Data Processing…………………………………………………. 63

4.2. Tests Run on SRAM 6T Array………………..……………………………. 65

4.2.1. Write Read Test………………………………………………………. 66

4.2.2. Minimum Read Voltage Test…………………………………………. 67

4.2.3. PUF Mode Test……………………………………………………….. 69

5. CONCLUSIONS…………………………………………………………………. 76

REFERENCES ……………………………………………………………………... 78

vi

LIST OF TABLES

Table Page

1-1 Pad Distribution of TC25………………..………………………………………… 11

1-2 Power Pins Distribution of TC25…………………………………………………... 11

3-1 The Various Frequencies of Operation of HERMES on TT09 at VDDH = 0.9V.… 54

4-1 RS-232 Configuration Settings of the Power Supply………..…………………….. 59

4-2 Typical Values of the Voltages Used in the Bit Cell of the SRAM 6T Array…..… 61

4-3 Different Types of Data Written to the SRAM 6T Array…………………………. 66

4-4 Two Bad Addresses at the Minimum Read Voltage of Various Parts……..……… 67

4-5 Minimum Read Voltages of FF06, SS09 and TT09 Parts………………………… 68

4-6 The Type of Bit Cells Determined After Multiple Runs of the PUF Mode Test….. 71

4-7 The Number of Red Bits of the PUF Mode Test Run on TT10 at Different VDDS.. 72

4-8 The Distribution of Read Bits of PUF Mode Test Run on TT06…………..……… 73

4-9 Percentage of Grey Bits at VDDarray = 0.35V and Read at Minimum Voltage….. 75

vii

LIST OF FIGURES

Figure Page

1-1 Top level Functional Block Diagram of the Test Chip TC25……….……………… 3

1-2 (a) XOR Clock Multiplier Logic Diagram (b) XOR Clock Multiplier Waveform…. 4

1-3 Top Level Functional Block Diagram of the SRAM Block……………………….... 6

1-4 Structural Block Diagram of the 1Mb SRAM 6T Array………………………..…... 7

1-5 Functional Block Diagram of the 16kB Bank of SRAM 6T Array…….…….……... 8

1-6 Timing Diagram of the Write and Read Operations to the 16kB Bank…………….. 9

1-7 Functional Block Diagram of the DDR PLL of TC25…………..…………….…... 10

1-8 Die Photo of Metal M2 Layer of the Manufactured Test Chip TC25………….…... 12

1-9 Block Diagram of the Generic Test Bench Used for Verification of a Design..…... 12

1-10 Simulation Flow in ModelSim [Mentor04]………………………………..….…... 13

1-11 Top-Level HERMES Wrapper of TC25………….………………………….….... 14

1-12 Block Diagram of the Test Bench of HERMES Processor of TC25………….…... 15

2-1 Post Silicon Testing Setup of TC25……….………………………………………. 17

2-2 Functional Block Diagram of TC25 Post Silicon Validation Setup………………. 17

2-3 Custom PCB of TC25 Post Silicon Validation Setup………………………….…. 18

2-4 Function Block Diagram of XEM7350 FPGA Board [Opalkelly15]…………..…. 19

2-5 XEM7350 FPGA Board……………...…………………………………………… 20

2-6 Top Level Test Bench Architecture of TC25………………...…………………… 21

2-7 Clock Generator Module Used in the Test Bench of TC25…………...………….. 22

2-8 Memory Module Used in the Test Bench of TC25……………………………..….. 24

2-9 Timing Diagram of the Write Operation on a BRAM Instance [XilMem16]…..…. 25

Figure Page

viii

2-10 Timing Diagram of Read Operation on a BRAM Instance [XilMem16]…….…... 26

2-11 Opalkelly Frontpanel Enabled Design on a FPGA [OpalKelly15]………….…..... 27

2-12 Opalkelly Module Used in the Test Bench of TC25…………………………….... 29

2-13 Timing Diagram of the Data Transfer from okpipeOut Module [OpalKelly15]..... 30

2-14 Code Snippet of the Steps 2-4 of the C++ Program Built Using Frontpanel API... 31

2-15 Timing Diagram of the Clock Gating Event of the DUT and Test Bench Clock…. 32

2-16 Timing Diagram of the Un-Gating Event of the DUT and the Test Bench Clock... 33

2-17 Code Snippet of the Packing (Right) and the Unpacking (Left) of the I/O Signals.. 33

2-18 Mapping of Physical Pins to the I/O Signals of TC25 on Testing Setup…………. 34

2-19 The Input Files of the Test Bench of TC25 Given to Vivado……………………... 35

2-20 Oscilloscope Used for Viewing the Signals of the Testing Setup of TC25……….. 37

2-21 Power Connections on the Custom PCB…………………………………………... 38

2-22 The Divided Clock Toggling from 1 to 0 (Left) and 0 to 1 (Right)…………..…... 39

3-1 High-Level Block Diagram of the HERMES Processor………………….……….. 40

3-2 Functional Block Diagram of the Test Bench to the HERMES Processor………... 42

3-3 Timing Diagram of the Reset Signals of the HERMES Processor………………... 42

3-4 Block Diagram of the Data and Instruction Memory of the Test Bench………….. 43

3-5 Functional Block Diagram of the Instruction Memory Using BRAM……………. 44

3-6 Type of Instructions in MIPS Instruction Set Architecture(ISA)………..………… 45

3-7 Code Snippet on How Instructions are Loaded into BRAMs…………….……….. 46

3-8 Functional Block Diagram of the Data Memory Using BRAM…………………... 46

3-9 Timing Diagram of the Read Operation on the Instruction and Data Memory……. 47

Figure Page

ix

3-10 Timing Diagram of the Write Operation on the Data Memory………………….... 47

3-11 Functional Block Diagram of the Control Logic of the Test Bench………………. 48

3-12 Trace Sample of a Test Run on the HERMES Processor………………………… 49

3-13 The Output Trace of the HERMES Displaying “Hello World”………………….. 51

3-14 Output Trace of Steps 1 and 2 of I-Cache and D-Cache Test……………………... 52

3-15 Output Trace of Steps b - e of I-Cache and D-Cache Test………………………… 53

3-16 Output Trace Indicating No Change in Value of Address and Read Data Bus…… 54

4-1 Functional Block Diagram of the Test Bench of the 1Mb SRAM 6T Array…….... 55

4-2 Timing Diagram of the Configuration of the First and Second Special Registers…. 56

4-3 Timing Diagram Depicting the Write and Read Operations on SRAM 6T Array... 57

4-4 Timing Diagram Depicting the End of the Test of SRAM 6T Array…………..…. 58

4-5 Subroutine to Write User Defined Values to Voltages of the Power Supply……… 60

4-6 Voltages Used in the Bit Cell of the SRAM 6T Array………….…………………. 60

4-7 Block Diagram Depicting How the Test Run Log Files are Processed…………… 63

4-8 The Timing Relationship between the Address Read and Data Received………… 64

4-9 Trace Sample of the Test Run at 5MHz with Data Out Same as the Address Read.. 65

4-10 The Plot of Number of Bit Failures vs VDDarray Voltage of SS09……………… 68

4-11 The Percentage of Black and White Bits for each Read Iteration of w1_(p_r)x50.. 74

1

CHAPTER 1. INTRODUCTION

1.1. SRAM PUF and Radiation Effects Overview

Digital systems are increasingly pervasive in the everyday lives of humans

especially with the onset of the internet of things (IOT) era. The security of these systems

is a concern due to the sensitive data stored in them. The physically unclonable function

(PUF) provides a way to protect these systems. PUF hardware produces a challenge-

response mapping based on the uncertainties of the transistor variations due to the

manufacturing process [Edward07]. It provides a digital fingerprint to the device which

helps in device authentication and identification.

 The static random-access memory (SRAM) is a type of semiconductor memory

that is primarily used in complementary metal-oxide semiconductor (CMOS) circuits due

to its speed of operation. SRAMs are usually built using new minimum width and length

transistors to obtain high density. This makes them highly sensitive to the transistor

variations of the manufacturing process. Therefore, SRAMs can be used as a PUF to

generate random numbers unique to the manufactured integrated circuit (IC). SRAMs can

be designed to be used both for data storage and as PUF [Chellappa11]. The SRAM based

PUF and data storage mode results across slow-slow (SS), fast-fast (FF) and typical-typical

(TT) corners of test chip 25 (TC25) are discussed in chapter 4.

 Radiation particles such as alpha particles, neutrons cause damage to the

electronic circuits by striking their sensitive nodes. The scaling of the transistor sizes and

supply voltages in the lower technology nodes have made the electronic circuits more

2

susceptible to radiation effects. Radiation hardening is the technique used in the design and

fabrication of the electronic systems to minimize the damage due to the radiation.

The two major radiation effects on CMOS devices are total ionizing dose (TID)

[Barn06] and single event effects (SEEs) [Mavis02]. The SEE is a localized effect, caused

when a high-energy particle travelling through a semiconductor leaves an ionized track

behind. This effect may cause a glitch in an output of a circuit, or a bit flip in a memory or

register. TID effect deposits charge into CMOS devices resulting in the threshold voltage

(Vth) shifts, noise, mobility and leakage[Barn06]. The post silicon testing results of the

highly efficient radiation-hardened microprocessor for enabling spacecraft (HERMES)

v2.55 is discussed in chapter 3. It is not TID hardened.

1.2. Test Chip 25 Overview

 TC25 was designed to understand the behavior of SRAM arrays across different body

bias voltages and process corners on Fujitsu’s 55-nm triple-well bulk deeply depleted

channel (DDC) CMOS process. To utilize the die area and the effort spent on the test chip

effectively two more blocks are added to it. Hence, the TC25 is made up of three main

blocks namely HERMES v2.65; SRAM block; radiation-hardened by design (RHBD)

double data rate (DDR) based phase locked loop (PLL).

 The top-level functional block diagram of the test chip contains the blocks HERMES

v2.65, SRAM arrays and DDR PLL as shown in figure 1-1. The logic around these blocks

include the exclusive-or (XOR) clock multiplier, divide-by-8 clock divider, 2:1 multiplexer

(mux), 4:1 mux, level shifters, input/output (I/O) pads, analog pads and power pads. The

input pads of TC25 are shared physically among the three blocks. The outputs from all the

3

three blocks are connected to the output pads using the 4:1 Mux. A two bit select signal

(BLK_SEL) is used to control the 4:1 mux.

HERMES

v2.65

4
:1

M
u

lt
ip

le
x

e
r

79

2

57 57

BLK_SEL

[1:0]Clock

Generator8

SRAM

Block

DDR PLL

40
XOR_CLK

IO

VDDIO

IO

VDDIO

VDD

SRAM Power Pins

Digital Inputs

53

32

64

79

VSS

2BLK_SEL [1:0]

VDDtop

Level

Shifters
Digital

Outputs

VDDH

VDDtop

VDD

VDD

PLL_CLK

SI_ClkIn

EB_CLK

SRAM_CLK

19

4Analog Pins

 Figure 1-1 Top level functional block diagram of the test chip TC25

1.2.1. Clock Generation

 Clock signal to the HERMES and the SRAM blocks can be generated using either the

XOR clock multiplier or the DDR PLL. A one bit select signal, CLK_SEL is used to

multiplex between the clocks produced from these two sources to the output clock (Figure

4

1-1). During the beam testing only the XOR clock multiplier is used to generate a high

frequency clock, since the PLL is more vulnerable to radiation upsets [Gogula15].

The XOR clock multiplier takes eight clocks as inputs and generates an output clock

by xoring every pair of input clocks until a single output clock is obtained (Figure 1-2 (a)).

To generate an output clock with a multiplied-by-2 frequency and a duty cycle of 50%, two

input clocks must have a phase shift of 90 degrees (180 degrees/2) between them and the

remaining six clocks must be held constant. Similarly, to synthesize other frequency

multiples of the output clock, the input clocks should be phase-shifted accordingly.

CLK_04

CLK_15

CLK_26

CLK_37

CLK_15_37

CLK_04_26

XOR_CLK0

XOR_CLK4

XOR_CLK2

XOR_CLK6

XOR_CLK1

XOR_CLK5

XOR_CLK3

XOR_CLK7

CLKOUT

XOR_CLK0

XOR_CLK1

XOR_CLK2

XOR_CLK3

XOR_CLK4

XOR_CLK5

XOR_CLK6

XOR_CLK7

CLK_04

CLK_15

CLK_26

CLK_37

CLK_04_26

CLK_15_37

CLKOUT

 Figure 1-2 (a) XOR clock multiplier logic diagram (b) XOR clock multiplier waveform

5

 The maximum frequency of the output clock that can be produced is 8x compared to the

frequency of the input clocks. To generate this, the eight input clocks must be phase shifted

by 22.5 degrees (180 degrees / 8) relative to each other (Figure 1-2 (b)). However, there is

an inherent jitter on the input clocks relative to each other due to the FPGA (~160ps –

200ps) and the wire delay on the PCB Board. This limits the maximum frequency and duty

cycle of the output clock that can be synthesized by the XOR clock multiplier.

 The clock divider on the test chip uses the multiplexed clock from the 2:1 mux and

generates a divide-by-8 clock as output (Figure 1-1). This is used to check the functionality

of the clocks produced using the XOR clock multiplier and the DDR PLL on the

manufactured test chip. Validating the functionality of the clocks is the first test done on

any manufactured digital chip because clocks are crucial to any digital design. Hence the

clock divider plays a key role in the post-silicon testing of the manufactured test chip.

1.2.2. HERMES Processor

 The HERMES is a radiation hardened MIPS32 4Kc compliant embedded

microprocessor [MIPS00]. The design of this block incorporates multiple radiation

hardening techniques at the circuit, layout, micro-architecture and architecture levels. To

achieve radiation hardening at the circuit design level, self-correcting triple-mode

redundant (TMR) circuits are used to protect the key architectural state of the

microprocessor [Gogula15] which includes the program counter (PC), write buffers,

configuration registers and the bus interface. In addition to that, instruction execution

pipeline, data and instruction cache subsystems, memory management unit (MMU) and

register file (RF) are made dual-mode redundant (DMR). Radiation hardening at the layout

6

level is accomplished using a special automated place and route (APR) flow. This flow

separates the nodes of the circuit by a certain distance to mitigate the soft errors induced

due to multiple node charge collection (MNCC) [Hind11].

 Radiation hardening at the micro-architectural and architectural levels of HERMES is

realized using soft error detection and recovery. Soft errors are detected based on the

mismatch between the two copies of DMR speculative instruction execution pipeline right

at their commission to the architectural state [Vash15]. Soft error recovery is software

controlled and achieved by the addition of new instructions.

1.2.3. SRAM Block

1Mb 6T

SRAM

ARRAY 0

1Mb 6T

SRAM

ARRAY 1

1Mb 8T

SRAM

ARRAY 2

2:4

Decoder

SRAM Clock, Address,

DataIn, Write and Read

bank_en_0

bank_en_1

bank_en_2

Special

Registers 4
:1

M
u

ltip
le

x
e

r

64

2 SRAM_Sel

DataOut

Spreg Clock

and Address

DataIn

Test Modes,

sense amp delay

64

64

64

32

SRAM_Sel

2

 Figure 1-3 Top Level Functional Block diagram of the SRAM Block

The SRAM block consists of three 1mega bit (Mb) SRAM arrays and three 32-bit

special registers (Figure 1-3). Out of these three arrays, two of them are made up of 6-

7

transistor (6T) bit cells and the third one is built using 8-transistor (8T) bit cells. The 6T

bit cell based array (SRAM 6T array) shares a single port for read and write operations

whereas the 8T bit cell based array (SRAM 8T array) has independent ports for read and

write operations.

Three special registers are used to configure the SRAM 6T arrays in various test

modes. The test modes supported by the SRAM 6T arrays are sense amplifier test (satest),

direct access test (DAT) and PUF. Both satest and DAT modes are enabled simultaneously

to measure the offset voltage of the sense amplifiers used in the SRAM arrays. PUF mode

is used to generate a random number based on process variations in the manufactured

SRAM array. Only the DAT mode is enabled to measure the currents on the transistors of

the bit cells. Special registers are also used to configure the programmable delay value to

turn off the sense amplifiers during a read operation.

16KB

SRAM

Bank

16KB

SRAM

Bank

16KB

SRAM

Bank

VDDdummy VDDS

Power

Mux
3:8

Decoder

.

1
7

Inst 0
1

7

..

..
.

Inst 0

8

bank_en

8

8
:1

M
u
lt

ip
le

x
e
r

64

64

64

64

. ..

.

.

.SRAM Clock,

DataIn, Write, Read

Address[11:0]

3

3
Address

[13:11]

testmodes,

sense amp delay
Eight identical 16KB

Banks, Power Muxes

Level

Shifter
Inst 0

1
2

3

VDDtop

64

DataOut64

SRAM_Clk

 Figure 1-4 Structural block diagram of the 1Mb SRAM 6T array

8

 The SRAM 6T array is built using eight 16 kbytes (kB) banks, eight 2:1 power muxes

and four 16-bit level shifters. The eight 2:1 power muxes gate the power to the bank when

it is not selected to perform any operations. A three-bit signal, banksel is used to select one

of the eight banks. Each bank has a clock gater module in it. Depending on the bank

selected, clock signal is gated to the rest of the banks using the clock gater modules in

them. Clock gating and power muxing help in the low power operation of the SRAM 6T

array.

128x8 bits

128 wordlines

128x8 bits
128 wordlines

Clock

Gater

clk

bankena

address

write

gated_clk

read

11 7:128

Decoder
128

2

testmodes, sense amp delay

Wordline En

Write, Read

Logicaddress[10]

WLEnTop WLEnBot

128

WL_Top

WL_Bot

7

gated_clk
ReadEn

WriteEn

8:1
Mux

8:1
Mux

Write

Driver

Sense

Amp

testmodes

Logic

testmode

control

signals

Latch

Precharge

Top

Precharge

Bottom

datmux

SA

datmux

SAN

SA

SAN

Sense Amplifier x64
gated_clk

64

64

datain

64 dataout

address[2:0]

datmode analog signals 4

Inst 0

1
63

..
.

..
.

 Figure 1-5 Functional block diagram of the 16kB bank of SRAM 6T array

9

The 16kB bank of the SRAM 6T array has 7:128 address decoder, write, read and

word line logic, clock gater module, 64 column groups and test modes logic as shown in

figure 1-5. Every column group in the bank is divided into top and bottom halves with the

write driver, sense amplifier and latch shared between them. The top and the bottom halves

of every column group both have a 8:1 mux for selecting one of the eight columns and

receive 128 word lines each from the address decoder.

SRAM_Clk

address

write

A0 A_Wr A1

read

datain D0 D_Wr D1

dataout D_out D_Rd

address

decode
perform

write

perform

read

address

decode

A_Rd

 Figure 1-6 Timing diagram of the write and read operations to the 16kB bank

The write and read operations are performed on the bank selected as shown in figure

1-6. Depending on the write or read operation, the write or read signal is asserted after the

negative edge of the clock. Then, address is decoded when the clock is low. Based on the

address decoded, the corresponding word line is asserted when the clock goes high. For

write operation, data present on datain is written and for read operation the data is read out

from the appropriate bits in the column groups. The read data is captured and pipelined out

using negative edge triggered flipflops.

10

1.2.4. DDR PLL

 The DDR PLL block is a digital PLL which can generate clock frequencies for DDR

based memory integrated circuits (IC) such as synchronous dynamic-random access

memory (SDRAM). This block contains the configuration registers, custom built PLL and

the clock divider logic as shown in figure 1-7. There are three configuration registers

present in the block. Out of these three, two of them are used to set the delay through the

coarse control and fine control units of the PLL. Depending on these settings, the PLL

synthesizes different clock frequencies. The third register is used to set the division factor

of the clock divider logic. The output of the clock divider logic is given as clock to the

other blocks of the test chip depending on the value of the clock select signal.

Config

Registers

(TMR)

PLL_x16

(TMR)

Clock

Divider

(TMR)

Logic

Config Registers

clock, address

and data input

coarse

delay

fine delay

divset

6

32

32

clk_div_out

PLL_Clk

openloop

clock

loop cntrl

32

tdc_sel

All the logic is

TMRed

 Figure 1-7 TC25 Functional block diagram of the DDR PLL

1.2.5. Pads of Test Chip 25

TC25 consists of 208 pads in total placed on a 28 mm x 28 mm quad flat package.

They are made up of four pad types such as input, output, analog and power. All the digital

I/O pads can handle LVCMOS signals with a maximum voltage of 3.3V. The pad

11

distribution among the pad types is as follows: 153 digital I/O pads, 4 analog pads and 51

power pads (Table 1-1).

Type of pads HERMES SRAM DDR PLL Others Total number

Digital input 66 65 48 7 73

Digital output 79 64 32 1 80

Analog - 4 - - 4

Power - - - - 51

Total number 145 133 80 8 208

Table 1-1 TC25 Pad distribution

1.2.6. Power Supplies of Test Chip 25

 TC25 uses ten distinct power pins to provide voltage and current to all the blocks (Table

1-2). The test chip is manufactured using a triple-well process, hence three different power

pins are used for the three wells. The I/O pads and the top-level mux logic of the test chip

use a power pin each. The SRAM block uses two power pins for the peripheral logic and

power muxes. The bit cells of the SRAM 6T array use a power pin. All the three blocks

share two power pins for supply voltage and ground.

Name Description

vdda_array power pin of the N-Well of SRAM 6T arrays

Vdda

power pin of the N-Well of all the blocks except

SRAM 6T arrays

Vssa power pin of the global P-Well

VDDtop VDD of the glue logic at the top level of TC25

VDDH VDD of the HERMES, SRAM and DDR PLL blocks

VDDS VDD of the peripheral logic of the selected SRAM array

VDDdummy VDD of the unselected SRAM arrays of the SRAM block

VDDarray VDD of the bit cells used in SRAM 6T arrays

VDDIO power pin of the I/O block at the top level of TC25

VSS ground pin for all the blocks

 Table 1-2 TC25 Power Pins distribution

12

1.2.7. Die Photo of the Manufactured Test Chip 25

 Figure 1-8 Die photo of metal M2 layer of the manufactured test chip TC25

1.3. Pre-Silicon Functional Verification of TC25

DUT

Instance

Test Bench

Logic

stimulus

response

Test Bench

Figure 1-9 Block diagram of the generic test bench used for verification of a design

Digital designs are described using hardware description languages (HDL) like

Verilog, VHDL, system verilog. A digital design needs to be tested for its functionality

13

before it is manufactured. The design being tested is referred to as the design under test

(DUT). Test bench helps in verifying the correctness of the DUT. It instantiates the DUT,

provides the stimulus to the DUT and records the response from the DUT (Figure 1-9). The

register transfer level (RTL) and the test bench of the test chip, TC25 are written using a

mix of Verilog and VHDL.

1.3.1. Simulation setup using Modelsim

 Figure 1.10 Simulation flow in ModelSim [Mentor04]

 Modelsim is used to simulate the RTL and the test bench of TC25. To simulate a

design in modelsim, four basic steps need to be followed (Figure 1-10). The first step is the

creation of a working library into which all the HDL files are compiled. By default,

modelsim compiles all the files into a destination library called “work”. The second step

involves compilation of all the design files into the library specified earlier. The third step

is to simulate the design by invoking the simulator on top-level module and running the

simulations on it. The fourth step is to debug the results obtained if they don’t match the

expectations.

14

1.3.2. Test Bench setup of TC25

4
:1

M
u
lt

ip
le

x
e
r

BLK_SEL = HERMES

HERMES

Package

inputs
SRAM

DDR

based PLL

Package

outputs

TC25

HERMES

inputs

Top-level HERMES wrapper

HERMES

outputs

BLK_SEL

 Figure 1-11 TC25 Top-level HERMES Wrapper

 The functionality of every block is verified using a test bench specific to it. To use

the same test bench on the block level as well as the chip level RTL, a wrapper using the

top-level module of TC25, specific to the block is created. The wrapper module for a block

is created by, assigning the input and output package pins of the test chip to the respective

input and output signal names of the block, setting the BLK_SEL and unused pins to the

right values. For example, in the case of the HERMES block, BLK_SEL is set to select

HERMES, all package pins are assigned to signals of HERMES (Figure 1-11).

1.3.3. Functional Verification of HERMES

 The same design of HERMES is used in test chip 25 as well as test chip 24.

Therefore, to reduce the effort spent on verification of the design used in test chip 25, it is

validated with the one used in test chip 24. To achieve this, the top-level HERMES

wrappers of both the test chips are instantiated in the top-level test bench module (Figure

15

1-12). The input signals of both the wrappers are driven with the same signals in the

HERMES test bench. The output signals from both the wrappers are XORed and stored

using negative edge triggered flipflops. Assertions based on this flopped signals are used

to check the behavior of the design across all the 70 tests.

TC25

Top-level

HERMES

wrapper

HERMES

Test Bench

TC24

Top-level

HERMES

wrapper

Error

Top-Level Test Bench

Figure 1-12 TC25 Block diagram of the test bench of HERMES processor

1.3.4. Functional Verification of SRAM Block

The SRAM block contains custom built 16kB banks inside 1Mb arrays. The

behavioral model of the 16kB bank is used in RTL simulations of the SRAM block. Since

the 16kB bank is custom built, the logic around these banks involving both the decoders,

clock gaters, special registers, data output mux is verified for their functionality in RTL

simulations. Both the decoders and data output mux are checked for their working by

performing write and reads on the banks in the SRAM block.

 During the normal mode of operation, the special registers are configured without

any test modes. Then, the write operation is performed on an address of a bank. Later, the

read is performed on the same address of the same bank and data output is checked with

the data input of the write operation. This is repeated for all the banks in all the SRAM

16

arrays to verify the functionality of both the decoders, data output mux. The functionality

of the clock gaters is verified by checking the clock of the banks not selected for any

operation. The special registers are configured with test modes and the output of these

registers is checked to complete the functionality check.

1.3.5. Functional Verification of DDR PLL

The DDR PLL contains custom built PLL with the clock divider logic and the

configuration registers around it. Since the PLL is custom built, the functionality of the

clock divider logic and configuration registers is verified in RTL simulations. To achieve

this, the behavioral model of the PLL has its input clock connected directly to the output

clock. Then, the division factor of the clock divider is fixed by setting the appropriate

configuration register. Now, the frequency of the output clock from the clock divider is

checked against the input clock frequency divided by the division factor set. This verifies

the functionality of the configuration registers and the clock divider logic.

17

CHAPTER 2. POST SILICON VALIDATION SETUP

2.1. Test Setup Overview

Figure 2-1 TC25 Post silicon testing setup

 The post silicon validation setup of TC25 consists of the custom printed circuit board

(PCB), the kintex-7 field programmable gate array (FPGA) based XEM7350 Opalkelly

board, personal computer (PC) and five agilent E3646A direct current (DC) power supplies

as shown in figure 2-1.

DUT

(TC25)

Custom PCB

PC
Records bus

transactions

between

DUT and TB

FMC

Connector

(VITA57) TestBench

Kintex-7

FPGA

USB 3.0

XEM7350 Board

 Figure 2-2 Functional block diagram of TC25 post silicon validation setup

 The top level functional block diagram of the post silicon validation setup of TC25

is shown in figure 2-2 The test chip TC25 is placed inside a socket on the custom PCB.

18

The kintex-7 FPGA is configured as the test bench to the DUT. The XEM7350 board is

connected, to the PCB using the FPGA mezzanine connector (FMC) and to the PC using

universal serial bus (USB) 3.0 cable.

2.1.1. Custom PCB

 Figure 2-3 Custom PCB of TC25 post silicon validation setup

The custom PCB is built with long traces to keep the FPGA board away from the

neutron beam testing as shown in figure 2-3. The board has bypass capacitors (0.1uF)

shunted across all the power supplies to decouple the power supply noise from the test chip.

All the input XOR clock signals to the test chip are routed with equal wire length to make

sure that phase relationship between the clocks is maintained. The board has five test points

shared across the analog signals of the SRAM block and the core clock signal of the

HERMES processor. The board has probe points related to few of the signals of all the

blocks on the test chip.

2.1.2. XEM7350 board

 The XEM7350 Opalkelly board is used as the test bench of TC25. The functional block

diagram of the FPGA board is shown in the figure 2-4. The board has a 676 pin kintex-7

19

FPGA device mounted on it [Opalkelly15]. To generate low-jitter clocks to the FPGA

device, two crystal oscillators are present on-board. They generate fixed clock frequencies

of 100MHz and 200MHz. A cypress FX3 USB 3.0 microcontroller, present on-board

makes it a USB 3.0 peripheral. This results in fast data transfers between the board and the

PC.

Kintex-7 FPGA

XC7K160T-1FFG676C

USB 3.0

CONTROLLER

100MHz MGT

Reference

LVDS

4 LEDs

DDR3 SDRAM

4Gb (512MB)
FPGA Flash

16MiB

170 I/O

8Multi Gb Transceivers

FMC (VITA 57) EXPANSION CONNECTOR

200MHz

Clock

LVDS

Host Interface

Bus

System Flash

16MiB

USB 3.0

 Figure 2-4 Function block diagram of XEM7350 FPGA board [Opalkelly15]

The non-volatile storage devices on the FPGA board include a 16 million bits (Mib)

system flash and a 16Mib FPGA flash. The System flash is used to store the device

firmware and configuration settings along with FPGA configuration files. The FPGA flash

can be used only by the kintex-7 device. The FMC on the board is a high pin count (HPC)

version of the VITA 57 specification. This connector helps in interfacing large pin-count

designs to the kintex-7 device. The I/O pins on the connector are categorized into LA, HA

and HB groups. The pins of the LA and HA groups are routed to FPGA banks which are

powered from the XEM7350 board. On the other hand, the pins of the HB group are routed

20

to FPGA bank 32 which is powered from an external power supply provided through

FMC_VIO_B_M2C pin on the FMC connector. In the case of TC25, the power supply

which provides VDDIO voltage is used to power the HB group pins.

 Figure 2-5 XEM7350 FPGA board

The FPGA board is operated using a 5-volt power source supplied using the DC

power jack on-board. The heat dissipated by the kintex-7 device is very high and could

damage it depending on the application run on the device. This is due to the presence of

large density of logic in a small area on the device. Therefore, to protect the device from

heat dissipation, a fan is used as an active heat sink. The fan is mounted on top of the FPGA

device as shown in figure 2-5.

2.2. Top level Test Bench of TC25

The infrastructure of the top-level test bench of TC25 consists of the Opalkelly

module, the memory module, the clock generator module and the TC25 block specific test

bench as shown in figure 2-6. The clock generator module synthesizes the clocks to the

21

Memory module and the test bench using a PLL. The PLL gets the 200MHz reference

clock from the crystal oscillator as input. The memory module acts as a buffer between the

DUT and the test bench by making use of the block random-access memory (BRAM)

blocks present on the FPGA. This module stores the clock cycle by clock cycle activity of

all the signals present between the test bench and the DUT in the BRAMs. The Opalkelly

module provides visibility and controllability on the FPGA for the program running on the

PC. This module is used to transfer the data stored on the BRAMs to the PC and un-gate

the clock signal to the DUT and the test bench. Also, this module is used to intimate the

program, about the end of the test running on the FPGA.

Clock

Generator

(PLLs)

FMC

Connector

(VITA57)

Memory

Module

OpalKelly

Module

TC25 Block

Specific

Test Bench

Block

I/O signalsstop_test

BRAM_data

BRAM_Full

tb_clk

BRAM_clk

USB 3.0

Data

XEM7350 FPGA Board

Kintex-7 FPGA

200MHz_Clk

program_clk_en

pipeOut_read

Group of SignalsSingle bit signal

 Figure 2-6 Top level test bench architecture of TC25

22

2.2.1. Clock Generator module

PLLE2

BASE

MODULE BRAM_clk

sys_clk

D Q

clk

BRAM_Full

200MHz_clk

1

0
1'b0

tb_clk

 Figure 2-7 Clock generator module used in the test bench of TC25

The clock generator module consists of an instance of Kintex-7 PLL primitive

PLLE2_BASE [XilClk16] and a divide-by-2 clock divider logic. The PLL module takes

the 200MHz_clk as input and synthesizes two clocks of the same frequency and phase

namely sys_clk and BRAM_clk as shown in figure 2-7. This module can be used to adjust

the duty cycle, phase offset (relative to the input clock) and frequency of each of the output

clocks individually. This module has master multiplication and division parameters whose

legal ranges are 2-64 and 1-56 respectively.

 The frequency range of any output clock produced using the PLL primitive is

6.25MHz – 1600MHz. This is limited by the operating frequency range of the PLL

primitive’s voltage controlled oscillator (VCO) (800MHz - 1600MHz), specific to the

kintex-7 device [XilClk16]. The frequency value of the PLL primitive’s VCO is set

depending on the frequency of the input clock and the values of the master multiplication

23

and division parameters. In case the frequency set on the VCO is not in the range specified,

design rule check (DRC) violations related to routing errors (PDRC-43) [XilClk16] are

observed during the implementation phase on FPGA in vivado.

 The clock divider logic generates the divide-by-2 clock using the sys_clk from the

PLL primitive (figure 2-6). This logic has a 2:1 mux which gates the divide-by-2 clock

depending on the value of the BRAM_Full signal. This clock divider logic is required not

only to gate the divide-by-2 clock but also to generate clock frequencies less than

6.25MHz. For example, in the case of post silicon testing of the SRAM block, the

frequency of the divide-by-2 clock required is 5MHz. So, a 10MHz sys_clk produced by

the PLL is used along with the clock divider logic to synthesize a clock frequency of 5MHz.

2.2.2. Memory module

The memory module used in the test bench of TC25 consists of two or three BRAM

instances depending on the block tested on DUT along with the read and the write logic for

each of those instances as shown in figure 2-8. Each BRAM instance is configured in

simple dual-port random-access memory (RAM) mode with an independent read and write

port to perform simultaneous read and write operations. The read and write ports access

the same address in which case the BRAM can be configured to do either the read operation

or the write operation first. However, write and read operations are never performed

simultaneously on any of the BRAM instances in the memory module. Therefore, they are

randomly configured to do the write operation first.

24

D Q

11
10
01
00

64 64

D Q

11
10
01
00

9 9

9'h0

9'h1ff

+
9'h1

wr_sel2

wr_sel2
BRAM_clk

BRAM_clk

WRADDR

WRDATADATAIN

==
WRADDR

9'h1ff

wr_sel[1]

program_clk_en

wr_sel[0]

D Q
9 9

rd_sel

okClk

1

0 + 9'h1RDADDR

D Q
1
0

64 64

rd_sel

okClk

RDDATA

program_clk_en

pipeout_A0

pipeout_A1

rd_sel
D Q

BRAM_clk

BRAM_Full

inv_en

inv_en

==
WRADDR

9'h1fe

wr_sel[1]

BRAM_clk

BRAM WRITE LOGIC BRAM READ LOGIC

BRAM

Inst

okClk

wr_sel[0]

==
WRADDR

9'h000

 Figure 2-8 Memory module used in the TC25 test bench

Every BRAM instance can store 36 kilobits (Kb) of data [XilMem16]. They are

configured with a line width of 72 bits resulting in a depth of 512 locations and an address

width of 9-bits. Out of the 72 bits in a line, eight of them are parity bits and the rest of the

64 bits are data bits. Every data bit on a line can correspond to a block I/O signal of the

DUT. Therefore, each BRAM instance can store the data of 64 block I/O signals of the

DUT. In the case of the HERMES block, there are 145 I/O signals (table 1-1) present

between the test bench and the DUT. Hence, three BRAM instances are needed for the test

bench of HERMES. Also, the SRAM block and the DDR PLL have 129 and 80 I/O signals

(table 1-1) respectively. Hence, two BRAM instances are needed for the test benches of

the SRAM block and the DDR PLL.

25

BRAM_clk

WREN

Byte_EN 8'hFF

WRADDR

DATAIN 64'h0 64'h164'hF

Write Operation

9'h000 9'h0019'h1FF

 Figure 2-9 Timing diagram of the write operation on a BRAM instance [XilMem16]

The write operation on a BRAM instance is performed using BRAM_clk as the

clock input. During the write operation, the address, data and write enable signals are

sampled on the falling edge of the BRAM_clk (figure 2-9). This makes sure that these

signals are setup to the rising edge of the BRAM_clk. Depending on the assertion of the

write enable signal, the write operation is performed on the address specified at the rising

edge of the BRAM_clk. The frequency of the BRAM_clk is twice the frequency of the

clock to the block specific test bench and the DUT. This makes sure that every clock cycle

of the block specific I/O signals is sampled twice by the BRAM write logic. Therefore,

every two lines on the BRAM instance correspond to a clock cycle of the I/O signals.

The read operation on a BRAM instance is performed using okClk as the clock

input. This clock is used for the read operation instead of the BRAM_clk because the logic

in the Opalkelly module works only with this clock. During the read operation, the address

and read enable signal is sampled on the falling edge of the okClk (figure 2-10). This makes

sure that these signals are setup to the rising edge of the okClk. Based on the assertion of

26

the read enable signal, the read operation is performed on the address specified at the rising

edge of the okClk. The data read is given to the Opalkelly module which sends it to the

program running on the PC.

okClk

RDEN

RDADDR 9'h000 9'h0019'h1FF

RDDATA 64'h0 64'h164'hF

Read Operation

 Figure 2-10 Timing diagram of read operation on a BRAM instance [XilMem16]

 The write operations begin at the first location of the BRAM instance (address 9’h000)

and are performed continuously till the last location of the BRAM instance (address

9’h1ff). Once the last location of the BRAM instance is reached, the signal BRAM_Full

(figure 2-8) is driven low and no further write operations are performed. To make sure that

no write operations are done, the write logic drives the write enable signal low and keeps

the write address at the value of the last location. Also, the clock signal to the DUT and the

block specific test bench is gated to avoid generating new data to the BRAM instance.

 The write operations are stopped until the data stored in the BRAM instance is read by

the program running on the PC. The BRAM_Full signal is used to intimate the program

that the BRAM instance is fully filled. Then, the program reads the complete data stored

in the BRAM instance using the Opalkelly module. Once the BRAM instance is completely

read out, the read logic drives the read enable low and ties the read address to the first

location until the next read operation. The program asserts the program_clk_enable signal

27

after finishing the read operation. This event drives the BRAM_Full signal high, resulting

in un-gating of the DUT clock. Also, this is used by the write logic to resume the write

operations on the BRAM instance.

2.2.3. Opalkelly Frontpanel Package

 Figure 2-11 Opalkelly frontpanel enabled design on a FPGA [OpalKelly15]

A design built on the FPGA is usually debugged using oscilloscopes, LEDs and

controlled using push buttons and switches. Due to the limited amount of these resources

on the FPGA board, observing the signals of the design on the FPGA for debugging

purposes results in longer development time and greater human effort. The frontpanel

package from the Opalkelly overcomes this problem by providing visibility and

controllability on the design present on the FPGA, to a program run on the PC. The package

achieves it by providing frontpanel application programming software (API) and hardware

description language (HDL) endpoints (Figure 2-11) to interface the design on the FPGA.

28

 The HDL endpoint can be a wire, trigger or pipe and is directed in or out of the

design on the FPGA. An in endpoint moves data into the design and an out endpoint moves

data out of the design. The wire type endpoints are used to transfer signal state

asynchronously into or out of the design. They can be used as virtual LEDs, switches and

push buttons. The pipe type endpoints are used to perform multi-byte synchronous transfers

into or out of the design. They can be used to stream data to the design, upload contents of

memory and download the contents to the memory. Every endpoint for USB 3.0 interface

has a bus width of 32-bits. The maximum number of endpoints that can be placed in the

design is limited to 32.

 The HDL endpoints are present along with the design on the FPGA. The signals

in the design that need to observed and controlled are connected to these endpoints as

shown in figure 2-11. These endpoint modules are placed on a shared bus along with the

host interface module. The host interface module along with frontpanel drivers and API

make these signals visible to the program on the PC. Also, the signals of input endpoints

such as okwireIn, okPipeIn can be controlled from the program on the PC. Therefore,

frontpanel’s flexibility allows to display real-time information of any number of signals of

the design configured on the FPGA.

2.2.4. Opalkelly module

The Opalkelly module used in the test bench of TC25 is shown in the figure 2-12.

This module is made of a single instance of okHost Interface, four or six instances of

okpipeOut endpoints depending on the number of BRAMs used in the memory module and

two instances each of okwireIn and okwireOut endpoints. The okHost interface module

29

contains logic that lets the USB 3.0 microcontroller communicate with the endpoint

instances. The okClk signal acts as the clock to the Opalkelly module. The frequency of

the okClk is fixed at 100.8 MHz for USB 3.0 interface.

wireIn

Inst

okPipeOut

Inst

okwireIn

Inst

wireIn

Inst
okwireOut

Inst

okHost

Interface

reset_n

program_clk_enable

BRAM_Full

stop_test

BRAM_Data

shared bus resource

In modules are controlled

Out modules are observed

USB 3.0

Data

Group of Signals

Single bit signal

pipeOut_read

 Figure 2-12 Opalkelly module used in the test bench of TC25

The C++ program running on the PC drives and samples the signals connected to

the okwireIn and okwireOut instances, respectively. Out of the two okwireIn instances, one

of them is connected to the active low reset signal and the other is connected to the DUT

clock un-gating signal. Similarly, one of the okwireOut instances is connected to the signal

which indicates the BRAMs are fully filled and the other instance is connected to a signal

that indicates the end of the test run on the DUT.

 The okpipeOut module has a fixed bus width of 32 bits. However, every BRAM is

configured to have a data width of 64 bits per line. Also, only one line of a BRAM can be

read out in a single clock cycle. Therefore, two okpipeOut instances are needed to transfer

the data stored in a BRAM. Since three BRAMs are required in the test bench of the

HERMES block, six okpipeOut instances are used in the Opalkelly module of the

30

HERMES test bench. Similarly, two BRAMs are required in the test benches of the SRAM

block and DDR PLL. Therefore, their test benches have four instances of okpipeOut in the

Opalkelly module.

okClk

pipeOut_Read

pipeOut_Data D0

Read Operation

D1 D2

 Figure 2-13 Timing diagram of the data transfer from okpipeOut module [OpalKelly15]

 The C++ program running on the PC asserts the pipeOut_Read signal to read the

data through the okpipeOut instance. This signal is used as the read enable signal to the

BRAM instance Then, the read logic of the BRAM instance performs the read operation

and places the data read on the pipeOut_Data bus in the next clock cycle as shown in figure

2-13. The data on the pipeOut_Data bus is considered as valid only in the clock cycle

following the one where pipeOut_Read signal is high. The pipeOut_Read signal can be de-

asserted during longer data transfers (> 256 words).

2.3. C++ Application Program

The frontpanel API is provided as a C++ library which contains methods to

communicate directly with the endpoint modules on the FPGA. The classes in this

dynamically-linked library are instantiated in a program and the methods are called using

them. okCFrontpanel is the base class used to find, configure, and communicate with the

FPGA board. The methods in this class are used to interact with the FPGA board, configure

the flash memory, Kintex-7 FPGA and communicate with the FPGA.

31

Figure 2-14 Code snippet of the steps 2-4 of the C++ program built using frontpanel API

The application program performs the following steps:

1. Creates an instance of okCFrontpanel class.

2. Using the device interaction methods, checks for the connection with the XEM7350

board. After detecting the board, gathers information about the devices such as

flash, FPGA on the FPGA board and opens the board.

3. Configures the PLL with the default configuration.

4. Downloads a configuration file to the FPGA using ConfigureFPGA method.

5. Perform TC25 specific communication with the FPGA using the FPGA

communication methods.

32

2.3.1. Program Flow

BRAM_clk

tb_clk

BRAM

WRADDR 9'h1FD

program_clk_en

9'h1FF9'h1FE

1'b01'b0

BRAM_Full

BRAM_Full signal is

low tb_clk is gated

Figure 2-15 Timing diagram of the clock gating event of the DUT and the test bench clock

After configuring the FGPA, the program control flow for any test run on TC25 is

as follows:

1. The configured FPGA is reset by the program. Once the reset on the FPGA is

released, the test starts and the BRAMs are filled with data.

2. BRAMs reach their storage limit after recording a few clock cycles of signal activity.

This is indicated by the assertion of the signal BRAM_Full (figure 2-15).

3. Then the clock to the DUT and the test bench (tb_clk) is gated in the FPGA (figure

2-15). This makes sure that there is no unrecorded signal activity between the DUT

and the test bench.

4. The program detects that the BRAMs are fully filled and reads the data from them

using the Opalkelly module.

33

5. Once the data is completely read from the BRAMs, the program un-gates the clock

to the DUT and the test bench to start the signal activity and the BRAMs are filled

with the new data (figure 2-16).

6. Steps 2,3 and 4 are repeated until the end of the test is reached. This is indicated by

the assertion of stop_test signal by the block specific test bench.

BRAM_clk

tb_clk

BRAM

WRADDR 9'h1FF

program_clk_en

BRAM_Full

1'b0

9'h0019'h0009'h000 9'h002 9'h003

Figure 2-16 Timing diagram of the un-gating event of the DUT and the Test Bench clock

 The program stores the data read from the BRAMs in character arrays. Each character

can store 8-bits of data. Now, to store 32-bits of data from a single pipeOut instance across

512 clock cycles (the depth of a BRAM instance) a character array having a size of 2048

(512*32/4) is used in the program.

Figure 2-17 Code snippet of the packing (right) and the unpacking (left) of the I/O signals

34

 Packing of the data happens during the mapping of the block I/O signals to specific data

bit positions of the BRAM. Hence, the data stored in the character array is unpacked and

mapped to the same block I/O signal. For example, the Spreg_Clk, SRAM_Sel signals of

the SRAM block are packed and unpacked as shown in figure 2-17. The unpacked data is

then written to a log file which can be used for debugging or post processing purposes. The

log file can be post processed using perl scripts to check for the validity of the test run or

to extract specific information from the test run.

2.4. Bit stream File Generation

2.4.1. Mapping of physical pins to logical signals

logical wire
name

of block
I/O signal

LUTs
and FFs

physical pin
of FPGA

kintex-7 FPGA - Test Bench of TC25

FMC
Connector
(VITA 57)

physical
pin of FMC
connector

Custom PCB

DUT

physical
pin of TC25

physical
pin of FMC
connector

XEM7350 FPGA Board

 Figure 2-18 Mapping of physical pins to the I/O signals of TC25 on testing setup

 The logical signals of each block on TC25 are mapped to the pads on the I/O ring of the

test chip. During the packaging of the test chip, these I/O pads are connected to the physical

pins on the test chip. The custom PCB has the physical mapping between the pins on the

TC25 and the FMC (VITA 57) connector. The physical connections between the pins on

the FPGA with those on the FMC connector are already fixed by the manufacturer of the

FPGA board, Opalkelly. Therefore, the logical signals of the test bench of TC25 are

35

mapped to the appropriate physical pins on the FPGA. This mapping is important because

any wrong connections made would result in significant debug time and human effort.

 Consider an example of the signal XOR_CLK0 of the XOR Clock multiplier logic in

the test chip. This signal is mapped to package pad number 107 on the test chip. This

package pad is connected to pin H25 on the FMC connector of the custom PCB. This pin

H25 on the FMC connector is physically connected to pin LA_21_P on the kintex-7 FPGA.

When the FPGA is configured with the test bench of TC25, the logical signal used to drive

the XOR_CLK0 pin of the DUT is mapped to physical pin LA_21_P of the FPGA. This

mapping is stored in a file format called xilinx design constraints (XDC). The mapping

information of all the block specific I/O signals is validated during the initial setup of the

test bench of the block.

2.4.2. Input Files required by Vivado

Vivado

configure

kintex-7 fpga

Block specific
Test Bench

Verilog File

TC25 Top-Level
Test Bench

Verilog File

HDL endpoints
(verilog and

.ngc files)
Clock Generator

Verilog file

Bitstream

File

TC25 Block
Constraints
File (XDC)

Figure 2-19 The Input files of the test bench of TC25 given to vivado

A bit stream file is needed to configure a FPGA device. This file is generated using

vivado tool. The vivado tool takes the HDL files of a design and the constraints file of the

36

design specific to the target FPGA device as input [XilDes16]. The HDL files are simulated

first to check if the design behaves as expected. Once the design works in simulation, logic

synthesis step is run on the design. This step maps the logic written in HDL to LUTs,

flipflops, BRAMs i.e hardware resources available on the target FPGA device. Then the

implementation step is run on the design. This step does the place and route of the design,

targeting the FPGA device using the timing constraints set. The design, post synthesis and

implementation is again simulated to make sure that the functionality is not modified by

synthesis and implementation steps. In the final step, the bit stream file is generated for the

implemented design.

 To generate the bit stream file of the test bench of TC25, the verilog files of block

specific test bench, clock generator, TC25 top-level test bench and HDL endpoints (wire

and pipe type) along with XDC constraints file are given as input to the vivado as shown

in figure 2-19. The XDC constraints file contains the mapping of the logical names of the

block I/O and okHost interface signals to the physical pins on the kintex-7 device. Then

the synthesis and implementation steps are run targeting the kintex-7 FPGA device on the

XEM7350 board. Finally, after the implementation step, the bit stream file is generated.

2.5. Validation of Post Silicon Testing Setup of TC25

The post silicon testing setup of TC25 is validated before using it to run tests on the

DUT. This involves the following:

1. Checking for stuck-at 0 or 1 pins on the FPGA board and the custom PCB.

2. Checking the power connections on the custom PCB.

37

3. Checking the XDC file for correctness of the logical to physical pin mapping on

the FPGA device.

2.5.1. Stuck-at 0 or 1 Pins

Any pin must toggle from logic “1” to “0” state and vice-versa to conclude that it

is not a stuck-at 0 or 1 pin. The input pins of the DUT can be driven from the FPGA and

checked for stuck-at 0 or 1 issues. However, the output pins of the DUT must be driven by

a block within the DUT. Therefore, the SRAM block of TC25 is initially used to identify

the stuck-at 0 or 1 pins on the setup.

 Every input pin of the SRAM block is toggled from logic “1” to “0” state and vice-versa

by driving it with a clock of very low frequency from the FPGA. Since the input pins are

driven, the DUT is removed from the socket on the PCB. Then, all the relevant pins on the

FMC connector present on the custom PCB are probed on the oscilloscope. Upon probing

all the input signals, one among them namely datain[20] of the SRAM block was found to

be stuck-at 0. This signal is mapped to pin F32 on the FMC connector.

 Figure 2-20 Oscilloscope used for viewing the signals of the testing setup of TC25

38

 The stuck-at 0 issue of the F32 pin can be present on the FPGA board or the Custom

PCB. Using the process of elimination, the FPGA board was checked first by connecting

it to the FMC XEM105 debug board. Upon checking, the FPGA board is ruled out as the

suspect because the F32 pin on the FMC connector of the board behaves as driven by the

kintex-7 FPGA. Therefore, the custom PCB is identified as the culprit of this stuck-at 0

issue. Now, this could be due to an open connection between the FMC surface mount and

the trace on the PCB or a short to VSS. The short to VSS possibility is ruled out using a

multimeter. The connection is suspected as open and the FMC surface mount on the custom

PCB is replaced with a new one. Upon testing the newly mounted custom PCB no stuck-

at 0 issue is found with F32 pin. This confirmed that it is an open connection and solves

the stuck-at 0 issue.

 The output pins of the SRAM block are tested by running a simple write-read test. The

test writes and reads a sequence of 0s followed by 1s and then followed by 0s from the

same address location. This helps in toggling all the bits in the output dataout signal from

logic “1” to “0” and vice-versa. Upon running the test, all the output signals except the

dataout[45] signal toggle twice. This signal is found to be stuck-at 1. The stuck-at 1 issue

is due to the signal being shorted to VDD within the DUT due to an APR error and has

nothing to do with the FPGA board or the custom PCB of the test setup.

2.5.2. Power Connections on PCB

The TC25 test chip has power pins for ten different voltages. These power pins are

brought out from the socket into which the DUT is placed and physically connected to ten

different logical voltage names on the PCB as shown in figure 2-21. The multimeter is used

39

to make sure that these logical voltage names are connected to the correct power pin on the

test chip.

 Figure 2-21 Power connections on the custom PCB

2.6. Basic Clock Divider Test

 Figure 2-22 The divided clock toggling from 1 to 0 (left) and 0 to 1 (right)

This test exercises the XOR clock multiplier and clock divider logic in the test chip.

This test makes sure that the chip is alive as the clock signal is the heart of this digital

system. The test drives the XOR_CLK0 signal with a clock and other XOR_CLK signals

with logic “0”. They are input to the test chip and the clock output from the test chip is

sampled by the FPGA and written to a log file. The partial output from the log file of the

test run is shown in figure 2-22. The clock output obtained, CLK_DIV_OUT has a divide-

by-8 frequency relationship as expected with the clock input driven on XOR_CLK0.

40

CHAPTER 3. POST SILICON TESTING OF THE HERMES PROCESSOR

3.1. Architectural Overview

Figure 3-1 High-level block diagram of the non-radiation hardened HERMES processor

 The high-level block diagram of the non-radiation hardened HERMES processor

has eleven functional units as shown in Figure 3-1. The bus interface unit (BIU) acts as the

interface between the external bus and the processor core. This unit receives instruction

fetch requests, and load and store requests for the data memory access from the instruction

fetch unit (IFU) and the data cache unit (DCU) respectively. The store requests from the

DCU are stored in a write buffer before they are sent out onto the external bus. The IFU

delivers instructions to the processor core pipeline. It has a 16 kB, 4-way set associative

instruction cache (I-cache), one fill buffer, and a micro instruction translation look-aside

buffer (ITLB) which translates virtual addresses to physical addresses. The instruction

41

decode unit (IDU) decodes instructions received from the IFU. The register file unit (RFU)

contains the thirty-two 32-bit general-purpose registers [MIPS01].

 The instruction execution unit (IEU) executes all the instructions from the

instruction set except for multiply and divide instructions. The multiply/divide unit (MDU)

executes all multiply and divide instructions. The DCU services load and store instructions

of data memory. It has a 16 kB, 4-way set associative, write-through, a read-allocate only

data cache (D-cache), one fill buffer, and a micro data TLB (DTLB) which translates virtual

addresses to physical addresses. The memory management unit (MMU) contains the joint

TLB (JTLB), which is a 16-dual entry TLB providing address translations for the ITLB

and DTLB. The coprocessor 0 unit (C0U) contains the registers of the coprocessor 0

(system coprocessor). The JTAG unit (JTU) contains the joint test action group (JTAG)

debug and testability logic. The clock management unit (CMU) provides the entire clock

and power management functionality.

3.2. Test Bench Architecture

The test bench to the HERMES processor on TC25 consists of the reset generation

logic module, data and instruction memory module and control logic module as shown in

figure 3-2. The reset generation logic drives the PLL reset and the cold reset signals to the

HERMES processor of the DUT and data and instruction memory in the test bench. The

control logic provides the processor access to the instruction and data memory in the test

bench. The instruction memory provides the instructions to the processor when requested

by it. The data memory allows the processor to store or retrieve data from it.

42

Reset

Generation

Logic

Control Logic

Data and

Instruction

Memory

(BRAMs)

BRAM

Write

and

Read

Data Mem

Write and

Read Data

Instr Mem

Read Data

Data and

Instr Mem

Address Bus

Data Bus
tb_clk

BRAM_clk

ColdReset

PLL_Reset

HERMES

Control

Signals

Figure 3-2 Functional block diagram of the test bench to the HERMES processor

3.2.1. Reset Generation Logic

tb_clk

PLLReset

ColdReset

 Figure 3-3 Timing diagram of the reset signals of the HERMES processor

The reset generation logic asserts and de-asserts the active high reset signals,

PLLReset and ColdReset of the HERMES processor as shown in Figure 3-3. The PLL reset

signal is used to load the PLL configuration and the bus-to-core clock ratio registers of the

processor. The cold reset is a hard reset and causes a reset exception in the processor core.

Also, this signal is required for synchronizing the external bus clock with the internal

processor core clock. Both the reset signals are generated using a 4-bit counter, which is

43

used to count the clock cycles of the test bench clock. Initially the PLL reset is held low

while the cold reset stays high. Based on the value of the counter, the PLL reset is asserted

and de-asserted for two clock cycles of the test bench clock. Later-on after a few clock

cycles of the test bench clock, cold reset is de-asserted.

3.2.2. Data and Instruction Memory

The data and instruction memory of the test bench of HERMES is implemented

using BRAMs on the FPGA as shown in figure 3-4. The instruction memory provides 32-

bit instructions to the processor. The BRAM of the instruction memory is loaded with the

instructions that need to be tested on the processor. Then, the processor reads instructions

and executes them one after another. Since the processor solely reads from the instruction

memory, only the read operations are performed on the memory. The processor reads from

and writes 32-bit data to the data memory and hence, both read and write operations are

performed on the memory.

Instruction

Memory

(BRAM)

Data

Memory

(BRAM)
Data

Wrdata

Instr

Rddata
Instr_Read

Data_Read

BRAM_ClkEB_Address

Data

Rddata

Data_Write

32

9

9

32

32

 Figure 3-4 Block Diagram of the data and instruction memory of the test bench

44

The address sent out by the processor to read an instruction is 32-bits wide. This

translates to an address space of 4 GB of byte addressable memory. This address space is

divided into four regions namely kuseg, kseg0, kseg1 and kseg2[MIPS01]. The kuseg and

kseg2 regions are only accessed in user and kernel modes after the MMU is setup. The

addresses in the kseg0 (0x8000.0000 – 0x9FFF.FFFF) and kseg1 (0xA000.0000 –

0xBFFF.FFFF) [MIPS01] regions are stripped of the top one and three bits respectively

when translated to physical addresses.

BRAM

0000

RDCLK
RDEN_

0000

==

RDADDR

[29:16]

14'h0000

RDEN

BRAM_Sel_

0000
BRAM_Sel_

0000_reg

DO_0000

BRAM

0FFF

RDCLK
RDEN_

0FFF

==

RDADDR

[29:16]

14'h0FFF

RDEN

BRAM_Sel_

0FFF
BRAM_Sel_

0FFF_reg

DO_0FFF

BRAM

1000

RDCLK
RDEN_

1000

==

RDADDR

[29:16]

14'h1000

RDEN

BRAM_Sel_

1000
BRAM_Sel_

1000_reg

DO_1000

BRAM

1FC0

RDCLK
RDEN_

1FC0

==

RDADDR

[29:16]

14'h1FC0

RDEN

BRAM_Sel_

1FC0_reg
BRAM_Sel_

1FC0

DO_1FC0

BRAM

1FFF

RDCLK
RDEN_

1FFF

==

RDADDR

[29:16]

14'h1FFF

RDEN

BRAM_Sel_

1FFF_reg
BRAM_Sel_

1FFF

DO_1FFF

DO_0FFF

32

32 32

3232

DO_1000

DO_1FFF

DO_1FC0

DO_0000

BRAM_Sel_0000/0FFF/

1000/1FFF/1FC0_reg5

DO

32

5'b00001

5'b00010

5'b00100

5'b01000

def

32:1

Mux

 Figure 3-5 Functional block diagram of the instruction memory using BRAM

 The post silicon testing of the HERMES processor on TC25 makes use of only kseg0

and kseg1 segments of the instruction memory. The instruction memory used in the test

45

bench of the processor makes use of 5 instances of BRAM to access these segments. The

BRAM instances access different address ranges based on the top 16-bits of the address

bus. The address ranges accessed are 0x1FC0, 0x0000, 0x0FFF, 0x1000, 0x1FFF.

Depending on the instruction read address from the processor, the select signal of the

corresponding BRAM is asserted. This signal is flopped with positive-edge triggered

flipflop using BRAM read clock as the clock signal. The flopped signal makes sure that

the data output from the correct BRAM is selected and placed for one clock cycle on the

output data bus of the instruction memory.

Figure 3-6 Type of instructions in MIPS instruction set architecture(ISA)

 The type of instructions that can be run on the HERMES processor are of the register or

jump or immediate types as shown in figure 3-6. The opcodes and function codes used in

the instructions, initialization data of the BRAMs are parameterized. Instructions are built

using the parameters of opcodes and function codes and loaded into the BRAMs using

initialize data parameters of the BRAM as shown in figure 3-7.

46

Figure 3-7 Code snippet on how instructions are loaded into BRAMs

 The data memory used in the test bench of the processor makes use of 2 instances of

BRAM to access the address ranges 0x0000 and 0x1000 (figure 3-5). Similar BRAM select

and data output mux logic is used in the data memory to read the data from the appropriate

BRAM.

BRAM

1000

RDCLK
RDEN_

1000

==

RDADDR

[29:16]

14'h1000

RDEN

BRAM_Sel_

1000
BRAM_Sel_

1000_reg

DO_1000

32

WREN

BRAM

0000

RDCLK
RDEN_

0000

==

RDADDR

[29:16]

14'h0000

RDEN

BRAM_Sel_

0000
BRAM_Sel_

0000_reg

DO_0000

32

WREN

WREN_

1000

WREN_

0000

11

10

01

00

DO_0000

DO_1000 DO

32

BRAM_Sel_

1000_reg
BRAM_Sel_

0000_reg

1
0

 Figure 3-8 Functional block diagram of the data memory using BRAM

 The sequence of read operation on instruction and data memory is shown in figure

3-9. The BRAMs in the instruction and data memory use a clock signal which has the same

frequency but 180 degrees out of phase with respect to the bus clock signal of the

HERMES. Initially, the processor places the instruction or data address on the address bus

and asserts the instruction or data read signal. Then, instruction or data is read on the rising

edge of the BRAM clock. The read data is placed on the read data bus of the processor for

one clock cycle so that the processor can capture the data on the rising edge of the bus

clock of HERMES.

47

BRAM_Mem

Clock

Instr/Data

Memory Read

RdAddr

Read Operation

Addr_Rd Instr2Instr0

Instr/Data

 Mem Read Data Instr_Dt_RdData0

Bus Clock

of HERMES

Processor

Read Data Bus Instr_Dt_RdPr_Dt_0 Pr_Dt_0

 Figure 3-9 Timing diagram of the read operation on the instruction and data memory

 The sequence of the write operation on the data memory is shown in figure 3-10.

The processor places the write address and data on the respective buses and asserts the

write signal for a clock cycle of the bus clock of HERMES. Then, the write operation is

performed on the following rising edge of the BRAM clock.

BRAM_Mem

Clock

Data

Memory Write

WrAddr

Write Operation

Addr_Wr Addr1Addr0

Data Mem

Write Data Data_WrData0

Bus Clock

of HERMES

Processor

Write Data Bus
Data_WrData0 Data1

Data1

 Figure 3-10 Timing diagram of the write operation on the data memory

48

3.2.3. Control Logic

 The control logic generates the read, write signals to the BRAMs in the data and

instruction memory depending on the assertion of EB_AValid, EB_Instr and EB_Write

signals from the processor as shown in figure 3-11. This block contains a 4:1 mux which

decides whether data read from instruction memory or data memory be placed on the

HERMES read data bus, for one clock cycle of bus clock of the processor. The bus-core-

clock ration is also set by this mux at the start of any test, when the processor and test bench

are reset by SI_ColdReset signal. The write data bus from the processor is connected to the

write bus of the BRAM in the data memory.

1
0

EB_AValid

1'b1

1'b0

11
10
01
00

2

{EB_Instr,

EB_Write}

1'b1

1'b0

1'b1

EB_RdVld

_regIn
Q

tb_clk

D
EB_RdVld

EB_Write

EB_AValid

EB_Instr
Data_Read

Data_Write

Q

tb_clk

D
Data_Read_

negedge

Q

tb_clk

D
Instr_Read

_negedge
EB_Instr

11
10
01
00

0
1

Instr_RdData

Data_RdData

{26'h0,

Bus_Core_Clk_Ratio}

32

32
32

EB_RdData

Instr_Read

32

32

EB_WrData Data_BRAM_WrData

Fixed constant control signals

to HERMES

SI_NMI, SI_Reset, EB_ARdy,

EB_WRdy,..

 Figure 3-11 Functional block diagram of the control logic of the test bench

49

3.3. Testing of the HERMES processor

3.3.1. Trace sample of a test run

 The trace sample of a test run on HERMES processor in big endian configuration is

shown in figure 3-12. The multibit and bus signals such as EB_RData, EB_WData, EB_A

and EB_BE are displayed in hexadecimal format whereas the single bit signals are

displayed in binary format. The signal, Fixed_Value in the trace corresponds to the

grouping of the static input signals to the processor. The left most signal in the trace is the

clock signal to the XOR clock multiplier which produces clock to the processor. The right

most signal of the trace corresponds to the write data bus displayed in character format to

help in the “Hello World” test run on the processor.

 Figure 3-12 Trace sample of a test run on the HERMES processor

3.3.2. Hello World Test

The objective of the hello world test is to make the processor display “Hello World”

continuously on its write data bus. The test makes the processor read the preloaded “Hello

World” from the data memory and store it back in an infinite loop. The “Hello World” is

50

split as “Hell”, “o Wo”, “rld “and preloaded at three different memory locations of the data

memory since each location can only store 32-bits. The processor reads these three

locations one after another into local registers and then writes them back in the same order

to the data memory. The sequence of steps followed in this test is given below

1. Initialize all the registers ($1 - $31) with value 0.

2. Have two registers ($9, $10 in this case) store two values with a difference of 12.

This difference determines the number of times the inner loop is executed.

3. Have the start location of “Hello World “in the data memory stored in another

register ($12 in this case).

4. An Inner loop:

a. Load the data from the location specified by the contents of $12.

b. Store the same data to the same location.

c. Increment the value stored in $12 by 4 to make it point to the next

location.

d. Increment value of $9 by 4 to complete one iteration of inner loop.

e. Compare the contents of $9 with $10 to check if the inner loop needs to be

reiterated or not.

f. In case the comparison fails, jump to the start address of outer loop.

5. Execute Steps 2 and 3 indefinitely.

51

 Figure 3-13 The output trace of the HERMES displaying “Hello World”

 The processor successfully displayed “Hello World” onto the write data bus as

shown in figure 3-13. Even though “Hello World” is correctly mapped to its binary value

and placed on the read data bus, the processor can’t display “W” and “d “on its write data

bus. This is due to the shorted net on the 6th bit of the read data bus.

3.3.3. Data and Instruction Cache test

 The I-cache and D-cache of the HERMES processor are validated by running a test with

the following sequence of steps:

1. After initial reset sequence, the processor starts at address (32’hBFC0_0000 or

30’h9FC0_0000) that lies in the kseg1 segment of the memory.

2. Then the test turns on the data and instruction caches by making the kseg0 segment

of memory cacheable. This is achieved by clearing the kseg0 bits in the

configuration register as shown in figure 3-14.

52

 Figure 3-14 Output trace of steps 1 and 2 of I-cache and D-cache test

3. The program control is shifted from kseg1 to kseg0 segment of instruction memory,

since instructions from kseg0 segment are cacheable and are stored in I-cache. To

achieve this a mix of jump and branch not equal instructions are used, since jump

register instruction can’t be identified by the processor due to the shorted net on the

read data bus.

4. All the registers ($1 - $31) are initialized with value zero. Then, read and write

operations are performed on an address location in the data memory as follows:

a. Load the address location, in kseg0 segment (32’h9000_0000) of data

memory into $1 register.

b. Write any 32-bit data (32’hF33F_FB3F) to that memory location.

c. Read the data back from the same memory location.

d. Modify the data read from that memory location (by adding 16’h0030).

53

 Figure 3-15 Output trace of steps b - e of I-cache and D-cache test

e. Write the modified data back to the same memory location.

f. Repeat steps c – e infinitely.

 During the first iteration of the above procedure, both data and instructions are

accessed from the data and instruction memory respectively. In the subsequent iterations,

both the instructions and read data are accessed from the I-cache and D-cache respectively

as shown in figure 3-16. The caches are write through and hence, the modified data when

written back is observed on the write data bus. The read data is modified and written back

to check whether the D-cache stores the updated value or not. The read data bus and address

bus of the processor doesn’t change value while the write data bus has updated value of the

data written in every iteration. This confirms the access of I-cache and D-cache in the

processor.

54

Figure 3-16 Output trace indicating no change in value of address and read data bus

3.3.4. Speed Test

 The HERMES processor works using two clocks, the external bus clock and the

core clock. The core clock is usually run at higher frequency compared to the bus clock.

Hence, the core clock signal is generated by using the XOR clock multiplier, while the bus

clock signal is driven directly from the I/O pads. The HERMES processor is found to be

working at a core clock frequency of 200MHz but not functional at 400MHz. This is due

to the alteration of the phase relationship between the XOR clocks and the bus clock due

to different wire lengths on the PCB.

Test run Test

Result

Bus Clock

Frequency

Core Clock

Frequency

hello world test Pass 10MHz 40MHz

hello world test Pass 25MHz 100MHz

hello world test Pass 50MHz 200MHz

hello world test Fail 100MHz 400MHz

Table 3-1 The various frequencies of operation of HERMES on TT09 at VDDH = 0.9V

55

CHAPTER 4. POST SILICON TESTING OF THE SRAM BLOCK

4.1. Test Setup of SRAM Block

4.1.1. Test Bench

Figure 4-1 Functional block diagram of the test bench of the 1Mb SRAM 6T array

 The functional block diagram of the test bench of the SRAM block is shown in

figure 4-1. The SRAM block is configured using three special registers. Out of the three

0

1
Q

gated_clk

D
clk_cy_cnt

==
4'b1111

+
4'b1

4

4

0

1
Q

gated_clk

D
Spreg_clk

cy_cnt_sel

cy_cnt_sel

1'b0

0

1
Q

gated_clk

D
start_write

_read

cy_cnt_sel

1'b1

1

0
Q

gated_clk

D
Spreg_addr

4'b1001

+
4'b1

4

4

==
4'b0101

==

clk_cy
_cnt

1

0
Q

gated_clk

D
datain

32

cy_cnt_sel

write
32'hffff_ffff

1

0

32'h0

4'b0101

<
4'b0101

>=

clk_cy_cnt

1

0

<
clk_cy_cnt

4'b0101

32'h0000_feff

32'h0

1

0
Q

gated_clk

D
1'b0

top_bot
_en

==
WL_YMux

10'h3ff

Q

gated_clk

D
WL_YMux

+
10'h1

10

0

1
Q

gated_clk

D
bank
_sel

==
WL_YMux

10'h3ff

3

+3'b1

==
top_bot_en

1'b0

Q

gated_clk

D
1

0

1'b0

1'b0
==

1

0

==
14'h3bff

address

start_write_r
ead

read

Q

gated_clk

D
1

0

1'b0

1'b0
==

1

0

==
14'h3bff

address

start_write_r
ead

write

==
address

14'h3bff

==
read

1'b1

0

1
Q

gated_clk

D
1'b1

stop_test_run

56

special registers present, the first register is used to enable the test modes and program the

sense amplifier delay, the second and third registers are used only in the DAT mode. The

test bench initially configures the special registers to either do normal read and write

operations or to enable the test modes. The special registers have a separate clock and

address signal. The 32-bit data input to the special registers block is shared with the data

input to the SRAM arrays.

gated_clk

Spreg_clk

Spreg_addr 4'h0

clk_cy_count

4'h14'h0

4'h0 4'h54'h44'h1 4'h6 4'h7

datain 32'h0000_feff 32'h0

Configure First

Register

4'h2

32'h0000

_feff

Figure 4-2 Timing diagram of the configuration of the first and second special registers

 Once the special registers are configured, then the start_write_read signal is

asserted when the clock cycle counter reaches value 15. This is used by the address

generation, write and read logic to perform write and read operations on either one of the

SRAM 6T arrays depending on the value of the SRAM_Sel signal as shown in figure 4-3.

57

gated_clk

Spreg_clk

clk_cy_count 4'h14 4'h15

either read or

write is asserted

32'h0 D1D0

14'h0400

start_write_read

14'h0

401

14'h0

402
address

datain

Figure 4-3 Timing diagram depicting the write and read operations on SRAM 6T array

The address generation logic starts with first bank and word line 0 at address

14’h0400 and ends with the last bank and word line 127 at address 14’h3bff. This covers

all the 16384 addresses of 1Mb SRAM array. For either the read or write operation

performed, the whole address range of a 1Mb SRAM array is covered. Depending on the

type of the test needed the data input is driven with the appropriate value. For example, in

the case of write all 1s test, input data is driven with all 1s for the whole address range. The

stop_the_test_run signal is used to stop the test run. This signal is asserted when the test

finishes its operations. This is communicated to the program running on the PC using an

instance of okwireOut module which then stops the test.

Depending on the type of test required, either write signal or read signal is asserted

but not both at the same time. In the case of write all 1s then read test, first the write signal

is asserted and then the read signal is asserted for the whole address range. After the read

58

operation is performed on the last address, the stop_the_test_run signal is asserted as shown

in figure 4-4.

gated_clk

stop_the_test_run

14'h3

bfe

14'h3

bff
address

datain

14'h0

400

14'h0

401

14'h0

402

DLB DL D0 D1 D2

1'b1/1'b0read 1'b1/1'b0

1'b1/1'b0write 1'b0/1'b1

 Figure 4-4 Timing diagram depicting the end of the test of SRAM 6T array

4.1.2. Automatic Control of Agilent E3646A DC power supply

As mentioned, TC25 has ten distinct power connections controlled by five agilent

E3646A power supplies. Out of these ten, five of them need to be changed to run different

tests on the SRAM block. Depending on the type of test and the corner part used, different

combinations of these five voltages are required. However, few of the tests like the PUF

mode test or the read minimum voltage test must be run for many number of iterations (in

the range of 5-50). Most importantly, these voltages must be changed in between the

iterations of these tests. Changing the voltages manually is a painful task, given that the

tests are run again and again for many iterations. Hence, the power supplies are

automatically controlled from the PC.

59

The agilent E3646A power supply has a recommended standard number 232 (RS-

232) interface through which it can be controlled. The PC has universal serial bus (USB)

ports to talk to the power supply. The PC communicates with the power supply using the

USB-female serial connector and the 9-pin (DB-9) male-male serial connector and as

shown in figure 4-5. To achieve this two handshake signals, data terminal ready (DTR) and

data set ready (DSR) on the 9-pin connector are used. The RS-232 interface on the power

supply as well as the appropriate USB port on the PC is configured with the parameters

related to data frame and transfer rate as shown in the table 4-1.

Parameter Value set

Baud Rate 9600

Parity bits None

Data bits 8

Number of start bits 1 bit

Number of stop bits 2 bits

Table 4-1 RS-232 configuration settings of the power supply

 The power supply is controlled using standard commands for programmable

instruments (SCPI) commands sent over the serial interface. All these commands are

provided to the power supply through an API for windows written in perl. This perl API

module (Win32::SerialPort) is available on the comprehensive perl archive network

(CPAN) database [Cpan10]. Using this API, a new perl module

“control_the_power_supply” is written stitching the commands needed to control the

voltages of the power supply into sub routines [agilent13]. This module instantiates and

configures the serial port along with subroutines to reset the power supply and write user

defined values to both the voltages of the power supply as shown in figure 4-5. This module

is included in the perl scripts used to run different types of tests on the SRAM block.

60

Figure 4-5 subroutine to write user defined values to both the voltages of the power supply

4.1.3. Voltages of the SRAM 6T array

BitLine

VDDS

Word Line

VDDH

VDDarray

VSS

VSSA VSSA

BitLine

VDDS

 Figure 4-6 Voltages used in the bit cell of the SRAM 6T array

 The bit cell of the SRAM 6T array requires six different voltages as shown in

figure 4-6. Out of the six voltages, two of them are the body voltages of the PMOS

transistors (VDDAarray) and the NMOS transistors (VSSA) used in the array. The body

voltages are set different for different corners. They help in adjusting the threshold voltage

(Vt) of the transistors. The remaining voltages are the supply voltage to the back to back

inverters (VDDarray), supply voltage used to charge the PMOS transistors of the bit lines

61

(VDDS), word line voltage (VDDH) and ground supply voltage(VSS). The VDDarray,

VDDH and VDDS voltages are altered to de-stabilize the bit cell in the PUF mode. The

typical values of these voltages are given in table 4-2.

Voltages Typical values

VDDH 0.8V

VDDarray 0.9V

VDDS 0.9V

VDDAarray 1.3V

VSSA -0.4V

Table 4-2 Typical values of the voltages used in the bit cell of the SRAM 6T array

4.1.4. Test Data Acquisition

The manufactured test chips received from Fujitsu are 250 in number. There are

distributed as 50 each across five process corners namely slow-slow (SS), fast-fast (FF),

fast-slow (FS), slow-fast (SF) and typical-typical (TT). The chips of the TT corner are

marked as TT01, TT02…TT50 and the other corner parts are also marked similarly. There

are different tests like PUF mode test, read minimum voltage test, write all 1s then read

test that need to be run on these parts. Also, these tests are run across different combinations

of the five different voltages used in the bit cell. Moreover, the date and time of any test

run on these parts, needs to be noted in the log file. Therefore, to uniquely identify any

test run on any part and on any date and time, perl scripts are setup to acquire the test data.

The perl script needs the input arguments corner part number, type of test, voltages

set and frequency of the SRAM clock before the test is run. The script needs only those

voltages that are altered from their typical values. Each type of test has a specific string

attributed to it and has a separate run directory. In each run directory, bit stream files

62

corresponding to different frequencies of the SRAM clock are present. The generic

template of any test run perl script used for data acquisition contains four steps described

as follows:

1. The first step involves checking the input arguments such as corner part number,

type of test, voltages set and frequency of the SRAM clock entered by the user of

the perl script. The string of the process corner entered needs to be either SS, FF,

TT, SF or FS and the part number entered can’t exceed 50 since only 50 parts are

available for each corner. Similarly, the voltages entered can’t exceed or go below

certain values. For example, in the case of VDDarray the voltage entered can’t

exceed 1.3V which is the burn-in voltage. Similarly, the string entered for the type

of test needs to be among the valid set of strings specified for different types of

tests. Also, the frequency of SRAM clock entered must be either 5MHz or 10MHz

or 20MHz as the bit stream files only for these frequencies are made available in

the test run directory.

2. The second step involves extracting the information from the input arguments of

the above step into global variables which are used later. For example, the voltages

entered by the user are updated in the hash table of the voltages. The date and time

of the test run is captured into their respective global variables.

3. The third step is used to run the test in the specific directory depending on the input

argument, type of test. The information about the test run, obtained and stored in

the global variables, is used to construct the name of the log file. This log file stores

the data of the test run.

63

4. The fourth step is used to copy the log file to a location and delete the log file in

the run area.

The perl module “data_acq_base_lib” is the base library which contains the global

variables date_format_used, time_format_used, corner_part_number, type_of_test_run,

PortObj_Com, hash table of voltages and hard coded path of test run directories. This

library also has subroutines related to steps 1 and 2 which are common to any test run perl

script and steps 3 and 4 which vary depending on the test run. The wrapper scripts for any

test are built when the test needs to be iterated multiple time.

4.1.5. Test Data Processing

Figure 4-7 Block diagram depicting how the test run log files are processed

The log files of the tests run to read the SRAM array need to processed to capture

the results of the test. This processing is achieved easily using perl scripts. All the data

processing perl scripts have a common subroutine to capture the addresses and the

corresponding data into two different arrays as shown in figure 4-7. This is repeated

test run

log file

number 0

data

array 0

address

array 0

file process

subroutine

file0
file1

file n

test run

log files of

all iterations

Identify

red, grey

bits

generate

NIST files

identify

data

mismatch

addresses

data array

processing subroutines

..

..

64

depending on the number of the iterations of the same test run. Then the data stored in the

arrays is processed as per the need and the output is written out to different files

Depending on the type of data written to the SRAM array, the data read should

match it. The data patterns written to all the addresses of the SRAM array are, all the data

input bits are 1s or 0s and the data input bits are same or inverted as the corresponding

address bits. Therefore, when the data read is processed, the actual data should match the

expected data. This comparison helps in identification of the bad addresses in a chip and is

one type of processing done by the perl scripts. Similarly, the data read from multiple log

files is compared to identify the grey bits, bits that are inconsistent across multiple runs of

the same test.

SRAM_Clk

BRAM_Clk

address

read
dataout

line1 line2 line3 line4

 Figure 4-8 The timing relationship between the address read and data received

The log file of the read test, has all the addresses read and the corresponding data

received from those addresses. For any address stored in a line in the log file, the

corresponding data output received is stored four or more lines later depending on the

frequency of the SRAM clock. The data output sent by the SRAM array must travel through

the PCB trace before it is captured by the BRAMs on the FPGA. This PCB trace delay is

observed to be around 20ns. Therefore, if the frequency of the SRAM clock is low (5MHz)

65

then the PCB trace delay is masked and the data output is stored four lines later in the log

file as shown in figure 4-9.

Figure 4-9 Trace sample of the test run at 5MHz with data out same as the address read

4.2. Tests run on SRAM 6T array

The tests run on the SRAM 6T arrays include the write read test, the minimum read

voltage test, the data retention voltage test, the power up read test and the PUF mode test.

These tests are run at a clock frequency of 5MHz and the longest setting of the sense

amplifier delay (16’h00ff) to make sure that most of the bit cells don’t fail during a read

operation. However, different combinations of the voltages are used in all the tests.

The write read tests are run to validate the part based on which further testing is

done on the part. Depending on the type of the corner, the reverse body bias (RBB) voltage

is adjusted to make sure that normal write and read operations are performed with minimal

failures. This voltage is adjusted to bring the Vt of FF and SS corners towards the Vt of the

TT corner. Therefore, the RBB for normal write and read operations is set to 0.7V for the

FF corner parts and 0.1V for the SS corner parts.

66

4.2.1. Write Read Test

Type of data pattern Data input to the SRAM array

all 1s 32’hFFFF_FFFF

all 0s 32’h0

data same as address {18’h0, 14-bit address}

data inverted as address {18’hF_FFFF, inverted 14-bit address}

Table 4-3 Different types of data written to the SRAM 6T array

The write-read test is the first test run on any new part to validate the SRAM 6T

arrays in it. Initially this test is run at nominal voltages to check the part. This test writes a

specific data pattern to all the addresses of the 1Mb SRAM 6T array. The data patterns

written consist of two complementary pairs as shown in table 4-3. Then, the read operation

is performed on all the addresses one after another and the data read is compared with the

expected data.

 The write-read test validates the SRAM array on the part by writing separately

both 1 and 0 on each bit cell of the array and reading the bit cell back to confirm the value

written. To achieve this one of the complementary pairs described in table 4-3 are used.

Initially, during the first iteration of the write read test, all 1s data pattern is used to perform

the write operations. Then during the second iteration of the write read test, the

complementary data pattern all 0s is used. The read data is checked in both cases to confirm

the working of the SRAM array on the part.

All those addresses whose expected data doesn’t match the actual data are treated

as bad addresses, since they can’t be used to reliably store the data. The write read test

helps in identifying the bad addresses of an array on a part. This test run with

complementary data patterns is iterated multiple times (50) to identify the bad addresses.

67

The number of iterations of the test confirms the consistency of the bad addresses on a part.

Out of the all the identified bad addresses at the minimum read voltage of various parts,

two of them per part are shown in table 4-4.

Part Number Two bad addresses

FF06 14’b 000_1_0000000_001, 14’b 000_0_0000000_010

SS09 14’b 000_1_0000000_001, 14’b 000_1_0100000_001

TT09 14’b 000_1_0000000_001, 14’b 000_0_0000000_001

 Table 4-4 Two bad addresses at the minimum read voltage of various parts

4.2.2. Minimum Read Voltage Test

 The minimum read voltage test is used to identify the voltage operating point of

the SRAM 6T array below which the data can’t be read from the array reliably. The

sequence of steps followed to run this test is as follows:

1. Write operation using either all 1s or all 0s data pattern is performed on the SRAM

6T array at nominal operating voltages of VDDarray, VDDH and VDDS. The RBB

voltage is set to 0.2V, 0.4V and 0.7V for the SS, TT and FF corners respectively.

2. Then, the read operation is performed on the array and the number of bit failures is

noted at the voltage combination specified in the above step.

3. The voltage value of VDDarray and VDDS is decreased by 1mV and the value of

VDDH is adjusted as per the new value of VDDarray. (0.889 * voltage value of

VDDarray). This adjustment is based on the nominal voltage relationship between

VDDarray (0.9V) and VDDH (0.889 * 0.9V = 0.8V).

68

4. Then read operation is again performed on the array and the number of bit failures

is noted at the new voltage combination.

5. Steps 3 and 4 are repeated continuously until VDDarray reaches 0.4V.

 Figure 4-10 The plot of number of bit failures vs VDDarray voltage of SS09

 The voltage combination below which bit failures in the range of thousands and

above which bit failures in the range of tens or hundreds is identified for both all 1s and

all 0s data patterns. Then, the largest of these voltage combinations is identified as the

minimum read voltage for the part. The bit failures are observed to be cumulative in

nature. The minimum read voltages for FF06, SS09 and TT09 parts are shown in table

4-5.

Part Number VDDH VDDarray VDDS RBB

FF06 0.54V 0.61V 0.61V 0.7V

SS09 0.55V 0.62V 0.62V 0.4V

TT09 0.58V 0.66V 0.66V 0.2V

 Table 4-5 Minimum read voltages of FF06, SS09 and TT09 parts

69

4.2.3. PUF Mode Test

 The SRAM bit cells have a built-in mismatch due to the variations of the fabrication

process [Chellappa11]. This is manifested as transistor threshold voltage mismatch. The bit

cells are also subjected to random telegraphic noise (RTN). The impact of RTN is

especially predominant in the lower technology nodes due to aggressive scaling of supply

voltages and transistor sizes [Mao16]. Both the RTN and the process mismatch are

important factors that help in using SRAM to assign a unique finger print to the

manufactured IC.

The bit cell of the SRAM has two back to back inverters and can take two possible

stable states (10 and 01). The bit cell is in an unstable metastable state right after power-up

or during the PUF mode of the SRAM. When the bit cell is in the metastable state, both the

RTN and the process mismatch decide the tilt towards one of the stable states of the bit cell

[Chellappa11]. Similar tilt towards a stable state happens on all the bit cells of the SRAM.

Few of the bit cells are well matched and therefore have their stable states determined

primarily by RTN. These bit cells contribute to grey bits and can be used to generate

random numbers. Few of the other bit cells with large process mismatch favor a stable state

not affected mostly by RTN. These bit cells can be used to generate a number unique to the

IC. Hence, the state of the SRAM right after power-up or PUF mode of operation can be

used to assign a unique finger print to the IC [Chellappa11].

The PUF mode involves de-stabilizing the bit cells of the SRAM. During this mode,

the supply voltage of the bit cell is reduced, the NMOS access transistors of the bit cell and

the pre-charge PMOS transistors of the bit lines are turned on and ymux is turned off. Now,

70

by decreasing the supply voltage, the static noise margin of the bit cell is degraded and this

de-stabilizes the bit cell. The number of the bit cells de-stabilized is determined by the

amount of the supply voltage reduction. However, the bit cells which are still stable

contribute to the number of red bits. The de-stabilized bit cells tilt towards a stable state

depending on RTN and process mismatch variations. These states of the bit cells can be

used to generate random numbers and provide a unique number to the IC.

The PUF mode test run on the SRAM 6T array involves the following sequence of steps

1. Write all 0s or all 1s data pattern to all the address locations of the array at the

nominal voltage combination and RBB depending on the corner.

2. Once the write operation has finished, voltages VDDH, VDDarray, VDDS are set

as needed by the PUF mode of operation of the SRAM array. The RBB voltage is

set to the typical value of 0.4V for all corners to keep the corner as is.

3. Then, turn on the PUF mode of the SRAM array by setting the bit number 31 of

the first special register to logic “1”.

4. Now, read operation is performed on all the addresses during PUF mode. This

operation turns on the word line of the bit cell and destabilizes it.

5. Then, voltages VDDH, VDDarray, VDDS and RBB are changed to minimize read

failures during normal read operation on the SRAM array.

6. Normal read operation is performed on all the addresses of the SRAM array and

the read data is recorded for analysis.

71

 The difference between the voltages VDDH and VDDarray is defined as Vdiff1.

Similarly, the difference between the voltages VDDS and VDDarray is defined as Vdiff2.

Both Vdiff1 and Vdiff2 are used to measure the amount of de-stability imparted on the bit cell

during PUF mode. The various steps of the PUF mode test are short hand denoted as

follows

1. step 1 involving write all 0s or write all 1s with “w0” or “w1” respectively.

2. step 4 describing the read operation during PUF mode with “p”.

3. step 6 performing the normal read operation with “r”.

4. The number of iterations of the test is indicated using x followed by the number.

For example, “x50” in the case of 50 iterations.

The name of any variation of the PUF mode test is built using these short hand notations

and underscores. For example, when the PUF mode test described above is run 50 times, it

is denoted as “(w0_p_r)x50” or “(w1_p_r)x50”.

Write value Read value on every iteration Type of the bit

0 or 1 0 White

0 or 1 1 Black

0 or 1 0 or 1 Grey

0 and 1 0 and 1 respectively Red

 Table 4-6 The type of bit cells determined after multiple runs of the PUF mode test

 The first goal of the PUF mode test run is to de-stabilize all the bit cells of the 1Mb

SRAM array. This translates to an ideal target of zero red bits because a bit cell once de-

stabilized favors either stable logic “1” or logic “0” state and hence can’t remain a red bit.

This test is run 50 times to average out the effect of noise and then red bits are calculated

72

based on the data read from all the iterations. However, the number of red bits are

observed to be in the order of thousands.

 To identify the cause of the red bits issue, circuit simulations on a single bit cell

with voltage conditions resembling those observed during the PUF mode are performed.

The issue is identified to be the amount of time each bit cell stays in PUF mode. The tests

which are initially run at the SRAM clock frequency of 50MHz are now run at 5MHz. This

makes sure that the bit cells stay in PUF mode for a long duration of time (~200ns). Then,

the PUF mode test is again run 50 times and read data is analyzed. Significant decrease in

the number of red bits is observed with the frequency change. However, the number of red

bits are still present in the order of hundreds. Later, the same test is run with different values

of Vdiff1 and Vdiff2 and the number of red bits are observed to decrease continuously as

VDDS is increased as shown in table 4-7. Also, the red bit count of zero is observed at

VDDS = 1.2V.

Test Run Vdiff1 Vdiff2 RBB Number of red bits

(w1_p_r)x50, (w0_p_r)x50 0.3V 0.3V 0.4V 5549

 (w1_p_r)x50, (w0_p_r)x50 0.3V 0.4V 0.4V 129

 (w1_p_r)x50, (w0_p_r)x50 0.3V 0.5V 0.4V 67

 (w1_p_r)x50, (w0_p_r)x50 0.3V 0.6V 0.4V 0

Table 4-7 The number of red bits of the PUF mode test run on TT10 at different VDDS

 The second goal of the PUF mode test is to generate good random numbers

qualified by passing the statistical test suite developed by national institute of standards

and technology (NIST). These tests determine the amount of non-randomness in the binary

sequences constructed using the random number generators such as the PUF mode of

SRAM. The number generated using PUF mode of SRAM should have an equal number

73

of 1s and 0s for it to be random. The previous runs of “(w0_p_r)x50” and “(w1_p_r)x50”

tests have an unequal number of 1s and 0s. The number of white or black bits is observed

to be a function of data pattern written to the SRAM array as shown in table 4-8. This is

attributed to the data remanence of the SRAM bit cells.

Test Run White bits (%) Black bits (%) Grey bits (%)

 (w0_p_r)x50 43 33 24

 (w1_p_r)x50 35 41 24

 Table 4-8 The distribution of read bits of PUF mode test run on TT06

 The single iteration of the PUF mode test involves taking the bit cells to a known

state using write operation. Then, the bit cells are taken into PUF mode where the initial

values written are altered. Now after the read operation, when the power is removed from

the SRAM array, data stored in the bit cells is not lost completely. This data remembered

by the bit cells affects the next iteration of the PUF mode test resulting in large number of

grey bits. Therefore, to remove the data remanence in the read data, the “(w1_p_r)x50” and

“(w0_p_r)x50” tests are modified by performing the write operation only once in the first

iteration and then the PUF mode of operation followed by the normal read operation is

repeated 50 times. Also, power is not turned off in between these iterations. The modified

PUF mode tests run are “w1_(p_r)x50” and “w0_(p_r)x50”.

 The modified PUF mode tests are run on TT10 part and the number of 1s and 0s

read after every iteration are analyzed. The percentage of white and black bits oscillate

after every normal read iteration as shown in the figure 4-11. This oscillation is due to the

well-matched bit cells, switching from one state to another for every iteration of PUF mode

followed by normal read operation. This oscillation can be due to the PUF mode of

74

operation or the normal read operation of every iteration.

Figure 4-11 The percentage of black and white bits for each read iteration of w1_(p_r)x50

 During the normal read operation, RTN could fill a transistor trap in the bit cell,

changing their threshold voltages (Vt). This causes the bit cell to behave as a grey bit. The

RTN is a function of the read voltages VDDH, VDDarray and VDDS of the bit cell.

Therefore, the normal read operation is performed at minimum read voltage of the bit cell

to potentially reduce its effect. This makes sure that the grey bits generated are more likely

due to the PUF mode of operation. Hence, the latest PUF mode tests are run by performing

normal read operation at minimum read voltages.

 The latest PUF mode tests are run on the parts TT06, FF09 and SS07 at VDDarray

voltages of 0.3V, 0.35V, 0.4V and 0.45V during the PUF mode of operation. The results

show the decreasing order of the number of well-matched cells as FF followed by TT and

75

then SS as shown in table 4-9. Therefore, the bit cells of the FF part can be used to generate

a good random number and vice-versa the bit cells of the SS part can be used to generate a

unique finger print to the part.

Test Run Corner Part Number Grey bits (%)

w0_(p_r)x50, w1_(p_r)x50 SS09 14.6

w0_(p_r)x50, w1_(p_r)x50 TT09 26.3

w0_(p_r)x50, w1_(p_r)x50 FF06 50.2

Table 4-9 Percentage of grey bits at VDDarray = 0.35V and read at minimum read voltage

76

CHAPTER 5. CONCLUSIONS

The HERMES processor was tested using hello world and cache functionality tests.

The processor successfully passed the hello world test which confirms that it can

understand and execute instructions. The data and instruction caches of the processor are

confirmed as functional using the cache functionality test. Both these tests are run on the

processor at a frequency of 100MHz. Finally, the processor is found to be operational at a

core clock frequency of 200MHz when run at nominal voltages, while it can run at a

maximum core clock frequency of 450MHz confirmed by post-layout circuit simulations.

Operation at this speed has not been confirmed on silicon as of this writing

 The SRAM 6T arrays of the test chip 25 are tested using write read, minimum read

voltage and PUF mode tests. The write read tests used different data patterns to confirm

the storage functionality of all the bit cells of the SRAM array at nominal voltages. Also,

these tests confirmed that the location at bank 0, word line 0 with ymux value 1 failed to

store the data irrespective of the corner part and sense amplifier delay settings at nominal

voltages. The minimum read voltage test confirmed the array read voltages as 0.61V, 0.66V

and 0.62V for FF, TT and SS parts with body bias voltages of 0.7V, 0.4V and 0.2V

respectively.

 The PUF mode test confirmed the PUF test mode of operation of the SRAM 6T

array by altering the known state of the bit cells of the array. The number of red bits are

observed to be zero for TT10 part at VDDS = 1.2V and VDDarray = 0.6V. This confirms

that all the bit cells are de-stabilized by the PUF mode. The SRAM array is read at

minimum read voltages of respective corner parts to eliminate the grey bits generated due

to RTN of the read operation. The number of grey bits are observed to be around 50%,

77

26% and 14% for FF, TT and SS parts respectively at Vdiff1 = Vdiff2 = 0.55V. These grey

bits from the FF part are used to generate random bit sequences. These sequences pass the

NIST tests with the assistance of helper functions, which are commonly used.

 The automation using perl to control the power supplies, capture and process the

test data of the SRAM arrays saved a lot of time and manual effort. However, more could

be done. Separate bit stream files were used based on each test, frequency of the SRAM

clock, sense amplifier delay setting. This could have been avoided and a single bit stream

file can be used to perform all the tests on the SRAM array. The trace file of the test run

had lot of information about the state of all the signals between the DUT and test bench.

Once the test is confirmed as working all the signals which don’t convey any information

could have been taken out of the trace.

78

REFERENCES

[agilent13] Agilent, “Agilent E364xA Dual Output DC Power Supplies”, User Manual,

10th
 edition, August 2013.

[Barn06] Barnaby, H. J., "Total-Ionizing-Dose Effects in Modern CMOS Technologies,"

Nuclear Science, IEEE Transactions on, vol.53, no.6, pp.3103-3121, Dec. 2006.

[Chellappa11] S. Chellappa, A. Dey and L. T. Clark, "Improved circuits for microchip

identification using SRAM mismatch," 2011 IEEE Custom Integrated Circuits

Conference (CICC), San Jose, CA, 2011, pp. 1-4.

[Chellappa16] S. Chellappa and L. T. Clark, "SRAM-Based Unique Chip Identifier

Techniques," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.

24, no. 4, pp. 1213-1222, April 2016.

[Cpan10] CPAN Perl module, “Win32::SerialPort”, ver 0.22, April 2010.

[Edward07] G. E. Suh, C. W. O'Donnell and S. Devadas, "Aegis: A Single-Chip Secure

Processor," in IEEE Design & Test of Computers, vol. 24, no. 6, pp. 570-580, Nov.-Dec.

2007.

[Gogula15] A. R. Gogulamudi, L. T. Clark, C. Farnsworth, S. Chellappa and V.

Vashishtha, "Architectural and Micro-Architectural Techniques for Software Controlled

Microprocessor Soft-Error Mitigation," 2015 15th European Conference on Radiation and

Its Effects on Components and Systems (RADECS), Moscow, 2015, pp. 1-6.

[Gogula16] Anudeep R. Gogulamudi, “Post-silicon Validation of Radiation Hardened

Microprocessor, Embedded Flash and Test Structures,” Master’s thesis, Arizona State

University, 2016.

[Hind09] Hindman, N.D.; Pettit, D.E.; Patterson, D.W.; Nielsen, K.E.; Xiaoyin Yao;

Holbert, K.E.; Clark, L.T.; , "High speed redundant self-correcting circuits for radiation

hardened by design logic," Radiation and Its Effects on Components and Systems

(RADECS), 2009 European Conference on , vol., no., pp.465-472, 14-18 Sept. 2009.

[Hind11] Hindman, N.D.; Clark, L.T.; Patterson, D.W.; Holbert, K.E.;, "Fully

Automated, Testable Design of Fine-Grained Triple Mode Redundant Logic," Nuclear

Science, IEEE Transactions on, vol.58, no.6, pp.3046-3052, Dec. 2011.

[Mao16] D. Mao, S. Guo, R. Wang, M. Luo and R. Huang, "Deep understanding of random

telegraph noise (RTN) effects on SRAM stability," 2016 International Symposium on VLSI

Technology, Systems and Application (VLSI-TSA), Hsinchu, 2016, pp. 1-2.

79

[Mavis02] Mavis, D.G.; Eaton, P.H.; , "Soft error rate mitigation techniques for modern

microcircuits," Reliability Physics Symposium Proceedings, 2002. 40th Annual, vol., no.,

pp. 216- 225, 2002.

[Mentor04] Mentor Graphics, “ModelSim: Advanced Verification and Debugging”, v

6.0b, Nov 2004.

[MIPS00] MIPS, “MIPS32 4Kc Processor Core Datasheet,” pp. 1–30, 2000.

[MIPS01] MIPS, “MIPS32 4K Processor Core Family Software User’s Manual,” 2001.

[Opalkelly15] Opal Kelly Incorporated, “FrontPanel User Manual”, rev, Mar.2015.

[Rama13] C. Ramamurthy, “Chip Level Implementation Techniques for Radiation

Hardened Microprocessors,” Master’s thesis, Arizona State University, 2013.

[Vash15] V. Vashishtha, L. T. Clark, S. Chellappa, A. R. Gogulamudi, A. Gujja and C.

Farnsworth, "A soft-error hardened process portable embedded microprocessor," 2015

IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, 2015, pp. 1-4.

[XilClk16] Xilinx, “7 Series FPGAs Clocking Resources”, User Guide, UG472, Sept.

2016.

[XilDes16] Xilinx, “Vivado Design Suite User Guide”, Implementation, UG904,

Dec.2016.

[XilMem16] Xilinx, “7 Series FPGAs Memory Resources”, User Guide, UG473, Sept.

2016.

