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ABSTRACT 

Digital systems are increasingly pervading in the everyday lives of humans. The 

security of these systems is a concern due to the sensitive data stored in them. The 

physically unclonable function (PUF) implemented on hardware provides a way to protect 

these systems. Static random-access memories (SRAMs) are designed and used as a strong 

PUF to generate random numbers unique to the manufactured integrated circuit (IC).  

Digital systems are important to the technological improvements in space 

exploration. Space exploration requires radiation hardened microprocessors which 

minimize the functional disruptions in the presence of radiation. The design highly efficient 

radiation-hardened microprocessor for enabling spacecraft (HERMES) is a radiation-

hardened microprocessor with performance comparable to the commercially available 

designs. These designs are manufactured using a foundry complementary metal-oxide 

semiconductor (CMOS) 55-nm triple-well process. This thesis presents the post silicon 

validation results of the HERMES and the PUF mode of SRAM across process corners. 

Chapter 1 gives an overview of the blocks implemented on the test chip 25. It also 

talks about the pre-silicon functional verification methodology used for the test chip. 

Chapter 2 discusses about the post silicon testing setup of test chip 25 and the validation 

of the setup. Chapter 3 describes the architecture and the test bench of the HERMES along 

with its testing results. Chapter 4 discusses the test bench and the perl scripts used to test 

the SRAM along with its testing results. Chapter 5 gives a summary of the post-silicon 

validation results of the HERMES and the PUF mode of SRAM. 
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CHAPTER 1. INTRODUCTION 

1.1. SRAM PUF and Radiation Effects Overview 

Digital systems are increasingly pervasive in the everyday lives of humans 

especially with the onset of the internet of things (IOT) era. The security of these systems 

is a concern due to the sensitive data stored in them. The physically unclonable function 

(PUF) provides a way to protect these systems. PUF hardware produces a challenge-

response mapping based on the uncertainties of the transistor variations due to the 

manufacturing process [Edward07]. It provides a digital fingerprint to the device which 

helps in device authentication and identification.           

  The static random-access memory (SRAM) is a type of semiconductor memory 

that is primarily used in complementary metal-oxide semiconductor (CMOS) circuits due 

to its speed of operation. SRAMs are usually built using new minimum width and length 

transistors to obtain high density. This makes them highly sensitive to the transistor 

variations of the manufacturing process. Therefore, SRAMs can be used as a PUF to 

generate random numbers unique to the manufactured integrated circuit (IC). SRAMs can 

be designed to be used both for data storage and as PUF [Chellappa11]. The SRAM based 

PUF and data storage mode results across slow-slow (SS), fast-fast (FF) and typical-typical 

(TT) corners of test chip 25 (TC25) are discussed in chapter 4.     

   Radiation particles such as alpha particles, neutrons cause damage to the 

electronic circuits by striking their sensitive nodes. The scaling of the transistor sizes and 

supply voltages in the lower technology nodes have made the electronic circuits more 
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susceptible to radiation effects. Radiation hardening is the technique used in the design and 

fabrication of the electronic systems to minimize the damage due to the radiation. 

The two major radiation effects on CMOS devices are total ionizing dose (TID) 

[Barn06] and single event effects (SEEs) [Mavis02]. The SEE is a localized effect, caused 

when a high-energy particle travelling through a semiconductor leaves an ionized track 

behind. This effect may cause a glitch in an output of a circuit, or a bit flip in a memory or 

register. TID effect deposits charge into CMOS devices resulting in the threshold voltage 

(Vth) shifts, noise, mobility and leakage[Barn06]. The post silicon testing results of the 

highly efficient radiation-hardened microprocessor for enabling spacecraft (HERMES) 

v2.55 is discussed in chapter 3. It is not TID hardened. 

1.2. Test Chip 25 Overview 

    TC25 was designed to understand the behavior of SRAM arrays across different body 

bias voltages and process corners on Fujitsu’s 55-nm triple-well bulk deeply depleted 

channel (DDC) CMOS process. To utilize the die area and the effort spent on the test chip 

effectively two more blocks are added to it. Hence, the TC25 is made up of three main 

blocks namely HERMES v2.65; SRAM block; radiation-hardened by design (RHBD) 

double data rate (DDR) based phase locked loop (PLL). 

    The top-level functional block diagram of the test chip contains the blocks HERMES 

v2.65, SRAM arrays and DDR PLL as shown in figure 1-1. The logic around these blocks 

include the exclusive-or (XOR) clock multiplier, divide-by-8 clock divider, 2:1 multiplexer 

(mux), 4:1 mux, level shifters, input/output (I/O) pads, analog pads and power pads. The 

input pads of TC25 are shared physically among the three blocks. The outputs from all the 
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three blocks are connected to the output pads using the 4:1 Mux. A two bit select signal 

(BLK_SEL) is used to control the 4:1 mux. 
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                            Figure 1-1 Top level functional block diagram of the test chip TC25 

1.2.1. Clock Generation 

    Clock signal to the HERMES and the SRAM blocks can be generated using either the 

XOR clock multiplier or the DDR PLL. A one bit select signal, CLK_SEL is used to 

multiplex between the clocks produced from these two sources to the output clock (Figure 
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1-1). During the beam testing only the XOR clock multiplier is used to generate a high 

frequency clock, since the PLL is more vulnerable to radiation upsets [Gogula15]. 

The XOR clock multiplier takes eight clocks as inputs and generates an output clock 

by xoring every pair of input clocks until a single output clock is obtained (Figure 1-2 (a)). 

To generate an output clock with a multiplied-by-2 frequency and a duty cycle of 50%, two 

input clocks must have a phase shift of 90 degrees (180 degrees/2) between them and the 

remaining six clocks must be held constant. Similarly, to synthesize other frequency 

multiples of the output clock, the input clocks should be phase-shifted accordingly. 
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        Figure 1-2 (a) XOR clock multiplier logic diagram (b) XOR clock multiplier waveform 
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  The maximum frequency of the output clock that can be produced is 8x compared to the 

frequency of the input clocks. To generate this, the eight input clocks must be phase shifted 

by 22.5 degrees (180 degrees / 8) relative to each other (Figure 1-2 (b)). However, there is 

an inherent jitter on the input clocks relative to each other due to the FPGA (~160ps – 

200ps) and the wire delay on the PCB Board. This limits the maximum frequency and duty 

cycle of the output clock that can be synthesized by the XOR clock multiplier.     

    The clock divider on the test chip uses the multiplexed clock from the 2:1 mux and 

generates a divide-by-8 clock as output (Figure 1-1). This is used to check the functionality 

of the clocks produced using the XOR clock multiplier and the DDR PLL on the 

manufactured test chip. Validating the functionality of the clocks is the first test done on 

any manufactured digital chip because clocks are crucial to any digital design. Hence the 

clock divider plays a key role in the post-silicon testing of the manufactured test chip. 

1.2.2. HERMES Processor 

    The HERMES is a radiation hardened MIPS32 4Kc compliant embedded 

microprocessor [MIPS00]. The design of this block incorporates multiple radiation 

hardening techniques at the circuit, layout, micro-architecture and architecture levels. To 

achieve radiation hardening at the circuit design level, self-correcting triple-mode 

redundant (TMR) circuits are used to protect the key architectural state of the 

microprocessor [Gogula15] which includes the program counter (PC), write buffers, 

configuration registers and the bus interface. In addition to that, instruction execution 

pipeline, data and instruction cache subsystems, memory management unit (MMU) and 

register file (RF) are made dual-mode redundant (DMR). Radiation hardening at the layout 
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level is accomplished using a special automated place and route (APR) flow. This flow 

separates the nodes of the circuit by a certain distance to mitigate the soft errors induced 

due to multiple node charge collection (MNCC) [Hind11].   

    Radiation hardening at the micro-architectural and architectural levels of HERMES is 

realized using soft error detection and recovery. Soft errors are detected based on the 

mismatch between the two copies of DMR speculative instruction execution pipeline right 

at their commission to the architectural state [Vash15]. Soft error recovery is software 

controlled and achieved by the addition of new instructions.      

1.2.3. SRAM Block 
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                               Figure 1-3 Top Level Functional Block diagram of the SRAM Block 

The SRAM block consists of three 1mega bit (Mb) SRAM arrays and three 32-bit 

special registers (Figure 1-3). Out of these three arrays, two of them are made up of 6-
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transistor (6T) bit cells and the third one is built using 8-transistor (8T) bit cells. The 6T 

bit cell based array (SRAM 6T array) shares a single port for read and write operations 

whereas the 8T bit cell based array (SRAM 8T array) has independent ports for read and 

write operations.   

Three special registers are used to configure the SRAM 6T arrays in various test 

modes. The test modes supported by the SRAM 6T arrays are sense amplifier test (satest), 

direct access test (DAT) and PUF. Both satest and DAT modes are enabled simultaneously 

to measure the offset voltage of the sense amplifiers used in the SRAM arrays. PUF mode 

is used to generate a random number based on process variations in the manufactured 

SRAM array. Only the DAT mode is enabled to measure the currents on the transistors of 

the bit cells. Special registers are also used to configure the programmable delay value to 

turn off the sense amplifiers during a read operation. 
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                     Figure 1-4 Structural block diagram of the 1Mb SRAM 6T array     
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    The SRAM 6T array is built using eight 16 kbytes (kB) banks, eight 2:1 power muxes 

and four 16-bit level shifters. The eight 2:1 power muxes gate the power to the bank when 

it is not selected to perform any operations. A three-bit signal, banksel is used to select one 

of the eight banks. Each bank has a clock gater module in it. Depending on the bank 

selected, clock signal is gated to the rest of the banks using the clock gater modules in 

them. Clock gating and power muxing help in the low power operation of the SRAM 6T 

array. 
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                  Figure 1-5 Functional block diagram of the 16kB bank of SRAM 6T array 
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The 16kB bank of the SRAM 6T array has 7:128 address decoder, write, read and 

word line logic, clock gater module, 64 column groups and test modes logic as shown in 

figure 1-5. Every column group in the bank is divided into top and bottom halves with the 

write driver, sense amplifier and latch shared between them. The top and the bottom halves 

of every column group both have a 8:1 mux for selecting one of the eight columns and 

receive 128 word lines each from the address decoder. 
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            Figure 1-6 Timing diagram of the write and read operations to the 16kB bank 

The write and read operations are performed on the bank selected as shown in figure 

1-6. Depending on the write or read operation, the write or read signal is asserted after the 

negative edge of the clock. Then, address is decoded when the clock is low. Based on the 

address decoded, the corresponding word line is asserted when the clock goes high. For 

write operation, data present on datain is written and for read operation the data is read out 

from the appropriate bits in the column groups. The read data is captured and pipelined out 

using negative edge triggered flipflops. 
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1.2.4. DDR PLL 

     The DDR PLL block is a digital PLL which can generate clock frequencies for DDR 

based memory integrated circuits (IC) such as synchronous dynamic-random access 

memory (SDRAM). This block contains the configuration registers, custom built PLL and 

the clock divider logic as shown in figure 1-7. There are three configuration registers 

present in the block. Out of these three, two of them are used to set the delay through the 

coarse control and fine control units of the PLL. Depending on these settings, the PLL 

synthesizes different clock frequencies. The third register is used to set the division factor 

of the clock divider logic. The output of the clock divider logic is given as clock to the 

other blocks of the test chip depending on the value of the clock select signal. 
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                               Figure 1-7 TC25 Functional block diagram of the DDR PLL  

1.2.5. Pads of Test Chip 25 

TC25 consists of 208 pads in total placed on a 28 mm x 28 mm quad flat package. 

They are made up of four pad types such as input, output, analog and power. All the digital 

I/O pads can handle LVCMOS signals with a maximum voltage of 3.3V. The pad 
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distribution among the pad types is as follows: 153 digital I/O pads, 4 analog pads and 51 

power pads (Table 1-1). 

Type of pads  HERMES SRAM DDR PLL Others Total number  

Digital input 66 65 48 7 73 

Digital output 79 64 32 1 80 

Analog - 4 - - 4 

Power - - - - 51 

Total number  145 133 80 8 208 

Table 1-1 TC25 Pad distribution                                

1.2.6. Power Supplies of Test Chip 25 

     TC25 uses ten distinct power pins to provide voltage and current to all the blocks (Table 

1-2). The test chip is manufactured using a triple-well process, hence three different power 

pins are used for the three wells. The I/O pads and the top-level mux logic of the test chip 

use a power pin each. The SRAM block uses two power pins for the peripheral logic and 

power muxes. The bit cells of the SRAM 6T array use a power pin. All the three blocks 

share two power pins for supply voltage and ground. 

Name  Description 

vdda_array power pin of the N-Well of SRAM 6T arrays 

Vdda 

power pin of the N-Well of all the blocks except  

SRAM 6T arrays 

Vssa power pin of the global P-Well 

VDDtop VDD of the glue logic at the top level of TC25 

VDDH VDD of the HERMES, SRAM and DDR PLL blocks 

VDDS VDD of the peripheral logic of the selected SRAM array 

VDDdummy VDD of the unselected SRAM arrays of the SRAM block 

VDDarray VDD of the bit cells used in SRAM 6T arrays 

VDDIO power pin of the I/O block at the top level of TC25 

VSS ground pin for all the blocks 

                      Table 1-2 TC25 Power Pins distribution 
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1.2.7. Die Photo of the Manufactured Test Chip 25 

 

           Figure 1-8 Die photo of metal M2 layer of the manufactured test chip TC25 

1.3. Pre-Silicon Functional Verification of TC25 
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Figure 1-9 Block diagram of the generic test bench used for verification of a design   

Digital designs are described using hardware description languages (HDL) like 

Verilog, VHDL, system verilog. A digital design needs to be tested for its functionality 
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before it is manufactured. The design being tested is referred to as the design under test 

(DUT). Test bench helps in verifying the correctness of the DUT. It instantiates the DUT, 

provides the stimulus to the DUT and records the response from the DUT (Figure 1-9). The 

register transfer level (RTL) and the test bench of the test chip, TC25 are written using a 

mix of Verilog and VHDL.   

1.3.1. Simulation setup using Modelsim 

                                         

         Figure 1.10 Simulation flow in ModelSim [Mentor04] 

  Modelsim is used to simulate the RTL and the test bench of TC25. To simulate a 

design in modelsim, four basic steps need to be followed (Figure 1-10). The first step is the 

creation of a working library into which all the HDL files are compiled. By default, 

modelsim compiles all the files into a destination library called “work”. The second step 

involves compilation of all the design files into the library specified earlier. The third step 

is to simulate the design by invoking the simulator on top-level module and running the 

simulations on it. The fourth step is to debug the results obtained if they don’t match the 

expectations. 
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1.3.2. Test Bench setup of TC25 
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                                 Figure 1-11 TC25 Top-level HERMES Wrapper    

  The functionality of every block is verified using a test bench specific to it. To use 

the same test bench on the block level as well as the chip level RTL, a wrapper using the 

top-level module of TC25, specific to the block is created. The wrapper module for a block 

is created by, assigning the input and output package pins of the test chip to the respective 

input and output signal names of the block, setting the BLK_SEL and unused pins to the 

right values. For example, in the case of the HERMES block, BLK_SEL is set to select 

HERMES, all package pins are assigned to signals of HERMES (Figure 1-11).     

1.3.3. Functional Verification of HERMES  

  The same design of HERMES is used in test chip 25 as well as test chip 24. 

Therefore, to reduce the effort spent on verification of the design used in test chip 25, it is 

validated with the one used in test chip 24. To achieve this, the top-level HERMES 

wrappers of both the test chips are instantiated in the top-level test bench module (Figure 
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1-12). The input signals of both the wrappers are driven with the same signals in the 

HERMES test bench. The output signals from both the wrappers are XORed and stored 

using negative edge triggered flipflops. Assertions based on this flopped signals are used 

to check the behavior of the design across all the 70 tests. 
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Figure 1-12 TC25 Block diagram of the test bench of HERMES processor      

1.3.4. Functional Verification of SRAM Block 

The SRAM block contains custom built 16kB banks inside 1Mb arrays. The 

behavioral model of the 16kB bank is used in RTL simulations of the SRAM block. Since 

the 16kB bank is custom built, the logic around these banks involving both the decoders, 

clock gaters, special registers, data output mux is verified for their functionality in RTL 

simulations. Both the decoders and data output mux are checked for their working by 

performing write and reads on the banks in the SRAM block.  

  During the normal mode of operation, the special registers are configured without 

any test modes. Then, the write operation is performed on an address of a bank. Later, the 

read is performed on the same address of the same bank and data output is checked with 

the data input of the write operation. This is repeated for all the banks in all the SRAM 
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arrays to verify the functionality of both the decoders, data output mux. The functionality 

of the clock gaters is verified by checking the clock of the banks not selected for any 

operation. The special registers are configured with test modes and the output of these 

registers is checked to complete the functionality check. 

1.3.5. Functional Verification of DDR PLL 

The DDR PLL contains custom built PLL with the clock divider logic and the 

configuration registers around it. Since the PLL is custom built, the functionality of the 

clock divider logic and configuration registers is verified in RTL simulations. To achieve 

this, the behavioral model of the PLL has its input clock connected directly to the output 

clock. Then, the division factor of the clock divider is fixed by setting the appropriate 

configuration register. Now, the frequency of the output clock from the clock divider is 

checked against the input clock frequency divided by the division factor set. This verifies 

the functionality of the configuration registers and the clock divider logic. 
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CHAPTER 2. POST SILICON VALIDATION SETUP  

2.1. Test Setup Overview 

                                                                  

Figure 2-1 TC25 Post silicon testing setup                                                                                                                         

    The post silicon validation setup of TC25 consists of the custom printed circuit board 

(PCB), the kintex-7 field programmable gate array (FPGA) based XEM7350 Opalkelly 

board, personal computer (PC) and five agilent E3646A direct current (DC) power supplies  

as shown in figure 2-1. 
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               Figure 2-2 Functional block diagram of TC25 post silicon validation setup 

  The top level functional block diagram of the post silicon validation setup of TC25 

is shown in figure 2-2 The test chip TC25 is placed inside a socket on the custom PCB. 
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The kintex-7 FPGA is configured as the test bench to the DUT. The XEM7350 board is 

connected, to the PCB using the FPGA mezzanine connector (FMC) and to the PC using 

universal serial bus (USB) 3.0 cable. 

2.1.1. Custom PCB 

      

                     Figure 2-3 Custom PCB of TC25 post silicon validation setup 

The custom PCB is built with long traces to keep the FPGA board away from the 

neutron beam testing as shown in figure 2-3. The board has bypass capacitors (0.1uF) 

shunted across all the power supplies to decouple the power supply noise from the test chip. 

All the input XOR clock signals to the test chip are routed with equal wire length to make 

sure that phase relationship between the clocks is maintained. The board has five test points 

shared across the analog signals of the SRAM block and the core clock signal of the 

HERMES processor. The board has probe points related to few of the signals of all the 

blocks on the test chip. 

2.1.2. XEM7350 board 

    The XEM7350 Opalkelly board is used as the test bench of TC25. The functional block 

diagram of the FPGA board is shown in the figure 2-4. The board has a 676 pin kintex-7 
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FPGA device mounted on it [Opalkelly15]. To generate low-jitter clocks to the FPGA 

device, two crystal oscillators are present on-board. They generate fixed clock frequencies 

of 100MHz and 200MHz. A cypress FX3 USB 3.0 microcontroller, present on-board 

makes it a USB 3.0 peripheral. This results in fast data transfers between the board and the 

PC. 
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    Figure 2-4 Function block diagram of XEM7350 FPGA board [Opalkelly15] 

The non-volatile storage devices on the FPGA board include a 16 million bits (Mib) 

system flash and a 16Mib FPGA flash. The System flash is used to store the device 

firmware and configuration settings along with FPGA configuration files. The FPGA flash 

can be used only by the kintex-7 device. The FMC on the board is a high pin count (HPC) 

version of the VITA 57 specification. This connector helps in interfacing large pin-count 

designs to the kintex-7 device. The I/O pins on the connector are categorized into LA, HA 

and HB groups. The pins of the LA and HA groups are routed to FPGA banks which are 

powered from the XEM7350 board. On the other hand, the pins of the HB group are routed 
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to FPGA bank 32 which is powered from an external power supply provided through 

FMC_VIO_B_M2C pin on the FMC connector. In the case of TC25, the power supply 

which provides VDDIO voltage is used to power the HB group pins. 

 

 

                                Figure 2-5 XEM7350 FPGA board 

The FPGA board is operated using a 5-volt power source supplied using the DC 

power jack on-board. The heat dissipated by the kintex-7 device is very high and could 

damage it depending on the application run on the device. This is due to the presence of 

large density of logic in a small area on the device. Therefore, to protect the device from 

heat dissipation, a fan is used as an active heat sink. The fan is mounted on top of the FPGA 

device as shown in figure 2-5. 

2.2. Top level Test Bench of TC25 

The infrastructure of the top-level test bench of TC25 consists of the Opalkelly 

module, the memory module, the clock generator module and the TC25 block specific test 

bench as shown in figure 2-6. The clock generator module synthesizes the clocks to the 
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Memory module and the test bench using a PLL. The PLL gets the 200MHz reference 

clock from the crystal oscillator as input. The memory module acts as a buffer between the 

DUT and the test bench by making use of the block random-access memory (BRAM) 

blocks present on the FPGA. This module stores the clock cycle by clock cycle activity of 

all the signals present between the test bench and the DUT in the BRAMs. The Opalkelly 

module provides visibility and controllability on the FPGA for the program running on the 

PC. This module is used to transfer the data stored on the BRAMs to the PC and un-gate 

the clock signal to the DUT and the test bench. Also, this module is used to intimate the 

program, about the end of the test running on the FPGA. 
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                         Figure 2-6 Top level test bench architecture of TC25  
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2.2.1. Clock Generator module 
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    Figure 2-7 Clock generator module used in the test bench of TC25 

The clock generator module consists of an instance of Kintex-7 PLL primitive 

PLLE2_BASE [XilClk16] and a divide-by-2 clock divider logic. The PLL module takes 

the 200MHz_clk as input and synthesizes two clocks of the same frequency and phase 

namely sys_clk and BRAM_clk as shown in figure 2-7. This module can be used to adjust 

the duty cycle, phase offset (relative to the input clock) and frequency of each of the output 

clocks individually. This module has master multiplication and division parameters whose 

legal ranges are 2-64 and 1-56 respectively.  

 The frequency range of any output clock produced using the PLL primitive is 

6.25MHz – 1600MHz. This is limited by the operating frequency range of the PLL 

primitive’s voltage controlled oscillator (VCO) (800MHz - 1600MHz), specific to the 

kintex-7 device [XilClk16]. The frequency value of the PLL primitive’s VCO is set 

depending on the frequency of the input clock and the values of the master multiplication 
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and division parameters. In case the frequency set on the VCO is not in the range specified, 

design rule check (DRC) violations related to routing errors (PDRC-43) [XilClk16] are 

observed during the implementation phase on FPGA in vivado.         

  The clock divider logic generates the divide-by-2 clock using the sys_clk from the 

PLL primitive (figure 2-6).  This logic has a 2:1 mux which gates the divide-by-2 clock 

depending on the value of the BRAM_Full signal. This clock divider logic is required not 

only to gate the divide-by-2 clock but also to generate clock frequencies less than 

6.25MHz. For example, in the case of post silicon testing of the SRAM block, the 

frequency of the divide-by-2 clock required is 5MHz. So, a 10MHz sys_clk produced by 

the PLL is used along with the clock divider logic to synthesize a clock frequency of 5MHz.    

2.2.2. Memory module 

The memory module used in the test bench of TC25 consists of two or three BRAM 

instances depending on the block tested on DUT along with the read and the write logic for 

each of those instances as shown in figure 2-8. Each BRAM instance is configured in 

simple dual-port random-access memory (RAM) mode with an independent read and write 

port to perform simultaneous read and write operations. The read and write ports access 

the same address in which case the BRAM can be configured to do either the read operation 

or the write operation first. However, write and read operations are never performed 

simultaneously on any of the BRAM instances in the memory module. Therefore, they are 

randomly configured to do the write operation first.    
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              Figure 2-8 Memory module used in the TC25 test bench  

Every BRAM instance can store 36 kilobits (Kb) of data [XilMem16]. They are 

configured with a line width of 72 bits resulting in a depth of 512 locations and an address 

width of 9-bits. Out of the 72 bits in a line, eight of them are parity bits and the rest of the 

64 bits are data bits. Every data bit on a line can correspond to a block I/O signal of the 

DUT. Therefore, each BRAM instance can store the data of 64 block I/O signals of the 

DUT. In the case of the HERMES block, there are 145 I/O signals (table 1-1) present 

between the test bench and the DUT. Hence, three BRAM instances are needed for the test 

bench of HERMES. Also, the SRAM block and the DDR PLL have 129 and 80 I/O signals 

(table 1-1) respectively. Hence, two BRAM instances are needed for the test benches of 

the SRAM block and the DDR PLL. 
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          Figure 2-9 Timing diagram of the write operation on a BRAM instance [XilMem16] 

The write operation on a BRAM instance is performed using BRAM_clk as the 

clock input. During the write operation, the address, data and write enable signals are 

sampled on the falling edge of the BRAM_clk (figure 2-9). This makes sure that these 

signals are setup to the rising edge of the BRAM_clk. Depending on the assertion of the 

write enable signal, the write operation is performed on the address specified at the rising 

edge of the BRAM_clk. The frequency of the BRAM_clk is twice the frequency of the 

clock to the block specific test bench and the DUT. This makes sure that every clock cycle 

of the block specific I/O signals is sampled twice by the BRAM write logic. Therefore, 

every two lines on the BRAM instance correspond to a clock cycle of the I/O signals.  

The read operation on a BRAM instance is performed using okClk as the clock 

input. This clock is used for the read operation instead of the BRAM_clk because the logic 

in the Opalkelly module works only with this clock. During the read operation, the address 

and read enable signal is sampled on the falling edge of the okClk (figure 2-10). This makes 

sure that these signals are setup to the rising edge of the okClk. Based on the assertion of 
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the read enable signal, the read operation is performed on the address specified at the rising 

edge of the okClk. The data read is given to the Opalkelly module which sends it to the 

program running on the PC.      
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        Figure 2-10 Timing diagram of read operation on a BRAM instance [XilMem16]     

    The write operations begin at the first location of the BRAM instance (address 9’h000) 

and are performed continuously till the last location of the BRAM instance (address 

9’h1ff). Once the last location of the BRAM instance is reached, the signal BRAM_Full 

(figure 2-8) is driven low and no further write operations are performed. To make sure that 

no write operations are done, the write logic drives the write enable signal low and keeps 

the write address at the value of the last location. Also, the clock signal to the DUT and the 

block specific test bench is gated to avoid generating new data to the BRAM instance.  

    The write operations are stopped until the data stored in the BRAM instance is read by 

the program running on the PC. The BRAM_Full signal is used to intimate the program 

that the BRAM instance is fully filled. Then, the program reads the complete data stored 

in the BRAM instance using the Opalkelly module. Once the BRAM instance is completely 

read out, the read logic drives the read enable low and ties the read address to the first 

location until the next read operation. The program asserts the program_clk_enable signal 
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after finishing the read operation. This event drives the BRAM_Full signal high, resulting 

in un-gating of the DUT clock. Also, this is used by the write logic to resume the write 

operations on the BRAM instance.                           

2.2.3. Opalkelly Frontpanel Package 

 

                Figure 2-11 Opalkelly frontpanel enabled design on a FPGA [OpalKelly15]       

A design built on the FPGA is usually debugged using oscilloscopes, LEDs and 

controlled using push buttons and switches. Due to the limited amount of these resources 

on the FPGA board, observing the signals of the design on the FPGA for debugging 

purposes results in longer development time and greater human effort. The frontpanel 

package from the Opalkelly overcomes this problem by providing visibility and 

controllability on the design present on the FPGA, to a program run on the PC. The package 

achieves it by providing frontpanel application programming software (API) and hardware 

description language (HDL) endpoints (Figure 2-11) to interface the design on the FPGA.  
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  The HDL endpoint can be a wire, trigger or pipe and is directed in or out of the 

design on the FPGA. An in endpoint moves data into the design and an out endpoint moves 

data out of the design. The wire type endpoints are used to transfer signal state 

asynchronously into or out of the design. They can be used as virtual LEDs, switches and 

push buttons. The pipe type endpoints are used to perform multi-byte synchronous transfers 

into or out of the design. They can be used to stream data to the design, upload contents of 

memory and download the contents to the memory. Every endpoint for USB 3.0 interface 

has a bus width of 32-bits. The maximum number of endpoints that can be placed in the 

design is limited to 32.  

  The HDL endpoints are present along with the design on the FPGA. The signals 

in the design that need to observed and controlled are connected to these endpoints as 

shown in figure 2-11. These endpoint modules are placed on a shared bus along with the 

host interface module. The host interface module along with frontpanel drivers and API 

make these signals visible to the program on the PC. Also, the signals of input endpoints 

such as okwireIn, okPipeIn can be controlled from the program on the PC. Therefore, 

frontpanel’s flexibility allows to display real-time information of any number of signals of 

the design configured on the FPGA.            

2.2.4. Opalkelly module 

The Opalkelly module used in the test bench of TC25 is shown in the figure 2-12. 

This module is made of a single instance of okHost Interface, four or six instances of 

okpipeOut endpoints depending on the number of BRAMs used in the memory module and 

two instances each of okwireIn and okwireOut endpoints. The okHost interface module 
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contains logic that lets the USB 3.0 microcontroller communicate with the endpoint 

instances. The okClk signal acts as the clock to the Opalkelly module. The frequency of 

the okClk is fixed at 100.8 MHz for USB 3.0 interface. 

   

wireIn

Inst

okPipeOut

Inst

okwireIn

Inst

wireIn

Inst
okwireOut

Inst

okHost

Interface

reset_n

program_clk_enable

BRAM_Full

stop_test

BRAM_Data

shared bus resource

In modules are controlled 

Out modules are observed 

USB 3.0 

Data

Group of Signals

Single bit signal

pipeOut_read

 

       Figure 2-12 Opalkelly module used in the test bench of TC25 

The C++ program running on the PC drives and samples the signals connected to 

the okwireIn and okwireOut instances, respectively. Out of the two okwireIn instances, one 

of them is connected to the active low reset signal and the other is connected to the DUT 

clock un-gating signal. Similarly, one of the okwireOut instances is connected to the signal 

which indicates the BRAMs are fully filled and the other instance is connected to a signal 

that indicates the end of the test run on the DUT.  

            The okpipeOut module has a fixed bus width of 32 bits. However, every BRAM is 

configured to have a data width of 64 bits per line. Also, only one line of a BRAM can be 

read out in a single clock cycle. Therefore, two okpipeOut instances are needed to transfer 

the data stored in a BRAM. Since three BRAMs are required in the test bench of the 

HERMES block, six okpipeOut instances are used in the Opalkelly module of the 
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HERMES test bench. Similarly, two BRAMs are required in the test benches of the SRAM 

block and DDR PLL. Therefore, their test benches have four instances of okpipeOut in the 

Opalkelly module. 
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    Figure 2-13 Timing diagram of the data transfer from okpipeOut module [OpalKelly15] 

 The C++ program running on the PC asserts the pipeOut_Read signal to read the 

data through the okpipeOut instance. This signal is used as the read enable signal to the 

BRAM instance Then, the read logic of the BRAM instance performs the read operation 

and places the data read on the pipeOut_Data bus in the next clock cycle as shown in figure 

2-13. The data on the pipeOut_Data bus is considered as valid only in the clock cycle 

following the one where pipeOut_Read signal is high. The pipeOut_Read signal can be de-

asserted during longer data transfers (> 256 words). 

2.3. C++ Application Program  

The frontpanel API is provided as a C++ library which contains methods to 

communicate directly with the endpoint modules on the FPGA. The classes in this 

dynamically-linked library are instantiated in a program and the methods are called using 

them. okCFrontpanel is the base class used to find, configure, and communicate with the 

FPGA board. The methods in this class are used to interact with the FPGA board, configure 

the flash memory, Kintex-7 FPGA and communicate with the FPGA. 
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Figure 2-14 Code snippet of the steps 2-4 of the C++ program built using frontpanel API 

The application program performs the following steps: 

1. Creates an instance of okCFrontpanel class. 

2. Using the device interaction methods, checks for the connection with the XEM7350 

board. After detecting the board, gathers information about the devices such as 

flash, FPGA on the FPGA board and opens the board.  

3. Configures the PLL with the default configuration. 

4. Downloads a configuration file to the FPGA using ConfigureFPGA method. 

5. Perform TC25 specific communication with the FPGA using the FPGA 

communication methods.  
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2.3.1. Program Flow 
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Figure 2-15 Timing diagram of the clock gating event of the DUT and the test bench clock 

After configuring the FGPA, the program control flow for any test run on TC25 is 

as follows: 

1.  The configured FPGA is reset by the program. Once the reset on the FPGA is 

released, the test starts and the BRAMs are filled with data.  

2.  BRAMs reach their storage limit after recording a few clock cycles of signal activity. 

This is indicated by the assertion of the signal BRAM_Full (figure 2-15).  

3.  Then the clock to the DUT and the test bench (tb_clk) is gated in the FPGA (figure 

2-15). This makes sure that there is no unrecorded signal activity between the DUT 

and the test bench. 

4.  The program detects that the BRAMs are fully filled and reads the data from them 

using the Opalkelly module. 
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5.  Once the data is completely read from the BRAMs, the program un-gates the clock 

to the DUT and the test bench to start the signal activity and the BRAMs are filled 

with the new data (figure 2-16).           

6.   Steps 2,3 and 4 are repeated until the end of the test is reached. This is indicated by 

the assertion of stop_test signal by the block specific test bench.   
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Figure 2-16 Timing diagram of the un-gating event of the DUT and the Test Bench clock 

      The program stores the data read from the BRAMs in character arrays. Each character 

can store 8-bits of data. Now, to store 32-bits of data from a single pipeOut instance across 

512 clock cycles (the depth of a BRAM instance) a character array having a size of 2048 

(512*32/4) is used in the program. 

            

Figure 2-17 Code snippet of the packing (right) and the unpacking (left) of the I/O signals  
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     Packing of the data happens during the mapping of the block I/O signals to specific data 

bit positions of the BRAM. Hence, the data stored in the character array is unpacked and 

mapped to the same block I/O signal. For example, the Spreg_Clk, SRAM_Sel signals of 

the SRAM block are packed and unpacked as shown in figure 2-17. The unpacked data is 

then written to a log file which can be used for debugging or post processing purposes. The 

log file can be post processed using perl scripts to check for the validity of the test run or 

to extract specific information from the test run.    

2.4. Bit stream File Generation   

2.4.1. Mapping of physical pins to logical signals 

         

logical wire
name 

of block 
I/O signal

LUTs 
and FFs

physical pin 
of FPGA

kintex-7 FPGA - Test Bench of TC25

FMC 
Connector
(VITA 57)

physical 
pin of FMC 
connector

Custom PCB

DUT

physical 
pin of TC25

physical 
pin of FMC 
connector

XEM7350 FPGA Board

 

             Figure 2-18 Mapping of physical pins to the I/O signals of TC25 on testing setup 

     The logical signals of each block on TC25 are mapped to the pads on the I/O ring of the 

test chip. During the packaging of the test chip, these I/O pads are connected to the physical 

pins on the test chip. The custom PCB has the physical mapping between the pins on the 

TC25 and the FMC (VITA 57) connector. The physical connections between the pins on 

the FPGA with those on the FMC connector are already fixed by the manufacturer of the 

FPGA board, Opalkelly. Therefore, the logical signals of the test bench of TC25 are 
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mapped to the appropriate physical pins on the FPGA. This mapping is important because 

any wrong connections made would result in significant debug time and human effort. 

     Consider an example of the signal XOR_CLK0 of the XOR Clock multiplier logic in 

the test chip. This signal is mapped to package pad number 107 on the test chip. This 

package pad is connected to pin H25 on the FMC connector of the custom PCB. This pin 

H25 on the FMC connector is physically connected to pin LA_21_P on the kintex-7 FPGA. 

When the FPGA is configured with the test bench of TC25, the logical signal used to drive 

the XOR_CLK0 pin of the DUT is mapped to physical pin LA_21_P of the FPGA. This 

mapping is stored in a file format called xilinx design constraints (XDC). The mapping 

information of all the block specific I/O signals is validated during the initial setup of the 

test bench of the block. 

2.4.2. Input Files required by Vivado 

      

Vivado

configure

kintex-7 fpga

Block specific
Test Bench

Verilog File

TC25 Top-Level
Test Bench

Verilog File

HDL endpoints
(verilog and 

.ngc files)
Clock Generator 

Verilog file

Bitstream

File

TC25 Block
Constraints
File (XDC)

 

Figure 2-19 The Input files of the test bench of TC25 given to vivado          

A bit stream file is needed to configure a FPGA device. This file is generated using 

vivado tool. The vivado tool takes the HDL files of a design and the constraints file of the 
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design specific to the target FPGA device as input [XilDes16]. The HDL files are simulated 

first to check if the design behaves as expected. Once the design works in simulation, logic 

synthesis step is run on the design. This step maps the logic written in HDL to LUTs, 

flipflops, BRAMs i.e hardware resources available on the target FPGA device. Then the 

implementation step is run on the design. This step does the place and route of the design, 

targeting the FPGA device using the timing constraints set. The design, post synthesis and 

implementation is again simulated to make sure that the functionality is not modified by 

synthesis and implementation steps. In the final step, the bit stream file is generated for the 

implemented design. 

  To generate the bit stream file of the test bench of TC25, the verilog files of block 

specific test bench, clock generator, TC25 top-level test bench and HDL endpoints (wire 

and pipe type) along with XDC constraints file are given as input to the vivado as shown 

in figure 2-19. The XDC constraints file contains the mapping of the logical names of the 

block I/O and okHost interface signals to the physical pins on the kintex-7 device. Then 

the synthesis and implementation steps are run targeting the kintex-7 FPGA device on the 

XEM7350 board. Finally, after the implementation step, the bit stream file is generated. 

2.5. Validation of Post Silicon Testing Setup of TC25 

The post silicon testing setup of TC25 is validated before using it to run tests on the 

DUT. This involves the following: 

1. Checking for stuck-at 0 or 1 pins on the FPGA board and the custom PCB.  

2. Checking the power connections on the custom PCB.        
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3. Checking the XDC file for correctness of the logical to physical pin mapping on   

the FPGA device. 

2.5.1. Stuck-at 0 or 1 Pins 

Any pin must toggle from logic “1” to “0” state and vice-versa to conclude that it 

is not a stuck-at 0 or 1 pin. The input pins of the DUT can be driven from the FPGA and 

checked for stuck-at 0 or 1 issues. However, the output pins of the DUT must be driven by 

a block within the DUT. Therefore, the SRAM block of TC25 is initially used to identify 

the stuck-at 0 or 1 pins on the setup. 

    Every input pin of the SRAM block is toggled from logic “1” to “0” state and vice-versa 

by driving it with a clock of very low frequency from the FPGA. Since the input pins are 

driven, the DUT is removed from the socket on the PCB. Then, all the relevant pins on the 

FMC connector present on the custom PCB are probed on the oscilloscope. Upon probing 

all the input signals, one among them namely datain[20] of the SRAM block was found to 

be stuck-at 0. This signal is mapped to pin F32 on the FMC connector.  

             

          Figure 2-20 Oscilloscope used for viewing the signals of the testing setup of TC25 
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        The stuck-at 0 issue of the F32 pin can be present on the FPGA board or the Custom 

PCB. Using the process of elimination, the FPGA board was checked first by connecting 

it to the FMC XEM105 debug board. Upon checking, the FPGA board is ruled out as the 

suspect because the F32 pin on the FMC connector of the board behaves as driven by the 

kintex-7 FPGA. Therefore, the custom PCB is identified as the culprit of this stuck-at 0 

issue. Now, this could be due to an open connection between the FMC surface mount and 

the trace on the PCB or a short to VSS. The short to VSS possibility is ruled out using a 

multimeter. The connection is suspected as open and the FMC surface mount on the custom 

PCB is replaced with a new one. Upon testing the newly mounted custom PCB no stuck-

at 0 issue is found with F32 pin. This confirmed that it is an open connection and solves 

the stuck-at 0 issue.   

  The output pins of the SRAM block are tested by running a simple write-read test. The 

test writes and reads a sequence of 0s followed by 1s and then followed by 0s from the 

same address location. This helps in toggling all the bits in the output dataout signal from 

logic “1” to “0” and vice-versa. Upon running the test, all the output signals except the 

dataout[45] signal toggle twice. This signal is found to be stuck-at 1. The stuck-at 1 issue 

is due to the signal being shorted to VDD within the DUT due to an APR error and has 

nothing to do with the FPGA board or the custom PCB of the test setup. 

2.5.2. Power Connections on PCB 

The TC25 test chip has power pins for ten different voltages. These power pins are 

brought out from the socket into which the DUT is placed and physically connected to ten 

different logical voltage names on the PCB as shown in figure 2-21. The multimeter is used 
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to make sure that these logical voltage names are connected to the correct power pin on the 

test chip. 

              

                        Figure 2-21 Power connections on the custom PCB  

2.6. Basic Clock Divider Test  

                      

           Figure 2-22 The divided clock toggling from 1 to 0 (left) and 0 to 1 (right)  

This test exercises the XOR clock multiplier and clock divider logic in the test chip. 

This test makes sure that the chip is alive as the clock signal is the heart of this digital 

system. The test drives the XOR_CLK0 signal with a clock and other XOR_CLK signals 

with logic “0”. They are input to the test chip and the clock output from the test chip is 

sampled by the FPGA and written to a log file. The partial output from the log file of the 

test run is shown in figure 2-22. The clock output obtained, CLK_DIV_OUT has a divide-

by-8 frequency relationship as expected with the clock input driven on XOR_CLK0.         
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CHAPTER 3. POST SILICON TESTING OF THE HERMES PROCESSOR  

3.1. Architectural Overview  

            

Figure 3-1  High-level block diagram of the non-radiation hardened HERMES processor 

  The high-level block diagram of the non-radiation hardened HERMES processor 

has eleven functional units as shown in Figure 3-1. The bus interface unit (BIU) acts as the 

interface between the external bus and the processor core. This unit receives instruction 

fetch requests, and load and store requests for the data memory access from the instruction 

fetch unit (IFU) and the data cache unit (DCU) respectively. The store requests from the 

DCU are stored in a write buffer before they are sent out onto the external bus. The IFU 

delivers instructions to the processor core pipeline. It has a 16 kB, 4-way set associative 

instruction cache (I-cache), one fill buffer, and a micro instruction translation look-aside 

buffer (ITLB) which translates virtual addresses to physical addresses. The instruction 
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decode unit (IDU) decodes instructions received from the IFU. The register file unit (RFU) 

contains the thirty-two 32-bit general-purpose registers [MIPS01].  

  The instruction execution unit (IEU) executes all the instructions from the 

instruction set except for multiply and divide instructions. The multiply/divide unit (MDU) 

executes all multiply and divide instructions. The DCU services load and store instructions 

of data memory. It has a 16 kB, 4-way set associative, write-through, a read-allocate only 

data cache (D-cache), one fill buffer, and a micro data TLB (DTLB) which translates virtual 

addresses to physical addresses. The memory management unit (MMU) contains the joint 

TLB (JTLB), which is a 16-dual entry TLB providing address translations for the ITLB 

and DTLB. The coprocessor 0 unit (C0U) contains the registers of the coprocessor 0 

(system coprocessor). The JTAG unit (JTU) contains the joint test action group (JTAG) 

debug and testability logic. The clock management unit (CMU) provides the entire clock 

and power management functionality. 

3.2. Test Bench Architecture   

The test bench to the HERMES processor on TC25 consists of the reset generation 

logic module, data and instruction memory module and control logic module as shown in 

figure 3-2. The reset generation logic drives the PLL reset and the cold reset signals to the 

HERMES processor of the DUT and data and instruction memory in the test bench. The 

control logic provides the processor access to the instruction and data memory in the test 

bench. The instruction memory provides the instructions to the processor when requested 

by it. The data memory allows the processor to store or retrieve data from it.             
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Figure 3-2 Functional block diagram of the test bench to the HERMES processor  

3.2.1. Reset Generation Logic 

            

tb_clk

PLLReset

ColdReset

      

  Figure 3-3 Timing diagram of the reset signals of the HERMES processor   

The reset generation logic asserts and de-asserts the active high reset signals, 

PLLReset and ColdReset of the HERMES processor as shown in Figure 3-3. The PLL reset 

signal is used to load the PLL configuration and the bus-to-core clock ratio registers of the 

processor. The cold reset is a hard reset and causes a reset exception in the processor core. 

Also, this signal is required for synchronizing the external bus clock with the internal 

processor core clock. Both the reset signals are generated using a 4-bit counter, which is 
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used to count the clock cycles of the test bench clock. Initially the PLL reset is held low 

while the cold reset stays high. Based on the value of the counter, the PLL reset is asserted 

and de-asserted for two clock cycles of the test bench clock. Later-on after a few clock 

cycles of the test bench clock, cold reset is de-asserted.        

3.2.2. Data and Instruction Memory 

The data and instruction memory of the test bench of HERMES is implemented 

using BRAMs on the FPGA as shown in figure 3-4. The instruction memory provides 32-

bit instructions to the processor. The BRAM of the instruction memory is loaded with the 

instructions that need to be tested on the processor. Then, the processor reads instructions 

and executes them one after another. Since the processor solely reads from the instruction 

memory, only the read operations are performed on the memory. The processor reads from 

and writes 32-bit data to the data memory and hence, both read and write operations are 

performed on the memory. 
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               Figure 3-4 Block Diagram of the data and instruction memory of the test bench   
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The address sent out by the processor to read an instruction is 32-bits wide. This 

translates to an address space of 4 GB of byte addressable memory. This address space is 

divided into four regions namely kuseg, kseg0, kseg1 and kseg2[MIPS01]. The kuseg and 

kseg2 regions are only accessed in user and kernel modes after the MMU is setup. The 

addresses in the kseg0 (0x8000.0000 – 0x9FFF.FFFF) and kseg1 (0xA000.0000 – 

0xBFFF.FFFF) [MIPS01] regions are stripped of the top one and three bits respectively 

when translated to physical addresses.                    
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          Figure 3-5 Functional block diagram of the instruction memory using BRAM  

    The post silicon testing of the HERMES processor on TC25 makes use of only kseg0 

and kseg1 segments of the instruction memory. The instruction memory used in the test 
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bench of the processor makes use of 5 instances of BRAM to access these segments. The 

BRAM instances access different address ranges based on the top 16-bits of the address 

bus. The address ranges accessed are 0x1FC0, 0x0000, 0x0FFF, 0x1000, 0x1FFF. 

Depending on the instruction read address from the processor, the select signal of the 

corresponding BRAM is asserted. This signal is flopped with positive-edge triggered 

flipflop using BRAM read clock as the clock signal. The flopped signal makes sure that 

the data output from the correct BRAM is selected and placed for one clock cycle on the 

output data bus of the instruction memory. 

             

Figure 3-6 Type of instructions in MIPS instruction set architecture(ISA) 

    The type of instructions that can be run on the HERMES processor are of the register or 

jump or immediate types as shown in figure 3-6. The opcodes and function codes used in 

the instructions, initialization data of the BRAMs are parameterized. Instructions are built 

using the parameters of opcodes and function codes and loaded into the BRAMs using 

initialize data parameters of the BRAM as shown in figure 3-7.  
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Figure 3-7 Code snippet on how instructions are loaded into BRAMs  

    The data memory used in the test bench of the processor makes use of 2 instances of 

BRAM to access the address ranges 0x0000 and 0x1000 (figure 3-5). Similar BRAM select 

and data output mux logic is used in the data memory to read the data from the appropriate 

BRAM.       
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  Figure 3-8 Functional block diagram of the data memory using BRAM  

 The sequence of read operation on instruction and data memory is shown in figure 

3-9. The BRAMs in the instruction and data memory use a clock signal which has the same 

frequency but 180 degrees out of phase with respect to the bus clock signal of the 

HERMES. Initially, the processor places the instruction or data address on the address bus 

and asserts the instruction or data read signal. Then, instruction or data is read on the rising 

edge of the BRAM clock. The read data is placed on the read data bus of the processor for 

one clock cycle so that the processor can capture the data on the rising edge of the bus 

clock of HERMES. 
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    Figure 3-9 Timing diagram of the read operation on the instruction and data memory 

 The sequence of the write operation on the data memory is shown in figure 3-10. 

The processor places the write address and data on the respective buses and asserts the 

write signal for a clock cycle of the bus clock of HERMES. Then, the write operation is 

performed on the following rising edge of the BRAM clock. 
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     Figure 3-10 Timing diagram of the write operation on the data memory  
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3.2.3.  Control Logic 

    The control logic generates the read, write signals to the BRAMs in the data and 

instruction memory depending on the assertion of EB_AValid, EB_Instr and EB_Write 

signals from the processor as shown in figure 3-11. This block contains a 4:1 mux which 

decides whether data read from instruction memory or data memory be placed on the 

HERMES read data bus, for one clock cycle of bus clock of the processor. The bus-core-

clock ration is also set by this mux at the start of any test, when the processor and test bench 

are reset by SI_ColdReset signal. The write data bus from the processor is connected to the 

write bus of the BRAM in the data memory. 
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               Figure 3-11 Functional block diagram of the control logic of the test bench  



 

49 

 

3.3. Testing of the HERMES processor 

3.3.1. Trace sample of a test run 

    The trace sample of a test run on HERMES processor in big endian configuration is 

shown in figure 3-12. The multibit and bus signals such as EB_RData, EB_WData, EB_A 

and EB_BE are displayed in hexadecimal format whereas the single bit signals are 

displayed in binary format. The signal, Fixed_Value in the trace corresponds to the 

grouping of the static input signals to the processor. The left most signal in the trace is the 

clock signal to the XOR clock multiplier which produces clock to the processor. The right 

most signal of the trace corresponds to the write data bus displayed in character format to 

help in the “Hello World” test run on the processor.      

 

    

  Figure 3-12 Trace sample of a test run on the HERMES processor  

3.3.2. Hello World Test  

The objective of the hello world test is to make the processor display “Hello World” 

continuously on its write data bus. The test makes the processor read the preloaded “Hello 

World” from the data memory and store it back in an infinite loop. The “Hello World” is 
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split as “Hell”, “o Wo”, “rld “and preloaded at three different memory locations of the data 

memory since each location can only store 32-bits. The processor reads these three 

locations one after another into local registers and then writes them back in the same order 

to the data memory. The sequence of steps followed in this test is given below 

1. Initialize all the registers ($1 - $31) with value 0. 

2.  Have two registers ($9, $10 in this case) store two values with a difference of 12. 

This difference determines the number of times the inner loop is executed.  

3. Have the start location of “Hello World “in the data memory stored in another 

register ($12 in this case). 

4. An Inner loop:  

a. Load the data from the location specified by the contents of $12.  

b. Store the same data to the same location.   

c. Increment the value stored in $12 by 4 to make it point to the next 

location.  

d. Increment value of $9 by 4 to complete one iteration of inner loop.    

e. Compare the contents of $9 with $10 to check if the inner loop needs to be 

reiterated or not. 

f. In case the comparison fails, jump to the start address of outer loop.  

5. Execute Steps 2 and 3 indefinitely. 
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               Figure 3-13 The output trace of the HERMES displaying “Hello World” 

   The processor successfully displayed “Hello World” onto the write data bus as 

shown in figure 3-13. Even though “Hello World” is correctly mapped to its binary value 

and placed on the read data bus, the processor can’t display “W” and “d “on its write data 

bus. This is due to the shorted net on the 6th bit of the read data bus. 

3.3.3. Data and Instruction Cache test 

  The I-cache and D-cache of the HERMES processor are validated by running a test with 

the following sequence of steps:  

1. After initial reset sequence, the processor starts at address (32’hBFC0_0000 or 

30’h9FC0_0000) that lies in the kseg1 segment of the memory. 

2. Then the test turns on the data and instruction caches by making the kseg0 segment 

of memory cacheable. This is achieved by clearing the kseg0 bits in the 

configuration register as shown in figure 3-14. 
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   Figure 3-14 Output trace of steps 1 and 2 of I-cache and D-cache test 

3. The program control is shifted from kseg1 to kseg0 segment of instruction memory, 

since instructions from kseg0 segment are cacheable and are stored in I-cache. To 

achieve this a mix of jump and branch not equal instructions are used, since jump 

register instruction can’t be identified by the processor due to the shorted net on the 

read data bus. 

4. All the registers ($1 - $31) are initialized with value zero. Then, read and write 

operations are performed on an address location in the data memory as follows: 

a. Load the address location, in kseg0 segment (32’h9000_0000) of data 

memory into $1 register. 

b. Write any 32-bit data (32’hF33F_FB3F) to that memory location.  

c. Read the data back from the same memory location.  

d. Modify the data read from that memory location (by adding 16’h0030). 
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       Figure 3-15 Output trace of steps b - e of I-cache and D-cache test    

e. Write the modified data back to the same memory location. 

f. Repeat steps c – e infinitely.    

 During the first iteration of the above procedure, both data and instructions are 

accessed from the data and instruction memory respectively. In the subsequent iterations, 

both the instructions and read data are accessed from the I-cache and D-cache respectively 

as shown in figure 3-16. The caches are write through and hence, the modified data when 

written back is observed on the write data bus. The read data is modified and written back 

to check whether the D-cache stores the updated value or not. The read data bus and address 

bus of the processor doesn’t change value while the write data bus has updated value of the 

data written in every iteration. This confirms the access of I-cache and D-cache in the 

processor. 
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Figure 3-16 Output trace indicating no change in value of address and read data bus   

3.3.4. Speed Test 

 The HERMES processor works using two clocks, the external bus clock and the 

core clock. The core clock is usually run at higher frequency compared to the bus clock. 

Hence, the core clock signal is generated by using the XOR clock multiplier, while the bus 

clock signal is driven directly from the I/O pads. The HERMES processor is found to be 

working at a core clock frequency of 200MHz but not functional at 400MHz. This is due 

to the alteration of the phase relationship between the XOR clocks and the bus clock due 

to different wire lengths on the PCB. 

Test run  Test 

Result 

Bus Clock 

Frequency 

Core Clock 

Frequency 

hello world test Pass 10MHz 40MHz 

hello world test Pass 25MHz 100MHz 

hello world test Pass 50MHz 200MHz 

hello world test Fail 100MHz 400MHz 

Table 3-1 The various frequencies of operation of HERMES on TT09 at VDDH = 0.9V 
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CHAPTER 4.  POST SILICON TESTING OF THE SRAM BLOCK 

4.1. Test Setup of SRAM Block 

4.1.1. Test Bench 

 

Figure 4-1 Functional block diagram of the test bench of the 1Mb SRAM 6T array 

     The functional block diagram of the test bench of the SRAM block is shown in 

figure 4-1. The SRAM block is configured using three special registers. Out of the three 
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special registers present, the first register is used to enable the test modes and program the 

sense amplifier delay, the second and third registers are used only in the DAT mode. The 

test bench initially configures the special registers to either do normal read and write 

operations or to enable the test modes. The special registers have a separate clock and 

address signal. The 32-bit data input to the special registers block is shared with the data 

input to the SRAM arrays. 

  

gated_clk

Spreg_clk

Spreg_addr 4'h0

clk_cy_count

4'h14'h0

4'h0 4'h54'h44'h1 4'h6 4'h7

datain 32'h0000_feff 32'h0

Configure First 

Register 

4'h2

32'h0000

_feff

Figure 4-2 Timing diagram of the configuration of the first and second special registers  

      Once the special registers are configured, then the start_write_read signal is 

asserted when the clock cycle counter reaches value 15. This is used by the address 

generation, write and read logic to perform write and read operations on either one of the 

SRAM 6T arrays depending on the value of the SRAM_Sel signal as shown in figure 4-3.             
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14'h0

402
address

datain

                

Figure 4-3 Timing diagram depicting the write and read operations on SRAM 6T array 

The address generation logic starts with first bank and word line 0 at address 

14’h0400 and ends with the last bank and word line 127 at address 14’h3bff. This covers 

all the 16384 addresses of 1Mb SRAM array. For either the read or write operation 

performed, the whole address range of a 1Mb SRAM array is covered. Depending on the 

type of the test needed the data input is driven with the appropriate value. For example, in 

the case of write all 1s test, input data is driven with all 1s for the whole address range. The 

stop_the_test_run signal is used to stop the test run. This signal is asserted when the test 

finishes its operations. This is communicated to the program running on the PC using an 

instance of okwireOut module which then stops the test. 

Depending on the type of test required, either write signal or read signal is asserted 

but not both at the same time. In the case of write all 1s then read test, first the write signal 

is asserted and then the read signal is asserted for the whole address range. After the read 
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operation is performed on the last address, the stop_the_test_run signal is asserted as shown 

in figure 4-4. 
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1'b1/1'b0write 1'b0/1'b1

 

    Figure 4-4 Timing diagram depicting the end of the test of SRAM 6T array  

4.1.2. Automatic Control of Agilent E3646A DC power supply 

As mentioned, TC25 has ten distinct power connections controlled by five agilent 

E3646A power supplies. Out of these ten, five of them need to be changed to run different 

tests on the SRAM block. Depending on the type of test and the corner part used, different 

combinations of these five voltages are required. However, few of the tests like the PUF 

mode test or the read minimum voltage test must be run for many number of iterations (in 

the range of 5-50). Most importantly, these voltages must be changed in between the 

iterations of these tests. Changing the voltages manually is a painful task, given that the 

tests are run again and again for many iterations. Hence, the power supplies are 

automatically controlled from the PC. 
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The agilent E3646A power supply has a recommended standard number 232 (RS-

232) interface through which it can be controlled. The PC has universal serial bus (USB) 

ports to talk to the power supply. The PC communicates with the power supply using the 

USB-female serial connector and the 9-pin (DB-9) male-male serial connector and as 

shown in figure 4-5. To achieve this two handshake signals, data terminal ready (DTR) and 

data set ready (DSR) on the 9-pin connector are used. The RS-232 interface on the power 

supply as well as the appropriate USB port on the PC is configured with the parameters 

related to data frame and transfer rate as shown in the table 4-1. 

Parameter Value set 

Baud Rate 9600 

Parity bits None 

Data bits 8  

Number of start bits 1 bit 

Number of stop bits 2 bits 

Table 4-1 RS-232 configuration settings of the power supply  

  The power supply is controlled using standard commands for programmable 

instruments (SCPI) commands sent over the serial interface. All these commands are 

provided to the power supply through an API for windows written in perl. This perl API 

module (Win32::SerialPort) is available on the comprehensive perl archive network 

(CPAN) database [Cpan10]. Using this API, a new perl module 

“control_the_power_supply” is written stitching the commands needed to control the 

voltages of the power supply into sub routines [agilent13]. This module instantiates and 

configures the serial port along with subroutines to reset the power supply and write user 

defined values to both the voltages of the power supply as shown in figure 4-5. This module 

is included in the perl scripts used to run different types of tests on the SRAM block.           
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Figure 4-5 subroutine to write user defined values to both the voltages of the power supply 

4.1.3.  Voltages of the SRAM 6T array 

        

BitLine

VDDS

Word Line 

VDDH         

VDDarray

VSS

VSSA VSSA

BitLine

VDDS

 

     Figure 4-6 Voltages used in the bit cell of the SRAM 6T array  

  The bit cell of the SRAM 6T array requires six different voltages as shown in 

figure 4-6.  Out of the six voltages, two of them are the body voltages of the PMOS 

transistors (VDDAarray) and the NMOS transistors (VSSA) used in the array. The body 

voltages are set different for different corners. They help in adjusting the threshold voltage 

(Vt) of the transistors. The remaining voltages are the supply voltage to the back to back 

inverters (VDDarray), supply voltage used to charge the PMOS transistors of the bit lines 
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(VDDS), word line voltage (VDDH) and ground supply voltage(VSS). The VDDarray, 

VDDH and VDDS voltages are altered to de-stabilize the bit cell in the PUF mode. The 

typical values of these voltages are given in table 4-2. 

Voltages Typical values 

VDDH 0.8V 

VDDarray 0.9V 

VDDS 0.9V 

VDDAarray 1.3V 

VSSA -0.4V 

Table 4-2 Typical values of the voltages used in the bit cell of the SRAM 6T array 

4.1.4. Test Data Acquisition 

The manufactured test chips received from Fujitsu are 250 in number. There are 

distributed as 50 each across five process corners namely slow-slow (SS), fast-fast (FF), 

fast-slow (FS), slow-fast (SF) and typical-typical (TT). The chips of the TT corner are 

marked as TT01, TT02…TT50 and the other corner parts are also marked similarly. There 

are different tests like PUF mode test, read minimum voltage test, write all 1s then read 

test that need to be run on these parts. Also, these tests are run across different combinations 

of the five different voltages used in the bit cell. Moreover, the date and time of any test 

run on these parts, needs to be noted in the log file.  Therefore, to uniquely identify any 

test run on any part and on any date and time, perl scripts are setup to acquire the test data. 

The perl script needs the input arguments corner part number, type of test, voltages 

set and frequency of the SRAM clock before the test is run. The script needs only those 

voltages that are altered from their typical values. Each type of test has a specific string 

attributed to it and has a separate run directory. In each run directory, bit stream files 
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corresponding to different frequencies of the SRAM clock are present. The generic 

template of any test run perl script used for data acquisition contains four steps described 

as follows: 

1. The first step involves checking the input arguments such as corner part number, 

type of test, voltages set and frequency of the SRAM clock entered by the user of 

the perl script. The string of the process corner entered needs to be either SS, FF, 

TT, SF or FS and the part number entered can’t exceed 50 since only 50 parts are 

available for each corner. Similarly, the voltages entered can’t exceed or go below 

certain values. For example, in the case of VDDarray the voltage entered can’t 

exceed 1.3V which is the burn-in voltage. Similarly, the string entered for the type 

of test needs to be among the valid set of strings specified for different types of 

tests. Also, the frequency of SRAM clock entered must be either 5MHz or 10MHz 

or 20MHz as the bit stream files only for these frequencies are made available in 

the test run directory.     

2. The second step involves extracting the information from the input arguments of 

the above step into global variables which are used later. For example, the voltages 

entered by the user are updated in the hash table of the voltages. The date and time 

of the test run is captured into their respective global variables. 

3. The third step is used to run the test in the specific directory depending on the input 

argument, type of test. The information about the test run, obtained and stored in 

the global variables, is used to construct the name of the log file. This log file stores 

the data of the test run.  
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4. The fourth step is used to copy the log file to a location and delete the log file in 

the run area. 

The perl module “data_acq_base_lib” is the base library which contains the global 

variables date_format_used, time_format_used, corner_part_number, type_of_test_run, 

PortObj_Com, hash table of voltages and hard coded path of test run directories. This 

library also has subroutines related to steps 1 and 2 which are common to any test run perl 

script and steps 3 and 4 which vary depending on the test run. The wrapper scripts for any 

test are built when the test needs to be iterated multiple time. 

4.1.5. Test Data Processing      

  

Figure 4-7 Block diagram depicting how the test run log files are processed 

The log files of the tests run to read the SRAM array need to processed to capture 

the results of the test. This processing is achieved easily using perl scripts. All the data 

processing perl scripts have a common subroutine to capture the addresses and the 

corresponding data into two different arrays as shown in figure 4-7. This is repeated 
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depending on the number of the iterations of the same test run. Then the data stored in the 

arrays is processed as per the need and the output is written out to different files 

Depending on the type of data written to the SRAM array, the data read should 

match it. The data patterns written to all the addresses of the SRAM array are, all the data 

input bits are 1s or 0s and the data input bits are same or inverted as the corresponding 

address bits. Therefore, when the data read is processed, the actual data should match the 

expected data. This comparison helps in identification of the bad addresses in a chip and is 

one type of processing done by the perl scripts. Similarly, the data read from multiple log 

files is compared to identify the grey bits, bits that are inconsistent across multiple runs of 

the same test.    

               

SRAM_Clk

BRAM_Clk

address

read
dataout

line1 line2 line3 line4
  

          Figure 4-8 The timing relationship between the address read and data received  

The log file of the read test, has all the addresses read and the corresponding data 

received from those addresses. For any address stored in a line in the log file, the 

corresponding data output received is stored four or more lines later depending on the 

frequency of the SRAM clock. The data output sent by the SRAM array must travel through 

the PCB trace before it is captured by the BRAMs on the FPGA. This PCB trace delay is 

observed to be around 20ns. Therefore, if the frequency of the SRAM clock is low (5MHz) 
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then the PCB trace delay is masked and the data output is stored four lines later in the log 

file as shown in figure 4-9. 

Figure 4-9 Trace sample of the test run at 5MHz with data out same as the address read   

4.2.  Tests run on SRAM 6T array 

The tests run on the SRAM 6T arrays include the write read test, the minimum read 

voltage test, the data retention voltage test, the power up read test and the PUF mode test. 

These tests are run at a clock frequency of 5MHz and the longest setting of the sense 

amplifier delay (16’h00ff) to make sure that most of the bit cells don’t fail during a read 

operation. However, different combinations of the voltages are used in all the tests.  

The write read tests are run to validate the part based on which further testing is 

done on the part. Depending on the type of the corner, the reverse body bias (RBB) voltage 

is adjusted to make sure that normal write and read operations are performed with minimal 

failures. This voltage is adjusted to bring the Vt of FF and SS corners towards the Vt of the 

TT corner. Therefore, the RBB for normal write and read operations is set to 0.7V for the 

FF corner parts and 0.1V for the SS corner parts.     
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4.2.1. Write Read Test 

Type of data pattern  Data input to the SRAM array 

all 1s 32’hFFFF_FFFF 

all 0s 32’h0 

data same as address {18’h0, 14-bit address} 

data inverted as address {18’hF_FFFF, inverted 14-bit address} 

Table 4-3 Different types of data written to the SRAM 6T array 

The write-read test is the first test run on any new part to validate the SRAM 6T 

arrays in it. Initially this test is run at nominal voltages to check the part. This test writes a 

specific data pattern to all the addresses of the 1Mb SRAM 6T array. The data patterns 

written consist of two complementary pairs as shown in table 4-3. Then, the read operation 

is performed on all the addresses one after another and the data read is compared with the 

expected data.  

  The write-read test validates the SRAM array on the part by writing separately 

both 1 and 0 on each bit cell of the array and reading the bit cell back to confirm the value 

written. To achieve this one of the complementary pairs described in table 4-3 are used. 

Initially, during the first iteration of the write read test, all 1s data pattern is used to perform 

the write operations. Then during the second iteration of the write read test, the 

complementary data pattern all 0s is used. The read data is checked in both cases to confirm 

the working of the SRAM array on the part.  

All those addresses whose expected data doesn’t match the actual data are treated 

as bad addresses, since they can’t be used to reliably store the data. The write read test 

helps in identifying the bad addresses of an array on a part. This test run with 

complementary data patterns is iterated multiple times (50) to identify the bad addresses. 
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The number of iterations of the test confirms the consistency of the bad addresses on a part. 

Out of the all the identified bad addresses at the minimum read voltage of various parts, 

two of them per part are shown in table 4-4. 

Part Number Two bad addresses 

FF06 14’b 000_1_0000000_001, 14’b 000_0_0000000_010 

SS09 14’b 000_1_0000000_001, 14’b 000_1_0100000_001 

TT09 14’b 000_1_0000000_001, 14’b 000_0_0000000_001 

           Table 4-4 Two bad addresses at the minimum read voltage of various parts  

4.2.2. Minimum Read Voltage Test 

            The minimum read voltage test is used to identify the voltage operating point of 

the SRAM 6T array below which the data can’t be read from the array reliably. The 

sequence of steps followed to run this test is as follows: 

1. Write operation using either all 1s or all 0s data pattern is performed on the SRAM 

6T array at nominal operating voltages of VDDarray, VDDH and VDDS. The RBB 

voltage is set to 0.2V, 0.4V and 0.7V for the SS, TT and FF corners respectively.  

2. Then, the read operation is performed on the array and the number of bit failures is 

noted at the voltage combination specified in the above step.  

3. The voltage value of VDDarray and VDDS is decreased by 1mV and the value of 

VDDH is adjusted as per the new value of VDDarray. (0.889 * voltage value of 

VDDarray). This adjustment is based on the nominal voltage relationship between 

VDDarray (0.9V) and VDDH (0.889 * 0.9V = 0.8V). 
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4. Then read operation is again performed on the array and the number of bit failures 

is noted at the new voltage combination.  

5. Steps 3 and 4 are repeated continuously until VDDarray reaches 0.4V. 

              

     Figure 4-10 The plot of number of bit failures vs VDDarray voltage of SS09 

 The voltage combination below which bit failures in the range of thousands and 

above which bit failures in the range of tens or hundreds is identified for both all 1s and 

all 0s data patterns. Then, the largest of these voltage combinations is identified as the 

minimum read voltage for the part. The bit failures are observed to be cumulative in 

nature. The minimum read voltages for FF06, SS09 and TT09 parts are shown in table 

4-5.  

Part Number VDDH VDDarray VDDS RBB 

FF06 0.54V 0.61V 0.61V 0.7V 

SS09 0.55V 0.62V 0.62V 0.4V 

TT09 0.58V 0.66V 0.66V 0.2V 

               Table 4-5 Minimum read voltages of FF06, SS09 and TT09 parts 
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4.2.3. PUF Mode Test 

 The SRAM bit cells have a built-in mismatch due to the variations of the fabrication 

process [Chellappa11]. This is manifested as transistor threshold voltage mismatch. The bit 

cells are also subjected to random telegraphic noise (RTN). The impact of RTN is 

especially predominant in the lower technology nodes due to aggressive scaling of supply 

voltages and transistor sizes [Mao16]. Both the RTN and the process mismatch are 

important factors that help in using SRAM to assign a unique finger print to the 

manufactured IC.  

The bit cell of the SRAM has two back to back inverters and can take two possible 

stable states (10 and 01). The bit cell is in an unstable metastable state right after power-up 

or during the PUF mode of the SRAM. When the bit cell is in the metastable state, both the 

RTN and the process mismatch decide the tilt towards one of the stable states of the bit cell 

[Chellappa11]. Similar tilt towards a stable state happens on all the bit cells of the SRAM. 

Few of the bit cells are well matched and therefore have their stable states determined 

primarily by RTN. These bit cells contribute to grey bits and can be used to generate 

random numbers. Few of the other bit cells with large process mismatch favor a stable state 

not affected mostly by RTN. These bit cells can be used to generate a number unique to the 

IC. Hence, the state of the SRAM right after power-up or PUF mode of operation can be 

used to assign a unique finger print to the IC [Chellappa11]. 

The PUF mode involves de-stabilizing the bit cells of the SRAM. During this mode, 

the supply voltage of the bit cell is reduced, the NMOS access transistors of the bit cell and 

the pre-charge PMOS transistors of the bit lines are turned on and ymux is turned off. Now, 
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by decreasing the supply voltage, the static noise margin of the bit cell is degraded and this 

de-stabilizes the bit cell. The number of the bit cells de-stabilized is determined by the 

amount of the supply voltage reduction. However, the bit cells which are still stable 

contribute to the number of red bits. The de-stabilized bit cells tilt towards a stable state 

depending on RTN and process mismatch variations. These states of the bit cells can be 

used to generate random numbers and provide a unique number to the IC.  

The PUF mode test run on the SRAM 6T array involves the following sequence of steps 

1. Write all 0s or all 1s data pattern to all the address locations of the array at the 

nominal voltage combination and RBB depending on the corner. 

2. Once the write operation has finished, voltages VDDH, VDDarray, VDDS are set 

as needed by the PUF mode of operation of the SRAM array. The RBB voltage is 

set to the typical value of 0.4V for all corners to keep the corner as is.  

3. Then, turn on the PUF mode of the SRAM array by setting the bit number 31 of 

the first special register to logic “1”. 

4. Now, read operation is performed on all the addresses during PUF mode. This 

operation turns on the word line of the bit cell and destabilizes it. 

5. Then, voltages VDDH, VDDarray, VDDS and RBB are changed to minimize read 

failures during normal read operation on the SRAM array.  

6. Normal read operation is performed on all the addresses of the SRAM array and 

the read data is recorded for analysis. 
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 The difference between the voltages VDDH and VDDarray is defined as Vdiff1. 

Similarly, the difference between the voltages VDDS and VDDarray is defined as Vdiff2. 

Both Vdiff1 and Vdiff2 are used to measure the amount of de-stability imparted on the bit cell 

during PUF mode. The various steps of the PUF mode test are short hand denoted as 

follows 

1. step 1 involving write all 0s or write all 1s with “w0” or “w1” respectively. 

2. step 4 describing the read operation during PUF mode with “p”. 

3. step 6 performing the normal read operation with “r”. 

4. The number of iterations of the test is indicated using x followed by the number. 

For example, “x50” in the case of 50 iterations. 

The name of any variation of the PUF mode test is built using these short hand notations 

and underscores. For example, when the PUF mode test described above is run 50 times, it 

is denoted as “(w0_p_r)x50” or “(w1_p_r)x50”.   

Write value Read value on every iteration Type of the bit 

0 or 1 0 White 

0 or 1 1 Black 

0 or 1 0 or 1 Grey 

0 and 1 0 and 1 respectively Red 

     Table 4-6 The type of bit cells determined after multiple runs of the PUF mode test 

          The first goal of the PUF mode test run is to de-stabilize all the bit cells of the 1Mb 

SRAM array. This translates to an ideal target of zero red bits because a bit cell once de-

stabilized favors either stable logic “1” or logic “0” state and hence can’t remain a red bit. 

This test is run 50 times to average out the effect of noise and then red bits are calculated 
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based on the data read from all the iterations. However, the number of red bits are 

observed to be in the order of thousands. 

 To identify the cause of the red bits issue, circuit simulations on a single bit cell 

with voltage conditions resembling those observed during the PUF mode are performed. 

The issue is identified to be the amount of time each bit cell stays in PUF mode. The tests 

which are initially run at the SRAM clock frequency of 50MHz are now run at 5MHz.  This 

makes sure that the bit cells stay in PUF mode for a long duration of time (~200ns). Then, 

the PUF mode test is again run 50 times and read data is analyzed. Significant decrease in 

the number of red bits is observed with the frequency change. However, the number of red 

bits are still present in the order of hundreds. Later, the same test is run with different values 

of Vdiff1 and Vdiff2 and the number of red bits are observed to decrease continuously as 

VDDS is increased as shown in table 4-7. Also, the red bit count of zero is observed at 

VDDS = 1.2V.  

Test Run Vdiff1 Vdiff2 RBB Number of red bits 

(w1_p_r)x50, (w0_p_r)x50 0.3V 0.3V 0.4V 5549 

 (w1_p_r)x50, (w0_p_r)x50 0.3V 0.4V 0.4V 129 

 (w1_p_r)x50, (w0_p_r)x50 0.3V 0.5V 0.4V 67 

 (w1_p_r)x50, (w0_p_r)x50 0.3V 0.6V 0.4V 0 

Table 4-7 The number of red bits of the PUF mode test run on TT10 at different VDDS  

 The second goal of the PUF mode test is to generate good random numbers 

qualified by passing the statistical test suite developed by national institute of standards 

and technology (NIST). These tests determine the amount of non-randomness in the binary 

sequences constructed using the random number generators such as the PUF mode of 

SRAM. The number generated using PUF mode of SRAM should have an equal number 
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of 1s and 0s for it to be random. The previous runs of “(w0_p_r)x50” and “(w1_p_r)x50” 

tests have an unequal number of 1s and 0s. The number of white or black bits is observed 

to be a function of data pattern written to the SRAM array as shown in table 4-8.  This is 

attributed to the data remanence of the SRAM bit cells. 

Test Run White bits (%) Black bits (%) Grey bits (%) 

 (w0_p_r)x50 43 33 24 

 (w1_p_r)x50 35 41 24 

                 Table 4-8 The distribution of read bits of PUF mode test run on TT06 

 The single iteration of the PUF mode test involves taking the bit cells to a known 

state using write operation. Then, the bit cells are taken into PUF mode where the initial 

values written are altered. Now after the read operation, when the power is removed from 

the SRAM array, data stored in the bit cells is not lost completely. This data remembered 

by the bit cells affects the next iteration of the PUF mode test resulting in large number of 

grey bits. Therefore, to remove the data remanence in the read data, the “(w1_p_r)x50” and 

“(w0_p_r)x50” tests are modified by performing the write operation only once in the first 

iteration and then the PUF mode of operation followed by the normal read operation is 

repeated 50 times. Also, power is not turned off in between these iterations. The modified 

PUF mode tests run are “w1_(p_r)x50” and “w0_(p_r)x50”. 

 The modified PUF mode tests are run on TT10 part and the number of 1s and 0s 

read after every iteration are analyzed. The percentage of white and black bits oscillate 

after every normal read iteration as shown in the figure 4-11. This oscillation is due to the 

well-matched bit cells, switching from one state to another for every iteration of PUF mode 

followed by normal read operation. This oscillation can be due to the PUF mode of 
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operation or the normal read operation of every iteration. 

            

Figure 4-11 The percentage of black and white bits for each read iteration of w1_(p_r)x50  

 During the normal read operation, RTN could fill a transistor trap in the bit cell, 

changing their threshold voltages (Vt). This causes the bit cell to behave as a grey bit. The 

RTN is a function of the read voltages VDDH, VDDarray and VDDS of the bit cell. 

Therefore, the normal read operation is performed at minimum read voltage of the bit cell 

to potentially reduce its effect. This makes sure that the grey bits generated are more likely 

due to the PUF mode of operation. Hence, the latest PUF mode tests are run by performing 

normal read operation at minimum read voltages. 

 The latest PUF mode tests are run on the parts TT06, FF09 and SS07 at VDDarray 

voltages of 0.3V, 0.35V, 0.4V and  0.45V during the PUF mode of operation. The results 

show the decreasing order of the number of well-matched cells as FF followed by TT and 
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then SS as shown in table 4-9. Therefore, the bit cells of the FF part can be used to generate 

a good random number and vice-versa the bit cells of the SS part can be used to generate a 

unique finger print to the part. 

Test Run Corner Part Number Grey bits (%) 

w0_(p_r)x50, w1_(p_r)x50 SS09 14.6 

w0_(p_r)x50, w1_(p_r)x50 TT09 26.3 

w0_(p_r)x50, w1_(p_r)x50 FF06 50.2 

Table 4-9 Percentage of grey bits at VDDarray = 0.35V and read at minimum read voltage 
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CHAPTER 5.  CONCLUSIONS 

The HERMES processor was tested using hello world and cache functionality tests. 

The processor successfully passed the hello world test which confirms that it can 

understand and execute instructions. The data and instruction caches of the processor are 

confirmed as functional using the cache functionality test. Both these tests are run on the 

processor at a frequency of 100MHz. Finally, the processor is found to be operational at a 

core clock frequency of 200MHz when run at nominal voltages, while it can run at a 

maximum core clock frequency of 450MHz confirmed by post-layout circuit simulations. 

Operation at this speed has not been confirmed on silicon as of this writing 

  The SRAM 6T arrays of the test chip 25 are tested using write read, minimum read 

voltage and PUF mode tests. The write read tests used different data patterns to confirm 

the storage functionality of all the bit cells of the SRAM array at nominal voltages. Also, 

these tests confirmed that the location at bank 0, word line 0 with ymux value 1 failed to 

store the data irrespective of the corner part and sense amplifier delay settings at nominal 

voltages. The minimum read voltage test confirmed the array read voltages as 0.61V, 0.66V 

and 0.62V for FF, TT and SS parts with body bias voltages of 0.7V, 0.4V and 0.2V 

respectively. 

 The PUF mode test confirmed the PUF test mode of operation of the SRAM 6T 

array by altering the known state of the bit cells of the array. The number of red bits are 

observed to be zero for TT10 part at VDDS = 1.2V and VDDarray = 0.6V. This confirms 

that all the bit cells are de-stabilized by the PUF mode. The SRAM array is read at 

minimum read voltages of respective corner parts to eliminate the grey bits generated due 

to RTN of the read operation. The number of grey bits are observed to be around 50%, 
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26% and 14% for FF, TT and SS parts respectively at Vdiff1 = Vdiff2 = 0.55V. These grey 

bits from the FF part are used to generate random bit sequences. These sequences pass the 

NIST tests with the assistance of helper functions, which are commonly used. 

 The automation using perl to control the power supplies, capture and process the 

test data of the SRAM arrays saved a lot of time and manual effort. However, more could 

be done. Separate bit stream files were used based on each test, frequency of the SRAM 

clock, sense amplifier delay setting. This could have been avoided and a single bit stream 

file can be used to perform all the tests on the SRAM array. The trace file of the test run 

had lot of information about the state of all the signals between the DUT and test bench. 

Once the test is confirmed as working all the signals which don’t convey any information 

could have been taken out of the trace.  
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