
Computing a Probabilistic Extension of Answer Set Program Language Using ASP and

Markov Logic Solvers

by

Samidh Talsania

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved July 2017 by the
Graduate Supervisory Committee:

Joohyung Lee, Chair
Chitta Baral
Yezhou Yang

ARIZONA STATE UNIVERSITY

August 2017

© Samidh Talsania

All Rights Reserved

ABSTRACT

LPMLN is a recent probabilistic logic programming language which combines both An-

swer Set Programming (ASP) and Markov Logic. It is a proper extension of Answer Set

programs which allows for reasoning about uncertainty using weighted rules under the sta-

ble model semantics with a weight scheme that is adopted from Markov Logic. LPMLN

has been shown to be related to several formalisms from the knowledge representation

(KR) side such as ASP and P-Log, and the statistical relational learning (SRL) side such as

Markov Logic Networks (MLN), Problog and Pearl’s causal models (PCM). Formalisms

like ASP, P-Log, Problog, MLN, PCM have all been shown to embeddable in LPMLN which

demonstrates the expressivity of the language. Interestingly, LPMLN has also been shown to

reducible to ASP and MLN which is not only theoretically interesting, but also practically

important from a computational point of view in that the reductions yield ways to compute

LPMLN programs utilizing ASP and MLN solvers. Additionally, the reductions also allow

the users to compute other formalisms which can be reduced to LPMLN.

This thesis realizes two implementations of LPMLN based on the reductions from LPMLN

to ASP and LPMLN to MLN. This thesis first presents an implementation of LPMLN called

LPMLN2ASP that uses standard ASP solvers for computing MAP inference using weak con-

straints, and marginal and conditional probabilities using stable models enumeration. Next,

in this thesis, another implementation of LPMLN called LPMLN2MLN is presented that uses

MLN solvers which apply completion to compute the tight fragment of LPMLN programs

for MAP inference, marginal and conditional probabilities. The computation using ASP

solvers yields exact inference as opposed to approximate inference using MLN solvers.

Using these implementations, the usefulness of LPMLN for computing other formalisms is

demonstrated by reducing them to LPMLN. The thesis also shows how the implementations

are better than the native solvers of some of these formalisms on certain domains. The

implementations makes use of the current state of the art solving technologies in ASP and

i

MLN, and therefore they benefit from any theoretical and practical advances in these tech-

nologies, thereby also benefiting the computation of other formalisms that can be reduced

to LPMLN. Furthermore, the implementation also allows for certain SRL formalisms to be

computed by ASP solvers, and certain KR formalisms to be computed by MLN solvers.

ii

AKCNOWLEDGMENTS

Working on my Masters thesis has been a fun and exciting journey which would not

have been possible without support from a lot of people. First of all, I would like to thank

my advisor Dr. Joohyung Lee for his constant support and guidance throughout the course

of this thesis. His enthusiasm has guided me from my first lecture introducing ASP right

into this Masters thesis program. Dr. Lee worked closely with me throughout my Mas-

ters thesis work and I have learned a lot from him. I consider myself fortunate to have a

dedicated and a patient advisor.

This thesis wouldn’t have been possible without help from Zhun Young and Yi Wang to

whom I have asked countless questions and who were patient enough to explain it to me un-

til I understood them. I am also grateful to Nikhil, Manjula, and Brandon for providing crit-

ical feedback to my work. I would also like to thank my friends Abhinav, Umang, Manan,

Rakhi, Anurag, Krishna, Arjav, Jiten, Shalmali, Kaustav, Shubham and others for always

being supportive during my research and providing the necessary distractions. Thank you

all for making my time at ASU memorable.

I would like to thank my family who supported me in pursuing my dreams of doing a

Masters in computer science and encouraged me to undertake this research. Thank you,

mummy, papa and my dear brother Jainam for always believing in me even when I didn’t.

Finally, I would like to thank Pooja for always being loving, supporting and encouraging

during this journey. Thank you all.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND . 7

2.1 Review: Stable model semantics . 7

2.2 Review: Weak Constraints . 8

2.3 Review: LPMLN . 10

2.4 Review: LPMLN to ASP (Lee and Yang, 2017a) . 12

2.5 Review: LPMLN to MLN (Lee and Wang, 2016b) . 15

3 LPMLN2ASP SYSTEM . 17

3.1 Introduction . 17

3.2 Reformulating LPMLN based on the Concept of Penalty 17

3.3 Extending Lee-Yang translation to non-ground programs 18

3.4 MAP inference using LPMLN2ASP . 20

3.5 Probability computation using LPMLN2ASP . 24

3.6 LPMLN2ASP system architecture . 27

3.7 LPMLN2ASP input language syntax . 29

3.8 LPMLN2ASP usage . 30

4 COMPUTING OTHER FORMALISMS IN LPMLN2ASP 37

4.1 Computing MLN in LPMLN2ASP . 37

4.2 Computing P-log in LPMLN2ASP . 39

4.3 Computing Pearl’s Causal Model in LPMLN2ASP . 43

4.4 Computing Bayes Net in LPMLN2ASP . 50

iv

CHAPTER Page

4.5 Computing ProbLog in LPMLN2ASP . 54

4.5.1 Computing ProbLog in LPMLN2ASP - 1 . 55

4.5.2 Computing ProbLog in LPMLN2ASP - 2 . 57

4.6 Debugging inconsistent Answer Set Programs . 60

5 LPMLN2MLN SYSTEM . 64

5.1 Introduction . 64

5.2 Completion of non-ground rules in LPMLN2MLN . 64

5.3 Tseitin’s transformation for completion formulas . 70

5.4 Completion of disjunction in Head of rule . 72

5.5 LPMLN2MLN System Architecture . 73

5.6 LPMLN2MLN Input Language Syntax . 75

5.6.1 Logical connectives . 75

5.6.2 Identifiers and Variables . 75

5.6.3 Declarations . 76

5.6.4 Rules . 76

5.6.5 Comments . 77

5.7 LPMLN2MLN Usage . 79

5.8 Target systems . 82

5.8.1 ALCHEMY . 82

5.8.2 TUFFY . 83

5.8.3 ROCKIT . 86

6 COMPUTING OTHER FORMALISMS IN LPMLN2MLN 89

6.1 Computing P-log in LPMLN2MLN . 89

6.2 Computing Pearl’s Causal Model in LPMLN2MLN 92

v

CHAPTER Page

6.3 Computing Bayes Net in LPMLN2MLN . 96

6.4 Computing Problog in LPMLN2MLN . 99

7 EXPERIMENTS . 102

7.1 Maximal Relaxed Clique . 102

7.2 Link Prediction in Biological Networks - A performance comparison

with PROBLOG2 . 113

7.3 Social influence of smokers - Computing MLN using LPMLN2ASP 116

8 SUMMARY AND CONCLUSION . 119

8.1 Summary of the two LPMLN solvers . 119

8.2 Conclusion . 122

REFERENCES . 124

vi

LIST OF TABLES

Table Page

3.1 Stable Models of Π from Example 6 . 27

7.1 Answer Quality Maximal Relaxed Clique . 112

7.2 Problog2 vs LPMLN2ASP Comparison on Biomine Network (MAP Inference)115

7.3 Performance of Solvers on MLN Program . 118

8.1 Comparison Between LPMLN2ASP and LPMLN2MLN . 120

vii

LIST OF FIGURES

Figure Page

1.1 Relationship of LPMLN with Other Formalisms . 3

3.1 LPMLN2ASP System . 17

4.1 Firing Squad Example. 44

4.2 Bayes Net Example . 51

4.3 Probability Tree for Example 20 . 60

5.1 LPMLN2MLN System . 64

5.2 Positive Dependency Graph for Π1 . 66

5.3 Positive Dependency Graph for Π2 . 66

7.1 Maximal Relaxed Clique Example . 103

7.2 Running Statistics on Finding Maximal Relaxed Clique (MAP Inference) . . 107

viii

Chapter 1

INTRODUCTION

Knowledge Representation and Reasoning (KRR) is a field of Artificial Intelligence that

is dedicated to studying about representing information about the world in a way that can be

utilized by computers for automated reasoning. Answer Set Programming (ASP) (Gelfond

and Lifschitz, 1988), a formalism for KRR, is a declarative programming paradigm which

is based on the stable model semantics, also called the answer set semantics.

Answer set programming has its roots in nonmonotonic reasoning, deductive databases

and logic programming with negation as failure. Answer set programming is a primary

candidate tool for knowledge representation because of the emergence of highly efficient

solvers and has become a major driving force for KRR. ASP has been successfully applied

in a large number of applications because of its expressivity which allows simple ways to

encode concepts like defaults and aggregates. ASP is particularly suited for solving difficult

combinatorial search problems like plan generation, product configuration, diagnosis and

graph theoretical problems.

However, the language of ASP is still deterministic and it is difficult to express un-

certain or probabilistic knowledge about a domain. To overcome this limitation of ASP, a

few probabilistic extensions to ASP have been proposed such as weak constraints (Bucca-

furri et al., 2000) and P-Log (Baral et al., 2009a). While weak constraints enable an ASP

program to find an optimal stable model, it still does not have the notion of probability.

LPMLN (Lee and Wang, 2016a) is a recent probabilistic logic language that combines

ASP and Markov Logic to overcome this limitation of ASP by introducing the notion of

probability into the stable model semantics. Markov Logic (Richardson and Domingos,

2006) combines first order logic with Markov Networks. Markov logic does not make

1

the assumption of independently and identically distributed data made by many statistical

learners and leverages first-order logic to model complex dependencies. A Markov Logic

Network (MLN) is a representation that is used to encode domains with Markov Logic

semantics. MLN have been successfully used for tasks such as collective classification,

logistic regression, social network analysis, entity resolution, information extraction, etc.

Approximate methods like MC-SAT, Markov Chain Monte Carlo are used to perform in-

ference over a relevant minimal subset of the generated markov network which is required

for answering the query. Usage of sampling techniques for inference allow MLN inference

to scale well. MLN is however based on classical model semantics and therefore concepts

like inductive definitions, defaults, aggregates cannot be directly encoded using MLN rep-

resentation.

LPMLN introduces the notion of weighted rules under the stable model semantics where

the weight scheme is adopted from Markov Logic. This provides a versatile language to

overcome the deterministic nature of the stable model semantics. The logical component

of LPMLN is stable models instead of classical models adopted in Markov Logic. LPMLN

extends ASP programs probabilistically in a way similar to how Markov Logic extends

SAT. Knowledge Reasoning (KR) formalisms such as P-Log and ASP can be embedded

into LPMLN (Lee and Wang, 2016b; Lee and Yang, 2017b). On a similar note, various

Statistical Relational Learning (SRL) formalisms like MLN, Problog and Pearl’s Causal

Models can be embedded into LPMLN as well (Lee and Wang, 2016b; Lee et al., 2015).

This proves LPMLN to be a viable middle ground language that links the KR formalisms and

SRL formalisms. Moreover, LPMLN itself has been shown to be translatable to languages

like ASP and MLN. This yields methods to compute LPMLN programs using ASP and

MLN solvers using translation from LPMLN to ASP and LPMLN to MLN respectively.

LPMLN can be translated to an ASP program using weak constraints. While weak

constraints in ASP impose a preference over the stable models of a program, adding weak

2

Figure 1.1: Relationship of LPMLN with Other Formalisms

constraints to a program does not add or remove stable models of the original program. The

translation shown in Theorem 1 (Lee and Yang, 2017b) states how an LPMLN program can

be translated to an ASP program with weak constraints such that the stable models with

the highest probability precisely correspond to the optimal stable models of the program

with weak constraints. The thesis uses this result not only to compute the LPMLN program

and perform Maximum A Posteriori (MAP) inference but also to compute the marginal and

conditional probability of atoms using standard ASP solvers by enumerating over all the

stable models of a program. This gives gold standard results for any program since the

probability is computed using exact methods. Since this probability calculation method is

based on stable models enumeration, it also provides a way to find the probability of each

stable model of the program.

3

The relationship between LPMLN and MLN is analogous to the relationship between

ASP and SAT and consequently many results about the relationship between ASP and SAT

carry over between LPMLN and MLN. One such result is completion (Clark, 1978) which

allows the computation of tight LPMLN programs using Markov Logic Solvers similar to the

way tight ASP programs can be computed by SAT solvers. While in theory loop formulas

can be used to translate any LPMLN program to an equivalent MLN program, in practice,

this method does not yield an effective computation. Thus, we limit our attention to the

tight fragment of LPMLN programs.

The thesis explores whether these theoretical translations can result in practical imple-

mentation of the LPMLN system. The thesis first presents an implementation of LPMLN

called LPMLN2ASP which uses weak constraints to translate an LPMLN program to an ASP

program which uses CLINGO as the solver.

• The alternative translation as stated in (Lee and Yang, 2017b) is realized in this im-

plementation which can compute the most probable stable models of the LPMLN

program which corresponds to the optimal stable models of the program with weak

constraints.

• We add a probability computation module to CLINGO to calculate the marginal and

conditional probability of an atom by examining the unsat atoms which are intro-

duced by the translation in each stable model. In doing so, we reformulate the LPMLN

semantics in a ”penalty” based way and introduce a translation which guarantees that

a safe LPMLN program is always converted to a safe ASP program.

• We show that other formalisms which are proven to be translatable in LPMLN like

P-log, ProbLog, Markov Logic Networks can be computed using ASP solvers.

• We also use this translation to show a method to debug inconsistent ASP programs

and find out which rules cause inconsistency.

4

Further, this thesis develops another implementation of LPMLN called LPMLN2MLN

which applies completion and a transformation similar to Tseitin’s transformation (Tseitin,

1968), and uses MLN solvers like ALCHEMY, TUFFY and ROCKIT for computing the

LPMLN program. LPMLN2MLN translates tight LPMLN programs to its equivalent MLN

encoding.

• The direct implementation of completion method generates formulas that blow up

when it is converted to the Conjunctive Normal Form (CNF) which is required for

the formulas to be processed by MLN solvers. This blow up is exponential in the

size of the formula in the worst case and the MLN solvers do not handle it efficiently.

This results in timeouts during the grounding phase of the computation. To overcome

this, we introduce auxiliary atoms for each disjunctive term in the formula which is

generated by the completion method. This avoids the exponential blow up that results

from the naive implementation of the CNF conversion method used in ALCHEMY.

• Furthermore, the input languages of TUFFY and ROCKIT do not allow nested formulas

which are required to encode completion formulas. LPMLN2MLN takes care of these

differences in the input language of different MLN solvers.

Additionally, we use these implementations to test on several benchmark problems.

We analyze the two implementations based on running time, grounding time and accuracy

of the outputs obtained from LPMLN2MLN and LPMLN2ASP. We then discuss the relative

strengths and weakness of these two implementations based on the experiments performed.

This thesis is organized as follows: In Chapter 2, we give a review of the background

theories on LPMLN, turning LPMLN to ASP and turning LPMLN to MLN and set up the

terminologies used for translations. Chapter 3 introduces LPMLN2ASP system, its architec-

ture and describes the translations used and its usage. Chapter 4 introduces LPMLN2MLN

and describes the completion procedure used in the translation, the Tseytin’s transforma-

5

tion used during the completion procedure, the syntax of the input LPMLN language and its

usage. Chapter 5 describes the examples of formalisms that can be executed using these

implementations and report the results of the experiments done on certain benchmark prob-

lems.

6

Chapter 2

BACKGROUND

2.1 Review: Stable model semantics

In this section we introduce the concepts needed in this thesis. We assume a finite first-

order signature σ that contains no function constants of positive arity. There are finitely

many Herbrand interpretations of σ each of which are finite as well. A ruleR over signature

σ is of the form

A1; ...;Ak ← Ak+1, ..., Al,not Al+1, ...,not Am,not not Am+1, ...,not not An (2.1)

Each Ai is an atom of σ possibly containing variables. An atom is a predicate constant

followed by terms. In this definition, not stands for default negation, comma for con-

junction and semi-colon for disjunction. A1; ...;Ak is called the head of the rule and

Ak+1, ..., Al,not Al+1, ...,not Am,not not Am+1, ...,not not An is called the body

of the rule. We can write {A1}ch ← body, where A1 is an atom, to denote the rule

A1 ← body,not not A1. This expression is called a choice rule. If the head of the

rule A1; ...;Ak is empty (⊥) the rule is called a constraint.

A logic programs is a set of rules R. A logic program is called ground if it contains no

variables. Grounding replaces a program with its equivalent program without variables.

For a ground program Π and an interpretation I , ΠI denotes the reduct of Π rela-

tive to I . ΠI consists of A1; ...;Ak ← Ak+1, ..., Al for all rules in Π such that I |=

not Al+1, ...,not Am,not not Am+1, ...,not not An. The Herbrand interpretation I

is called the stable model of Π if I is a minimal Herbrand model of ΠI . Here, minimality

is understood in terms of set inclusion. We identify an Herbrand interpretation with the set

of atoms that are true in it.

7

Example 1. Consider the program from (Lee and Wang, 2015).

p← q

q ← p

p← not r

r ← not p

The stable models for Π are {r} and {p, q}. The reduct of Π relative to {p, q} is {p←

q. q ← p. p} for which {p, q} is the minimal model. The reduct relative to {r} is

{p← q. q ← p. r} for which {r} is the minimal model.

2.2 Review: Weak Constraints

Weak constraints are part of the ASP Core 2 language (Calimeri et al., 2012) and are

implemented in standard ASP solvers such as CLINGO. A weak constraint is of the form

:∼ Ak+1, ..., Al,not Al+1, ...,not Am,not not Am+1, ...,not not An [w@l, t1, ..., to]

where each Ai is an atom of signature σ, w is a real number denoting the weight of the

weak constraint, l is an interger denoting the level, and t1, ..., to is a list of terms. Unlike

constraints in ASP, weak constraints cannot be used to derive a rule or prune out stable

models, rather a weight associated with the weak constraint body is added to the stable

model if the body is true.

Semantics of weak constraints (Calimeri et al., 2012)

Weak constraints impose an ordering over all the answer sets of a program, in a way spec-

ifying which answer set is ”better” than others. A weak constraint rule W is safe if every

8

variable in W occurs in atleast one of the positive literals Ak+1, ..., Al of W . At each prior-

ity level l, the aim is to discard models that do not minimize the sum of the weights of the

ground weak constraints with level l whose bodies are true. Higher levels are minimized

first. Terms determine which ground weak constraints are unique (only unique weight tu-

ples are considered when adding weights).

For any integer l (level) and an interpretation I for a grounded program P , let

weak(P, I) ={(w@l, t1, ..., to)} |

:∼ Ak+1, ..., Al,not Al+1, ...,not Am,not not Am+1, ...,

not not An [w@l, t1, ..., to]

occurs in P and

Ak+1, ..., Al,not Al+1, ...,not Am,not not Am+1, ...,

not not An is true in I},

then

P I
l =

∑
w@l,t1,...,tm∈weak(P,I),w is an integer

w

denotes the sum of weights w for an interpretation I for level l. An answer set I of P

is dominated by an answer set I ′ of P if there is some integer l such that P I′

l < P I
l and

P I′

l′ = P I
l′ for all integers l′ > l. An answer set I of P is optimal if there is no answer set I ′

of P such that I is dominated by I ′.

Example 2. Consider an ASP program with weak constraints

{p, q}ch (r1)

:∼ p [10@0] (r2)

:∼ q [5@1] (r3)

9

The optimal answer set for the above program is the one with the minimum weight at

highest level. Rule (r2) says that add weight 10 at level 0 for all stable models in which p is

included. Similarly, Rule (r3) says that add weight at level 1 for all stable models in which

q is included. This program results in 4 stable models, ∅, {p}, {q}, {p, q}. The weights at

each level for the stable models is given by

I weight@0 weight@1

∅ 0 0

{p} 10 0

{q} 0 5

{p, q} 10 5

∅ has the lowest weight at level 1 and thus it is the optimal answer set of the program.

2.3 Review: LPMLN

An LPMLN program is a set of weighted rules w : R, where R is a rule as described in

2.1 and w is a real number denoting the weight of the rule or α denoting infinite weight. A

rule is called a hard rule if its weight is α and a soft rule if the weight is w. We assume the

same signature σ as in the stable model semantics. An LPMLN program is called ground if

the rules contain no variables. Grounding replaces a program with its equivalent program

without variables. Each of the ground rules receive the same weight as original rules.

LPMLN semantics

For any LPMLN program Π, we denote the unweighted logic program obtained from Π as

Π, i.e., Π = {R | w : R ∈ Π}. For any interpretation I of Π, by ΠI we denote a set

of rules w : R in Π such that I � R, by Πhard we denote the set of all hard rules in Π

and by SM ′[Π] we denote the set {I | I is a stable model of ΠI that satisfy Πhard}. The

unnormalized weight of an interpretation I under Π, denoted by WΠ(I), is defined as

10

WΠ(I) =

exp

(∑
w:R ∈ ΠI

w

)
if I ∈ SM ′[Π];

0 otherwise.

The normalized weight a.k.a. probability of an interpretation I of Π, denoted by PΠ(I),

is given by

PΠ(I) = lim
α→∞

WΠ(I)∑
J∈SM ′[Π] WΠ(J)

.

where I is called a probabilistic stable model of Π if PΠ(I) 6= 0.

Example 3. Consider an example from (Lee and Wang, 2016b).

α : Bird(Jo)← ResidentBird(Jo) (r1)

α : Bird(Jo)←MigratoryBird(Jo) (r2)

α :← ResidentBird(Jo) , MigratoryBird(Jo) (r3)

2 : ResidentBird(Jo) (r4)

1 : MigratoryBird(Jo) (r5)

The table below shows the satisfied rules, unnormalized weight and probability of each

interpretation I of the above program.

11

I ΠI WΠ(I) PΠ(I)

∅ {r1, r2, r3} e3α e0

e2+e1+e0

{R(Jo)} {r1, r3, r4} e2α+2 0

{M(Jo)} {r1, r3, r5} e2α+1 0

{B(Jo)} {r1, r2, r3} 0 0

{R(Jo), B(Jo)} {r1, r2, r3, r4} e3α+2 e2

e2+e1+e0

{M(Jo), B(Jo)} {r1, r2, r3, r5} e3α+1 e1

e2+e1+e0

{R(Jo),M(Jo)} {r4, r5} e3 0

{R(Jo),M(Jo), B(Jo)} {r1, r2, r4, r5} e2α+3 0

There are 7 stable models of Π. {B(Jo)} is not a stable model of {r1, r2, r3} and hence

its weight is 0 according to the definition. Therefore there are only 3 probabilistic stable

models ∅, {R(Jo), B(Jo)}, {M(Jo), B(Jo)}. The model {R(Jo), B(Jo)} has the high-

est weight and it is the most probable stable model of the program.

2.4 Review: LPMLN to ASP (Lee and Yang, 2017a)

For any LPMLN program Π, the translation lpmln2wc(Π) is defined as follows. An

LPMLN rule of the form

wi : Headi ← Bodyi

is turned into

unsat(i) ← Bodyi, not Headi

Headi ← Bodyi, not unsat(i)

:∼ unsat(i) [wi@l]

where i is the index of the rule, Headi is the head of the rule, Bodyi is the body of the rule

and l is the level. l = 1 if wi is α and l = 0 otherwise. unsat is a new predicate that is

introduced by this translation.

12

Corollary 2 from (Lee and Yang, 2017a) states that for any LPMLN program Π, there is

a 1 − 1 correspondence φ between the most probable stable models of Π and the optimal

stable models of lpmln2wc(Π), where φ(I) = I ∪ {unsat(i) | wi : Ri ∈ Π, I 6|= Ri}.

While the most probable stable models of Π and the optimal stable models of the translation

coincide, their weights and penalties are not proportional to each other. The former is

defined by an exponential function whose exponent is the sum of the weights of the satisfied

formulas, while the latter simply adds up the penalties of the unsatisfied formulas. On the

other hand, they are monotonically increasing/decreasing as more formulas are unsatisfied.

Example 4. Consider the same example as the previous section from (Lee and Wang,

2016b).

α : Bird(Jo)← ResidentBird(Jo)

α : Bird(Jo)←MigratoryBird(Jo)

α :← ResidentBird(Jo) , MigratoryBird(Jo)

2 : ResidentBird(Jo)

1 : MigratoryBird(Jo)

13

Using the translation defined before, the above program can be translated into

unsat(1)← ResidentBird(Jo), not Bird(Jo)

Bird(Jo)← ResidentBird(Jo), not unsat(1)

:∼ unsat(1) [1@1]

unsat(2)←MigratoryBird(Jo), not Bird(Jo)

Bird(Jo)←MigratoryBird(Jo), not unsat(2)

:∼ unsat(2) [1@1]

unsat(3)← ResidentBird(Jo),MigratoryBird(Jo)

← ResidentBird(Jo),MigratoryBird(Jo), not unsat(3)

:∼ unsat(3) [1@1]

unsat(4)← not ResidentBird(Jo)

ResidentBird(Jo)← not unsat(4)

:∼ unsat(4) [2@0]

unsat(5)← not MigratoryBird(Jo)

MigratoryBird(Jo)← not unsat(5)

:∼ unsat(5) [1@0]

The optimal stable model of the program is {ResidentBird(Jo), Bird(Jo), unsat(5)}.

This model has the lowest weight, 0 at l = 1 and 1 at l = 0 which corresponds to the most

probable stable model in Example 3.

14

Since hard rules encode definite knowledge, one may not want any hard rules to be

violated. The above translation can then be turned into a simple translation by turning all

hard rules into the usual ASP rules instead 1 . The translation then becomes

α : Bird(Jo)← ResidentBird(Jo)

α : Bird(Jo)←MigratoryBird(Jo)

α : ← ResidentBird(Jo) , MigratoryBird(Jo)

unsat(3)← not ResidentBird(Jo)

ResidentBird(Jo)← not unsat(3)

:∼ unsat(3) [2@0]

unsat(4)← not MigratoryBird(Jo)

MigratoryBird(Jo)← not unsat(4)

:∼ unsat(4) [1@0]

2.5 Review: LPMLN to MLN (Lee and Wang, 2016b)

The stable models of a tight logic program coincide with the models of the program’s

completion (Erdem and Lifschitz, 2003). The same method can be extended to LPMLN

program such that the probability queries involving the stable models can be computed

using existing implementations of MLNs like ALCHEMY. The completion of an LPMLN

program Π as Comp(Π), is defined as an MLN which is the union of Π and the hard

1This translation can only be used when Π has atleast one stable model.

15

formula

α : A→
∨

w:A1∨...∨Ak←Body ∈ Π
A∈{A1,...,Ak}

(
Body ∧

∧
A′∈{A1,...,Ak}\{A}

¬A′
)

for each ground atom A, where A is as defined in 2.1.

The result is an extension of the completion from (Lee and Lifschitz, 2003) by assigning

infinite weight α to the completion formulas. For an LPMLN program Π and interpretation

I , let Π denote the set of unweighted rules Π = {R | w : R ∈ Π}, Πhard denote the set

of all hard rules of Π, ΠI denote the set of rules satisfied by interpretation I and SM ′[Π]

denote the set {I | I is a stable model of ΠI that satisfy Πhard}. Then, by Theorem 3 from

(Lee and Wang, 2016b), any tight LPMLN program Π where SM ′[Π] is not empty, Π and

Comp(Π) have the same probability distribution, where Π follows the LPMLN semantics

and Comp(Π) follows the MLN semantics. The theorem can be generalized to non-tight

programs by using loop formulas (Lin and Zhao, 2003).

Example 5. Consider the same example as previous section from (Lee and Wang, 2016b).

α : Bird(Jo)← ResidentBird(Jo) (r1)

α : Bird(Jo)←MigratoryBird(Jo) (r2)

α :← ResidentBird(Jo) , MigratoryBird(Jo) (r3)

2 : ResidentBird(Jo) (r4)

1 : MigratoryBird(Jo) (r5)

Comp(Π) for Π is

α : Bird(Jo)→ ResidentBird(Jo) ∨MigratoryBird(Jo)

α : ResidentBird(Jo)

α : MigratoryBird(Jo)

16

Chapter 3

LPMLN2ASP SYSTEM

Figure 3.1: LPMLN2ASP System

3.1 Introduction

In this chapter, we extend the Lee-Yang translation to non-ground programs and use

this result to to compute LPMLN programs using ASP solver CLINGO 1 . This implemen-

tation is realized in the form of LPMLN2ASP system as shown in Figure 3.1. We introduce

the probability computation module as a part of the system to compute the probabilities

of atoms in an LPMLN program. We then demonstrate how to use LPMLN2ASP for com-

puting the probability of stable models, the most probable stable model, and marginal and

conditional probability of query atoms for LPMLN programs.

3.2 Reformulating LPMLN based on the Concept of Penalty

In the definition of the LPMLN semantics reviewed in Section 2.3, the weight assigned

to each stable model can be regarded as “rewards” i.e. the more rules that are true in
1We use CLINGO version 4.5.4 for this implementation

17

deriving the stable model, the larger the weight that is assigned to the stable model. We

reformulate the LPMLN semantics in a “penalty” based way. The penalty based weight of

an interpretation I is defined as the exponentiated negative sum of the weights of the rules

that are not satisfied by I (when I is a stable model of ΠI). Let

W pnt
Π (I) =

exp

(
−

∑
w:R ∈ Π and I 6|=R

w

)
if I ∈ SM [Π];

0 otherwise

(3.1)

and

P pnt
Π (I) = lim

α→∞

W pnt
Π (I)∑

J∈SM[Π]

W pnt
Π (J)

. (3.2)

Theorem 1. For any LPMLN program Π and any interpretation I ,

WΠ(I) ∝ W pnt
Π (I) and PΠ(I) = P pnt

Π (I).

This penalty based reformulation has a desirable property that adding a trivial rule that

is satisfied by all interpretations does not affect the weight of an interpretation, which is

not the case with the original definition. Another advantage is that this reformulation can

be easily extended to the non-ground case as we show in the next section, so that a safe 2

non-ground LPMLN program can be translated into a safe non-ground ASP program.

3.3 Extending Lee-Yang translation to non-ground programs

We extend the Lee-Yang translation as described in section 2.4 by extending it to non-

ground rules. We define the translation lpmln2asp(Π) by translating each (possibly non-

ground) rule

wi : Headi ← Bodyi

2An LPMLN program Π is safe if the unweighted LPMLN program Π is safe as defined in (Calimeri et al.,
2013)

18

in an LPMLN program Π, where i ranges from 1 to n and n being the total number of rules

in Π, into

unsat(i, wsi ,x)← Bodyi, not Headi.

Headi ← Bodyi, not unsat(i, w
s
i ,x).

:∼ unsat(i, wsi ,x). [w′i@l, i,x]

(3.3)

where

• w′i = 1 if wi = α and w′i = bwi × 10mc otherwise, where m is a user-specified

multiplying factor whose default value is 3

• wsi = “a” if wi = α and wsi = “wi” otherwise

• l = 1 if wi = α and l = 0 otherwise

• x is a list of global 3variables in the rule.

The distinction between hard and soft rules can be simulated by the different levels l of

weak constraint. In the case when Headi is a disjunction of atoms A1; ...;Ak, the expres-

sion not Headi stands for not A1, ..., not Ak.

The list x of global variables is appended as arguments to the unsat atom to ensure

that a unique unsat atom is generated for all groundings of a rule. Adding the index of the

rule i in the list of terms of weak constraint further ensures that unique unsat atoms are

generated for two different grounded lpmln2asp(Π) rules with the same list of terms. For

any ASP program P , let grnd(P) denote the ground instantiation of program P obtained

3The definition of a global variable is as defined in (Gebser et al., 2015). One simple way to check if a

variable is global or not is to ensure that it satisfies the two conditions: (1) the variable is not present in an

aggregate in CLINGO i.e. the variable is not present between { and }, and (2) the variable is not present as

a tuple of a symbolic or an arithmetic literal in a conditional literal i.e. in a conditional literal H : L the

variable is not present in L.

19

by grounding the rules in P as defined in (Calimeri et al., 2013). It is easy to see that there

is a 1− 1 correspondence between the optimal stable models of grnd(lpmln2asp(Π)) and

the optimal stable models of lpmln2wc(grnd(Π)).

wsi is a enclosed in quotes to make wi a string value. Decimal values are not allowed

as an argument of a predicate in CLINGO syntax and therefore the workaround is to encode

decimals as string values. w′i has to be an integral weight according to the CLINGO syntax.

When wi is not an integral weight and wi 6= α, it is converted to w′i by applying the

translation rule

w′i =

1 if wi = α

bwi × 10mc otherwise.

. (3.4)

The first rule of (3.3) says that, for an interpretation I , if the ith rule is not satisfied then

unsat(i, wsi ,x) is true for I . Consequently, I also gets a penalty of w′i due to the third rule

of (3.3) at level 0 or 1 depending on whether the rule is soft or hard, respectively. If the ith

rule is true in I , then unsat(i, wsi ,x) is false in I , Headi ← Bodyi is effective and as a

result no penalty is assigned to I .

3.4 MAP inference using LPMLN2ASP

System LPMLN2ASP uses the translation as described in Equation (3.3) in conjunction

with Corollary 2 from (Lee and Yang, 2017a) to compute MAP inference on an LPMLN pro-

gram. MAP inference in an LPMLN program is reduced to the optimal stable model finding

of the program with weak constraints. For MAP inference, CLINGO does not enumerate all

the stable models of the program and therefore in practice MAP inference is more scalable

than exact probability computation on non trivial domains.

20

For any integer l (level) and an interpretation I of the program lpmln2asp(Π), let

weak(lpmln2asp(Π), I) ={(wi@l, i, c) |

(wi@l, i, c) is obtained from (wi@l, i,x) by

replacing all x with the elements from the Herbrand Universe,

:∼ unsat(i, wsi , c) [w′i@l, i, c] occurs in lpmln2asp(Π) and

unsat(i, wsi , c) is true in I},

then the penalty of I at l, defined by pntIl is

pntIl =
∑

(wi@l,i,c) ∈ weak(lpmln2asp(Π),I)

w′i (3.5)

The optimal stable models of lpmln2asp(Π) are the stable models that minimize pntIl

according to the weak constraint semantics. The optimal stable models are given by

I ∈ argminJ
J : J ∈ argminK

K∈SM [Π]
pntK1

pntJ0 (3.6)

The minimization first happens at the highest level l = 1 first and then at l = 0. In case

if the hard rules are not translated the optimal stable models are the models that minimize

pntI0. The optimal stable models of lpmln2asp(Π) have a 1 − 1 correspondence with the

optimal stable models of lpmln2wc(Π).

The translation w.r.t. w′i as defined in Equation (3.4) does not affect the resulting op-

timal stable models and therefore the MAP estimates. In Equation (3.5), pntIl is a mono-

tonically increasing function of w′i, w
′
i is a linear function of wi and therefore pntIl is a

monotonically increasing function of wi. Thus, multiplying each wi with the a positive

factor still results in a monotonically increasing function.

21

Example 6. Consider the non-ground Bird example adapted from (Lee and Wang, 2016b)

α : Bird(X)← ResidentBird(X) (r1)

α : Bird(X)←MigratoryBird(X) (r2)

α :← ResidentBird(X) , MigratoryBird(X) (r3)

2 : ResidentBird(Jo) (r4)

1 : MigratoryBird(Jo) (r5)

22

Here X is a variable. Using the translation 3.3 described above, the program is turned

into

unsat(1, “a”, X)← ResidentBird(X), not Bird(X).

Bird(X)← ResidentBird(X), not unsat(1, “a”, X).

:∼ unsat(1, “a”, X). [1@1, 1, X]

unsat(2, “a”, X)←MigratoryBird(X), not Bird(X).

Bird(X)←MigratoryBird(X), not unsat(2, “a”, X).

:∼ unsat(2, “a”, X) [1@1, 2, X]

unsat(3, “a”, X)← ResidentBird(X),MigratoryBird(X).

← ResidentBird(X),MigratoryBird(X), not unsat(3, “a”, X).

:∼ unsat(3, “a”, X) [1@1, 3, X]

unsat(4, “2”)← not ResidentBird(Jo).

ResidentBird(Jo)← not unsat(4, “2”).

:∼ unsat(4, “2”) [2000@0, 4]

unsat(5, “1”)← not MigratoryBird(Jo).

MigratoryBird(Jo)← not unsat(5, “1”).

:∼ unsat(5, “1”) [1000@0, 5]

The optimal stable model of the program is I = {ResidentBird(Jo), Bird(Jo),

unsat(5, “1”)}. This model has the lowest penalty pntI′0 = 1000 at l = 0 and pntI′1 = 0 at

l = 1 amongst all the interpretations I ′ of Π. The optimal stable model I is also the most

probable stable model of the program which is in accordance with the answer in Example

3.

23

3.5 Probability computation using LPMLN2ASP

We introduce the probability computation module which is used by LPMLN2ASP for

computing the marginal and conditional probability of queried atoms. Probability compu-

tation involves enumerating all the stable models of an LPMLN program. This is computa-

tionally expensive for all but the most trivial domains. However, the computation is exact.

This gives the “gold” standard result which is easy to understand. Conditional probability

of an atom is calculated in presence of certain evidence. Conditional probability calculation

is more effective than marginal probability computation since adding evidence prunes out

all the stable models where the evidence is not satisfied thereby resulting in fewer stable

models to enumerate. The stable model enumeration also facilitates probability calcula-

tion of each stable model. The probability computation module works by examining the

unsat atoms present in the stable model. The output from CLINGO is given as input to this

module.

The following theorem is an extension of Corollary 2 from (Lee and Yang, 2017b) to

allow non-ground programs and to consider the correspondence between all stable models,

not only the most probable ones.

Theorem 2. For any LPMLN program Π, there is a 1-1 correspondence φ between SM [Π]

4 and the set of stable models of lpmln2asp(Π), where φ(I) = I ∪ {unsat(i, wsi , c) | wi :

Head i ← Body i ∈ Π , I |= Body i , I 6|= Head i}. Furthermore,

W pnt
Π (I) = exp

(
−

∑
unsat(i,ws

i ,c)∈φ(I)

wi

)
. (3.7)

wi is obtained fromwsi by a 1−1 string to real number conversion. If a rule is a hard rule

i.e. wsi = “a” than a penalty of wi = α is added to the stable model and if it is a soft rule

i.e. wsi = “wi” than a penalty of wi is added. Theorem 2, in conjunction with Theorem 1,

4SM [Π] is as defined in Section 2.3

24

provides a way to compute the probability of a stable model of an LPMLN program by

examining the unsat(i, wsi , c) atoms satisfied by the corresponding stable model of the

translated ASP program. The penalty of a stable model is the exponentiated negative sum

of wi obtained from wsi specified by the corresponding unsat(i, wsi , c) atoms present in the

stable model.

For probability computation the translation used is the same as defined in Equation

(3.3). The penalty of an interpretation I such that I ∈ SM [Π] is given by W pnt
Π (I) as

defined in Equation (3.7) and 0 if I /∈ SM [Π]. The probability of an interpretation I is

given by P pnt
Π (I) as defined in Equation (3.2). The probability of a ground query atom

q(c), denoted as PrΠ(q(c)), is given by

PrΠ(q(c)) =
∑
q(c)∈I

P pnt
Π (I). (3.8)

In the presence of evidence e, PrΠ(q(c)) is the conditional probability of q(c) given evi-

dence e. It is given by

PrΠ(q(c) | e) =
∑
q(c)∈I
I � e

P pnt
Π (I). (3.9)

Without evidence, PrΠ(q(c)) is the marginal probability of q(c). In the calculations of

marginal and conditional probability, and probability of all the stable models of programs,

weak constraints from Equation (3.3) are not used in the computation and therefore ignored

by the module.

Example 7. Consider the Bird encoding from Example 6.

α : Bird(X)← ResidentBird(X) (r1)

α : Bird(X)←MigratoryBird(X) (r2)

α :← ResidentBird(X) , MigratoryBird(X) (r3)

2 : ResidentBird(Jo) (r4)

1 : MigratoryBird(Jo) (r5)

25

the above program is translated into (weak constraints are removed for brevity)

unsat(1, “a”, X)← ResidentBird(X), not Bird(X)

Bird(X)← ResidentBird(X), not unsat(1, “a”, X)

unsat(2, “a”, X)←MigratoryBird(X), not Bird(X)

Bird(X)←MigratoryBird(X), not unsat(2, “a”, X)

unsat(3, “a”, X)← ResidentBird(X),MigratoryBird(X)

← ResidentBird(X),MigratoryBird(X), not unsat(3, “a”, X)

unsat(4, “2”)← not ResidentBird(Jo)

ResidentBird(Jo)← not unsat(4, “2”)

unsat(5, “1”)← not MigratoryBird(Jo)

MigratoryBird(Jo)← not unsat(5, “1”)

The following table illustrates W pnt
Π (I) and P pnt

Π (I) for each stable model SM [Π] for the

above example

I W pnt
Π (I) P pnt

Π (I)

I1 {RB(Jo),MB(Jo), un(1, “a”, Jo), un(2, “a”, Jo), un(3, “a”, Jo)} e−3α 0

I2 {un(4, “2”),MB(Jo), un(2, “a”, Jo)} e−α−2 0

I3 {RB(Jo), un(5, “1”), un(1, “a”, Jo)} e−α−1 0

I4 {un(4, “2”), un(5, “1”)} e−3 e−3

e−3+e−2+e−1

I5 {RB(Jo),MB(Jo), B(Jo), un(3, “a”, Jo)} e−α 0

I6 {un(4, “2”),MB(Jo), B(Jo)} e−2 e−2

e−3+e−2+e−1

I7 {RB(Jo), un(5, “1”), B(Jo)} e−1 e−1

e−3+e−2+e−1

RB = ResidentBird,MB = Migratorybird,B = Bird, un = unsat

26

Table 3.1: Stable Models of Π from Example 6

To calculate the probability of Bird, we add the probability of all P pnt
Π (I) such that

Bird(X) is true in I . In this case, since there is only one grounding for Bird, we check for

all I where Bird(Jo) is true. From the above table, rows 5,6 and 7 correspond to the stable

models where Bird(Jo) is satisfied. Therefore, PrΠ(Bird(Jo)) = P pnt
Π (I5) + P pnt

Π (I6) +

P pnt
Π (I7) where Ii corresponds to the i-th interpretation in Table 3.5.

3.6 LPMLN2ASP system architecture

Figure 3.1 shows the architecture of the LPMLN2ASP system. LPMLN2ASP is an en-

compassing system comprising of the LPMLN2ASP compiler, CLINGO and the probability

computation module. It provides an interface similar to popular MLN tools like ALCHEMY,

TUFFY, ROCKIT. The input to the system is an LPMLN program. The syntax of the input

program is detailed in section 3.7. The input is a set of weighted CLINGO rules given to

the LPMLN2ASP compiler called LPMLN2CL. The compiler outputs an ASP encoding with

weak constraints according to the translation 3.3 which is given as input to the solver. The

solver used in LPMLN2ASP is CLINGO 4.

There are three modes of computation in LPMLN2ASP : MAP estimates, marginal prob-

ability and conditional probability. The mode of computation is determined by the argu-

ments provided to LPMLN2ASP . For MAP inference, the output from the compiler is given

to CLINGO and the output is the most optimal stable model and the penalty assigned to the

model.

For marginal and conditional probability, the output from CLINGO is given to the prob-

ability computation module. The implementation of the module is based on the equations

(3.2), (2) and (3.8). The module is a PYTHON program that integrates with CLINGO and

27

post-processes the CLINGO output to perform probabilistic inference. There is no differ-

ence between the marginal and conditional probability computation from the context of

the module. The difference between the two is the addition of evidence file required for

conditional probability. The evidence file is a set of ASP facts and constraints. When an

evidence file e is provided, the input to CLINGO is lpmln2asp(Π) ∪ e. Marginal and con-

ditional probability computation also requires a query predicate constant as input. The

query predicate is any predicate that is present in lpmln2asp(Π) or e. Note that now since

e is also a part of the input program in conditional probability, all interpretations I that

satisfy lpmln2asp(Π) but do not satisfy e are discarded5. This makes computation of con-

ditional probability faster than marginal probability since there are lesser stable models to

enumerate through.

Solver CLINGO has a feature that integrates PYTHON code along with the CLINGO en-

coding by utilizing its suite of APIs. The probability computation module makes use of

these APIs for computations. When CLINGO finds a stable model for the lpmln2asp(Π),

the stable model computation is interrupted by the module which processes the stable

model generated. The module calculates the penalty of the stable model by examining

the unsat(i, wsi , c) atoms and stores the penalty and model for later use. The module also

keeps a track of which models have the queried predicates. Once all the stable models

have been generated by CLINGO, the control again returns to the module. At this point, the

module adds up the stored penalties to compute the normalization factor and finds the prob-

abilities of each stable models. Probabilities of queried predicates is calculated by adding

the probabilities of stable models where the atoms of the predicate are satisfied. For each
5The exception to this is adding interceptions in evidence files in formalisms like Pearl’s Causal Mod-

els(Pearl, 2000). Adding interceptions in evidence increases the number of stable models compared to the

original program Π without any evidence.

28

queried predicate, a single pass over the stored models and their values is made to compute

the probabilities of all grounded atoms of the queried predicate.

3.7 LPMLN2ASP input language syntax

The input language of LPMLN2ASP consists of rules of the form,

wi Headi ← Bodyi. (3.10)

where wi is the weight of the ith rule and Headi ← Bodyi is a safe CLINGO rule. A

hard rule is written without weights and is identical to a CLINGO rule. The CLINGO syntax

is described in (Calimeri et al., 2013). Every valid rule for clingo is also a valid rule

for LPMLN2ASP . Weight wi can be a positive or a negative decimal value or defined by

a function expression as described later. For hard rules wi is dropped. Every CLINGO

program can be converted to an LPMLN2ASP program by appending w to the CLINGO rule.

Example 8. Encoding of Example 6 in the input language of LPMLN2ASP

bird(X) :- residentbird(X).

bird(X) :- migratorybird(X).

:- residentbird(X) , migratorybird(X).

2 residentbird(jo).

1 migratorybird(jo).

Functions in LPMLN2ASP

System LPMLN2ASP allows for using functions log 6 and exp in the input language. The

syntax to use such functions is,

@function name(expression)

6Natural logarithm

29

The functions allowed are log which evaluates natural logarithm of an expression and

exp which evaluates exponential of an expression. The expression may be any non-trivial

arithmetic expression consisting of {+,−, ∗, /, exp, log} and decimal values. The system

throws the error resulting value infinity or NAN if an expression or subexpression evalu-

ates to infinity or a malformed expression is provided in input. Internally, the function is

evaluated and the resuting value is used as w in w : R.

Some examples of using functions in LPMLN2ASP

@exp(2) bird(X) :- migratorybird(X).

@exp(2/exp(2)) :- residentbird(X) , migratorybird(X).

@log(10/1.0) residentbird(bob).

@log((0.75*10)+1-(2*(3/6))) migratorybird(bob).

3.8 LPMLN2ASP usage

The basic usage of LPMLN2ASP is

lpmln2asp -i <input_file> [-e <evid_file>] [-r <output_file>]

[-q <query>] [-hr] [-mf <multiplying_factor>] [-d] [-all]

[-clingo <clingo_options>]

Command line options for LPMLN2ASP ,

-h, --help show this help message and exit

-i <input_file> input file. [REQUIRED]

-e <evidence_file> evidence file

-r <output_file> output file. Default is STDOUT

-q <query> List of comma separated query

predicates.

-clingo <clingo_options> clingo options passed as it is to

30

the solver. Pass all clingo options

enclosed in ’single quotes’

-hr [FALSE] Translate hard rules

-all Display probability of all stable

models.

-mf <multiplying_factor> [1000] Integer value of multiplying

factor

-d [FALSE] Debug. Print all debug info

The implementation bypasses all python/lua code enclosed in #script(X) ... #end.

tags where X is either python or lua. Do note that this implementation does not check

for the correctness of syntax of input and in case of syntactically incorrect input, the imple-

mentation would output the translated rules which would be syntactically wrong as well.

The option -hr translates all the hard rules as well. While translating hard rules is

useful for debugging, it increases the number of rules generated and therefore increases

the grounding size and the number of stable models. This is computationally expensive

since the module enumerates all stable models for computations. Since hard rules always

need to be satisfied, this option is not much useful except for debugging inconsistent ASP

programs as shown later in Section 4.6.

-mf X option is the multiplying factor and the default value is 3. Consider rules

0.542 a(X) :- b(X).

0.148 a(X) :- b(X).

0.986 a(X) :- b(X).

31

if m = 0, following the definition from Equation (3.4), the above 3 rules will generate

the weak constraints as

:∼ unsat(0, “0.542”, X). [0@0, 0, X]

:∼ unsat(1, “0.148”, X). [0@0, 1, X]

:∼ unsat(2, “0.986”, X). [0@0, 2, X]

For priority 0, the weights considered by CLINGO is 0 for all rules. This is obviously wrong.

If a multiplying factor of m = 1 is provided to LPMLN2ASP, the weights generated would

be

:∼ unsat(0, “0.542”, X). [5@0, 0, X]

:∼ unsat(1, “0.148”, X). [1@0, 1, X]

:∼ unsat(2, “0.986”, X). [9@0, 2, X]

This allows for more fine grained control over the weight scheme for MAP inference. For

probabilistic inference the -mf option is ignored.

Command line usage

This section describes the command line usage of LPMLN2ASP for different modes of com-

putation and example usage 7 of the respective modes on Example 8 and the respective

outputs.

7The filename is birds.lp for the usage

32

• MAP inference

lpmln2asp -i <input_file>

By default, the mode of computation in LPMLN2ASP is MAP inference. Only pro-

viding an input file defaults to this mode.

Example 9. lpmln2asp -i birds.lp

Output:

residentbird(jo) bird(jo) unsat(5,"1.000000")

Optimization: 1000

OPTIMUM FOUND

• Marginal Probability of all models

lpmln2asp -i <input_file> -all

Providing the -all argument invokes the probability computation module in

LPMLN2ASP and also serves as verbose mode to list all models and their respective

probabilities.

Example 10. lpmln2asp -i birds.lp -all

Output:

Answer: 1

residentbird(jo) bird(jo) unsat(5,"1.000000")

Optimization: 1000

Answer: 2

unsat(4,"2.000000") unsat(5,"1.000000")

Optimization: 3000

Answer: 3

33

unsat(4,"2.000000") bird(jo) migratorybird(jo)

Optimization: 2000

Probability of Answer 1 : 0.665240955775

Probability of Answer 2 : 0.0900305731704

Probability of Answer 3 : 0.244728471055

• Marginal probability of a list of query predicates

lpmln2asp -i <input_file> -q [query_predicates]

This mode calculates the marginal probability of the multiple query predicates which

should be comma(,) separated.

Example 11. lpmln2asp -i birds.lp -q residentbird

Output:

residentbird(jo) 0.665240955775

• Marginal probability of query predicates and probability of all models

lpmln2asp -i <input_file> -q [query_predicate] -all

This mode is the same as previous mode except it provides a verbose output where

the marginal probability of all models is printed along with the probability of query

predicates.

Example 12. lpmln2asp -i birds.lp -q residentbird -all

Output:

Answer: 1

34

residentbird(jo) bird(jo) unsat(5,"1.000000")

Optimization: 1000

Answer: 2

unsat(4,"2.000000") unsat(5,"1.000000")

Optimization: 3000

Answer: 3

unsat(4,"2.000000") bird(jo) migratorybird(jo)

Optimization: 2000

Probability of Answer 1 : 0.665240955775

Probability of Answer 2 : 0.0900305731704

Probability of Answer 3 : 0.244728471055

residentbird(jo) 0.665240955775

• Conditional probability of query predicates given evidence e

lpmln2asp -i <input_file> -q [query_predicate] -e <evidence_file>

Since evidence is provided in this mode, conditional probability of query given evi-

dence is computed.

Example 13. lpmln2asp -i birds.lp -q residentbird -e evid.db

where evid.db contains

:- not bird(jo).

Output:

residentbird(jo) 0.73105857863

35

• Conditional probability of query predicates given evidence e and probability of all

models

lpmln2asp -i <input_file> -q [query_predicate] -e <evidence_file> -all

This mode is the same as previous mode except it provides a verbose output where

the conditional probability of all models is printed along with the probability of query

predicates.

Example 14. lpmln2asp -i birds.lp -q residentbird -e evid.db -all

where evid.db contains

:- not bird(jo).

Output:

Answer: 1

residentbird(jo) bird(jo) unsat(5,"1.000000")

Optimization: 1000

Answer: 2

unsat(4,"2.000000") bird(jo) migratorybird(jo)

Optimization: 2000

Probability of Answer 1 : 0.73105857863

Probability of Answer 2 : 0.26894142137

residentbird(jo) 0.73105857863

36

Chapter 4

COMPUTING OTHER FORMALISMS IN LPMLN2ASP

It has been shown that formalisms like MLN, Pearl’s Causal Models, Bayes Net, P-Log

and ASP can be embedded in LPMLN (Lee and Wang, 2016b; Lee and Yang, 2017b; Lee

et al., 2015). In this chapter we demonstrate how to use LPMLN2ASP to compute these

formalisms. We also show how to use LPMLN2ASP to resolve inconsistencies in an ASP

program.

4.1 Computing MLN in LPMLN2ASP

Markov Logic can be embedded into LPMLN similar to the way SAT can be embedded

into ASP as described in (Lee and Wang, 2016b). For any MLN L, LPMLN program ΠL is

obtained from L by adding w : {A}ch for every ground atom A of σ. The effect of adding

the choice rules is to exempt A from minimization under the stable model semantics. The-

orem 2 from (Lee and Wang, 2016b) states that any MLN L and its LPMLN representation

ΠL have the same probability distribution over all interpretations.

Example 15. Social network domain is a typical example in the Markov Logic literature.

Consider an example of a domain that describes the relationship between smokers who are

friends. We assume three people: Alice,Bob and Carol, and assume that Alice smokes and

Alice is friends with Bob. We assume that smoking causes cancer up to a certain degree,

37

and that friends of each other are more likely to smoke.

1.5 ∀x, y
(
Smokes(x) ∧ Friends(x, y)→ Smokes(y)

)
1.1 ∀x

(
Smokes(x)→ Cancer(x)

)
Smokes(Alice)

Friends(Alice, Bob)

There are eight possible worlds. The weight of each world according to the MLN

semantics is given by

Possible World Weight

{S(B),¬C(A),¬C(B)} e6

{S(B), C(A),¬C(B)} e7.1

{¬S(B),¬C(A)} e5.6

{¬S(B), C(A)} e6.7

{S(B),¬C(A), C(B)} e7.1

{S(B), C(A), C(B)} e8.2

{¬S(B),¬C(A), C(B)} e5.6

{¬S(B), C(A), C(B)} e6.7

The probabilities of Cancer(x) is given by

Cancer(Alice) e7.1+e6.7+e8.2+e6.7

e6+e7.1+e7.1+e8.2+e6.7+e5.6+e5.6+e6.7
= 0.75

Cancer(Bob) e7.1+e8.2+e5.6+e6.7

e6+e7.1+e7.1+e8.2+e6.7+e5.6+e5.6+e6.7
= 0.6874

The same program can be encoded into LPMLN2ASP as 1

1Note that we only add choice rule for smoke and cancer because they are assumed to be open world
while friends is assumed to be closed world.

38

1.1 cancer(X) :- smoke(X).

1.5 smoke(Y) :- smoke(X), friends(X, Y).

smoke(alice).

friends(alice, bob).

{smoke(alice)}.

{smoke(bob)}.

{cancer(alice)}.

{cancer(bob)}.

Executing

lpmln2asp -i input.lp -q cancer

outputs

cancer(bob) 0.687487252151

cancer(alice) 0.750260105595

4.2 Computing P-log in LPMLN2ASP

P-log (Baral et al., 2009b) is a “KR formalism that combines logic and probabilistic

arguments in its reasoning”. ASP is used as the logical foundation, while causal Bayes

Net serve as probabilistic foundation. We use the translation as described in (Lee and

Yang, 2017b) to translate a P-log program into its equivalent LPMLN program. We refer the

readers to (Lee and Yang, 2017b) for details regarding the translation.

Example 16. We describe the Monty Hall problem that is used in the (Baral et al., 2009b).

A player is given the opportunity to select one of three closed doors, behind one of which

there is a prize. Behind the other two doors are empty rooms. Once the player has made

39

a selection, Monty is obligated to open one of the remaining closed doors which does not

contain the prize, showing that the room behind it is empty. He then asks the player if

he would like to switch his selection to the other unopened door, or stay with his original

choice. Here is the problem: does it matter if he switches?

The answer is YES. In fact switching doubles the players chance to win. This problem

can be encoded in the language of P-log as

doors = {1, 2, 3}.

open, selected, prize : doors.

¬ can_open(D) ← selected = D.

¬ can_open(D) ← prize = D.

can_open(D) ← not ¬ can_open(D).

random(prize).

random(selected).

random(open : {X : can_open(X)}).

Suppose that we observed that the player has already selected door 1, and Monty opened

door 2 revealing that it did not contain the prize. This is expressed as

obs(selected = 1).

obs(open = 2).

obs(prize 6= 2).

Let us refer to the above P-log program as Πmonty. Because of the observations Πmonty has

two possible worlds: the first containing prize = 1 and the second containing prize = 3.

According to the P-log semantics, it follows that

PΠmonty(prize = 1) = 1/3

PΠmonty(prize = 3) = 2/3

where PΠmonty(prize = X) is the probability of world with prize in X-th door.

40

The above program can be encoded in the syntax of LPMLN2ASP following the transla-

tion from (Lee and Yang, 2017b) as

door(d1;d2;d3).

constant(prize;selected;open).

number(2;3).

boolean(t;f).

canopen(D,f) :- selected(D),door(D).

canopen(D,f) :- prize(D),door(D).

canopen(D,t) :- not canopen(D,f),door(D).

:- canopen(D,t) , canopen(D,f).

:- prize(D1) , prize(D2) , D1!=D2.

:- selected(D1) , selected(D2) , D1!=D2.

:- open(D1) , open(D2) , D1!=D2.

prize(d1); prize(d2); prize(d3) :- not intervene(prize).

selected(d1); selected(d2); selected(d3) :- not intervene(selected).

open(d1); open(d2); open(d3) :- not intervene(open).

:- open(D) , not canopen(D,t) , not intervene(open).

posswithdefprob(prize,D) :- not posswithassprob(prize,D) , not

intervene(prize),door(D).

numdefprob(prize,X) :- X= #count{D:posswithdefprob(prize,D)} , prize(Y)

, posswithdefprob(prize,Y),number(X).

41

posswithdefprob(selected,D) :- not posswithassprob(selected,D) , not

intervene(selected),door(D).

numdefprob(selected,X) :- X= #count{D:posswithdefprob(selected,D)} ,

selected(Y) , posswithdefprob(selected,Y),number(X).

posswithdefprob(open,D) :- not posswithassprob(open,D) , canopen(D,t) ,

not intervene(open),door(D) , door(D).

numdefprob(open,X) :- X= #count{D:posswithdefprob(open,D)} , open(Y) ,

posswithdefprob(open,Y),number(X).

obs(selected,d1).

:- obs(selected,d1), not selected(d1).

obs(open,d2).

:- obs(open,d2), not open(d2).

unobs(prize,d2).

:- unobs(prize,d2), prize(d2).

-0.6931 :- not numdefprob(C,2),constant(C).

-0.4054 :- not numdefprob(C,3),constant(C).

On executing

lpmln2asp -i monty_hall.lp -q prize

the output is

prize(d1) 0.333343817985

prize(d3) 0.666656182015

42

which corresponds to the output of the P-log program.

4.3 Computing Pearl’s Causal Model in LPMLN2ASP

Pearl’s probabilistic causal models (PCM) (Pearl, 2000) can be represented in LPMLN

as described in (Lee et al., 2015). Theorem 3 from (Lee et al., 2015) states that the solutions

of the probabilistic causal model M where M is a representation of a PCM are identical to

the stable models of its translation to LPMLN and their probability distributions coincide.

Theorem 4 from (Lee et al., 2015) states that the counterfactual reasoning in PCM can be

reduced to LPMLN computation. LPMLN2ASP allows for computing probabilistic queries

on PCMs such as counterfactual queries.

For any PCM M = 〈〈U, V, F 〉, P (U)〉, where

• U is a set of exogenous atoms 2 ,

• V is a set of endogenous atoms,

• F is a finite set of equations Vi = Fi, one for each endogenous atoms Vi, and Fi is a

propositional formula and,

• P (U) is a probability distribution over U .

Let PM be the LPMLN program obtained from M by applying the translation as defined in

Definition 6 in (Lee et al., 2015) as follows

• α : Vi ← Fi for each Vi ← Fi in M 3

• for every U in M such that P (Ui = t) = p: (i) ln(p
1−p) : Ui if 0 < p < 1; (ii) α : Ui

if p = 1; (iii) α :← Ui if p = 0.
2We assume the exogenous atoms are independent of each other.
3The syntax of LPMLN is extended to weighted propositional formulas in (Lee et al., 2015) and therefore

Fi is defined as a propositional formula. However, for the discussion in this example we assume that Fi can
be written in the form as shown in Equation (2.1).

43

To represent counterfactuals in PCM the translation is as follows

• rule

α : V ∗i ← F ∗i , not Do(Vi = t), not Do(Vi = f)

is added for each equation Vi = Fi in M, where V ∗i is a new symbol correspond-

ing to Vi, and F ∗i is a formula obtained from Fi by replacing every occurrence of

endogenous atoms W with W ∗.

• rule

α : V ∗i ← Do(Vi = t)

for every Vi ∈ V . Informally, starred atoms represent the counterfactual world.

Figure 4.1: Firing Squad Example

Example 17. Consider the probabilistic version of the firing squad example as shown in

Figure 4.1 which shows the firing squad scenario expressed as a causal diagram 4 . Court

orders the execution (U) with probability p and Rifleman A is nervous (W) with probability

q. The nervousness of Rifleman A causes him shooting at the prisoner (A). Court orders the

execution causes the captain to signal (C), which again causes Rifleman A and Rifleman B
4The definition of causal diagram is as defined in (Pearl, 2000)

44

to shoot at the prisoner. Either of Rifleman A and Rifleman B shooting causes the prisoner’s

death (D).

U denotes “The court orders the execution,” C denotes “The captain gives a signal,” A

denotes “Rifleman A shoots,”B denotes Rifleman B shoots,D denotes “The prisoner dies,”

and W denotes “Rifleman A is nervous.” The court has ordered the execution with a prob-

ability p = 0.7 and rifleman A has a probability q = 0.2 of pulling the trigger out of

nervousness.

45

For this example, PM is

ln(
0.7

1− 0.7
) : U

ln(
0.2

1− 0.2
) : W

α : C ← U

α : A← C ∨W 5

α : B ← C

α : D ← A ∨B

α : C∗ ← U, not Do(C = t), not Do(C = f)

α : A∗ ← (C∗ ∨W ∗), not Do(A = t), not Do(A = f)

α : B∗ ← C∗, not Do(B = t), not Do(B = f)

α : D∗ ← (A∗ ∨B∗), not Do(D = t), not Do(D = f)

α : C∗ ← Do(C = t)

α : A∗ ← Do(A = t)

α : B∗ ← Do(B = t)

α : D∗ ← Do(D = t)

This translation is represented in the input language of LPMLN2ASP as follows

@log(0.7/0.3) u.

5In logic programs A← B ∨ C is strongly equivalent to writing (A← B) ∧ (A← C).

46

@log(0.2/0.8) w.

c :- u.

a :- c.

a :- w.

b :- c.

d :- a.

d :- b.

cs :- u, not do(c1), not do(c0).

as :- cs, not do(a1), not do(a0).

as :- w, not do(a1), not do(a0).

bs :- cs, not do(b1), not do(b0).

ds :- as, not do(d1), not do(d0).

ds :- bs, not do(d1), not do(d0).

cs :- do(c1).

as :- do(a1).

bs :- do(b1).

ds :- do(d1).

where as, bs, cs, ds are nodes in the twin network, a1 means that a is true; a0 means

that a is false; other atoms are defined similarly.

The different types of inference that can be computed are:

• Prediction: If rifleman A did not shoot, what is the probability that the prisoner is

alive? We want to calculate the probability P (¬D | ¬A). ¬A is true iff ¬C is true

47

in which case ¬B is true as well. Since both the rifleman did not fire, ¬D is true.

Therefore, P (D|¬A) = 0. To represent prediction, the evidence file contains

:- a.

On executing

lpmln2asp -i pcm.lp -e evid.db -q d

the output is empty 6 which means that if rifleman A did not shoot, the prisonser is

certainly alive.

• Abduction: If the prisoner is alive, what is the probability that the captain did not

signal? We want to calculate the probability P (¬C | ¬D). ¬D is true iff ¬A ∧ ¬B

is true which is possible only if ¬C is true. Therefore, P (C | ¬D) = 0. To represent

abduction, the evidence file contains

:- d.

On executing

lpmln2asp -i pcm.lp -e evid.db -q c

the output is empty which means that if the prisoner is alive then the captain did not

order execution.

• Transduction: If rifleman A shot, what is the probability that riflemanB shot as well.

We want to calcualte the probability P (B | A) = p
p+(1−p)q = 0.92. To represent

transduction, the evidence file contains

:- not a.

On executing
6LPMLN2ASP does not output a query atoms whose probability is 0

48

lpmln2asp -i pcm.lp -e evid.db -q b

the output is

b 0.921047297896

which means there is a 92% chance that rifleman B shot as well.

• Action: If the captain gave no signal and rifleman A decides to shoot, what is the

probability that the prisoner will die and rifleman B will not shoot. We want to

calculate the probability P (DA∧¬BA | ¬C). RiflemanA decides to shoot regardless

of captain’s order. If ¬C is true then ¬B is true as well since only riflemanA decides

to violate orders. From PM, we can see that D ← A ∨ B, therefore if A is true than

D is true. So, P (DA | ¬C) = 1 and P (¬BA | ¬C) = 1. To represent an action, the

evidence file contains

:- c.

do(a1).

Here c is an observation and do(a0) is an intervention and hence encoded differ-

ently. On executing

lpmln2asp -i pcm.lp -e evid.db -q ds,bs

outputs

ds 1.0

which means that the prisoner will die and rifleman B will not shoot.

• Counterfactual: If the prisoner is dead, what is the probability that the prisoner would

be alive if rifleman A had not shot P (D¬A | D)? To represent the counterfactual

query, the evidence file contains

49

do(a0).

:- not d.

Here d is an observation and do(a0) is an intervention. On executing

lpmln2asp -i pcm.lp -e evid.db -q ds

LPMLN2ASP outputs

ds 0.921047297896

which means there is a 8% chance that the prisoner would be alive.

4.4 Computing Bayes Net in LPMLN2ASP

Bayes net can be encoded in LPMLN in a way similar to (Sang et al., 2005). All random

variables are assumed to be Boolean. Each conditional probability table associated with

the nodes can be represented by a set of probabilistic facts. For each CPT entry P (V = t |

V1 = S1, . . . , Vn = Sn) = p where S1, . . . , Sn ∈ {t, f}, we include a set of weighted facts

• ln(p/(1− p)) : PF (V, S1, . . . , Sn) if 0 < p < 1;

• α : PF (V, S1, . . . , Sn) if p = 1;

• α : ← not PF (V, S1, . . . , Sn) if p = 0.

For each node V whose parents are V1, . . . , Vn, each directed edge can be represented by

rules

α : V ← V S1
1 , . . . , V Sn

n , PF (V, S1, . . . , Sn) (S1, . . . , Sn ∈ {t, f})

where V Si
i is Vi if Si is t, and not Vi otherwise.

Example 18. Consider the example that is widely used in the Bayes net literature described

in Figure 4.2. The LPMLN2ASP encoding for the net is

50

Figure 4.2: Bayes Net Example

@log(0.02/0.98) pf(t).

@log(0.01/0.99) pf(f).

@log(0.5/0.5) pf(a,t1f1).

@log(0.85/0.15) pf(a,t1f0).

@log(0.99/0.01) pf(a,t0f1).

@log(0.0001/0.9999) pf(a,t0f0).

@log(0.9/0.1) pf(s,f1).

@log(0.01/0.99) pf(s,f0).

@log(0.88/0.12) pf(l,a1).

@log(0.001/0.999) pf(l,a0).

@log(0.75/0.25) pf(r,l1).

@log(0.01/0.99) pf(r,l0).

tampering :- pf(t).

51

fire :- pf(f).

alarm :- tampering, fire, pf(a,t1f1).

alarm :- tampering, not fire, pf(a,t1f0).

alarm :- not tampering, fire, pf(a,t0f1).

alarm :- not tampering, not fire, pf(a,t0f0).

smoke :- fire, pf(s,f1).

smoke :- not fire, pf(s,f0).

leaving :- alarm, pf(l,a1).

leaving :- not alarm, pf (l,a0).

report :- leaving, pf(r,l1).

report :- not leaving, pf(r,l0).

The different types of inferences that can be computed are:

• Diagnostic Inference: Here we are trying to compute the probability of cause given

the effect. To compute P (fire = t | leaving = t), the user can invoke

lpmln2asp -i fire-bayes.lpmln -e evid.db -q fire

where evid.db contains the line

:- not leaving.

This outputs

fire 0.352151116689

52

• Predictive Inference: Here we are trying to compute the probability of effect given

the cause. To compute P (leaving = t | fire = t), the user can invoke

lpmln2asp -i fire-bayes.lpmln -e evid.db -q leaving

where evid.db contains the line

:- not fire.

This outputs

leaving 0.862603541626

• Mixed Inference: Here we combine predictive and diagnostic inference in Mixed

Inference. To compute P (alarm = t | fire = f , leaving = t), the user can invoke

lpmln2asp -i fire-bayes.lpmln -e evid.db -q alarm

where evid.db contains two lines

:- fire.

:- not leaving.

This outputs

alarm 0.938679679707

• Intercausal Inference: Here we compute the probability of a cause given an effect

common to multiple causes. To compute P (tampering = t | fire = t, alarm = t),

the user can invoke

lpmln2asp -i fire-bayes.lpmln -e evid.db -q tampering

where evid.db contains two lines

:- not fire.

:- not alarm.

53

This outputs

tampering 0.0102021964693

• Explaining away: Suppose we know that alarm rang. Then we can use Diagnostic

Inference to calculate P (tampering = t | alarm = t). But what happens if we now

know that there was a fire as well? In this case P (tampering = t | alarm = t)

will change to P (tampering = t | fire = t, alarm = t). In this case, knowing

that there was a fire explains away alarm, and hence affecting the probability of

tampering. Even though fire and tampering are independent, the knowledge about

one changes the probability of other.

Lets compute P (tampering = t | alarm = t) which states the probability of

tampering to be true given alarm is true. The user can invoke

lpmln2asp -i fire-bayes.lpmln -e evid.db -q tampering

where evid.db contains line

:- not alarm.

This outputs

tampering 0.633397289908

If this result is compared with the result of Intercausal Inference, we can see that

P (tampering = t | alarm = t) > P (tampering = t | fire = t, alarm = t).

Observing the value of fire explains away the tampering i.e. the probability of

tampering decreases.

4.5 Computing ProbLog in LPMLN2ASP

ProbLog (De Raedt et al., 2007) can be viewed as a special case of LPMLN language

(Lee and Wang, 2016b), in which soft rules are atomic facts only. The precise relation be-

54

tween the semantics of the two languages is stated in (Lee and Wang, 2016b). PROBLOG2

implements a native inference and learning algorithm which converts probabilistic infer-

ence problems into weighted model counting problems and then solves with knowledge

compilation methods (Fierens et al., 2013).

According to the translation defined in (Lee and Wang, 2016b), given a Problog pro-

gram P = 〈PF,Π〉, where

• PF is a set of ground probabilistic facts of the form pr :: a,

• Π is a set of ground rules of the form A ← B1, ..., Bm, not Bm+1, ..., not Bn where

A,B1, ..., Bn are atoms from σ (0 ≤ m ≤ n), and A is not a probabilistic atom.

the corresponding LPMLN program P′ is obtained from P as follows

• For each probabilistic fact pr :: a in P, LPMLN program P′ contains (i) ln(pr) : a

and ln(1− pr) :← a if 0 < pr < 1; 7 (ii) α : a if pr = 1; (iii) α :← a if pr = 0.

• For each rule R ∈ Π, P′ contains α : R.

We present two different examples taken from the PROBLOG2 website to demonstrate

how Problog encodings can be translated to LPMLN2ASP encodings.

4.5.1 Computing ProbLog in LPMLN2ASP - 1

Example 19. We encode the problem of probabilistic graphs 8 in Problog. In the proba-

bilistic graph, the existence of some edges between nodes is uncertain. We can use Problog

to calculate the probability of path between two nodes. The encoding in Problog syntax is

0.6::edge(1,2).

0.1::edge(1,3).

7This can be shortened as ln(pr
1−pr) a

8This example is taken from the Problog website https://dtai.cs.kuleuven.be/problog/tutorial/basic/04 pgraph.html

55

0.4::edge(2,5).

0.3::edge(3,4).

0.8::edge(4,5).

path(X,Y) :- edge(X,Y).

path(X,Y) :- edge(X,Z), Y \== Z, path(Z,Y).

query(path(1,5)).

0.6 :: edge(1, 2) states that there is a 60% probability of there being an edge from node 1 to

2. We are querying for the path between nodes 1 and 5. The probability of path from node 1

to 5 according to Problog semantics is 0.25824. The encoding in the syntax of LPMLN2ASP

according to the translation above is

@log(0.6/0.4) edge(1,2).

@log(0.1/0.9) edge(1,3).

@log(0.4/0.6) edge(2,5).

@log(0.3/0.7) edge(3,4).

@log(0.8/0.2) edge(4,5).

path(X,Y) :- edge(X,Y).

path(X,Y) :- edge(X,Z),Y != Z, path(Z,Y).

On executing

lpmln2asp -i problog2.lp -q path

outputs

path(1, 2) 0.600008374025

path(1, 3) 0.100002211982

path(4, 5) 0.800000902219

56

path(1, 4) 0.0300027187484

path(1, 5) 0.258254093504

path(2, 5) 0.400015626048

path(3, 4) 0.300020551084

path(3, 5) 0.240016711551

The probability of path from node 1 to 5 according to LPMLN semantics corresponds the

the output from Problog encoding.

4.5.2 Computing ProbLog in LPMLN2ASP - 2

Example 20. The following example 9 expresses a chain of events that happens when a

person throws a rock. Two people, Suzy and Billy, may each decide to throw a rock at a

bottle. Suzy throws with a probability 0.5 and if she does, her rock breaks the bottle with

probability 0.8. Billy always throws and his rock hits with probability 0.6. The encoding

in Problog syntax is

0.5::throws(suzy).

throws(billy).

0.8::broken; 0.2::miss :- throws(suzy).

0.6::broken; 0.4::miss :- throws(billy).

query(broken).

Rule 3 in Problog encoding is called annotated disjunction (Vennekens et al., 2004). Such a

disjunction cannot be written in the input language of LPMLN2ASP. We use the translation

as defined in (Gutmann, 2011) to translate the annotated disjunction rules into Problog
9This example is taken from the Problog website

https://dtai.cs.kuleuven.be/problog/tutorial/various/16 cplogic.html

57

encoding without annotated disjunctions. We translate every annotated disjunction rule of

the form

p1 :: h1; . . . pn :: hn : − b1, . . . bm

where h1, . . . , hn are atoms, the body b1, . . . , bm is a possibly empty conjunction of atoms

and pi are probabilities such that
∑n

i=1 pi ≤ 1 into a set of probabilistic facts

F = {p′1 :: msw(1, V1, . . . , Vk), . . . , p
′
n :: msw(1, V1, . . . , Vk)}

where V1, . . . , Vk are all variables appearing in the disjunctive rule. Furthermore for each

rule hi one clause is added to the program as follows

h1 :- b1, . . . , bm,msw(1, V1, . . . , Vk).

h2 :- b1, . . . , bm,msw(2, V1, . . . , Vk), not msw(1, V1, . . . , Vk).

h3 :- b1, . . . , bm,msw(3, V1, . . . , Vk), not msw(2, V1, . . . , Vk), not msw(1, V1, . . . , Vk).

hi :- b1, . . . , bm,msw(i, V1, . . . , Vk), not msw(i− 1, V1, . . . , Vk), . . . ,

not msw(1, V1, . . . , Vk).

The probability p′1 is defined as p1 and for i > 1 as

p′i =

pi · (1−

∑i−1
j=1 pj)

−1 if pi > 0

0 if pi = 0

.

Based on the above translation, we can translate the original program into the following

Problog encoding

0.5::throws(suzy).

throws(billy).

58

0.8::msw(1,1).

msw(1,2).

broken :- throws(suzy), msw(1,1).

miss :- throws(suzy), msw(1,2), \+msw(1,1).

0.6::msw(2,1).

msw(2,2).

broken :- throws(billy), msw(2,1).

miss :- throws(billy), msw(2,2),\+msw(2,1).

query(broken).

The equivalent LPMLN2ASP encoding according to the rules mentioned at the beginning of

Section 4.5 is

0 throws(suzy).

throws(billy).

@log(0.8/0.2) msw(1,1).

msw(1,2).

broken :- throws(suzy), msw(1,1).

miss :- throws(suzy), msw(1,2), not msw(1,1).

@log(0.6/0.4) msw(2,1).

msw(2,2).

broken :- throws(billy), msw(2,1).

miss :- throws(billy), msw(2,2), not msw(2,1).

On executing

59

lpmln2asp -i problog2-tight.lp -q broken

the output is

broken 0.760005204855

This example is a Problog encoding of a program in the language of CP-Logic. The

following figure 10 is a probability tree of the above encoding. P (broken) is given by

Figure 4.3: Probability Tree for Example 20

P (broken) = 0.5 ∗ 0.8 ∗ 1.0 ∗ 0.6 + 0.5 ∗ 0.8 ∗ 1.0 ∗ 0.4+

0.5 ∗ 0.2 ∗ 1.0 ∗ 0.6 + 0.5 ∗ 1.0 ∗ 0.6 = 0.76

which corresponds to the value computed using LPMLN2ASP .

4.6 Debugging inconsistent Answer Set Programs

LPMLN2ASP can be used to derive the most probable stable models even when the

standard answer set program is inconsistent. This feature could be useful in debugging an

inconsistent answer set program. When the given CLINGO program is inconsistent, one can

call LPMLN2ASP for the same input to find out which rules cause inconsistency. For this

use-case, it is necessary to translate all hard rules in the ASP program. Probabilistic stable

models of the program are used to identify which rules are causing inconsistency.
10The Figure 4.3 is taken from https://dtai.cs.kuleuven.be/problog/tutorial/various/16 cplogic.html

60

Example 21. Consider the same example as Example 6 from which the last two soft rules

are made hard.

bird(X) :- residentbird(X). (r1)

bird(X) :- migratorybird(X). (r2)

:- residentbird(X) , migratorybird(X). (r3)

residentbird(jo). (r4)

migratorybird(jo). (r5)

Clearly the encoding is unsatisfiable. This is also the case when the encoding is run with

the command line

lpmln2asp -i input.lp

By default, LPMLN2ASP does not translate hard rules but we can instruct LPMLN2ASP to

translate hard rules as well by giving the -hr option to the program. We also use the -all

option since we want to get a verbose output for analyzing the stable models to remove

inconsistencies in the program. On executing

lpmln2asp -i input.lp -hr -all

LPMLN2ASP outputs

Answer: 1

residentbird(jo) migratorybird(jo) unsat(1,"a",jo) unsat(2,"a",jo)

unsat(3,"a",jo)

Optimization: 3

Answer: 2

unsat(4,"a") migratorybird(jo) unsat(2,"a",jo)

Optimization: 2

Answer: 3

residentbird(jo) unsat(5,"a") unsat(1,"a",jo)

61

Optimization: 2

Answer: 4

unsat(4,"a") unsat(5,"a")

Optimization: 2

Answer: 5

residentbird(jo) migratorybird(jo) bird(jo) unsat(3,"a",jo)

Optimization: 1

Answer: 6

unsat(4,"a") migratorybird(jo) bird(jo)

Optimization: 1

Answer: 7

residentbird(jo) unsat(5,"a") bird(jo)

Optimization: 1

Probability of Answer 5 : 0.333333333333

Probability of Answer 6 : 0.333333333333

Probability of Answer 7 : 0.333333333333

The output shows that either of the answers 5,6 or 7 can be used to identify the in-

consistencies in the program and change the program such that minimal rules have to be

modified to resolve inconsistency (since they are the most probable stable models). Answer

5 shows that rule 3 in the original program is unsatisfied. This is evident from the presence

of atom unsat(3,"a",jo) in the stable model where the first argument 3 is the index of

the unsatisfied rule. In the original program rule 3 is the constraint

:- residentbird(X) , migratorybird(X).

62

Removing this rule from the original program makes the program consistent. Similarly,

according to Answer 6, removing rule (r4), or according to Answer 7 removing rule

(r5) would make the program consistent.

After examining the most probable stable models above, we can see that at most we

need to modify one rule in the original program to resolve inconsistency. If we consider

any other stable models except the most probable stable models we can see that we need to

remove more than one rule. For instance, consider Answer 4 which has two unsat atoms

unsat(4,"a") and unsat(5,"a"). This means we need to remove rule 4 and rule 5

to resolve inconsistency in the program. A similar argument can be made for other stable

models. In order to make the program consistent we can either

• remove one rule following Answers 5, 6 or 7,

• remove two rules following Answers 2, 3 or 4,

• remove three rules following Answer 1.

63

Chapter 5

LPMLN2MLN SYSTEM

Figure 5.1: LPMLN2MLN System

5.1 Introduction

In this chapter we use completion as defined in (Lee and Wang, 2016b) to compute

LPMLN programs using MLN solvers like ALCHEMY, TUFFY and ROCKIT. This is realized

in the implementation of the LPMLN2MLN system as shown in Figure 5.1. This chapter

describes the syntax for the input language of LPMLN2MLN, the completion algorithm

implemented, Tseitin’s transformation usage in completion and the usage of the system.

The chapter also explains the differences among the underlying solvers and their respective

weaknesses and capabilities. This implementation, however, is restricted to tight programs

only.

5.2 Completion of non-ground rules in LPMLN2MLN

The stable models of a tight logic program coincide with the models of the program’s

completion (Erdem and Lifschitz, 2003). This result allows for computing stable models of

64

a program using SAT solvers. This idea can be extended to compute LPMLN programs using

MLN solvers (Lee and Wang, 2016b). System LPMLN2MLN translates a tight LPMLN pro-

gram into an equivalent MLN program by computing the completion of LPMLN program.

In theory, using loop formulas (Lin and Zhao, 2004) tight as well as non-tight LPMLN pro-

grams can be converted to MLN programs. However, translating non-tight programs using

loop formulas does not yield effective computation using MLN solvers since the number

of ground loop formulas that are required for computation can be exponential in the worst

case, and therefore, we focus only on tight programs in this chapter.

Review: Tight programs (Fages, 1994)

This is a review of tight programs from (Lee and Lifschitz, 2003). We assume the same

signature σ as defined in Section 2.1.

Let Π be a ground logic program consisting of the rules of the form (2.1). The positive

dependency graph of Π is the directed graph G such that

• the vertices G are the atoms occurring in Π, and

• for every rule of the form (2.1) in Π, G has an edge from eachAi such that 1 ≤ i ≤ k

to each atom in Aj such that k + 1 ≤ j ≤ l.

A nonempty set L of atoms is called a loop of Π if, for every pair a1, a2 of atoms in L,

there exists a path of nonzero length from a1 to a2 in the positive dependency graph of Π.

such that all vertices in this path belong to L.

For example, consider the program Π1

p← q, not r

q ← r, not p

r ← not p

65

the positive dependency graph G1 for the above program is

Figure 5.2: Positive Dependency Graph for Π1

Consider another program Π2

p← q

q ← p

p← not r

the positive dependency graph G2 for the above program is

Figure 5.3: Positive Dependency Graph for Π2

We say that a program is a tight program if Π has no loops. For instance, program Π1

above is a tight program, and program Π2 is not.

Review: Clark’s completion (Clark, 1978)

The definition of completion explained here is based on Clark’s completion. Let σ be a

finite first-order signature that has no function constants of arity > 0. A rule is a first-order

66

formula of σ that has the form

F → P (t)

Where F is a formula, P is a predicate constant and t is a tuple of terms. In logic program-

ming, we write this rule as

P (t)← F

and call P (t) the head of the rule, and F as the body of the rule. A logic program Π is a

finite set of such rules. The completion formula for an n-ary predicate constant P relative

to program Π is the sentence obtained as follows

1. Choose n variables that are pairwise distinct and do not occur in the program Π.

2. For each rule of the form

P (t1, ..., tn)← F

create the rule

P (x1, ..., xn)← F ∧ x1 = t1 ∧ ... ∧ xn = tn

3. For each of the rules

P (x1, ..., xn)← F ∧ x1 = t1 ∧ ... ∧ xn = tn

obtained in the previous step, make a list y of variables that occur in the body F but

not in its head and replace the formula in body by

P (x1, ..., xn)← ∃y(F ∧ x1 = t1 ∧ ... ∧ xn = tn)

67

4. For each rule obtained from step (3), write the rule

∀x1, ..., xn(P (x1, ..., xn)↔(∃y1(F1 ∧ x1 = t1 ∧ ... ∧ xn = tn))∨

...

∨ (∃ym(Fm ∧ x1 = t1 ∧ ... ∧ xl = tl))

Completion of rules in LPMLN2MLN

We extend the completion from (Lee and Wang, 2016b) to non-ground LPMLN rules. An

LPMLN program Π comprises of rules of the form w : R whereR is a rule of the form (2.1).

We assume the same signature σ as defined in Section 2.1. Each R can be identified with

the rule

head(t1)← body(t2) (5.1)

where t1 is a set of terms occurring in the head and t2 is a set of terms occurring in the body

of the rule. Each of the terms in t1 and t2 can be either a variable or an object constant.

Each rule R is translated into R′ such that all atoms in head in Π consists of the same

list of terms. The translation is as follows

1. We replace t1 by v where v is a list of n variables v1, ..., vn for the n-ary predicate

head. Variables v1, ..., vn are pairwise-distinct and do no occur in Π.

2. Rewrite R as

head(v)← body(t′2) ∧
∧

ciis an object constant in t1

vi = ci

where t′2 is obtained from t2 by replacing every variable in t2 that was present in t1

by its corresponding substitute vi from step (1).

The completion of the program LPMLN Π denoted by comp(Π) consists of rules

α : head(v)→
∨

w:head(v)←body(t′2)∈Π
z ∈ t′2\v

(
∃z body(t′2)

)
. (5.2)

68

for each predicate constant head in Π. The equivalent MLN program for an LPMLN pro-

gram Π consist of rules Π ∪ comp(Π).

Example 22. Consider the encoding Example 6

α : Bird(X)← ResidentBird(X) (r1)

α : Bird(X)←MigratoryBird(X) (r2)

α :← ResidentBird(X) , MigratoryBird(X) (r3)

2 : ResidentBird(Jo) (r4)

1 : MigratoryBird(Jo) (r5)

After step 1 the translated program obtained is

α : Bird(v1)← ResidentBird(X) (r1)

α : Bird(v2)←MigratoryBird(X) (r2)

α :← ResidentBird(X) , MigratoryBird(X) (r3)

2 : ResidentBird(v1) (r4)

1 : MigratoryBird(v2) (r5)

After step 2 the translated program obtained is

α : Bird(v1)← ResidentBird(v1) (r1)

α : Bird(v1)←MigratoryBird(v1) (r2)

α :← ResidentBird(X) , MigratoryBird(X) (r3)

2 : ResidentBird(v1)← v1 = Jo (r4)

1 : MigratoryBird(v1)← v1 = Bob (r5)

69

The completion of the above program comp(Π) is given by

α : Bird(v1)→ ResidentBird(v1) ∨MigratoryBird(v1)

α : ResidentBird(v1)→ v1 = Jo

α : MigratoryBird(v1)→ v1 = Bob

The following theorem justifies using completion of tight programs for computing LPMLN

Theorem 3. (Lee and Wang, 2016b) For any tight LPMLN program Π such that the SM ′[Π]

is not empty, stable models of Π under the LPMLN semantics and the models of comp(Π)

under the MLN semantics have the same probability distribution over all interpretations.

5.3 Tseitin’s transformation for completion formulas

Markov Logic Network solvers ALCHEMY, TUFFY convert the formulas to its CNF rep-

resentation before proceeding with the inference. The completion rule as yielded by Equa-

tion (5.2) may blow up the rule size exponentially in the worst case when it is converted

to its CNF after grounding. Tseitin (Tseitin, 1968) shows a way to reduce complexity by

introducing proxy variables for subformulas. This keeps the number of clauses linear in the

size of the input rule. Tseitin’s transformation is an equisatisfiable transformation i.e. the

transformed formula is satisfiable iff the original formula is satisfiable.

Review: Tseitin’s transformation

Given a formula F , let sub(F) be the set of all subformulas of F including F itself and

psub(F) represent a new variable introduced for each of the subformulas of F . The Tseitin’s

transformation of F is the formula

pF ∧
∧

F1�F2∈sub(F)

pF1�F2 ↔ pF1 � pF2 (5.3)

70

where � is an arbitrary boolean connective. Since pF1�F2 ↔ pF1 � pF2 contains at most

three literals and two connectives, the size of this formula in CNF is bound by a constant.

Example 23. Let F be the formula

(a ∧ b) ∨ (c ∧ d) (5.4)

converting it into CNF would yield

(a ∨ c) ∧ (a ∨ d) ∧ (b ∨ c) ∧ (b ∨ d).

The conversion blows the formula size exponentially in the number of literals in the original

formula. The Tseitin’s transformation T (F) of (5.4) is

x1 ↔ a ∧ b

x2 ↔ c ∧ d

x3 ↔ x1 ∨ x2

T (F) is x3 ∧ (x3 ↔ x1 ∨ x2) ∧ (x2 ↔ c ∧ d) ∧ (x1 ↔ a ∧ b)

where each of the substitutions can be converted into CNF,

x1 ↔ a ∧ b⇔ x1 → (a ∧ b) ∧ ((a ∧ b)→ x1)

⇔ (x1 → a) ∧ (x1 → b) ∧ (¬a ∨ ¬b ∨ x1)

⇔ (¬x1 ∨ a) ∧ (¬x1 ∨ b) ∧ (¬a ∨ ¬b ∨ x1)

Using Tseitin’s transformation in LPMLN2MLN

System LPMLN2MLN does not use the Tseitin’s transformation as described in Equation

(5.3) as is but uses a simplified version of the translation. The original translation considers

all sub-formulas of the original formula to be replaced by auxiliary variables. However,

71

the simplified algorithm only considers disjunctive terms in the completion of a rule as

described in Equation (5.2) as a sub-formula

Given the completion of Π as described in (5.2), for every disjunctive term body(t′2) in

the rule we add the rule

α : ∀̃ (Auxbody(t′2)(t
′
2)↔ body(t′2)) (5.5)

to Π where Auxbody(t′2)(t
′
2) is an atom introduced for the subformula body(t′2) and rewrite

the completion rule as

α : head(v)→
∨

w:R′∈Π
z ∈ t′2\v

(
∃z Auxbody(t′2)(t

′
2)

)
. (5.6)

The following theorem justifies the equivalent rewriting using Aux atoms

Theorem 4. (Lee et al., 2017, Proposition 1) For any MLN L of signature σ, let F (x) be a

subformula in L where x is the list of all free variables of F (x), and let LFAux be the MLN

program obtained from L by replacing F (x) with a new predicate Aux(x) and adding the

formula

α : ∀x(Aux(x)↔ F (x))

For any interpretation I of L, let Iaux be the extension of I of signature σ ∪ {Aux}

defined by IAux(Aux(c)) = (F (c))I for every list c of ground terms. We have

PL(I) = PLF
Aux

(IAux)

5.4 Completion of disjunction in Head of rule

LPMLN allows rules of the form (2.1) which consists of disjunction in head. Rule R

considered in Equation (5.1) consists of head with a single positive literal. We use the result

72

described in (Lee and Lifschitz, 2003) to extend the definition of completion to disjunction

in head. Proposition 2 in (Lee and Lifschitz, 2003) states that for any tight program Π

whose rules have the form as in (2.1) and any set X of atoms, X is an answer set for Π iff

X satisfies Comp(Π). This proposition shows that the method of computing answer sets

based on completion can be extended to tight programs whose rules have the form (2.1).

Consider for instance a rule with disjunction in head

w : P1(t1) ∨ ... ∨ Pn(tn)← Body

According to the Proposition stated above, the rule can be transformed into n rules of the

form (5.1) as

w : Pi(ti)← Body ∧
∧

j:j∈{1...n}\i

¬Pj(tj)

for each i ∈ {1 . . . n}.

Choice rules in head are handled in a similar way. A choice rule given by

w : {P (t)}ch ← Body

is nothing but a case of disjunction in head

w : P (t) ∨ ¬P (t)← Body.

5.5 LPMLN2MLN System Architecture

Figure 5.1 shows the architecture of the LPMLN2MLN system. LPMLN2MLN is an en-

compassing system comprising of the LPMLN2MLN compiler and the underlying solver

ALCHEMY, TUFFY and ROCKIT. The input to the system is an LPMLN program. The syn-

tax of the input program is detailed in Section 5.6. The input is a set of weighted logic

73

programming rules given to the LPMLN2MLN compiler. The compiler outputs an MLN en-

coding according to the translation defined in Sections 5.2 and 5.3 which is given as input

to the solvers ALCHEMY, TUFFY or ROCKIT.

The complier outputs three different (but equivalent) encodings based on the underlying

solver selected by the user. Each of these three solvers support different input language

syntax and the compiler takes care of these differences. From the user’s perspective, the

input is the same irrespective of the solver selected.

Each of the solvers expect input in first-order logic syntax (ignoring the minor differ-

ences in the input language syntax amongst these solvers). The compiler translates each

rule of the form (5.1) into an equivalent non-ground rule. For instance, each rule of the

form

head(x)← body(y)

is translated by the compiler into

body(y)→ head(x)

defined as trans(Π). This is a trivial 1 − 1 translation performed for each rule R in Π.

The compiler then computes the completion comp(Π) of the program and adds the result

to trans(Π). The input to the respective MLN solvers is trans(Π) ∪ comp(Π).

There are three modes of computation in LPMLN2MLN: Most probable stable model,

marginal probability and conditional probability. The mode of computation is determined

by the arguments provided to the underlying solvers. Each of these underlying solvers

have various options that can be used to control the solving parameters which determine

the mode of computation, the accuracy of the answers, the solving algorithms used, etc.

These options are passed as it is by LPMLN2MLN to the solver selected.

74

5.6 LPMLN2MLN Input Language Syntax

This section describes the input language syntax of the LPMLN2MLN system. Users

familiar with ALCHEMY syntax would find that LPMLN2MLN syntax follows ALCHEMY

syntax except one difference where rules are written in the form as described in Equation

(2.1).

5.6.1 Logical connectives

The syntax for logical connectives is as follows:

• not for negation,

• ˆ for conjunction,

• v for disjunction,

• <= for implication,

• = for equality between two identifiers and

• != for inequality between two identifiers.

Operator precedence is as follows: negation>conjunction>disjunction>implication>equal-

ity = inequality. Associativity for all the operators is left to right.

5.6.2 Identifiers and Variables

A legal identifier is a sequence of letters, digits and underscores that begin with a letter.

Identifier for an object constants should begin with an uppercase letter, and it should begin

with a lowercase letter for an object variable.

75

5.6.3 Declarations

Declarations are similar to ALCHEMY syntax. The signature of an atom needs to be

declared before it can be used in the program. The declaration of an atom with predicate

constant P and n sorts s1, . . . , sn is given by

P (s1, ..., sn)

The domain of each sort s1, . . . , sn also needs to be declared before the predicate itself is

declared. If a sort s has n objects o1, . . . , on it is represented as

si = {o1, . . . , on}

All the sorts that are required for defining the predicates need to be defined before the

predicate declaration. A sort may not be empty. All object constants for a sort si that are

used in the input program need to be declared to belong to si. MLN solvers can infer the

domain of a sort from the evidence file as well. Therefore, for programs with large domains

where most of the object constants are used in the evidence file, the user can declare a

sort containing only the object constants that are used in the input program. These object

constants are required for completion in accordance with Equation (5.2).

5.6.4 Rules

Rules are of two types, soft rules and hard rules. A soft rule is written as

w head <= body

where head is a disjunction of atoms or empty, body is a conjunction of literals, equality

terms or its negation, or empty and w is the weight of the rule. A weight is a whole number

or a real number in the usual decimal notation. Equality terms or its negation can be used

in the body of a rule as

76

j = k

j != k

where j is a variable and k can be a variable or an object constant. A hard rule is written as

head <= body.

Notice the period at end of the hard rule. If the body of a rule is empty, <= is dropped.

Such a rule is written as

w <= body

<= body.

A rule with both head and body empty cannot be written.

Choice rule

Choice rules can be written as

w {hi} <= body

{hi} <= body.

where hi is a single atom in the head of a rule.

5.6.5 Comments

All comments start with // and start on a new line.

LPMLN2MLN Rule examples

This section describes the different types of rules that can be used as input for the system

LPMLN2MLN. Each of the rules below is a Hard rule (notice the period at the end). Each of

these Hard rules can be written as a Soft rule by removing the period and adding a weight

77

at the start of the rule. For all the examples below T, F, C2 are object constants and x, y

are variables.

• Simple formula:

male(T) <= not intervene(T).

• Disjunction in Head:

male(T) v male(F) <= not intervene(T).

• Conjunction in Body:

human(T, C2) <= male(x) ˆ human(T, x).

• Constraint:

<= male(x) ˆ male(y).

• Comparison Operators:

female(x) <= male(x) ˆ male(y) ˆ x!=y.

female(x) <= male(x) ˆ male(y) ˆ x=y.

• Choice Rules:

{load(x, y)} <= step(x, y).

Example 24. Encoding of Example 6 in the input language of LPMLN2MLN

entity = {Jo}

Bird(entity)

MigratoryBird(entity)

ResidentBird(entity)

78

Bird(x) <= ResidentBird(x).

Bird(x) <= MigratoryBird(x).

<= ResidentBird(x) ˆ MigratoryBird(x).

2 ResidentBird(Jo)

1 MigratoryBird(Jo)

5.7 LPMLN2MLN Usage

The basic usage of LPMLN2MLN is

lpmln2mln -i <input_file> [-e <evid_file>] [-r <output_file>]

[-q <query_predicates>] [-a] [-t] [-ro] [-mln <mln_options>]

optional arguments:

-h, --help show this help message and exit

-i <input_file> input file. [REQUIRED]

-e <evidence_file> evidence file

-r <output_file> output file. [REQUIRED]

-q <query_predicates> Multiple comma separated query

predicates.

-al, -alchemy [DEFAULT] Compile for Alchemy

-tu, -tuffy Compile for Tuffy

-ro, -rockit Compile for rockit

-mln " <mln_options>" Extra options for the respective

solvers.Passed as it is to the solvers.

Options are enclosed in quotes. 1

1There should be a space between the first quote and the MLN options that are required to be passed
to the respective MLN solver. If the space is not provided, the MLN options are parsed as options of the

79

Command line usage

This section describes the command line usage of LPMLN2MLN and some examples of

usage 2 . We use the input as described in Example 24 for this section.

• MAP inference

lpmln2mln -i <input_file> -r <output_file> -q <query_predicates>

By default LPMLN2MLN uses ALCHEMY. All the MLN solvers used in LPMLN2MLN

require an output file to store the output and a query predicate. Therefore these

options are required by LPMLN2MLN as well. For example the command

lpmln2mln -i bird.lpmln -r out.txt -q Bird -mln " -m"

computes MAP inference using ALCHEMY. Here we are providing -a as an argu-

ment to the -mln option which is required to instruct ALCHEMY to compute MAP

inference. Corresponding option needs to be provided for TUFFY if it is used as a

solver. Solver ROCKIT computes MAP inference by default.

Output:

Bird(Jo)

ResidentBird(Jo)

• Marginal Probability of query predicates

lpmln2mln -i <input_file> -r <output_file> -q <query_predicates>

For example the command

lpmln2mln -i bird.lpmln -r out.txt -q Bird

LPMLN2ASP system. This is a limitation of the platform Ubuntu on which the system is developed. Example
usage in the further sections would make the usage of this option clear.

2The filename is birds.lpmln for the usage

80

computes marginal probability of Bird using ALCHEMY. Since ALCHEMY’S default

operation is to compute marginal probability no other options are required.

Output:

Bird(Jo) 0.90296

• Marginal Probability of query predicates using TUFFY as the solver

lpmln2mln -i <input_file> -r <output_file> -q <query_predicates> -

tuffy

For example the command

lpmln2mln -i bird.lpmln -r out.txt -q Bird -tuffy -mln " -marginal"

computes marginal probability of Bird using TUFFY. Since TUFFY’S default opera-

tion is to compute MAP inference, we need to add -mln " -marginal" to instruct

TUFFY to compute marginal probability. This outputs a command line that should be

executed in the location where TUFFY is installed. An example output for this mode

is

java -jar tuffy.jar -i input.mln -r out.txt -q Bird -marginal

Output after executing the command generated above in the installation location of

TUFFY:

1.0000 Bird("Jo") 3

• Conditional probability of query predicates given evidence e

lpmln2mln -i <input_file> -r <output_file> -q <query_predicates> -e

<evidence_file>

3Note that the accuracy of the solvers depend on the parameters provided to the solver. In this case,
TUFFY is run with default parameters which are different than ALCHEMY’S default parameters and hence we
get different results.

81

Since evidence is provided, conditional probability of the query given evidence is

computed. For example

lpmln2mln -i bird.lpmln -r out.txt -q ResidentBird -e evid.db

computes conditional probability of Bird where evid.db contains

Bird(Jo)

System LPMLN2MLN uses the evidence file by passing it as it is to the solver selected

by the user and therefore the user needs to make sure that the syntax of the rules

in evidence file conforms to that of the respective solver. Here we are calculating

P (ResidentBird(Jo) | Bird(Jo)), that is, probability of ResidentBird being Jo

given that Jo is a Bird.

Output:

ResidentBird(Jo) 0.724978

5.8 Target systems

The system LPMLN2MLN translates the input program into weighted first order formu-

las, which can be run on ALCHEMY, TUFFY or ROCKIT. The following section describes

the respective systems and their limitations.

5.8.1 ALCHEMY

The input language of ALCHEMY allows us to write first-order formulas prepended with

weights. Any first-order logic formula can be written in ALCHEMY. ALCHEMY performs all

computation in memory. This limits its usage to smaller domains which can be computed

in memory. Larger domains most likely leads to a segment fault with this system. When

using LPMLN2MLN system to compute LPMLN program with ALCHEMY, the user needs

82

to be wary of some limitations of ALCHEMY. The characters @ and $ are reserved and

should not be used in the input program to LPMLN2MLN. Due to the internal processing

of functions in ALCHEMY, variable names should not start with “funcVar” and predicate

names should not start with “isReturnValueOf”. The completion rules as obtained from

Equation (5.2) and Equation (5.6) can be used directly in ALCHEMY.

5.8.2 TUFFY

TUFFY is another MLN solver that takes as input weighted rules in the first-order logic

syntax. Solver ALCHEMY cannot scale well to real-world datasets due to all its computation

being in-memory. TUFFY achieves scalability via three factors: (i) bottom up approach to

grounding; (ii) hybrid architecture that performs local search using a relational database

management system; (iii) partitioning, loading and parallel algorithms for solving. It has

been shown in (Niu et al., 2011) that TUFFY is more efficient and scalable than ALCHEMY

in grounding of larger domains which makes a TUFFY translation desirable.

Like ALCHEMY, TUFFY takes as input weighted first order formulas. However, the

input language of TUFFY is not as general as the input language of ALCHEMY.

Differences between the input languages of TUFFY and ALCHEMY

• TUFFY does not support bi-directional implication <=> which is supported by

ALCHEMY. LPMLN2MLN handles it by translating a rule with bi-directional implica-

tion such as

a <=> b.

to

a => b.

b => a.

83

• TUFFY uses different syntax when comparing variables or variables with constants.

While we can directly write

x = y ∧ x = Jo

x = y ∨ x = Jo

in ALCHEMY, for TUFFY the equality needs to be encoded as

[x = y AND x = Jo]

[x = y OR x = Jo]

and grouped together. Here, x and y are variables and Jo is a constant.

• Exist clauses are used differently in TUFFY. A rule of the form,

p(x) => Exist y q(x,y) v Exist z r(x,z)

is written in Tuffy as

Exist y,z p(x) => q(x,y) v r(x,z)

• TUFFY does not accept predicates without any arguments. For example, consider the

following LPMLN2MLN input

P

Q

R

1 P <= Q

1 Q <= P

2 P <= not R

3 R <= not P

While this input is valid for ALCHEMY, for TUFFY the user needs to encode the

program as

84

temp = {X}

P(temp)

Q(temp)

R(temp)

1 P(X) <= Q(X)

1 Q(X) <= P(X)

2 P(X) <= not R(X)

3 R(X) <= not P(X)

Here we introduce a sort temp for all the predicates without arguments in the original

program. Since temp cannot be used without declaring it first and since a sort cannot

be empty, we add a dummy object constant 1 to the sort temp. Although the input

language of LPMLN2MLN allows literals without any terms, the user needs to make

sure that the output program generated is runnable by encoding it in the way shown

above.

• POSTGRES is used as the database which is used for grounding and solving by TUFFY

and needs to be installed separately.

TUFFY Translation

This section describes the translations used in order to make the input program compatible

with TUFFY.

• Each rule of the form as described in Equation (5.5) is translated as

α : ∀̃ (Auxbody(t′2)(t
′
2)→ body(t′2))

α : ∀̃ (body(t′2)→ Auxbody(t′2)(t
′
2))

(5.7)

This is an equivalent translation.

85

• Each rule of the form as described in Equation (5.2) is translated as

α : ∃z
(
head(v)→

∨
w:head(v)←body(t′2)∈Π

z ∈ t′2\v

body(t′2)

)
. (5.8)

This is again an equivalent translation since z only contains variables from t′2 \ v.

• Each rule containing equality term is post-processed to make them compatible with

TUFFY syntax. For example consider the program in the input language of ALCHEMY

set = {1,2}

p(set)

q(set)

p(x) => x=1 v q(x) v x=2.

In the input language of TUFFY the program is

set = {1,2}

p(set)

q(set)

p(x) => q(x) v [x=1 OR x=2]

5.8.3 ROCKIT

ROCKIT is yet another MLN solver that reduces MAP inference in graphical models

as an optimization problem in Integer Linear Programming(ILP). ROCKIT uses Cutting

Plane Aggregation 4 which is a novel meta-algorithm to compute MAP estimates on ILP

instances. ROCKIT parallelizes the MAP inference pipeline taking advantage of shared-

memory multi-core architectures which makes it faster than both ALCHEMY and TUFFY as

shown in (Noessner et al., 2013).
4Cutting plane aggregation is disabled when existential formulas are used

86

ROCKIT language syntax is even more limited than that of TUFFY. This section lists

down some of these limitations of ROCKIT syntax. The current implementation is limited

in supporting ROCKIT syntax. ROCKIT does not allow equality terms and hard rules with

empty body and therefore shouldn’t be used in LPMLN2MLN when using ROCKIT as the

solver.

Differences between ROCKIT, ALCHEMY and TUFFY

• In ROCKIT, it is not possible to use implications (=¿) and conjunctions (). The user

has to transform the formula to CNF.

• Exist syntax is different from TUFFY and ALCHEMY.

Exists y friends(x,y)

becomes

|y| friends(x,y) >= 1

• All constants should be within “ ” . Rest all are considered variables in a formula.

• Gurobi is the internal solver. It is a commercially available ILP solver with free

academic licenses and needs to be installed separately.

• The evidence file cannot be empty. In comparison, ALCHEMY supports an empty

evidence files and TUFFY can be executed without providing the evidence file.

• MySQL is used as the database which is used for grounding and needs to be installed

separately.

87

ROCKIT Translation

The translation of LPMLN to the input language if ROCKIT is similar to the translation to

the input language of TUFFY.

• All rules in trans(Π)

body(y)→ head(x)

are translated to transro(Π) as

¬body(y) ∨ head(x). (5.9)

This is an equivalent translation.

• Rules obtained from (5.7) and (5.8) can be used in ROCKIT after applying the trans-

lation as described in (5.9).

• Each rule with “Exist” is post-processed to make it compatible with ROCKIT syntax.

For example consider the program in ALCHEMY

set = {1,2}

p(set)

q(set)

Exist x p(x).

In ROCKIT, the program is written as

set = {1,2}

p(set)

q(set)

|x| p(x) >=1.

88

Chapter 6

COMPUTING OTHER FORMALISMS IN LPMLN2MLN

It has been shown that formalisms like Pearl’s Causal Models, Bayes Net, P-Log and

Problog can be embedded in LPMLN (Lee and Wang, 2016b; Lee and Yang, 2017b; Lee

et al., 2015). In this chapter we demonstrate how to use LPMLN2MLN to compute the tight

fragments of these formalisms. We use ALCHEMY as the solver for computing each of the

formalisms below.

6.1 Computing P-log in LPMLN2MLN

We refer the reader to Section 4.2 for a description of P-Log formalism.

Example 25. We use the same example as described in Example 16. The following is an

encoding of Example 16 in the input language of LPMLN2MLN .

doors = {1,2,3}

numbers = {2,3}

boolean = {T,F}

attributes = {Attropen ,Attrselected ,Attrprize}

Open(doors)

Selected(doors)

Prize(doors)

CanOpen(doors,boolean)

Obs(attributes ,doors)

UnObs(attributes ,doors)

Intervene(attributes)

89

NumDefProb(attributes ,numbers)

PossWithDefProb(attributes ,doors)

PossWithAssProb(attributes ,doors)

CanOpen(d,F) <= Selected(d).

CanOpen(d,F) <= Prize(d).

CanOpen(d,T) <= !CanOpen(d,F).

<= CanOpen(d,T) ˆ CanOpen(d,F).

<= Prize(d1) ˆ Prize(d2) ˆ d1 != d2.

<= Selected(d1) ˆ Selected(d2) ˆ d1 != d2.

<= Open(d1) ˆ Open(d2) ˆ d1 != d2.

Prize(1) v Prize(2) v Prize(3) <= !Intervene(Attrprize).

Selected(1) v Selected(2) v Selected(3) <= !Intervene(Attrselected).

Open(1) v Open(2) v Open(3) <= !Intervene(Attropen).

<= Open(d) ˆ !CanOpen(d,T) ˆ !Intervene(Attropen).

PossWithDefProb(Attrprize ,d) <= !PossWithAssProb(Attrprize ,d) ˆ!

Intervene(Attrprize).

NumDefProb(Attrprize ,2) <= Prize(d1) ˆ PossWithDefProb(Attrprize ,d1)

ˆPossWithDefProb(Attrprize ,d2) ˆ d1!=d2.

NumDefProb(Attrprize ,3) <= Prize(d1) ˆ PossWithDefProb(Attrprize ,d1)

ˆPossWithDefProb(Attrprize ,d2) ˆ PossWithDefProb(Attrprize ,d3) ˆd1

!=d2 ˆ d1!=d3 ˆ d2!=d3.

-0.6931 not not NumDefProb(Attrprize ,2)

90

-0.4055 not not NumDefProb(Attrprize ,3)

PossWithDefProb(Attrselected ,d) <= !PossWithAssProb(Attrselected ,d)

ˆ!Intervene(Attrselected).

NumDefProb(Attrselected ,2) <= Selected(d1) ˆPossWithDefProb(

Attrselected ,d1) ˆ PossWithDefProb(Attrprize ,d2) ˆ d1!=d2.

NumDefProb(Attrselected ,3) <= Selected(d1) ˆPossWithDefProb(

Attrselected ,d1) ˆ PossWithDefProb(Attrselected ,d2) ˆ

PossWithDefProb(Attrselected ,d3) ˆ d1!=d2 ˆ d1!=d3 ˆ d2!=d3.

-0.6931 not not NumDefProb(Attrselected ,2)

-0.4055 not not NumDefProb(Attrselected ,3)

PossWithDefProb(Attropen ,d) <= !PossWithAssProb(Attropen ,d) ˆ !

Intervene(Attropen) ˆ CanOpen(d,T).

NumDefProb(Attropen ,2) <= Open(d1) ˆ PossWithDefProb(Attropen ,d1) ˆ

PossWithDefProb(Attropen ,d2) ˆ d1!=d2.

NumDefProb(Attropen ,3) <= Open(d1) ˆ PossWithDefProb(Attropen ,d1) ˆ

PossWithDefProb(Attropen ,d2) ˆ PossWithDefProb(Attropen ,d3) ˆ d1!=

d2 ˆ d1!=d3 ˆ d2!=d3.

-0.6931 not not NumDefProb(Attropen ,2)

-0.4055 not not NumDefProb(Attropen ,3)

Obs(Attrselected ,1).

<= Obs(Attrselected ,1) ˆ !Selected(1).

Obs(Attropen ,2).

91

<= Obs(Attropen ,2) ˆ !Open(2).

UnObs(Attrprize ,2).

<= UnObs(Attrprize ,2) ˆ Prize(2).

On executing

lpmln2mln -i input.lp -r out.txt -q Prize

the output is

Prize(1) 0.286021

Prize(2) 4.9995e-05

Prize(3) 0.713979

which corresponds to the output of the P-log program. Note that the accuracy of the output

can be improved by giving parameters to solver ALCHEMY such as -maxsteps using the

-mln options in LPMLN2MLN like

lpmln2mln -i input.lp -r out.txt -q Prize -mln " -maxSteps 10000"

6.2 Computing Pearl’s Causal Model in LPMLN2MLN

We refer the reader to Section 4.3 for a description of the formalism.

Example 26. We use the same example as used in Example 17. The following is an encod-

ing of Example 17 in the input language of LPMLN2MLN . This translation is represented

in the input language of LPMLN2MLN as follows

events={A0,A1,B0,B1,C0,C1,D0,D1}

do(events)

a

b

92

c

d

u

w

sa

bs

cs

ds

0.8472 u

-1.3862 w

c <= u.

a <= c.

a <= w.

b <= c.

d <= a.

d <= b.

cs <= uˆ not do(C1)ˆ not do(C0).

as <= csˆ not do(A1)ˆ not do(A0).

as <= wˆ not do(A1)ˆ not do(A0).

bs <= csˆ not do(B1)ˆ not do(B0).

ds <= asˆ not do(D1)ˆ not do(D0).

ds <= bsˆ not do(D1)ˆ not do(D0).

cs <= do(C1).

93

as <= do(A1).

bs <= do(B1).

ds <= do(D1).

where as, bs, cs, ds are nodes in the twin network, a1 means that a is true; a0 means

that a is false; other atoms are defined similarly.

The different types of inference that can be computed are:

• Prediction: To represent prediction, the evidence file contains

!a

On executing

lpmln2mln -i pcm.lp -e evid.db -q d

the output is

d 4.9995e-05

which means that if rifleman A did not shoot, the prisonser is certainly alive.

• Abduction: To represent abduction, the evidence file contains

!d

On executing

lpmln2mln -i pcm.lp -e evid.db -q c

the output is

c 4.9995e-05

which means that if the prisoner is alive then the captain did not order execution.

• Transduction: To represent transduction, the evidence file contains

94

a1

On executing

lpmln2mln -i pcm.lp -e evid.db -q b

the output is

b 0.877962

which means there is a 87.7% chance that rifleman B shot as well.

• Action: To represent an action, the evidence file contains

!c

do(A1)

On executing

lpmln2mln -i pcm.lp -e evid.db -q ds,bs

outputs

ds 0.99995

bs 4.9995e-05

which means that the prisoner will die and rifleman B will not shoot.

• Counterfactual: To represent the counterfactual query, the evidence file contains

do(A0)

d

Here d is an observation and do(a0) is an intervention. On executing
1Note that in LPMLN2ASP the evidence file contains :- not a but since double negation is invalid

syntax for ALCHEMY, implicitly double negation is added.

95

lpmln2mln -i pcm.lp -e evid.db -q ds

LPMLN2MLN outputs

ds 0.916958

which means there is around 8.4% chance that the prisoner would be alive.

6.3 Computing Bayes Net in LPMLN2MLN

We refer the reader to Section 4.4 for a description of the formalism.

Example 27. We use the same example as used in Example 18. The following is an encod-

ing of Example 18 in the input language of LPMLN2MLN .

parent = {A,S,L,R,None}

combination = {T,F,T1F1,T1F0,T0F1,T0F0,F1,F0,A1,A0,L1,L0}

tampering

fire

alarm

smoke

leaving

report

pf(parent, combination)

-3.8918 pf(None,T)

-4.5951 pf(None,F)

0 pf(A,T1F1)

1.7346 pf(A,T1F0)

4.5951 pf(A,T0F1)

96

-9.2102 pf(A,T0F0)

2.1972 pf(S,F1)

-4.5951 pf(S,F0)

1.9924 pf(L,A1)

-6.9067 pf(L,A0)

1.0986 pf(R,L1)

-4.5951 pf(R,L0)

tampering <= pf(None,T).

fire <= pf(None,F).

alarm <= tampering ˆ fire ˆ pf(A,T1F1).

alarm <= tampering ˆ not fire ˆ pf(A,T1F0).

alarm <= not tampering ˆ fire ˆ pf(A,T0F1).

alarm <= not tampering ˆ not fire ˆ pf(A,T0F0).

smoke <= fire ˆ pf(S,F1).

smoke <= not fire ˆ pf(S,F0).

leaving <= alarm ˆ pf(L,A1).

leaving <= not alarm ˆ pf (L,A0).

report <= leaving ˆ pf(R,L1).

report <= not leaving ˆ pf(R,L0).

The different types of inferences that can be computed are:

• Diagnostic Inference: To compute P (fire = t | leaving = t), the user can invoke

97

lpmln2mln -i fire-bayes.lpmln -e evid.db -q fire

where evid.db contains the line

leaving

This outputs

fire 0.328017

• Predictive Inference: To compute P (leaving = t | fire = t), the user can invoke

lpmln2mln -i fire-bayes.lpmln -e evid.db -q leaving

where evid.db contains the line

fire

This outputs

leaving 0.886961

• Mixed Inference: To compute P (alarm = t | fire = f , leaving = t), the user can

invoke

lpmln2mln -i fire-bayes.lpmln -e evid.db -q alarm

where evid.db contains two lines

!fire

leaving

This outputs

alarm 0.950955

98

• Intercausal Inference: To compute P (tampering = t | fire = t, alarm = t), the

user can invoke

lpmln2mln -i fire-bayes.lpmln -e evid.db -q tampering

where evid.db contains two lines

fire

alarm

This outputs

tampering 0.0080492

• Explaining away: Lets compute P (tampering = t | alarm = t). The user can

invoke

lpmln2mln -i fire-bayes.lpmln -e evid.db -q tampering

where evid.db contains line

alarm

This outputs

tampering 0.478002

If this result is compared with the previous result, we can see that P (tampering =

t | alarm = t) > P (tampering = t | fire = t, alarm = t). Observing the value

of fire explains away the tampering i.e. the probability of tampering decreases.

6.4 Computing Problog in LPMLN2MLN

We refer the reader to Section 4.5 for a description of the formalism. Tightness in

Problog is defined similarly to that of LPMLN. Consider a ground problog rule of the form

99

A← B1, ..., Bm, not Bm+1, ..., not Bn where A,B1, ..., Bn are atoms from σ (0 ≤ m ≤ n),

and A is not a probabilistic atom. A set of rules is called tight if its dependency graph is

acyclic. An atom A depends on an atom Bi if Bi occurs in a ground rule with head A.

It is easy to see that any tight problog program can be converted into a tight LPMLN pro-

gram using the translation as described in Section 4.5 and similarly any non-tight problog

program can be converted into an non-tight LPMLN program. Example 19 that was used

to compute Problog in LPMLN2ASP is non-tight and therefore cannot be computed by

LPMLN2MLN. Example 20, however, is tight and therefore can be computed by LPMLN2MLN.

Example 28. We use the same example as used in Example 20. The following is an

LPMLN2MLN encoding of Example 20 corresponding to its LPMLN2ASP encoding

p = {Suzy, Billy}

x = {1,2}

y = {1,2}

throws(p)

broken

miss

msw(x,y)

0 throws(Suzy)

throws(Billy).

1.3862 msw(1,1)

msw(1,2).

broken <= throws(Suzy) ˆ msw(1,1).

miss <= throws(Suzy) ˆ msw(1,2) ˆ not msw(1,1).

100

0.4054 msw(2,1)

msw(2,2).

broken <= throws(Billy) ˆ msw(2,1).

miss <= throws(Billy) ˆ msw(2,2) ˆ not msw(2,1).

On executing

lpmln2mln -i input.lp -e empty.db -r out.txt -q broken

the output is

broken 0.752975

which corresponds to the value computed using PROBLOG2 and LPMLN2ASP.

101

Chapter 7

EXPERIMENTS

7.1 Maximal Relaxed Clique

We experiment on the problem of finding a Maximal relaxed clique in a graph. The goal

is to create a subgraph such that maximum number of nodes in the graph and maximum

number of edges in the graph are selected. For every subgraph, we assign a reward to every

pair of connected nodes and a reward for every node included in the subgraph. A maximal

relaxed clique is a subgraph that maximizes the reward that can be given to the subgraph.

The LPMLN2ASP encoding of the above problem is

{in(X)} :- node(X).

disconnected(X, Y) :- in(X), in(Y), not edge(X, Y), X != Y.

5 :- not in(X), node(X).

5 :- disconnected(X, Y).

Rule 1 states that every node X can be in the subgraph. Rule 3 states that if a node

is not in the subgraph in an interpretation I , we give the interpretation I a penalty of 5.

According to Rule 2, Given an interpretation I representing a subgraph, a pair of nodes in

the subgraph is disconnected if there is no edge between them. Rule 4 states that if two

nodes X and Y in an interpretation I are disconnected, we give a penalty of 5 to I . The

command line used to run this program is

lpmln2asp -i input -e evidence -r output

Similarly the LPMLN2MLN encoding of the above problem is

NodeSet = {1}

102

In(NodeSet)

Node(NodeSet)

Edge(NodeSet, NodeSet)

Disconnected(NodeSet, NodeSet)

{In(x)} <= Node(x).

Disconnected(x, y) <= In(x) ˆ In(y) ˆ !Edge(x, y) ˆ x!=y.

5 <= !In(x) ˆ Node(x)

5 <= Disconnected(x, y)

We declare the sort NodeSet containing just 1 node. Additional nodes can be present in

the evidence file. The command line used to run this program is:

lpmln2mln -i input -e evidence -r output -mln "<MAP inference option

for the respective solvers>"

Example 29. Consider the graph and its LPMLN2ASP encoding as given above.

Figure 7.1: Maximal Relaxed Clique Example

For every interpretation I we calculate its penalty pntI0 as defined in Equation (3.5).

Interpretation I with the lowest pntI0 is the optimal stable model. Consider an interpretation

I = {in(1), in(2), in(3)}. For this interpretation, pntI0 is 5 given by (w3 ∗1)+(w4 ∗0) = 5

where wi represents the weight of the ith rule in the LPMLN2ASP encoding. Consider

another interpretation I = {in(1), in(2), in(3), in(4)}. For this interpretation, pntI0 is (w3∗

103

0) + (w4 ∗ 2) = 10. The pntI0 in the latter case is more even though all nodes are included

because it has a pair of disconnected nodes: (1, 4) and (4, 1). Since the interpretation

I = {in(1), in(2), in(3)} results in the minimum pntI0, I is the maximal relaxed clique.

Note that I = {in(2), in(3), in(4)} is another maximal relaxed clique of the same graph.

For this experiment, we generate a graph by randomly generating edges between nodes

with probability {0.5, 0.8, 0.9, 1} and different number of nodes {10, 20, 50, 100, 200, 300,

400, 500} at each probability. For each problem instance, we perform MAP inferences to

find maximal relaxed cliques with both LPMLN2ASP and LPMLN2MLN. The timeout is

set to 20 minutes. The experiments are performed on a machine powered by 4 Intel(R)

Core(TM) i5-2400 CPU with OS Ubuntu 14.04 LTS and 8G memory.

104

105

106

Figure 7.2: Running Statistics on Finding Maximal Relaxed Clique (MAP Inference)

Figure 7.2 gives the results of running maximal relaxed clique with various graph in-

stances on each of the four underlying solvers. The graph instances range from a small

size of 10 nodes to a large size of 500 nodes. We compare the system based on the re-

sults of the experiment primarily on the performance of the respective solvers. Note that

while LPMLN2ASP and LPMLN2MLN with ROCKIT gives exact solutions, LPMLN2MLN

with ALCHEMY and TUFFY may return sub-optimal solutions. The quality of answers for

these solvers based on different parameters is discussed in the next experiment.

The naive grounding (grounding of formulas + the MRF creation time) of ALCHEMY

is a primary bottleneck for the solver. Even after the compact encoding based on Equation

(5.6) used in the translation for ALCHEMY, it times out during grounding for N > 340.

Solver TUFFY uses database for grounding and noticeably has better grounding times than

ALCHEMY for most graph instances ignoring the constant time it takes for TUFFY to connect

to POSTGRES database server. In spite of better grounding mechanisms than ALCHEMY,

solver TUFFY times out while grounding with N > 370 in our experiments. Although us-

ing database optimizes the grounding process in MLN solvers it is still not good enough

when compared to the grounding process of CLINGO and ROCKIT. CLINGO uses GRINGO

for grounding while ROCKIT uses MYSQL in conjunction with GUROBI for grounding.

Both CLINGO and ROCKIT can ground all instances of the graph. The grounding time

107

for ALCHEMY and TUFFY is comparable to solving time while it is negligible compared to

solving time for CLINGO and ROCKIT.

Grounding time of all solvers constantly increases as the number of nodes increases.

Interestingly, this increase in grounding time for bigger graph instances does not corre-

late with the increase in solving time. For MLN solvers ALCHEMY and TUFFY, solving

time increases constantly with graph size regardless of the sparsity of graph. A graph in-

stance where all the nodes are connected p = 1 to each other, a fully connected graph, is

solved much faster than all other instances by CLINGO and ROCKIT. For CLINGO , the run-

ning time is sensitive to particular problem instance due to the exact optimization algorithm

CDNL-OPT (Gebser et al., 2011) used in CLINGO. The non-deterministic nature of CDNL-

OPT also brings randomness on the path through which an optimal solution is found, which

makes the running time differ even among similar-sized problem instances, while in gen-

eral for instances where p 6= 1, as the size of the graph increases, the search space gets

larger, thus the running time increases. Both ALCHEMY and TUFFY use MaxWalkSat for

MAP inference which allows the solver to return sub-optimal solutions. The approximate

nature of the method allows relatively consistent running time for different problem in-

stances, as long as parameters such as the maximum number of iterations/tries are fixed

among all experiments. The running time was also not affected much by the edge probabil-

ity. System ROCKIT uses Cutting Plane Inference (CPI) (Riedel, 2012) along with Cutting

Plane Aggregation (CPA) (Noessner et al., 2013) for inference. Using CPI, ROCKIT itera-

tively solves a partial version of the complete ground network based on the Cutting Plane

approach. At each iteration, it checks for all the constraints that are unsatisfied and adds

them to the ILP (Integer Linear Programming) solver GUROBI. In a fully connected graph

instance where all of the nodes are connected, the number of rules violated due to the last

rule of the program is 0, and therefore, ROCKIT runs faster .

108

Performance wise LPMLN2ASP outperforms LPMLN2MLN in a fully connected graph

(p = 1) and in all other instances LPMLN2MLN with ROCKIT clearly outperforms others.

One factor that aids in ROCKIT’s performance is the internal solver GUROBI’s multi-core

architecture. GUROBI uses all the cores available on the machine for computation while

CLINGO , ALCHEMY and TUFFY use a single core for computation 1 . GUROBI is also the

fastest commercial ILP solver according to some benchmark results 2 .

Answer Quality of LPMLN2MLN in Maximal Relaxed Clique

We modify the relaxed clique example such that for every graph instance we know what

the output is. We create graph instances such that each instance has N nodes and N + 1

edges. Every ith node has an edge to the (i + 1)th node. N th node is connected the first

node. We then add an edge between the first node and (bN/2c) + 1 node. The base case

considered for this experiment is N = 4.

For N = 4, the optimal stable models are I = {in(1), in(2), in(3)} and I = {in(1),

in(4), in(3)}. Both the interpretations I have the lowest pntI0 of 5 because of the one node

that is not included in either interpretation. It is easy to check that these interpretations

have the lowest penalty by enumerating over all the 24 interpretations.

For N = 5, for I = {in(1), in(2), in(3)}, pntI0 = 10 due to the two nodes not con-

sidered in the interpretation. Interpretation without any nodes included has pntI0 = 25.

Interpretations with any one node included has pntI0 = 20. Interpretations with any two

nodes included has pntI0 = 15 + 5 × k where k = 0 if the two nodes are connected and

k = 2 otherwise. Interpretations with any four nodes included has pntI0 = 5 + 5 × k

where k ≥ 2 because there has to be two nodes in the selection which are disconnected.
1TUFFY grounding utilizes POSTGRES which has a multi-core architecture but this speed-up only affects

grounding and not solving
2The benchmark results are available on the GUROBI website at www.gurobi.com

109

Interpretation with all five nodes included has a pntI0 = 40 because of the four pairs of

disconnected nodes. Therefore, I = {in(1), in(2), in(3)} is the optimal stable model.

For N > 5, the optimal stable model is {in(1), in(bN/2c + 1)}. When N > 5 the

interpretation containing the subgraph with nodes {in(1), in(bN/2c+ 1)} has a pntI0 value

of 5×(N−2) for theN−2 nodes not present in the interpretation and 0 from disconnected

edges. An empty interpretation has a pntI0 value of 5 × N since no nodes are included.

An interpretation with in(K) where K ∈ 1, . . . , N gets a penalty of 5 × (N − 1). An

interpretation with K nodes where K ≥ 3 would get a penalty of 5 × (N −K) + 5 × D

where D is the number of disconnected edges. Adding any node to the interpretation other

than {in(1), in(bN/2c+1)}would result inD ≥ 2 because no three nodes are connected to

each other. Also, any interpretation with nodes {in(i), in(i+1)}where i ∈ {1, . . . , N−1}

and {in(N), in(1)} would result in penalty 5× (N−2) and thus it is also an optimal stable

model. The input program is the same as maximal relaxed clique program as given in the

above section. We use LPMLN2MLN with ALCHEMY and TUFFY to compare the quality of

answers with different parameters.

To check the quality of the answer, the MAP inference output from LPMLN2MLN is fed

as evidence to LPMLN2ASP . This results in a single interpretation I . We can then check

the penalty of this interpretation by examining the unsat atoms present in I . The penalty is

the exponentiated negative sum of weight where weight is obtained from the unsat atoms.

Therefore, the lower the weight of an interpretation the worse it is compared to the gold

standard result.

Table 7.1 compares the quality of answers using various configuration parameters of

the underlying solvers. For TUFFY the default number of tries is set to 1. Therefore, we

experiment TUFFY with MAXTRIES = 10. TUFFY improves search speed by using MRF

partitioning. If the number of optimal components increases, it becomes likely that one step

of WalkSat “breaks” an optimal sub-solution instead of fixing the sub-optimal component.

110

Therefore, we set DONTBREAK switch as one of the configuration option to see how it

affects the accuracy of the result. DONTBREAK forbids WalkSat steps which break hard

rules and that speeds up the computation in TUFFY.

Instance Solver Configuration Grounding size Time Penalty

N = 4

LPMLN2ASP

ALCHEMY

TUFFY

TUFFY

TUFFY

TUFFY

ROCKIT

default

default

default

maxTries=10

dontBreak

maxTries=10,dontBreak

default

27;334

30;100

18;52

18;52

18;52

18;52

225

0.002

1.53

2.371

2.396

2.15

2.505

0.004

30

30

30

30

30

30

30

N = 10

LPMLN2ASP

ALCHEMY

TUFFY

TUFFY

TUFFY

TUFFY

ROCKIT

default

default

default

maxTries=10

dontBreak

maxTries=10,dontBreak

default

230;327

132;484

108;338

108;338

108;338

108;338

46

0.002

1.53

2.371

2.396

2.15

2.505

0.004

45

45

45

50

90

65

45

N = 30

LPMLN2ASP

ALCHEMY

TUFFY

TUFFY

TUFFY

TUFFY

ROCKIT

default

default

default

maxTries=10

dontBreak

maxTries=10,dontBreak

default

1890;2787

992;3844

928;3588

928;3588

928;3588

928;3588

126

0.3

6.46

31.915

106.275

2.934

3.317

3.327

145

160

150

150

1175

620

145

111

N = 60

LPMLN2ASP

ALCHEMY

TUFFY

TUFFY

TUFFY

TUFFY

ROCKIT

default

default

default

maxTries=10

dontBreak

maxTries=10,dontBreak

default

7230;20540

3782;14884

3658;14388

3658;14389

3658;14390

3658;14391

246

621.97

12

180.69

Timeout

5.085

5.603

56.04

295

415

300

300

6905

4955

295

Table 7.1: Answer Quality Maximal Relaxed Clique

Solver LPMLN2ASP gives the gold standard result and we compare the performance

of other solvers against this result. The penalty is the sum of the weights of all unsatisfied

rules in the grounded program (the lower the better). All the solvers’ solving time increases

as the size of graph increases, which is expected. ROCKIT with the default configuration

gives the same answer as LPMLN2ASP while being significantly faster than LPMLN2ASP.

ALCHEMY gives worse answers than TUFFY in default configuration while being faster than

TUFFY. Since the graph instances are much smaller ALCHEMY is expected to be faster than

TUFFY. Option MAXTRIES does not improve the quality of answers in TUFFY while taking

significantly more time to compute. Although using the DONTBREAK option fastens the

computation, it considerably worsens the answer quality to the point that DONTBREAK re-

sults in the highest penalty in all cases. Using DONTBREAK in conjunction with MAXTRIES

results in second worse results. Interestingly, using MAXTRIES with DONTBREAK results

in only a marginal increase in computation time.
4Number of atoms; Number of rules

5Number of evidence atoms.

112

7.2 Link Prediction in Biological Networks - A performance comparison with

PROBLOG2

Public biological databases contain huge amounts of rich data, such as annotated se-

quences, proteins, domains, and orthology groups, genes and gene expressions, gene and

protein interactions, scientific articles, and ontologies. Biomine (Eronen and Toivonen,

2012) is a system that integrates cross-references from several biological databases into a

graphical model with multiple types of edges. Edges are weighted based on their type,

reliability, and informativeness.

We use graphs extracted from the Biomine network 3 . The graphs are extracted around

genes known to be connected to the Alzheimer’s disease (HGNC ids 620, 582, 983, and

8744). A typical query on such a database of biological concepts is whether a given gene is

connected to a given disease. In a probabilistic graph, the importance of the connection can

be measured as the probability that a path exists between the two given nodes, assuming that

each edge is true with the specified probability, and that edges are mutually independent

(De Raedt et al., 2007; Sevon et al., 2006). Nodes in the graph correspond to different

concepts such as gene, protein, domain, phenotype, biological process, tissue, and edges

connect related concepts. Such a program can be expressed in the language of Problog as

(Mantadelis et al., 2015)

p(X,Y) :- drc(X,Y).

p(X,Y) :-

drc(X, Z),

Z \== Y,

p(Z, Y).

The LPMLN2ASP encoding for the same program is

3We thank Theofrastos Mantadelis for providing us with the dataset

113

p(X,Y) :- drc(X,Y).

p(X,Y) :- drc(X, Z), Z != Y, p(Z, Y).

The evidence file contains weighted edges drc/2 encoded as

0.942915444848::drc(’hgnc_983’,’pubmed_11749053’).

0.492799999825::drc(’pubmed_10075692’,’hgnc_620’).

0.434774330065::drc(’hgnc_620’,’pubmed_10460257’).

.

.

.

The same evidence used for Problog is processed to work with the syntax of LPMLN2ASP

as

0.942915444848 drc(’hgnc_983’,’pubmed_11749053’).

0.492799999825 drc(’pubmed_10075692’,’hgnc_620’).

0.434774330065 drc(’hgnc_620’,’pubmed_10460257’).

.

.

.

We test the systems on varying graph sizes ranging from 366 nodes 363 edges to 5646

nodes 64579 edges. The experiment was run on a 40 core Intel(R) Xeon(R) CPU E5-2640

v4 @ 2.40GHz machine with 128 GB of RAM. The timeout for the experiment was set to

20 minutes.

Nodes Edges LPMLN2ASP PROBLOG2

366 363 0.37 0.152

1677 2086 9.77 1.7406

114

1982 4143 14 Timeout

2291 6528 19.71 Timeout

2588 9229 25.92 Timeout

2881 12248 33.05 Timeout

3168 15583 42.21 Timeout

3435 19204 49.91 Timeout

3724 23135 59.56 Timeout

3989 27370 69.72 Timeout

4252 31891 82.04 Timeout

4501 36690 93.23 Timeout

4750 41761 105.4 Timeout

4983 47094 116.79 Timeout

5200 52673 129.27 Timeout

5431 58506 142.2 Timeout

5646 64579 157.77 Timeout

Table 7.2: Problog2 vs LPMLN2ASP Comparison on Biomine Network (MAP Inference)

We perform MAP inference for comparison. Table 7.1 shows the results of the experi-

ment. Apart from the smaller graph instances where Problog is faster than LPMLN2ASP,

LPMLN2ASP significantly outperforms Problog for medium to large graphs for MAP infer-

ence. In fact, for graphs with nodes greater than 1980 Problog times out. For Marginal

inference, to check for the probability of path between two genes, LPMLN2ASP times out

with just 25 nodes and therefore it is infeasible to experiment for marginal probability on

LPMLN2ASP . The sampling based approach of Problog computes the probability of a path

115

from ’hgnc_983’ to ’hgnc_620’ in 13 seconds. This experiment shows 2that for MAP

inference, our implementation far outperforms the current implementation of Problog while

being significantly slower in computing Marginal and Conditional probabilities.

7.3 Social influence of smokers - Computing MLN using LPMLN2ASP

We use Example 15 used in Section 4.1 to compare the scalability of LPMLN2ASP for

MAP inference on MLN encodings and compare with the MLN solvers ALCHEMY, TUFFY

and ROCKIT used in LPMLN2MLN. We scale the example by increasing the number of

people and relationships among them.

The LPMLN2ASP encoding of the example used in the experiment is

1.1 cancer(X) :- smokes(X).

1.5 smokes(Y) :- smokes(X), influences(X, Y).

{smokes(X)} :- person(X).

{cancer(X)} :- person(X).

The ALCHEMY encoding of the example is

smokes(node)

influences(node,node)

cancer(node)

1.1 smokes(x) => cancer(x)

1.5 smokes(x) ˆ influences(x,y) => smokes(y)

and is run with the command line 4

infer -m -i input -e evidence -r output -q cancer -ow smokes,cancer

The TUFFY encoding of the example is 5

4Option -ow is provided to alchemy to denote which predicates are under open world assumption.
5* makes the predicate closed world assumption

116

smokes(node)

*influences(node,node)

cancer(node)

1.1 smokes(x) => cancer(x)

1.5 smokes(x) , influences(x,y) => smokes(y)

and is run with the command line

java -jar tuffy.jar -i input -e evidence -r output -q cancer

The ROCKIT encoding of the example is 6

smokes(node)

*influences(node,node)

cancer(node)

1.1 !smokes(x) v cancer(x)

1.5 !smokes(x) v !influences(x,y) v smokes(y)

and is run with the command line

java -jar rockit.jar -input input -data evidence -output output

The data was generated such that for each person p, the person smokes with an 80%

probability, and p influences every other person with a 60% probability. We generate evi-

dence instances based on different number of persons ranging from 10 to 1000. We com-

pare the performance of the solvers based on the time it takes to compute the MAP estimate.

The experiment was run on a 40 core Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz ma-

chine with 128 GB of RAM. The timeout for the experiment was set to 20 minutes.

6* makes the predicate closed world assumption

117

of Persons LPMLN2ASP w. CLINGO 4.5 ALCHEMY 2.0 TUFFY 0.3 ROCKIT 0.5

10 0 0.04 1.014 0.465

50 0.03 1.35 1.525 0.676

100 0.10 18.87 1.560 0.931

200 0.32 435.71 2.672 1.196

300 0.7 Timeout 4.054 1.660

400 1.070 Timeout 4.505 1.914

500 1.730 Timeout 5.935 2.380

600 2.760 Timeout 7.683 2.822

700 3.560 Timeout 10.390 3.274

800 4.72 Timeout 11.384 3.727

900 Timeout Timeout 12.056 4.012

1000 Timeout Timeout 12.958 4.678

Table 7.3: Performance of Solvers on MLN Program

Table 7.3 lists the computation time in seconds for each of the four solvers on instances

of domains of varying size. LPMLN2ASP is the best performer for number of people till

600 but times out when number of people are greater than 800. ALCHEMY is the worst

performer out of all 4 and for instances with number of people greater than 200 it times

out. As expected, for ALCHEMY, grounding is the major bottleneck. For the instance

with 200 persons, ALCHEMY grounds it in 422.85 seconds and only takes 9 seconds to

compute the MAP estimate. Since the problem of grounding has been addressed in TUFFY

and ROCKIT, these solvers are able to perform better than ALCHEMY. ROCKIT has the

best results amongst all the solvers. This experiment shows that for small to medium sized

instances, our implementation is the fastest and the most accurate solver while for larger

instances ROCKIT is the fastest.

118

Chapter 8

SUMMARY AND CONCLUSION

8.1 Summary of the two LPMLN solvers

While both LPMLN2MLN and LPMLN2ASP can compute marginal/conditional proba-

bility and MAP inference on an LPMLN program, they are quite different from the con-

text of the underlying solvers. LPMLN2ASP makes use of an ASP solver CLINGO while

LPMLN2MLN makes use of MLN solvers ALCHEMY, TUFFY and ROCKIT. Both these sys-

tems treat the respective solvers as black-boxes and therefore the performance of the system

is very much dependent on the underlying solvers. LPMLN2ASP can compute the full frag-

ment of LPMLN programs unlike LPMLN2MLN which can compute only the tight fragments.

Therefore LPMLN programs with inductive definitions can be run only on LPMLN2ASP. The

below table summarizes some of the key differences of these two systems.

LPMLN2ASP computes exact results which are easy to understand and provides the

gold-standard results, however, this affects the scalability of the system when calculating

marginal and conditional probabilities. The system relies on enumerating all stable models

of a program to compute the marginal and conditional probabilities. For MAP inference,

not all the stable models needs to be enumerated and as a result MAP inference is almost

always faster than probability calculation. What is interesting to note here is that the MAP

estimate of an LPMLN program is directly associated with the optimal answer set computa-

tion using the weak constraint semantics of ASP, and also how the newly added feature of

CLINGO 4 which exposes the CLINGO internals through a PYTHON library can be used to

aid probability computation in an ASP solver.

119

Solver Input Program Inference Type Aggregates

Probability

Computation

Scalability

LPMLN2ASP Tight & Non-tight Exact Available No

LPMLN2MLN

w. ALCHEMY
Tight Approximate Not Available No

LPMLN2MLN

w. TUFFY
Tight Approximate Not Available Yes

LPMLN2MLN

w. ROCKIT
Tight Approximate/Exact Not Available Yes

Table 8.1: Comparison Between LPMLN2ASP and LPMLN2MLN

LPMLN2MLN computes approximate results because all the underlying MLN solvers

use approximate sampling-based inference methods. Use of approximate methods makes

this implementation highly scalable when compared to LPMLN2ASP. All the MLN solvers

trade accuracy for faster computation. Accuracy can be increased in ALCHEMY, TUFFY

and ROCKIT by adjusting certain parameters that are available for the respective systems

like maxSteps for ALCHEMY, mcsatSamples for TUFFY and gap for ROCKIT.

Another factor that aids in the scalability of these systems is the grounding of input

programs. Although grounding in MLN solvers is naive, they do not need to ground the

entire network. An essential part of the Markov networks relevant to the query can be

constructed from the Markov blankets. In contrast, LPMLN2ASP needs to ground the entire

program before it can begin computing stable models. However, CLINGO’s grounder is

very efficient at grounding and the grounding time with LPMLN2ASP is negligible when

compared to probability computation time. One more thing to factor in while considering

scalability is the architecture of LPMLN2ASP. In LPMLN2ASP system, every time a stable

120

model is computed by CLINGO, the control is handed over to the probability computation

module. This is an interrupting call and adds up to the overall running time of computation

on domains with a large number of stable models. Solvers TUFFY and ROCKIT makes use

of RDBMS’s POSTGRES and MYSQL respectively for grounding of Markov networks by

executing a series of SQL calls. For grounding, ALCHEMY grounds everything in-memory

as opposed to database approaches taken by TUFFY and ROCKIT. TUFFY also employs

bottom up grounding to take advantage of the relational optimizer used by POSTGRES.

LPMLN2ASP adapts the syntax of CLINGO which makes it easier to introduce proba-

bility into ASP programs by just appending weights to existing rules. Since any valid and

a safe CLINGO rule can be converted to a weighted LPMLN rule, ASP constructs like ag-

gregates, python/lua code can be used in LPMLN2ASP program without any issues. On the

other hand, LPMLN2MLN defines its own syntax which is based on ALCHEMY’s first-order

logic syntax written in the style of logic programs. Users familiar with ALCHEMY syntax

can easily write programs in LPMLN2MLN. However, it does not support constructs like

aggregates, or even simple constructs like basic arithmetic operations on integer variables.

For example a rule of the form

a(X)← b(Y), X = Y − 1

cannot be expressed in LPMLN2MLN but can be easily expressed in LPMLN2ASP .

LPMLN2MLN internally uses three different solvers ALCHEMY, TUFFY and ROCKIT.

While each of them is an MLN solver, there is a lot of difference in the solvers’ input

syntax, internal architecture and computation algorithms. ALCHEMY is the only solver that

supports the full first-order logic syntax in the input. TUFFY’s language syntax derives from

ALCHEMY’S language syntax, however, it supports a smaller fragment of the ALCHEMY

language syntax. ROCKIT’s language syntax derives from ALCHEMY, however, it supports a

smaller set of logic operators and requires users to write formulas in its CNF form. TUFFY

121

uses a hybrid architecture which allows it to perform stochastic search in the database.

TUFFY also uses parallel algorithms to optimize the process of MAP inference. ROCKIT

uses Integer linear Programming solver GUROBI for computation. This makes ROCKIT’s

implementation completely different from that of TUFFY and ALCHEMY. ROCKIT has an

advantage that GUROBI is the fastest and the most efficient available commercial ILP solver

according to various benchmarks. Therefore, the performance of ROCKIT in terms of time

and accuracy is the best amongst all the solvers.

8.2 Conclusion

We presented two implementations of LPMLN using ASP and MLN solvers. System

LPMLN2ASP translates non-ground weighted LPMLN rules to non-ground ASP rules us-

ing weak constraints. System LPMLN2MLN translates LPMLN rules to weighted first-order

formulas. Both the systems, LPMLN2ASP and LPMLN2MLN, are based on extending trans-

lations that turn LPMLN into answer set programs and Markov logic respectively.

We used LPMLN2ASP to translate LPMLN programs to ASP programs with weak con-

straints to perform MAP inference on LPMLN programs and added a probability computa-

tion module to compute marginal and conditional probability. While CLINGO does not have

a built in notion of probability, using optimal answer set finding algorithm that uses weak

constraints, ASP can be used for MAP inference, and using stable models enumeration we

can effectively compute exact marginal and conditional probabilities of query atoms. For

LPMLN2MLN, we introduce an input language which is adapted from the input language of

ALCHEMY. We perform completion on the input LPMLN program to translate it to an MLN

programs and use a simplified version of Tseitin’s transformation for a compact encoding

of the problem.

We showed that both these implementations can be used to compute other formalisms

such as Pearl’s Causal models, Bayes Net, Problog, and P-log by translating these for-

122

malisms to LPMLN. We showed that ASP solvers like CLINGO can be used to compute

MLN as well. We also showed how LPMLN2ASP can be used to resolve inconsistencies in

an ASP program by translating hard rules.

The two LPMLN implementations show the contrasting properties of the two approaches

to solving LPMLN programs and also how different implementations of MLN solvers af-

fect the performance of computation of LPMLN programs. While LPMLN2ASP gives exact

“gold standard” results it cannot actually scale well for marginal and conditional proba-

bility computation. On the other hand, MAP computation performance is comparable to

the best performing MLN solvers for small to medium sized domains. The three MLN

solvers used in LPMLN2MLN have different characteristics as well. Solver ROCKIT’S us-

age of GUROBI shows how integer linear programming tools can be used to solve LPMLN

problems much faster and with a better accuracy than traditionally available tools. The

optimizations and improvements in the underlying solvers directly helps the two LPMLN

solvers and by extension helps in computing the other formalisms as well.

The two LPMLN implementations, however, do not have any native grounding and solv-

ing capacities and rely on other implementations for both. This is in contrast with the

solvers of the other formalisms discussed such as ProbLog, P-Log and MLN which have

their own native inference and learning algorithms. LPMLN systems also do not support

weight learning of LPMLN rules. The native solvers of these formalisms are relatively

mature softwares whereas LPMLN2ASP and LPMLN2MLN are both prototype systems. Fu-

ture work includes building native grounding, solving and weight learning algorithms for

LPMLN borrowing the techniques from the related systems.

123

REFERENCES

Baral, C., M. Gelfond and J. N. Rushton, “Probabilistic reasoning with answer sets”, TPLP
9, 1, 57–144 (2009a).

Baral, C., M. Gelfond and J. N. Rushton, “Probabilistic reasoning with answer sets”, TPLP
9, 1, 57–144 (2009b).

Buccafurri, F., N. Leone and P. Rullo, “Enhancing disjunctive datalog by constraints”,
Knowledge and Data Engineering, IEEE Transactions on 12, 5, 845–860 (2000).

Calimeri, F., W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N. Leone,
F. Ricca and T. Schaub, “Asp-core-2: Input language format”, ASP Standardization
Working Group, Tech. Rep (2012).

Calimeri, F., W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N. Leone,
F. Ricca and T. Schaub, “Asp-core-2 input language format”, (2013).

Clark, K., “Negation as failure”, in “Logic and Data Bases”, edited by H. Gallaire and
J. Minker, pp. 293–322 (Plenum Press, New York, 1978).

De Raedt, L., A. Kimmig and H. Toivonen, “ProbLog: A probabilistic prolog and its appli-
cation in link discovery.”, in “IJCAI”, vol. 7, pp. 2462–2467 (2007).

Erdem, E. and V. Lifschitz, “Tight logic programs”, Theory and Practice of Logic Program-
ming 3, 499–518 (2003).

Eronen, L. and H. Toivonen, “Biomine: predicting links between biological entities using
network models of heterogeneous databases”, BMC bioinformatics 13, 1, 119 (2012).

Fages, F., “Consistency of Clark’s completion and existence of stable models”, Journal of
Methods of Logic in Computer Science 1, 51–60 (1994).

Fierens, D., G. Van den Broeck, J. Renkens, D. Shterionov, B. Gutmann, I. Thon,
G. Janssens and L. De Raedt, “Inference and learning in probabilistic logic programs
using weighted boolean formulas”, Theory and Practice of Logic Programming pp. 1–44
(2013).

Gebser, M., A. Harrison, R. Kaminski, V. Lifschitz and T. Schaub, “Abstract gringo”, The-
ory and Practice of Logic Programming 15, 4-5, 449–463 (2015).

Gebser, M., R. Kaminski, B. Kaufmann and T. Schaub, “Multi-criteria optimization in
answer set programming”, in “LIPIcs-Leibniz International Proceedings in Informatics”,
vol. 11 (Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2011).

Gelfond, M. and V. Lifschitz, “The stable model semantics for logic programming”, in
“Proceedings of International Logic Programming Conference and Symposium”, edited
by R. Kowalski and K. Bowen, pp. 1070–1080 (MIT Press, 1988).

124

Gutmann, B., On continuous distributions and parameter estimation in probabilistic logic
programs, Ph.D. thesis, Ph. D thesis, KULeuven (2011).

Lee, J. and V. Lifschitz, “Describing additive fluents in action language C+”, in “Proceed-
ings of International Joint Conference on Artificial Intelligence (IJCAI)”, pp. 1079–1084
(2003).

Lee, J., Y. Meng and Y. Wang, “Markov logic style weighted rules under the stable model
semantics”, In Technical Communications of the 31st International Conference on Logic
Programming (2015).

Lee, J., S. Talsania and Y. Wang, “Computing LPMLN using ASP and MLN solvers”,
Unpublished (2017).

Lee, J. and Y. Wang, “A probabilistic extension of the stable model semantics”, in “Interna-
tional Symposium on Logical Formalization of Commonsense Reasoning, AAAI 2015
Spring Symposium Series”, (2015).

Lee, J. and Y. Wang, “Weighted rules under the stable model semantics”, in “Proceedings
of International Conference on Principles of Knowledge Representation and Reasoning
(KR)”, (2016a).

Lee, J. and Y. Wang, “Weighted rules under the stable model semantics”, in “Proceedings
of International Conference on Principles of Knowledge Representation and Reasoning
(KR)”, (2016b).

Lee, J. and Z. Yang, “Lp mln, weak constraints, and p-log”, (2017a).

Lee, J. and Z. Yang, “LPMLN, weak constraints, and p-log”, in “Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI)”, (2017b).

Lin, F. and J. Zhao, “On tight logic programs and yet another translation from normal logic
programs to propositional logic”, in “Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI)”, pp. 853–864 (2003).

Lin, F. and Y. Zhao, “ASSAT: Computing answer sets of a logic program by SAT solvers”,
Artificial Intelligence 157, 115–137 (2004).

Mantadelis, T., D. Shterionov and G. Janssens, “Compacting boolean formulae for infer-
ence in probabilistic logic programming”, in “International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning”, pp. 425–438 (Springer, 2015).

Niu, F., C. Ré, A. Doan and J. Shavlik, “Tuffy: Scaling up statistical inference in markov
logic networks using an rdbms”, Proceedings of the VLDB Endowment 4, 6, 373–384
(2011).

Noessner, J., M. Niepert and H. Stuckenschmidt, “Rockit: Exploiting parallelism and sym-
metry for map inference in statistical relational models”, arXiv preprint arXiv:1304.4379
(2013).

125

Pearl, J., Causality: models, reasoning and inference, vol. 29 (Cambridge Univ Press,
2000).

Richardson, M. and P. Domingos, “Markov logic networks”, Machine Learning 62, 1-2,
107–136 (2006).

Riedel, S., “Improving the accuracy and efficiency of map inference for markov logic”,
arXiv preprint arXiv:1206.3282 (2012).

Sang, T., P. Beame and H. Kautz, “Solving bayesian networks by weighted model count-
ing”, in “Proceedings of the Twentieth National Conference on Artificial Intelligence
(AAAI-05)”, vol. 1, pp. 475–482 (2005).

Sevon, P., L. Eronen, P. Hintsanen, K. Kulovesi and H. Toivonen, “Link discovery in graphs
derived from biological databases”, in “International Workshop on Data Integration in
the Life Sciences”, pp. 35–49 (Springer, 2006).

Tseitin, G., “On the complexity of derivation in the propositional calculus”, Studies in
Constructive Mathematics and Mathematical Logic Part II (1968).

Vennekens, J., S. Verbaeten and M. Bruynooghe, “Logic programs with annotated disjunc-
tions”, in “International Conference on Logic Programming”, pp. 431–445 (Springer,
2004).

126

	LIST OF TABLES
	LIST OF FIGURES
	1
	2
	2.1 Review: Stable model semantics
	2.2 Review: Weak Constraints
	2.3 Review: LPMLN
	2.4 Review: LPMLN to ASP lee2017lp
	2.5 Review: LPMLN to MLN lee16weighted

	3
	3.1 Introduction
	3.2 Reformulating LPMLN based on the Concept of Penalty
	3.3 Extending Lee-Yang translation to non-ground programs
	3.4 MAP inference using lpmln2asp
	3.5 Probability computation using lpmln2asp
	3.6 lpmln2asp system architecture
	3.7 lpmln2asp input language syntax
	3.8 lpmln2asp usage

	4
	4.1 Computing MLN in lpmln2asp
	4.2 Computing P-log in lpmln2asp
	4.3 Computing Pearl's Causal Model in lpmln2asp
	4.4 Computing Bayes Net in lpmln2asp
	4.5 Computing ProbLog in lpmln2asp
	4.5.1 Computing ProbLog in lpmln2asp - 1
	4.5.2 Computing ProbLog in lpmln2asp - 2

	4.6 Debugging inconsistent Answer Set Programs

	5
	5.1 Introduction
	5.2 Completion of non-ground rules in lpmln2mln
	5.3 Tseitin's transformation for completion formulas
	5.4 Completion of disjunction in Head of rule
	5.5 lpmln2mln System Architecture
	5.6 lpmln2mln Input Language Syntax
	5.6.1 Logical connectives
	5.6.2 Identifiers and Variables
	5.6.3 Declarations
	5.6.4 Rules
	5.6.5 Comments

	5.7 lpmln2mln Usage
	5.8 Target systems
	5.8.1 alchemy
	5.8.2 tuffy
	5.8.3 rockit

	6
	6.1 Computing P-log in lpmln2mln
	6.2 Computing Pearl's Causal Model in lpmln2mln
	6.3 Computing Bayes Net in lpmln2mln
	6.4 Computing Problog in lpmln2mln

	7
	7.1 Maximal Relaxed Clique
	7.2 Link Prediction in Biological Networks - A performance comparison with Problog2
	7.3 Social influence of smokers - Computing MLN using lpmln2asp

	8
	8.1 Summary of the two LPMLN solvers
	8.2 Conclusion

	REFERENCES

