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ABSTRACT

The power and communication networks are highly interdependent and form a part

of the critical infrastructure of a country. Similarly, dependencies exist within the

networks itself. Owing to cascading failures, interdependent and intradependent net-

works are extremely susceptible to widespread vulnerabilities. In recent times the

research community has shown significant interest in modeling to capture these de-

pendencies. However, many of them are simplistic in nature which limits their ap-

plicability to real world systems. This dissertation presents a Boolean logic based

model termed as Implicative Interdependency Model (IIM) to capture the complex

dependencies and cascading failures resulting from an initial failure of one or more

entities of either network.

Utilizing the IIM, four pertinent problems encompassing vulnerability and pro-

tection of critical infrastructures are formulated and solved. For protection analysis,

the Entity Hardening Problem, Targeted Entity Hardening Problem and Auxiliary

Entity Allocation Problem are formulated. Qualitatively, under a resource budget,

the problems maximize the number of entities protected from failure from an initial

failure of a set of entities. Additionally, the model is also used to come up with a

metric to analyze the Robustness of critical infrastructure systems. The computa-

tional complexity of all these problems is NP-complete. Accordingly, Integer Linear

Program solutions (to obtain the optimal solution) and polynomial time sub-optimal

Heuristic solutions are proposed for these problems. To analyze the efficacy of the

Heuristic solution, comparative studies are performed on real-world and test system

data.

Owing to some limitations of the IIM, the dissertation also introduces an ex-

tended version of the model termed as Multi-scale Implicative Interdependency Re-

lation (MIIR) model. Utilizing the MIIR model, the K Contingency List problem is

i



solved with respect to the power network. The problem solves for a set of K enti-

ties which when failed would maximize the number of previously healthy entities to

fail eventually. Owing to the problem being NP-complete, a Mixed Integer Program

(MIP) to obtain the optimal solution and a polynomial time sub-optimal heuristic

are provided. The efficacy of the heuristic with respect to the MIP is compared by

using different test system data.
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Chapter 1

INTRODUCTION

Critical Infrastructures of a nation like Power, Communication, Transportation Net-

works etc. exhibit strong intra-network and inter-network dependencies to drive their

functionalities. The symbiotic relationship that exists between Power and Communi-

cation network provides an example of the inter-network dependency. To elaborate

this further, consider entities of either network: electricity generation and power flows

are partially controlled by the Supervisory Control and Data Acquisition (SCADA)

system through signals received from Remote Terminal Units (RTUs). Meanwhile,

every communication network entity involved in sensing, sending and controlling the

power grid are dependent on power network entities to ensure their successful oper-

ation. Owing to these dependencies, failure of some entities in either network may

eventually result in a cascading failure that can cause a widespread blackout in the

combined system.

Additionally, intra-network dependencies exist as well in a critical infrastructure

and is described with the help of power network. In an abstract level, a power network

is composed of the following entities — Generation Bus, Load Bus, Neutral Bus (or

zero injection bus) and Transmission Lines. When a transmission line trips, the power

flowing through the transmission lines needs to be redirected to satisfy load demand

of the load buses. This may cause the power flow in some other transmission line to

go beyond its line capacity causing it to trip. Eventually, these failures might result

in a cascade of trippings/failures resulting in a blackout. Cascading failures in power

and/or communication network due to intra/inter dependencies have disastrous effects

as seen in power blackouts which occurred in New York (2003) [1], San Diego (2011)
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[2] and India (2012) [3]. Thus modeling these dependencies is critical in understanding

and preventing such failures which might be triggered by natural as well as man-made

attacks.

In the last few years, there has been considerable activity in the research com-

munity to study Critical Infrastructure Interdependency. One of the earliest studies

on robustness and resiliency issues related to Critical Infrastructures of the U.S. was

conducted by the Presidential Commission on Critical Infrastructures, appointed by

President Clinton in 1996 [4]. Rinaldi et al. are among the first group of researchers

to study interdependency between Critical Infrastructures and to propose the use of

complex adaptive systems as models of critical infrastructure interdependencies [5],

[6]. Pederson et al. in [7], provided a survey of Critical Infrastructure Interdepen-

dency modeling, undertaken by U.S. and international researchers. Motivated by the

power failure event in Italy 2003, Buldyrev et al. in [8], proposed a graph-based inter-

dependency model, where the number of nodes in the power network was assumed to

be the same as the number of nodes in the communication network, and in addition

there existed a one-to-one dependency between a node in the power network to a node

in the communication network. The authors opine in a subsequent paper [9] that the

assumption regarding one-to-one dependency relationship is unrealistic and a single

node in one network may be dependent on multiple nodes in the other network. Lin

et al. presented an event driven co-simulation framework for interconnected power

and communication networks in [10], [11]. A game theoretic model for a multi-layer

infrastructure networks using flow equilibrium was proposed in [12].

As discussed above, a number of models have been proposed that capture the

dependencies in critical infrastructure systems [8], [9], [12], [13], [14], [15], [16], [17].

However, each of these models has their own shortcomings and a survey of these

models along with a detailed analysis of their functionality is presented in Chapter 2.
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Authors in [18] bring out the need to address the complex dependency which

can be explained through the following example. Let ax (which can be a generator,

substation, transmission line etc.) be a power network entity and bw, by, bz (which

can be a router, end system etc.) a set of communication network entities. Consider

the dependency where the entity ax is operational if (i) entities bw and (logical AND)

by are operational, or (logical OR) (ii) entity bz is operational. Models in [8], [13], [9],

[14], [12], [15], [16], [17] fails to capture this kind of dependency. Motivated by these

findings and limitations of the existing models, the authors in [18] proposed a Boolean

logic based dependency model termed as Implicative Interdependency Model (IIM). For

the example stated above, the dependency of ax on bw, by, bz can be represented as

ax ← bwby + bz. This equation representing the dependency of an entity is termed as

Interdependency Relation (IDR).

The IIM model forms the basis of this dissertation. Chapter 3 provides a more

detailed description along with the test data sets created using this model. The

IIM model is generic enough to capture the interdependencies in an interdependent

network as well as intra-network dependencies. The test data sets created in Chapter

3 are subdivided into two groups — (a) data sets capturing dependencies in power

network, and (b) data sets capturing dependencies in inter-dependent power and

communication network. Using these test data sets, the performance of different

solutions proposed for the problems in Chapters 4 - 7 of this dissertation are measured.

Chapters 4 - 7 discusses different problems and their solutions related to vulnera-

bility and protection analysis of critical infrastructure systems. These set of problem

utilizes the IIM model in their problem formulation and solutions. The first two

problems use the concept of hardening. An entity when hardened is considered to be

exempted from any kind of attack and can sustain itself without any dependency on

other entities. The Entity Hardening Problem is introduced in Chapter 4. It describes
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a situation where an operator, with a limited budget, must decide which entities to

harden, which in turn would minimize the damage, provided a set of entities fail ini-

tially. The Targeted Entity Hardening problem is discussed in Chapter 5 which is a

restricted version of the Entity Hardening problem. This problem presents a scenario

where the protection of certain entities is of higher priority. If these entities were to

be nonfunctional, the economic and societal damage would be higher when compared

to other entities being nonfunctional.

Modifying dependencies by adding additional dependency implications using en-

tities (termed as auxiliary entities) is shown to mitigate the issue of vulnerability in

intra/inter dependent systems to a certain extent. With this finding, the Auxiliary

Entity Allocation problem in introduced in Chapter 6. The objective of this problem

is to maximize protection in Power and Communication infrastructures using a bud-

get in the number of dependency modifications using the auxiliary entities. Chapter

7, a new metric of robustness using the IIM model is defined for inter/intra dependent

critical infrastructure systems. All the four problems are proved to be NP-complete.

For each of these problems, Integer Linear program to obtain the optimal solution is

proposed along with a sub-optimal heuristic with polynomial time complexity. The

test data sets are used to measure the efficacy of the heuristic solutions compared to

the Integer Linear program.

In the course of research, the IIM model is seen to have its own limitations. The

IDRs (i.e. dependency equations) form the core of the IIM model. Even though a

primary approach to create these dependency equations is shown in Chapter 3, they

are based on certain assumptions which might limit their applicability to real world

problems. Finding a generic technique to have a near accurate abstraction of an in-

tra/inter dependent critical infrastructure system is seen to be difficult using the IIM

model. To address this limitation, in Chapter 8 the Multi-scale Implicative Interde-
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pendency Relation (MIIR) model is proposed primarily focusing on intra-dependent

power network. Along with the IDRs, the MIIR model also takes into consideration

the power values (i.e. generation of a generator bus, power flowing through transmis-

sion lines etc.) of different entities in the system. These power values can be obtained

from Phasor Measurement Units (PMU) associated with the entities (there has been

considerable research on using PMU data in mitigating failure in power networks [19],

[20], [21], [22]). A formal description of the model along with its working dynamics

and a brief validation with respect to the 2011 Southwest Blackout are provided.

Utilizing the MIIR model, the K Contingency List problem is proposed. For a given

time instant, the problem solves for a set of K entities in a power network which

when failed at that time instant would cause the maximum number of previously

healthy entities to fail eventually. Owing to the problem being NP-complete a Mixed

Integer Program (MIP) is devised to obtain the optimal solution and a polynomial

time sub-optimal heuristic. The efficacy of the heuristic with respect to the MIP is

compared by using different power network test system data.

The dissertation is concluded in Chapter 9 with discussions on possible research

problems that can be pursued based on this research.
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Chapter 2

A SURVEY OF INTER-DEPENDENCY MODELS IN CRITICAL

INFRASTRUCTURE SYSTEMS

In the last few years there has been an increasing awareness in the research community

that the critical infrastructures of the nation do not operate in isolation. In fact,

they are closely coupled with other infrastructures such that the well being of one

infrastructure depends heavily on the well being of another. As an example, consider

the interdependent relationship between the power, communication, and transport

networks as shown in Figure 2.1 ([6]).

Figure 2.1: Power, Communication and Transportation Network Interdependency

If we focus exclusively on the power and communication networks we observe that

entities of the power grid, such as the Supervisory Control and Data Acquisition

(SCADA) systems, that control power stations and sub-stations, are dependent on

the communication network to receive their operational commands. While entities of
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the communication network, such as routers and cell towers, are dependent on the

power grid to remain operational. Compounding the complexity of analysis of this

symbiotic relationship between the two networks, is the effect of cascading failures

across these networks. For instance, not only can entities of the power networks, such

as generators and transmission lines, trigger a power failure, but also communication

network entities, such as routers and optical fiber lines, can trigger failures in the

power grid. Thus, it is essential that the interdependency between different types

of networks be understood well, so that preventive measures can be taken to avoid

cascading catastrophic failures in such multi-layered network environments.

With the continued focus for developing realistic failure propagation models that

aid in analyzing, and mitigating the effects of cascading faults across the entities

of the multi-layered network, several failure propagation models have been studied

that address the interdependency relationship between power, and communication

networks ([8, 14, 16, 15]), and space based networks ([23]).

A brief survey of the existing interdependency models for critical infrastructure

networks that have been proposed in the is presented. The chapter then address

the considerations that need to be taken into account for capturing the complex

interdependency that exists between power grid and communication networks in the

real world.

2.1 Interdependency Models

2.1.1 Buldyrev et al. Interdependency Model

Motivated by the electricity blackout in Italy (2003) ([24]) [8] proposed a cascading

failure model for interdependent networks. The power and communication infrastruc-

tures can be represented as networks. These networks are depicted as two connected

7



graphs P (for power network) and C (for communication network) with same number

of nodes. To represent the interdependency between the networks, bidirectional links

between P and C, termed as P ↔ C edges, are considered with every node in each

graph connected to exactly one node in the other graph as shown in Figure 2.2(a).

In Figure 2.2(a) the interdependent network shown consists of power network nodes

p1, p2, p3 and p4 and communication network nodes c1, c2, c3 and c4. Blue and green

edges denote intra links in power and communication network respectively and black

edges denote the interdependency (inter links). These inter links represent the inter-

dependency relationship that a node in the power network is dependent on exactly

one node in the communication network and vice-versa. Thus capturing the fact that

a failure of a node in the power (communication) network causes the corresponding

node in the communication (power) network to fail.

Failures are considered in the model when a fraction of the nodes from any of the

two graphs P , or C are removed. Upon the introduction of a failure in the graph P ,

the failed nodes are removed and correspondingly, the nodes in the graph C that are

connected via P ↔ C edges to the attacked nodes are also removed. Parallel to the

node removals, any edge within graph P or C, or P ↔ C edges that do not have one

node at each end point are also simultaneously removed.

The cascade now proceeds as follows. In the first stage, the set of connected

components in the graph P is defined as P1 clusters. The set of C nodes connected

to the P1 clusters by P ↔ C edges are termed as C1 sets. Any edges in graph C,

that connects these C1 sets are removed. The set of connected components in graph

C after this removal of edges are defined as C2 clusters. In the second stage using

same procedure as that to find the c2 cluster and C1 sets, P2 sets from C2 clusters

and P3 clusters are obtained. In subsequent stages this cascade process then oscillates

between the two graphs until a steady state is reached when no further removal of
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edges in the graphs are possible. This is described through an example in Figure

2.2(a-c). The node p1 is attacked and removed from the graph P thus resulting in

P1 clusters consisting of two connected components having nodes {p1} and {p2, p4}

respectively. Node c3 in graph C fails due to its interdependency with node p3. The

corresponding C1 sets obtained due to these failures are {c1} and {c2, c4}. The edge

(c1, c4) is removed as it connects the two sets in C1. The corresponding C2 clusters

consist of connected components {c1} and {c2, c4}. The failure then reaches a steady

state as no edges can be removed in the next stage.

At the steady state, the interdependent network consists of mutually connected

clusters. Each mutually connected cluster consists of nodes having the properties (a)

the nodes in graphs P and C are completely connected, (b) each of these nodes which

belong to the graph P (C) has P ↔ C edge with graph C (P ). Note that there exists

no intra-links between any of the mutually connected clusters. In Figure 2.2(c) the

mutually connected clusters are thus {p1, c1} and {p2, p4, c2, c4}.

The largest mutually connected cluster is defined as the one having the maximum

number of nodes (cluster {p2, p4, c2, c4} in the example). Given a fraction 1 − p,

(0 ≤ p ≤ 1) of nodes that are removed from the interdependent network (due to a

failure), the ratio P∞ defines the number of nodes in the largest mutually connected

cluster at the steady state, as compared to the initial number of nodes in the network.

For the purpose of simulation and study, the power and communication networks are

considered as, coupled scale free, Erdos Reyni [25], and random networks. Different

values of P∞ were computed by varying the values of p, and the size of the network. It

was observed that, above a percolation threshold pc, the value of P∞ changes from the

neighborhood of zero to the neighborhood of one for a given network size. From this

observation the authors infer that when the fraction of failed node is below 1− pc of

the original number of nodes, the largest connected cluster has a size approximately
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Figure 2.2: Representation of Interdependency and Cascading Failure in Power and

Communication network as Demonstrated by Buldyrev et al.

equal to the size of initial pre-failure network. The percolation threshold pc for Erdos

Reyni networks is validated by analytical results.

In subsequent papers, Buldyrev et al. extend their work from their original cascad-

ing failure model (as discussed above), to interdependent networks with directional

dependency ([9]), and interdependency between more than one network ([13]).

One noticeable shortcoming of this model proposed by Buldyrev et al. is that

it does not distinguish between nodes in either network as separate entities. Nodes

in the power network may be functionally separate entities such as power plants,

sub-stations, and load nodes. Similarly, nodes in the communication network may be

functionally separate entities such as cell towers, and routers. When separate entities

of the network are considered, the proposed cascading model may not work in the

same way as assumed by the authors, and also the dependency relationship of one
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type of entity to the other may not be able to be captured with this model. Another

potential drawback to this model is for the functionality of the mutually connected

cluster. The mutually connected clusters generated after the cascade may not be

completely functional because of the physical limitations of the network ([17]). For

example, the nodes from the power grid in a mutually connected cluster may not be

able to provide sufficient power to the nodes in the communication network due to the

limits on the power generation capacities. Thus, it would be wrong to assume that

the residual mutually connected clusters continue to be functional after a cascade

simply because they remain connected.

2.1.2 Rosato et al. Coupling Model

[14] model the power flow in the power grid, and the data flow in the communi-

cation network separately. They then analyze the effect of failures in the communi-

cation network, caused by failures in the power grid using a coupling model between

the two infrastructures. Their analysis of the failure propagation is performed on the

backdrop of the Italian high voltage electric transmission network (HVIET), and the

high-bandwidth backbone of the Italian Internet network (GARR). Data for both the

networks were gathered from documentation available in the public domain.

For modeling the power network, the HVIET network is represented by an undi-

rected graph consisting of three type of vertices, namely, source nodes (nodes that

supply power to the network), load nodes (nodes that draw power out of the net-

work), and junction nodes (which neither draw nor supply power to network, but act

as relays). The edges of the graph corresponds to the transmission lines. The power

flow dynamics in the power grid relies on the DC power flow model as given by [26].

At every occurrence of a failure of one or more nodes, or transmission lines (edges),

the power flow dynamics are recalculated using this model. It is to be noted here
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that the DC power flow model considers the physical constraints pertaining to the

maximum power flow possible over a transmission line while computing the minimum

load re-dispatch (reducing the power drawn out by the load nodes) after a failure.

The authors define the quality of service (QoS) of the power network as the ratio

of the change in the total power drawn by the load nodes after the failure event, as

compared to the total power drawn by the load nodes before the failure event.

For modeling the communication network, the GARR network is represented as a

graph consisting of high-bandwidth backbone links as edges, and the Italian univer-

sities and research institutions as nodes. For computing the total amount of traffic

inflow into the network, the probability that a node generates a packet λ, (0 ≤ λ ≤ 1)

is considered at each time step. For each generated packet a random node is chosen as

its destination. A probabilistic packet routing model is considered along the lines of

[27] for sending the packets to their intended destinations. The average delivery time

is defined as the average of the packet transmission time from source to destination

over all packets delivered correctly within a particular time interval. The average

delivery time is then used as a metric to define the efficiency of the network for a

given value of λ.

The coupling between the two networks is achieved by associating a node from

the communication network to the closest load node from the power network (Eu-

clidean distance). Note that this coupling is one directional, that is, for a node to be

operational in the communication network it is dependent on a node from the power

network, but not vice-versa. In a failure event, if a load node i that was initially

extracting power P 0
i units, now extracts Pi units of power after the subsequent load

re-dispatching process. The communication nodes coupled to i remain operational as

long as the value of Pi is greater than or equal to αP 0
i , (0 ≤ α ≤ 1). The coefficient

α is termed as the strength of coupling between the two networks.
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The authors then use the above coupling model to analyze and simulate the effect

of random link failures in the power network for a fixed parameter of α (taken as

α = 0.75). The main insight of their simulation is that even with small failure events

in the power (HVIET) network (small with respect to number of transmission lines

failed), the communication (GARR) network can get completely disconnected.

The individualized modeling of the power and communication network done by

Rostato et al. is realistic to a point, but the coupling model reflects only a one way

dependency model and fails to represent the interdependency that exists between

power and communication networks of today. This shortcoming may prohibit the

accurate cascading failure scenarios when the faults originate from the communication

network and cascade through to the power network.

2.1.3 Nguyen et al. Interdependency Model

In [16] propose a cascading model in similar lines of [8], and address the problem

for identifying the critical nodes in an interdependent network. In their model, the

power network, and communication network are considered as graphs Gs = (Vs, Es)

and Gc = (Vc, Ec), and the interdependency is represented by an unidirectional edge

set Esc that connect vertices from set Vs with set Vc in a composite graph containing

this edge set, and both the power, and communication networks graphs. A failure

due to a dependency relation is outlined by the assumption that, not only do the

failed node(s) cease to operate, but also the nodes connected to the failed nodes via

edges from the edge set Esc also become non-operational. Failures propagate in the

following way: the failed nodes and the incident edges to these nodes that belong to

Gs (power network), and Gc (communication network) are removed to generate G′s

and G′c respectively. Then, the largest connected components Ls and Lc are computed

for the graphs G′s and G′c. Any node ns ∈ G′s that does not belong to Ls, and any
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node nc ∈ G′c that does not belong to Lc are considered non-operational. Failures due

to the dependency relations are simultaneously considered, and propagation ensues

until a steady state is reached when no further nodes in either network can fail. An

example showing this failure propagation is shown in Figure 2.3 (a-c) where the power

network graph consist of nodes p1,p2,p3,p4 and communication network graph consist

of nodes c1, c2, c3, c4. Blue and green arcs represent edges in power and communication

network graph respectively and black arc represent the edges in Esc. A sample failure

propagation is described as follows — (a) The node p3 is attacked. (b) The edges

incident on node p3 are removed due to its failure along with its interdependent node

c3 in communication network and all its associated intra links. (c) The node p1 and c1

fails as it is disconnected from the largest connected component in the power network.

The steady state is reached with nodes p2 and p4 in power network and nodes c2 and

c4 in communication network as functional nodes after the failure event.

Figure 2.3: Representation of Interdependency and Cascading Failure in Power and

Communication Network as Demonstrated by Nguyen et al.

14



Using the above defined failure propagation model, the authors consider the prob-

lem of identifying a set of critical nodes in the power network of size less than a positive

integer k, such that at the steady state the size of the largest connected component in

the power network is minimized. The authors show that this problem is NP-complete

by reduction from the decision version of the Maximum Independent Set problem,

and infer that this problem is in-approximable within a bound of 2− ε. Three greedy

approximation algorithms are proposed by the authors for approximating the solution

to this problem in polynomial time, namely, Maximum Cascade (Max-Cas), Iterative

Interdependent Centrality (IIC), and Hybrid.

The authors perform an extensive simulation of the proposed algorithms using

three different power network, and communication network data sets. The data sets

considered were (i) US Western States power network, and a synthetic scale free

communication network with an exponential factor, β = 2.2, (ii) Synthetic scale

free power network with β = 3.0, and a synthetic scale free communication network

with β = 2.2, and (ii) Scale free power and communication networks with the same

β = 2.6. For each of the simulations the interdependency relationship between the

two networks were setup using a random weighted permutation of nodes of the two

networks.

In the simulations it was observed that the Hybrid algorithm takes lesser time

and has better performance bounds than the other two algorithms. In the process

of the simulations, it was observed that when interdependent systems are loosely

connected they are more vulnerable to failure. Their observations also included that

sparse interdependent networks are more vulnerable to cascading failures. This was

observed from simulations carried out by varying the exponential factor of the scale

free communication network, while keeping the exponential factor of the power net-

work, and the total number of nodes constant. The simulations carried out by the
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authors by varying the total number of nodes of both the networks, while keeping

a fixed exponential factor of the considered scale free networks, showed that large

networks are more vulnerable to cascading failures.

The observable shortcomings of this model are similar to the drawbacks discussed

above for the model proposed by [8]. Without the distinction of nodes in the networks

into separate entities, such as power plants, and substations, for the power network,

and cell towers, and routers for the communication network, the failure cascading

model may not represent the workings of real world networks. Thus hindering the

analysis, and mitigation of faults caused by cascading failures in multi-layer critical

infrastructure networks.

2.1.4 Parandehgheibi et al. Interdependency Model

[15] also consider the power and communication infrastructure networks to analyze

the effect of cascading failures on these interdependent networks. In their model, the

power network graph P = (Vp, Ep) consist of vertices Vp representing the generators,

and substations, and edges Ep representing the transmission lines. Similarly, the

communication network graph C = (Vc, Ec) consist of vertices Vc representing the

control centers, and routers, edges Ec representing the communication lines. In the

graphs, it is assumed that nodes represented by generators, and control centers, are

autonomous, i.e. these nodes operate independently without any dependency on any

other node across both the networks. In this model, dependency between network

entities is represented by coupling the routers, and substations with edges E (directed

or undirected), in a composite graph of G = (V,E,Ep, Ec), V = Vp ∪ Vc. Whether

a node of this composite graph G is operational or not is defined by the following

functional rules: If the node represents a substation, it remains operational as long as,

(i) there exists a path between the substation and a generator via the power network
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edges Ep, and (ii) there exists a path between the substation and a router (to receive

control signals) via edges of E. If the node represents a router, it remains operational

as long as, (i) there exists a path between the router and a control center via the

communication network edges Ec, and (ii) there exists a path between the router

and a substation (to receive power) via edges of E. Lastly, if the node represents a

generator, or a control center, it remains continuously functional.

At the time of the initial failure (due to a possible attack, or fault), the failed

nodes, or edges are removed from the graph G. The failure propagation is then rep-

resented in the model by iteratively removing the failed nodes and all their incident

edges from graph G that do not satisfy the aforementioned functional rules. This

propagation continues until a steady state is reached when no further removals of

nodes, or edges are necessary. An example of the described failure propagation is

illustrated in Figure 2.4. In the figure the power network consists of a generator G

and substations s1, s2, s3 and communication network consists of control center C and

routers r1, r2, r3. Blue edges denotes the power network edges (composed of transmis-

sion lines) and green edges denotes the communication network edges (composed of

communication links). Black edges denotes the interdependency between substation

of power network and routers in communication network. An example of failure prop-

agation in this model is discussed as follows — (a) The substation s1 is attacked. (b)

Failure of substation s1 results in removal of all power network edges incident on s1

and failure of interdependent router r1 and removal of communication network edges

incident on it. (c) Substations s2, s3 and routers r2, r3 fails and hence are removed

as they do not satisfy both the properties for being being functional as mentioned.

The edges incident on these substations and routers are subsequently removed. The

resultant interdependent network after the failure consists of two autonomous nodes

G and C.
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Figure 2.4: Representation of Interdependency and Cascading Failure in Power and

Communication Network as Demonstrated by Parandehgheibi et al.

Keeping this failure model as their basis, the authors consider the problem of se-

lection of the minimum number of non-autonomous nodes (substations, and routers),

that need to be removed from the graph G, such that the resulting graph generated

at the steady state contains no non-autonomous nodes. The authors term this prob-

lem as the Node-MTFR (minimum total failure removal) problem. They also identify

another similar problem Edge-MTFR, that concentrates on the selection of the min-

imum number of edges of G such that the resulting graph generated at the steady

state contains no non-autonomous node.

For solving these two problems the authors assume that the power network graph

P , and the communication network graph C, are each star topology graphs. For

the power network, the substations are directly connected to a generator without

any connections between any other substations, i.e for all edges (u, v) ∈ Ep, node u
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represents a substation, and node v represents a generator. Similarly for the commu-

nication network the router are directly connected to a control center without any

connections between any other routers, i.e for all edges (u, v) ∈ Ec, node u repre-

sents a router node, and node v represents a control center node. The authors now

proceed to analyze the problem from the perspective of a bipartite graph, where the

nodes in the bipartite graph comprise of the substations of the power network, and

routers of the communication network (the nodes representing generators, and con-

trol centers are ignored). The edges of this bipartite graph is the set of dependency

relations represented by edge set E, of graph G. The authors analyze this problem

from two interdependency perspectives, namely, unidirectional interdependency, and

bi-directional interdependency.

For unidirectional dependency, the Node-MTFR problem is shown to be NP-

complete by reduction from the Feedback Vertex Set problem, and an optimal solution

is proposed by an integer linear program (ILP). A greedy approximation algorithm is

also proposed for this problem and its solution is compared with the optimal solution

obtained from the ILP. The authors also prove that Edge-MTFR problem for unidi-

rectional interdependency is NP-complete by reduction from the Feedback Edge Set

problem.

For bidirectional interdependency, the authors show that the Node-MTFR prob-

lem corresponds to a minimum vertex cover problem for bipartite graphs, and us-

ing Konig’s Theorem, they show that this problem is equivalent to the maximum

matching problem for bipartite graphs which has a known polynomial time solvable

algorithm [28]. The authors also observe that for the Edge-MTFR problem with bidi-

rectional interdependency all the edges of the bipartite graph must necessarily be re-

moved, as any existing edge would denote the existence of operating non-autonomous

nodes.
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For the purpose of experimentation and simulation, the authors use the Italian

communication and power network data obtained from [14]. To preserve the star

topology configuration for the power and communication networks, only substations

directly connected to the generators, and routers directly connected to control centers

are considered. Unidirectional dependency between the substations and routers is

established by assuming that a substation receives control signals from the nearest

router, and a router receives power from the nearest substation. Using this setup the

simulation is carried out to find the minimum number of nodes representing routers

and substations that need to be removed, such that all non-autonomous nodes are

removed from the graph (Node-MTFR). The experimental results showed that the

north-western part of Italy is acutely vulnerable as removal of just three routers

results in the failure of all substations and remaining routers.

A possible drawback to this model is that this model is able to represent depen-

dencies that are in disjunctive form, for example, a sub-station survives as long it

has a connection to a router. However, if there is a need to model a conjunctive

dependency among network entities this model may not be adequate, for example,

a scenario where a sub-station survives only when it is connected to two routers.

In the real world, it is highly likely that entities in either the power or communica-

tion network have such conjunctive dependency amongst other entities, which this

model may not be able to adequately represent. Another possible shortcoming of this

model is the number of types of power, and communication entities that this model

considers. For instance, in a real world communication network there may be com-

munication entities such as cell towers whose survivability may have to be modeled

very differently than the way routers are modeled. In the proposed model if support

for additional entities are included that have different functional rules, it is not clear

how this model will be able to accommodate them.
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2.1.5 Castet et al. Interdependency Model

[23] develop a model for survivability analysis of networks with heterogeneous

nodes (nodes that can perform more than one function), and apply their approach to

space-based networks. The authors propose that heterogeneous networks can be mod-

eled as interdependent multi-layer networks, thus enabling survivability analysis of

these networks. They assert that in this approach, the multi-layer aspect captures the

common functionalities across the different nodes (by construction of homogeneous

sub-networks), and the interdependency aspect captures the physical characteristics

of each node in the network.

In this paper the authors focuses on space-based networks (SBNs). In SBNs, each

network entity (space-craft), may perform more than one function. SBN’s operate by

physically distributing functions in multiple orbiting space-crafts that are wirelessly

connected to each other. The SBNs architecture allows the sharing of resources

on-orbit, such as data processing, data storage, and downlinks among the network

entities. In this study, Castet et al. attempt to assess their proposed approach of

modeling heterogeneous networks as interdependent multi-layer networks on SBNs,

and benchmark the survivability of a fractionated SBN architecture, against that of

a traditional monolith spacecraft.

To represent the heterogeneous SBN as a multi-layer interdependent network the

authors define the following terms: (a) Super-Node: A network entity that supports

multiple functionalities, (b) Node: Component of a super-node that represents a single

functionality of that super-node, (c) Layer: Set of nodes with the same functionality,

(d) Intra-Layer Link: A link between two nodes in the same layer. The link can

be directed (when one node is providing a resource and the other is receiving), or

undirected (both provide, and receive resources), (e) Networked Layer: A network

21



possessing intra-layer links, and (f) Inter-Layer Link: A directed link that captures the

inter-dependency between functionalities (nodes) within a super-node. Specifically,

this link implies the (directed) propagation of failure from one node to the other.

In their model two types of inter-layer links are considered that represent the two

types of failure propagation possible in the model: (i) Inter-links for the kill effect

failure propagation, defined by the propagation rule as follows: When a node fails,

all nodes that have an incoming inter-link of this type from the failed node imme-

diately fail, and (ii) Inter-links for the precursor effect failure propagation, defined

by a conditional propagation rule as follows: When a node fails, and all the nodes

with incoming intra-links to this failed node have also failed, all entities that have

an incoming inter-link of this type from the failed node fails. This type of inter-link

implicitly implies that as long as a super-node has access to a particular functionality,

either from its own resources or from another super-node, all nodes in the super-node

dependent on this functionality survive. Figure 2.5 demonstrates the propagation

rules and represents a sample SBN as an interdependent multi-layer network N de-

fined by N(G1, ..., GL, Ek, Ep), where:

L is the number of layers each numbered sequentially from 1 to L

G1, ...., GL are the graphs on each layer :

∀l ∈ [1, ..., L], Gl = (Vl, El) with :
Vl is the set of nl nodes in Gl

El is the set of intra− layer links in Gl

Ek is the set of inter − layer links representing the ”kill effect”

Ep is the set of inter − layer links representing the ”precursor effect”
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In Figure 2.5 the interdependent space based network consist of three layers repre-

sented by graphs G1 = ({1, 2}, {(1, 2), (2, 1)}), G2 = ({3, 4}, ∅), G2 = ({5}, ∅). Edge

set Ek = {(3, 1), (3, 5), (4, 2)} and edge set Ep = {(1, 3), (1, 5), (2, 4)}. If node 3 fails,

nodes 1 and 5 immediately fail (kill effect). If node 1 fails then nodes 3 and 5 don’t

fail unless node 2 also fails (precursor effect).

To analyze the survivability of an interdependent multi-layer network using the

above network representation, and propagation rules, the authors carry out the fol-

lowing steps: (i) Generate the time to failure for each node and intra-layer link, (ii)

propagate failures through inter-layer links for the kill effect, (iii) propagate failures

through inter-layer links for the precursor effect, and (iv) combine all failure propaga-

tion effects to obtain the probability of failure of each node. Random times to failure

for the nodes were generated using cumulative distribution functions representing the

failure behavior of each node. Since links between two space-crafts (super-nodes) is

established through a wireless unit, a two step process was followed for generating the

times to failure for the intra-layer links: (i) times to failure of the wireless units on

each spacecraft was generated using predetermined cumulative distribution functions,

(ii) times to failures for each intra-layer link was generated by taking the minimum

of the time to failures of the two associated wireless units.

For simulation and study, the authors apply their model into three different SBN

scenarios. In their first scenario they consider three different space network archi-

tectures. The first architecture considered consists of a traditional monolith space-

craft with three subsystems (or layers), namely, Telemetry Tracking and Command

(TTC), supporting subsystems, and payload. The second architecture consists of two

space based networks, one of them a traditional monolith spacecraft, while the other

spacecraft consists of two subsystems — TTC and supporting subsystems. The two
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Figure 2.5: Representation of Interdependency and Cascading Failure in Power and

Communication Network as Demonstrated by Castet et al.

spacecrafts shares their TTC subsystems, i.e. a TTC redundancy is introduced,

through a wireless link. This architecture is shown in Figure 2.5 with layer 1,2 and

3 denoting subsystems TTC, supporting subsystems, and payload respectively. A

third architecture is considered which is comprised of the monolith spacecraft, and

two spacecrafts having two subsystems — TTC and supporting subsystems. These

three spacecrafts share there TTC subsystems, i.e. there is a higher degree of TTC

redundancy, through wireless links. Wireless links in the second and third spacecraft

architecture are assumed to be perfect. The distribution of probability of unavailabil-

ity (failure) of TTC subsystem with time, identified as a major spacecraft unreliability

factor in [29], is obtained from [30]. The probability of unavailability of the payload

subsystem over time, for the three spacecrafts is computed considering the failure of

the TTC subsystem using a Monte Carlo Simulation. The simulation results showed

that for a given time, increasing the redundancy of the TTC subsystems reduces the

probability of unavailability of the payload. However, it was observed that the per-

centage of this reduction is not linear with the redundancy introduced.
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The second scenario was aimed to study the impact of wireless link failure. A

Weibull distribution is considered for probability of unavailability of wireless link

failure with time. The parameters of Weibull distribution are set such that the wireless

link has a probability of 0.5 to fail after 15 years. Simulations were carried out

to compute the probability of unavailability of payload for the second architecture

of the first application with the given wireless link failure distribution. The result

is compared with the first and second architecture with perfect wireless link (the

previous scenario). Compared with the first scenario, it was observed that for the

second architecture the probability of unavailability of payload increases with time

when wireless link failure is considered. At a given point in time, it surpasses the

probability of unavailability of monolith spacecraft thus negating the effect of a TTC

redundancy. The conclusion that can be drawn from these observations are that

failure behavior of wireless links is a critical consideration to analyze the advantage

of space based networks with TTC redundancy, over adoption of traditional monolith

space crafts.

In the third scenario the authors consider a more complex space based network

by including two new subsystems into the traditional monolith spacecraft. The new

subsystems included are a Control Processor (CP) subsystem (the main computer

of the spacecraft), and a Data Handling (DH) subsystem (handling exchange and

storage of data). Another space craft is considered with all the subsystems as stated

except the payload. These two spacecrafts share DH, TTC and CP subsystems,

thus introducing redundancy. The resources are shared via wireless links. Hence the

space based network represented by this architecture has 5 layers with 3 networked

layer. The distribution of probability of unavailability of these subsystems with time

is obtained from [30]. Assuming perfect wireless link, a Monte Carlo simulation is

carried out to compute the probability of unavailability of payload with time. The
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simulation result is compared with traditional monolith spacecraft, and the second

spacecraft architecture’s (from the first scenario) payload failure distribution. It is

observed that after 15 years this architecture reduces the risk of failure by 20.5% over

the monolith spacecraft. This makes way to draw a conclusion that this architecture

has greater improvement in reduction of failure over monolith spacecraft, than by

only introducing TTC redundancy (as considered in first scenario).

2.1.6 Limitations of Current Modeling Approaches and Possible Solutions

As discussed, significant efforts have been made in the research community in the

last few years to develop an appropriate model of interdependency between the entities

of a multi-layer critical infrastructure network. Unfortunately, many of the proposed

models are overly simplistic in nature and as such they fail to capture the complex

interdependency that exists between power grid and communication networks. As

noted in Section 2.1.1, the highly cited paper due to [8], assume that every node in

one network can depend on one and only one node of the other network. Obviously,

this assumption is not valid in an interdependent power-communication network that

spans countries and continents. Even the authors in a follow up paper [13] recognize

that the assumption may not be valid in the real world and a single node in one

network may depend on more than one node in the other network and vice-versa. A

node in one network may be functional (“alive”) as long as one supporting node on

the other network is functional.

Although this generalization can account for disjunctive dependency of a node in

the A network (say ai) on more than one node in the B network (say, bj and bk),

implying that ai may be “alive” as long as either bi or bj is alive, it cannot account

for conjunctive dependency of the form when both bj and bk has to be alive in order

for ai to be alive. In a real network the dependency is likely to be even more complex
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involving both disjunctive and conjunctive components. For example, ai may be alive

if (i) bj and bk and bl are alive, or (ii) bm and bn are alive, or (iii) bp is alive. The

graph based interdependency models proposed in the literature [14, 16, 15, 9, 23, 12]

including [8, 13] cannot capture such complex interdependency between entities of

multi-layer networks.

This dissertation as whole addresses this problem. It also describes the Implicative

Interdependency Models which can capture dependencies between two infrastructures

as well as dependencies that exist in a single infrastructure. In the course of this dis-

sertation, some critical problems related to infrastructure systems which are beneficial

in real world applications are described and solved.
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Chapter 3

THE IMPLICATIVE INTER-DEPENDENCY MODEL

The need for a model to capture the complex intra and inter network dependencies

is elaborated through a descriptive example of interdependent power and commu-

nication network. Consider the system shown in Figure 3.1 where the power net-

work entities such as generators, transmission lines and substations are denoted by

a0 through a11 and communication entities such as GPS transmitters and satellites

are denoted by b0 through b4. The Smart Control Center (SCC) is represented by

the variable c0 as it is a part of both the power and the communication network.

For the SCC to be operational, it must receive electricity either from the generator

via the different power grid entities, or from the battery. Similarly, the function-

ing of the generator will be affected if it fails to receive appropriate control signals

from the SCC. The mutual dependency between the generator and the SCC can be

expressed in terms of two implicative dependency relations — (i) a11 ← b4c0, (ii)

c0 ← (b0b3(b1 + b2))(a0a1 + a2a3a4a5a6a7a8a9a10a11). It may be noted that the SCC

will not be operational if it does not receive electric power produced at the gener-

ating station and carried over the power grid entities to the SCC and its battery

backup also fails. This dependency can be expressed by the implicative relation

c0 ← a0a1 + a2a3a4a5a6a7a8a9a10a11 implying that c0 will be operational (i) if entities

a0 and a1 are operational, or (ii) if entities a2 through a11 are operational. However,

the SCC will also not be operational if it does not receive data from the communica-

tion system (IEDs, satellites, etc.). This dependency can be expressed by the relation

c0 ← (b0b3(b1+b2)). This implies that c0 will be operational (i) if entities b1 or b2 is op-

erational, and (ii) if entities b0 and b3 are operational. Combining the dependency of
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the SCC on the power grid and the communication network, the consolidated depen-

dency relation can be expressed as c0 ← (b0b3(b1+b2))(a0a1+a2a3a4a5a6a7a8a9a10a11).

Likewise, the dependency relation for the generating station can be expressed as

a11 ← b4c0, implying that the generating station will not be operational unless it

receives appropriate signals from the SCC c0, carried over wired or wireless link b4.

These two implicative relations demonstrate that dependency (or interdependency)

is a complex combination of conjunctive and disjunctive terms. We term the model

capturing this complex dependencies and interdependencies as Implicative Interde-

pendency Model.

Figure 3.1: Example of Power - Communication Infrastructure Interdependency

In the IIM an intra-network or inter-network critical infrastructure system is repre-

sented by I(E,F(E)), where E is the set of entities and F(E) is the set of dependency
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relations. Throughout this dissertation, an intra-dependent critical infrastructure or

interdependent critical infrastructure is termed as system denoted by I(E,F(E)).

The dynamics of the model is explained through an example. Consider sets A and B

(with E = A ∪ B) representing entities in power and communication network (say)

with A = {a1, a2, a3} and B = {b1, b2, b3, b4} respectively. The function F(E) giving

the set of dependency equations are provided in Table 3.1. In the given example,

an IDR b3 ← a2 + a1a3 implies that entity b3 is operational if entity a2 or entity a1

and a3 are operational. In the IDRs each conjunction term e.g. a1a3 is referred to as

minterms.

Power Network Comm. Network

a1 ← b2 b1 ← a1 + a2

a2 ← b2 b2 ← a1a2

a3 ← b4 b3 ← a2 + a1a3

−− b4 ← a3

Table 3.1: IDRs for the Constructed Example

Initial failure of entities in A∪B would cause the failure to cascade until a steady

state is reached. As noted earlier, the event of an entity failing after the initial failure

is termed as induced failure. Failure in IIM proceeds in unit time steps with initial

failure starting at time step t = 0. Each time step captures the effect of entities

killed in all previous time steps. We demonstrate the cascading failure for the system

outlined in Table 3.1 through an example. Consider the entities a2 and a3 fail at time

step t = 0. Table 3.2 represents the cascade of failure in each subsequent time steps.

In Table 3.2, for a given entity and time step, ′0′ represents the entity is operational

and ′1′ non operational. In this example a steady state is reached at time step t = 3
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Entities Time Steps (t)

0 1 2 3 4 5 6

a1 0 0 1 1 1 1 1

a2 1 1 1 1 1 1 1

a3 1 1 1 1 1 1 1

b1 0 0 0 1 1 1 1

b2 0 1 1 1 1 1 1

b3 0 1 1 1 1 1 1

b4 0 1 1 1 1 1 1

Table 3.2: Failure Cascade Propagation when Entities {a2, a3} Fail at Time Step

t = 0. A Value of 1 Denotes Entity Failure, and 0 Otherwise

when all entities are non operational. IIM also assumes that the dependent entities

of all failed entities are killed immediately at the next time step. For example at time

step t = 1 entities a2, a3, b2, b3 and b4 are non operational. Due to the IDR a1 ← b2

entity a1 is killed immediately at time step t = 2. At t = 3 the entity b1 is killed due

to the IDR b1 ← a1 + a2 thus reaching the steady state.

As noted earlier the model captures the cascading failure that propagates through

the entities on an event of initial failure. Consider E = A ∪ B with A and B

representing entities in two separate critical infrastructures. The cascading failure

process is shown diagrammatically in Figure 3.2 with sets A0
d ⊂ A and B0

d ⊂ B

failing at t = 0. Accordingly, cascading failure in these systems can be represented

as a closed loop control system shown in Figure 3.3. The steady state after an initial

failure is analogous to the computation of fixed point of a function G(.) such that

G(Apd∪B
p
d) = Apd∪B

p
d , with steady state reached at t = p. It can be followed directly
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Figure 3.2: Cascading Failures Reach Steady State after p Time Steps

Figure 3.3: Cascading Failures as a Fixed Point System

that for a system with |E| = m, any initial failure would cause the system to reach a

steady state within m− 1 time steps.

In the following section, methodologies for generating dependency equations for

intra-dependent power network and inter dependent power and communication net-

work are discussed. This methodologies are priliminary steps in deriving the depen-

dency equations for a given intra/inter dependent critical infrastructure system. The

dependency equation generation strategies are used to create test data sets to measure

the efficacy of the solutions proposed for the problems that use IIM.

3.1 Generating IDRs

3.1.1 Generating Dependency Equations for Power Network

In this subsection, we describe a strategy to generate dependency equations of an

intra-dependent power network. We restrict to load bus, generator bus, neutral bus
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and transmission line as the entities in the power network. For a given power network,

AC power equations are solved to determine the direction of flow in the transmission

lines. We use the power flow solver available in MatPower software for different bus

systems [31]. For a given set of buses and transmission lines, the MatPower software

uses load demand of the bus, impedance of the transmission lines etc. to solve the

power flow and outputs the voltage of each bus in the system. We restrict to real

power flow analysis. For a given solution, the real part of generation is taken as the

power generated by a generator bus. Similarly, the real part of the load demand

is taken as demand value of a load bus. For two buses e1 and e2 connected by a

transmission line e12 the power flowing through the transmission line is calculated as

P12 = Real(V1 ∗ (V1−V−2
I12

)∗), where V1 is the voltage at bus e1, V2 is the voltage at

bus e2, I12 is the impedance of the transmission line e12 and (V1−V−2
I12

)∗ denotes the

complex conjugate of (V1−V2
I12

). P12 is the real component of the power flowing in the

transmission line e12. Power flows from bus e1 to e2 if P12 is positive and from bus e2

to e1 otherwise.

Dependency Equations

L1 ← T1G1

L2 ← T2L1 + T7N2

L3 ← T3L1 + T4N1

L4 ← T6N1 + T8N2

N1 ← T5G3

N2 ← T9G2

Table 3.3: IDRs of the Buses in Figure 3.4
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Figure 3.4: Example of Power Network Dependency

The generation of the dependency equation is explained through a nine bus sys-

tem shown in Figure 3.4. The figure represents a system I(E,F(E)) with set E

consisting of generator buses from G1 through G3, load buses L1 through L4, neutral

buses {N1, N2} and transmission lines T1 through T9. The values in the red blocks

denote the amount of power a generator is generating, the green block being the load

requirements and blue neutral (value of 0). The value in the grey blocks correspond

to power flow in the transmission lines. The transmission lines don’t have any IDR.

The IDRs for a bus b1 is constructed by the following — (a) let b2, b3 be the buses

and b12 (between b1 and b2) and b13 between (b1 and b3) be the transmission lines

for which power flows from these buses to b1, (b) the dependency equation for the

bus b1 is constructed as conjunction of minterms of size 2 (consisting of the bus from

which power is flowing and the transmission line) with each conjunction correspond-

ing to bus that has power flowing to it. For this example the dependency equation

b1 ← b12b2 + b13b3 is created. Using this definition the dependency equations for the

buses in Figure 3.4 are created and is shown in Table 3.3.
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The following points are to be noted regarding the generation rule — (a) The

transmission lines can only fail initially due to a man made attack or natural disaster.

Hence it entails the underlying assumption that the transmission lines would have

enough capacity to transmit any power that is required to flow in it, (b) The generator

bus is also only susceptible to initial failure and is assumed to have a generation

capacity that is enough to supply the power demanded by a instance of power flow,

(c) Neutral and Load buses are prone to both initial and induced failure. For example

consider the failure of transmission lines T9 and T1 at t = 0. Owing to this the load

bus L1 and neutral bus N2 fails at t = 2. At t = 3 load bus L2 fails due to the failure

of buses L1, N2. It is to be noted that load bus L3 does not fails as it still receives

power from N1 as transmission line T4 is expected to have a capacity that can support

a power flow equal to the demand of L3.

Owing to the underlying assumptions in the the creation of dependency equa-

tions, there is a limitation to its applicability to real world problems. However, with

respect to power network, creating dependency equations like the one discussed is a

preliminary step. Further research is required to be done to have a more accurate

abstract representation of the dependency equations that can have widespread appli-

cability to real world problems. The purpose of this subsection is — (1) presenting a

preliminary way the dependency equations can be generated for power network, (2)

larger data sets that can be used to measure the performance of the optimal solution

to the heuristic.

3.1.2 Generating Dependency Equations for Interdependent Power-Communication

Network

In this subsection, we describe rules to generate dependency relations for interde-

pendent power and communication network infrastructure as used in [18]. Real world
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Figure 3.5: Snapshot of the Power Network

data of Maricopa County, Arizona , USA was taken. This county is one of the most

densest populated region of Arizona with approximately 60% residents. Specifically,

we wanted to measure the amount of resource required to protect entities in partic-

ular regions of the county when these regions have a set of entities failing initially.

The data for power network was obtained from Platts (http://www.platts.com/) that

contains 70 generator buses (including solar homes that generate minuscule unit of

power) and 470 transmission lines. The communication network data was obtained

from GeoTel (http://www.geo-tel.com/) consisting of 2, 690 cell towers, 7, 100 fiber-lit

buildings and 42, 723 fiber links. Figures 3.5 and 3.6 displays the snapshot of power

network and communication network for a particular region of Maricopa county. In

Figure 3.5 the orange dots represent the generator buses and continuous yellow lines

represent the transmission lines. In Figure 3.6 fiber-lit buildings are represented by

pink dots, cell towers by orange dots and fiber links by continuous green lines.

The load of the power network are assumed to be cell towers and fiber-lit build-

ings. There exist other entities that draws electrical power. Since it is not relevant

for the comparative analysis of the heuristic and the ILP such entities are ignored.

The interdependent power-communication system is represented mathematically as

I(E,F(E)) with E = A ∪ B. A and B consist of the entities in the power net-
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Figure 3.6: Snapshot of the Communication Network

work and communication network respectively. With respect to this data the power

network consist of three type of entities — generating stations, load (which are cell

towers and fiber-lit buildings) and transmission lines (denoted by a1, a2, a3 respec-

tively). The communication network comprises of the following type of entities —

cell towers, fiber-lit buildings and fiber links (denoted by b1, b2, b3 respectively). It is

to be noted that the fiber-lit buildings and cell towers are considered as both power

network entities as well as communication network entities. From the raw data the

dependency equations are constructed using the following rules.

Rules: We take into consideration that an entity in the power network is dependent

on a set of entities in the communication network for either being operational and

vice-versa. To keep things uncomplicated, we consider the dependency equations with

at most two minterms. For the same reason we consider the size of each minterm is

at most two.

Generators (a1,i, 1 ≤ i ≤ p, where p is the total number of generators): We assume

that every generator (a1.i) is, i) dependent on the closest Cell Tower (b1,j), or, ii)

closest Fiber-lit building (b2,k) and the corresponding Fiber link (b3,l) connecting b2,k

and a1,i. Hence, we have a1,i ← b1,j + b2,k × b3,l.

Load (a2,i, 1 ≤ i ≤ q, where q is the total number of loads): The power network loads
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do not depend on any entities in communication network

Transmission Lines (a3,i, 1 ≤ i ≤ r, where r is the total number of transmission

lines): The transmission lines in the power network do not depend on any entities in

communication network.

Cell Towers (b1,i, 1 ≤ i ≤ s, where s is the total number of cell towers): The Cell

Towers depend on two components, i) the closest pair of generators, and, ii) corre-

sponding transmission line, connecting the generator to the cell tower. Thus we have

b1,i ← a1,j × a3,k + a1,j′ × a3,k′ .

Fiber-lit Buildings (b2,i, 1 ≤ i ≤ t, where t is the total number of fiber-lit buildings):

The Fiber-lit Buildings depend on two components, i) the closest pair of generators,

and, ii) corresponding transmission line, connecting the generator to the fiber-lit

buildings. Thus we have b2,i ← a1,j × a3,k + a1,j′ × a3,k′ .

Fiber Links (b3,i, 1 ≤ i ≤ u, where u is the total number of fiber links): The Fiber

Links aren’t dependent on any power network entity. These links require power only

for the amplifiers connected to them. The amplifiers are required if the length of the

fiber link is above a certain threshold. We consider only those fiber links which are

’quite long’, need power. The fiber links depend on the closest pair of generators and

the transmission lines connecting the generators to the fiber link under consideration.

Thus we have b3,i ← a1,j × a3,k + a1,j′ × a3,k′ . We do not consider that these fiber

links need any power as we cannot determine the length of the fiber links or the exact

threshold value due to the lack of data.

38



Chapter 4

THE ENTITY HARDENING PROBLEM

For an existing critical infrastructure system, an operator would have the capability

to measure the extent of failure when a certain set of entities fail initially. Consider

a scenario where an operator identifies a set of critical entities which when failed

initially would cause the maximum damage. In an ideal case, there would be enough

resources available to support those critical entities from initial failure. However, if the

availability of resources is a constraint, then an operator might have to choose entities

which when supported would minimize the damage. We define the entities to support

as the entities to harden and the problem as the Entity Hardening Problem. An entity

xi when hardened is resistant to both initial and induced failure (failing of entities in

the cascading process after the initial failure). In the physical world, an entity can be

hardened with respect to cyber attacks (say) by having a strong firewall. Similarly

some entities can be hardened by — (a) strengthening their physical structures for

protection from natural disaster, (b) placing redundant entity a′ for an entity a which

can operate when a fails, (c) increasing physical limits of the entity (maximum power

flow capacity of the transmission line, maximum generation capacity of a generator

bus). There exist multiple such ways to harden an entity from different kind of

failures. Even though there may be circumstances under which an entity cannot be

hardened, we relax such possibilities and assume that there always exist a way to

harden a given entity. Hardening entities can prevent cascading failures caused by

some initial failure. Thus this results in protecting a set of entities including the

hardened entities from an initial failure trigger. Using these definitions the Entity

Hardening Problem finds a set of k entities that should be hardened (with k being
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the resource constraint) in an intra-network or inter-network critical infrastructure

system that protects the maximum number of entities from failure when a set of K

entities fail initially.

4.1 Problem Formulation

Before stating the problem formally, a brief understanding of entity hardening is

provided. Consider the system with set of dependency relations given by Table 3.1 of

Chapter 3. With an initial failure of entities a2, a3 the subsequent cascading failures is

shown in Table 3.2 which fails all the entities in the system. We note three instances

where entities a1, a2 and a3 are hardened separately with a2, a3 failing initially. The

failure cascade propagation when a1, a2 and a3 are hardened are shown in Tables 4.1,

4.2, and 4.3 respectively. In the tables the cascading failure is shown till t = 3 because

with initial failure of entities a2, a3 the cascade propagation stops at t = 3 as seen in

Table 3.2. Hardening entity a1 protect entities a1, b1 from failure. Similarly, when a2

is hardened it protect a1, a2, b1, b2, b3 and hardening a3 protect entities a3, b4. If the

hardening budget is 1 the operator would clearly harden the entity a2 as it protects

the maximum number of entities from failure. We now describe the entity hardening

problem formally.

The Entity Hardening (ENH) problem

INSTANCE: Given:

(i) A system I(E,F(E)), where the set E represent the set of entities, and F(E) the

set of IDRs.

(ii) The set of K initially failing entities E ′, where E ′ ⊆ E

(iii) Two positive integers k, k < K and EF .
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Entities Time Steps (t)

0 1 2 3

a1 0 0 0 0

a2 1 1 1 1

a3 1 1 1 1

b1 0 0 0 0

b2 0 1 1 1

b3 0 1 1 1

b4 0 1 1 1

Table 4.1: Failure Cas-

cade Propagation when

Entities {a2, a3} Fail at

Time Step t = 0 and a1

is Hardened

Entities Time Steps (t)

0 1 2 3

a1 0 0 0 0

a2 0 0 0 0

a3 1 1 1 1

b1 0 0 0 0

b2 0 0 0 0

b3 0 0 0 0

b4 0 1 1 1

Table 4.2: Failure Cas-

cade Propagation when

Entities {a2, a3} Fail at

Time Step t = 0 and a2

is Hardened

Entities Time Steps (t)

0 1 2 3

a1 0 0 1 1

a2 1 1 1 1

a3 0 0 0 0

b1 0 0 0 1

b2 0 1 1 1

b3 0 1 1 1

b4 0 0 0 0

Table 4.3: Failure Cas-

cade Propagation when

Entities {a2, a3} Fail at

Time Step t = 0 and a3

is Hardened

DECISION VERSION: Is there a set of entities H = E ′′, E ′′ ⊆ E, |H| ≤ k, such

that hardening H entities results in no more than EF entities to fail after entities in

E ′ fail at time step t = 0.

OPTIMIZATION VERSION: Find a set of k entities to harden which would maximize

the number of protected entities with entities in E ′ failing initially.

Definition: KillSet(S) : For an initial failure of set S, the set of entities that fail

due to induced failure in the cascading process including the entities in set S is de-

noted by KillSet(S).
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The following points are to be noted regarding the ENH problem — (a) the con-

dition k < K is assumed as with k ≥ K hardening the K initially failing entities

would ensure that there are no induced and initial failure. (b) with E ′ entities failing

initially, the entities to be harden are to be selected from KillSet(E ′). Hardening

entities outside KillSet(E ′) would not result in protection of any non-hardened entity.

4.2 Computational Complexity Analysis

The computational complexity of the ENH problem is provided in this section.

The problem is proved to be NP-complete. Additionally, approximate and polynomial

solutions to few subcases are provided. The subcases impose restrictions on the IDRs

and the solutions can be applied to systems whose dependency equations fall within

the definition of the restriction. We prove that the ENH problem is NP-complete

in Theorem 1. Using the results of Theorem 1 an in-approximability bound of the

problem is provided in Theorem 2.

Theorem 1. The ENH Problem is NP Complete

Proof. The Entity Hardening problem is proved to be NP complete by giving a re-

duction from the Densest p-Subhypergraph problem [32], a known NP-complete prob-

lem. An instance of the Densest p-Subhypergraph problem includes a hypergraph

G = (V,EV ), a parameter p and a parameter M . The problem asks the question

whether there exists a set of vertices |V ′| ⊆ V and |V ′| ≤ p such that the sub-

graph induced with this set of vertices has at least M hyperedges that are completely

covered. From an instance of the Densest p-Subhypergraph problem we create an in-

stance of the ENH problem in the following way. Consider a system I(E,F(E)) with

E = A∪B, where A and B are entities of two separate critical infrastructures depen-

dent on each other. For each vertex vi and each hyperedge ej entities bi and aj are
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added to the set B and A respectively. For each hyperedge ej with ej = {vm, vn, vq}

(say) an IDR of form aj ← bmbnbq is created. It is assumed that the value of K is set

of |V |. The values of k and EF are set to p and |V |+ |EV | − p−M (where |A| = |V |

and |B| = |E|) respectively.

In the constructed instance only entities of set A are dependent on entities of set

B. Additionally the dependency for an entity ai consists of conjunction of entities in

set B. Hence for an entity ai ∈ A to fail, either it itself has to fail initially or any one

of the entity that ai depends on has to fail. It is to be noted that the entities in set

B has no induced failure i.e., there is no cascade. Following from this assertion, with

K = |V ′|, failing entities in B would fail all entities in set A ∪ B. For this created

instance E ′ is set to B′

If an entity in set A is hardened then it would have no effect in failure prevention

of any other entities. Whereas hardening an entity bm ∈ B might result in failure

prevention of an entity ai ∈ A with IDR aj ← bmbnbq provided that entities bn, bq are

also defended. With k = p (and K ≤ |V | = |B|) it can be ensured that entities to be

defended are from set B′.

To prove the theorem, consider that there is a solution to the Densest p-Subhypergraph

problem. Then there exist p vertices which induces a subgraph which has at least

M hyperedges. Hardening the entities bi ∈ B′ for each vertex vi in the solution of

the Densest p-Subhypergraph problem would then ensure that at least M entities in

set A are protected from failure. This is because the entities in set A for which the

failure is prevented corresponds to the hyperedges in the induced subgraph. Thus the

number of entities that fail after hardening p entities is at most |V |+ |EV | − p−M ,

solving the ENH problem. Now consider that there is a solution to the ENH problem.

As previously stated, the entities to be hardened will always be from set B′. So de-

fending p entities from set B′ would result in failure prevention of at least M entities
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in set A such that EF ≤ |V | + |EV | − p −M . Hence, the vertex induced subgraph

would have at least M hyperedges completely covered when vertices corresponding

to the entities hardened are included in the solution of the Densest p-Subhypergraph

problem. Hence proved.

Theorem 2. For a system I(E,F(E)) with n = |E| and F(E) having IDRs of form

in the created instance of Theorem 1, the ENH problem is hard to approximate within

a factor of 1

2log(n)
λ for some λ > 0.

Proof. The ENH problem with IDRs of form in the created instance of Theorem

1 is a special case of the densest p-subhypergraph problem. In [32] the densest

p−subhypergraph problem is proved to be inapproximable within a factor of 1

2log(n)
λ

(λ > 0). The same result applied to the ENH problem as well. Hence the theorem

follows.

4.2.1 Restricted Case I: Problem Instance with One Minterm of Size One

The IDRs of this restricted case have a single minterm of size 1. This can be

represented as ei ← ej, where ei and ej are entities of a system I(E,F(E)). Algorithm

1 solves the ENH problem with this restriction optimally in polynomial time utilizing

the notion of Kill Set defined in Section 4.1 with proof of optimality given in Theorem

3.

Theorem 3. Algorithm 1 solves the Entity Hardening problem for the Restricted Case

I optimally in polynomial time.

Proof. It is shown in [18] that the kill set for all entities in a system can be computed

in O(n3) where n = |E|. Thus computing the kill sets of K entities would have a

time complexity of O(Kn2). Each update in line 8 would take O(n) time and hence

the total computation of the inner for loop can be done in O(Kn). The outer for
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Algorithm 1: Entity Hardening Algorithm for systems with Restricted Case I

type of dependencies

Data: A system I(E,F(E)), set of K entities failing initially E′, E′ ⊆ E, hardening

budget k

Result: Set of hardened entities H

1 begin

2 For each entity ei ∈ E′ compute the set of kill sets and store it in a set

C = {Ce1 , Ce2 , ..., CeK}, where Cei = KillSet(ei) ;

3 Set H = ∅ ;

4 for (i=1; i ≤ K; i++) do

5 Choose the set Cek having the highest cardinality from C ;

6 Update C ← C \ Cek ;

7 for Cej ∈ C do

8 Update Cej ← Cej \ Cek ;

9 Update H ← H∪ {ek};

10 If all Kill Sets are empty then break ;

11 return H

loop iterates for K times thus the time complexity of lines 4 − 9 is O(K2n). Hence

Algorithm 1 runs in O(Kn2).

For two kill sets Cei and Cej , it can be shown that either Cei∩Cej = ∅ or Cei∩Cej =

Cei or Cei ∩ Cej = Cej [18]. Using this assertion the set E ′ can be partitioned into

disjoint subsets EX1 , EX2 , .., EXm where kill sets of two entities ea, ebhave no elements

in common with ea ∈ EXi and eb ∈ EXj and i 6= j. Additionally, for any given subset

of entities EXz there exist an entity ek ∈ EXz whose kill set is a super set of kill sets

of all other entities in EXz . Thus each of the disjoint subset has an entity whose kill

45



set is the super set among all other entities in that subset. Algorithm 1 chose such an

entity in line 5 for every iteration and updates in line 8 would make the kill set of all

the remaining entities in the partition to be empty and hence would not be hardened

in future iterations. Clearly choosing these entities would globally maximize the total

number of protected entities from failure. Hence the Algorithm 1 is proved to be

optimal.

4.2.2 Restricted Case II: Problem Instance with an Arbitrary Number of Minterms

of Size One

The IDRs of this restricted case have arbitrary number of minterm of size 1.

This can be represented as ei ←
∑p

q=1 eq, where ei and eq are entities of a system

I(E,F(E)) and the number of minterms are p. The ENH problem with respect

to this restricted case is NP-complete and is proved in Theorem 4. We provide an

approximation bound for this restricted case of the problem in Theorem 6 using the

results of Theorem 4. The approximation bound uses the notion of Protection Set.

The Protection Set of an entity can be computed in O((n)2) where n = |E| and m

are number of minterms.

Definition: For an entity ei ∈ E the Protection Set is defined as the entities that

would be prevented from failure by hardening the entity ei when all entities in E ′ fail

initially. This is represented as P (xi|E ′).

Theorem 4. The ENH problem for Restricted Case II is NP Complete

Proof. The ENH problem for case III is proved to be NP complete by giving a reduc-

tion from the Set Cover Problem. An instance of the Set Cover problem is given by a

set S = {x1, x2, ..., xn} of elements, a set of subsets S = {S1, S2, ..., Sm} where Si ⊆ S

and a positive integer M . The decision version of the problems finds whether there
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exist at most M subsets from set S whose union would result in the set S. From

an instance of the set cover problem we create an instance of the ENH problem in

the following way. Consider a system I(E,F(E)) with E = A ∪ B, where A and B

are entities of two separate critical infrastructures dependent on each other. For each

element xi in set S we add an entity ai in set A. For each subset Si in set S we add

an entity bi in set B. For all subsets in S, say Sp, Sm, Sn, which has the element xi

an IDR of form ai ← bm + bn + bl is added to F(E). The values of positive integers k

and EF are set to M and m−M respectively. It is assumed that the value of K = m

and E ′ = B.

The constructed instance ensures that the entities to be hardened are from set B.

This is because hardening an entity ai ∈ A would only result in prevention of its own

failure whereas hardening an entity bj ∈ B would result in failure prevention of its

own and all other entities in set A for which it appears in its IDR.

Consider there exists a solution to the Set Cover problem. Then there exist M

subsets whose union results in the set S. Hardening the entities in set B corresponding

to the subsets selected would ensure that all entities in set A are prevented from

failure. This is because for the dependency of each entity ai ∈ A there exist at least

one entity (in set B) that is hardened. Hence the number of entities that fails after

hardening is m − M which is equal to EF , thus solving the ENH problem. Now,

consider that there is a solution to the ENH problem. As discussed above the entities

to be hardened should be from set B′. To achieve EF = m −M with k = M , no

entities in the set A must fail. Hence for each entity ai ∈ A at least one entity in

set B that appears in its IDR has to be hardened. Thus, it directly follows that the

union of subsets in set S is equal to the set S, solving the Set Cover Problem. Hence

proved.
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Theorem 5. For two entities ei, ej ∈ A ∪ B, P (ei|E ′) ∪ P (ej|AE ′) = P (ei, ej|E ′)

when IDRs are in form of Restricted Case II.

Proof. Assume that defending two entities ei and ej would result in preventing failure

of P (ei, ej|E ′) entities with |P (ei|E ′) ∪ P (ej|E ′)| < |P (ei, ej|E ′)|. Then there exist

at least one entity ep /∈ P (ei|E ′) ∪ P (ej|E ′) such that it’s failure is prevented only if

ei and ej are protected together. So two entities em and en (with em ∈ P (ei|E ′) and

en ∈ P (ej|E ′) or vice versa) have to be present in the IDR of ep. As the IDRs are of

restricted Case II so if any one of em or en is protected then ep is protected, hence a

contradiction. On the other way round P (ei, ej|E ′) contains all entities which would

be prevented from failure if ei or ej is defended alone. So it directly follows that

|P (ei|E ′) ∪ P (ej|E ′)| > |P (ei, ej|E ′)| is not possible. Hence the theorem holds.

Theorem 6. There exists an 1 − 1
e

approximation algorithm that approximates the

ENH problem for Restricted Case II.

Proof. The approximation algorithm is constructed by reducing the problem for this

restricted case to Maximum Coverage problem. An instance of the maximum coverage

problem consists of a set S = {x1, x2, ..., xn}, a set S = {S1, S2, ..., Sm} where Si ⊆ S

and a positive integer M . The objective of the problem is to find a set S ′ ⊆ S and

|S ′| ≤ M such that ∪Si∈SSi is maximized. Consider a system I(E,F(E)) with E =

A ∪B, where A and B are entities of two separate critical infrastructures dependent

on each other. For a given initial failure set E ′ = A′ ∪ B′ with |A′| + |B′| ≤ K, let

P (ei|A′∪B′) denote the protection set for each entity ei ∈ A∪B. We construct a set

S = A ∪ B and for each entity ei a set Sei ⊆ S such that Sei = P (ei|A′ ∪ B′). Each

set Sei is added as an element of a set S. The conversion of the problem to Maximum

Coverage problem can be done in polynomial time. By Theorem 5 defending a set

of entities X ⊆ S would result in failure prevention of ∪ei∈XSxi entities. Hence,
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with the constructed sets S and S and a positive integer M (with M = k) finding

the Maximum Coverage would ensure the failure protection of maximum number of

entities in A ∪ B. This is same as the ENH problem of Restricted Case II. As there

exists an 1 − 1
e

approximation algorithm for the Maximum Coverage problem hence

the same algorithm can be used to solve this restricted case of the ENH problem using

this transformation.

4.3 Optimal and Heuristic Solution to the Problem

Owing to the problems being NP-complete, we provide an optimal solutions to the

problem by formulating Integer Linear Program (ILP). We also provide sub optimal

heuristic that runs in polynomial time.

4.3.1 Optimal Solution using Integer Linear Programming

We propose an Integer Linear Program (ILP) that solves the ENH problem opti-

mally. For a system I(E,F(E)) let G = {g1, g2, ..., gn} be variables denoting entities

in set E. Given an integer K, G is a array of K 1’s and n − K 0’s where gi = 1 if

the entity ei ∈ E fails at t = 0 and gi = 0 if the the entity is operational at t = 0.

Thus the array G gives the set of K entities failing initially. Additionally for each

entity ej ∈ E a set of variables xjd with 0 ≤ d ≤ n− 1 and d ∈ I+ ∪ {0} are created.

The value of xjd = 1 denotes that the entity xj is in failed state at t = d and xjd = 0

denotes it is operational. As noted earlier for |E| = n the cascade can proceed till

n− 1 so the range of d is [0, n− 1]. Using these definitions the objective of the ENH

problem is as follows —
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min
( n∑
i=1

xi(n−1)

)
(4.1)

The constraints guiding the problem are as follows:

Constraint Set 1:
n∑
i=1

qxi ≤ k , with qxi ∈ [0, 1]. If an entity xi is hardened then qxi = 1

and 0 otherwise.

Constraint Set 2: xi0 ≥ gi − qxi . This constraint implies that only if an entity is

not defended and gi = 1 then the entity will fail at the initial time step.

Constraint Set 3: xid ≥ xi(d−1), ∀d, 1 ≤ d ≤ n − 1, in order to ensure that for an

entity which fails in a particular time step would remain in failed state at all subse-

quent time steps.

Constraint Set 4: Modeling of constraints to capture the cascade propagation for

IIM is similar to the constraints established in [18] with modifications to capture the

hardening process. A brief overview of this constraint is provided here. Consider

an IDR ei ← ejepel + emen + eq. The following steps are enumerated to depict the

cascade propagation with respect to this constraint:

Step 1: Replace all minterms of size greater than one with a variable. In the example

provided we have the transformed minterm as ei ← c1 + c2 + eq with c1 ← ejepel and

c2 ← emen (c1, c2 ∈ {0, 1}) as the new IDRs.

Step 2: For each variable c, a constraint is added to capture the cascade propagation.

Let N be the number of entities in the minterm on which c is dependent. In the exam-

ple for the variable c1 with IDR c1 ← ejepel, constraints c1d ≥
xj(d−1)+xp(d−1)+xl(d−1)

N
∀d ∈

[1, n − 1] are introduced (N = 3 in this case). If IDR of an entity is already in

form of a single minterm of arbitrary size, i.e.,ei ← ejepel (say) then constraints
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xid ≥
xj(d−1)+xp(d−1)+xl(d−1)

N
− qxi and xid ≤ xj(d−1) + xp(d−1) + xl(d−1)∀d ∈ [1, n− 1] are

introduced (with N = 3). These constraints satisfies that if the entity ei is hardened

initially then it is not dead at any time step.

Step 3: Let M be the number of minterms in the transformed IDR as described

in Step 1. In the given example with IDR ei ← c1 + c2 + eq constraints of form

xid ≥ c1(d−1) +c2(d−1) +xq(d−1)− (M−1)−qxi and xid ≤
c1(d−1)+c2(d−1)+xq(d−1)

M
∀d ∈ [0, 1]

are introduced. These constraints ensures that even if all the minterms of ei has at

least one entity in dead state then it will be alive if the entity is hardened initially.

With objective (4.1) along with the constraints minimize the number of entities failed

at the end of the cascading failure with a hardening budget of k and K entities failing

initially. The ILP gives an optimal solution to the ENH problem, however its run

time is non-polynomial.

4.3.2 Heuristic Solution

In this subsection we provide a greedy heuristic solution to the Entity Hardening

problem. For a given system I(E,F(E)) with set of entities E ′(|E ′| = K) failing

initially and hardening budget k, a heuristic is developed based on the following two

metrics — (a) Protection Set as defined in Section 6.1, (b) Cumulative Fractional

Minterm Hit Value (CFMHV).

Definition: The Fractional Minterm Hit Value of an entity ej ∈ E in a system

I(E,F(E)) is denoted as FMHV (ej, X). It is calculated as FMHV (ej, X) =∑m
i=1

1
|si| . In the formulation m are the minterms in which ej appears over all IDRs

except for the IDRs of entities in set X. The parameter si denotes ith such minterm.

If entity ej is hardened (or protected from failure) then the computed value provides

an estimate of the future impact on protection of other non operational entities.
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Definition: The Cumulative Fractional Minterm Hit Value of an entity ej ∈ E is de-

noted as CFMHV (ej) where CFMHV (ej) =
∑
∀xi∈PS(ej |E′) FMHV (xi, PS(xi|E ′)).

This gives a measure of the future impact on protecting non functional entities when

the entity ej is hardened and entities PS(ej|E ′) are protected from failure.

Using these definitions a heuristic is formulated in Algorithm 2. For each iteration

of the while loop in the algorithm, the entity having highest cardinality of the set

PS(xi|E ′) is hardened. This ensures that at each step the number of entities pro-

tected is maximized. In case of a tie, the entity having highest Cumulative Fractional

Minterm Hit Value among the set of tied entities is selected. This causes the selec-

tion of an entity that has the potential to protect maximum number of entities in

subsequent iterations. Thus, the heuristic greedily maximizes the number of entities

protected when an entity is hardened at the current iteration with metric to measure

its impact of protecting other non operational entities in future iterations. Algorithm

2 runs in polynomial time, more specifically the time complexity is O(kn(n + m)2)

(where n = |E| and m = Number of minterms in F(E)).

4.4 Experimental Results

A comparative study of the ILP and heuristic solution for the ENH problems

is done in this section. A machine with intel i5 processor and 8 GB of RAM was

used to execute the solutions. The coding was done in java and a student licensed

IBM CPLEX external library file is used to execute the ILP. 8 different bus systems

available from MatPower with number buses 24, 30, 39, 57, 89, 118, 145, 300 were used

to generate the dependency equations for power network (using the rules described in

Section 3.1.1). The time to generate the dependency equations were less than 2ms.

Within the Maricopa county 4 disjoint regions were considered labeled as Region

1 through 4. Dependency equations for the interdependent power-communication
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Algorithm 2: Heuristic Solution to the ENH Problem

Data: A system I(E,F(E)), set of entities E′ failing initially with |E′| = K and

hardening budget k.

Result: Set of hardened entities H.

1 begin

2 Initialize H ← ∅ and D ← ∅;

3 Update F(E) as follows — (a) let Q be the set of entities that does not fail on

failing K entities, (b) remove IDRs corresponding to entities in set Q, (c)

update the minterm of remaining IDRs by removing entities in set Q;

4 Update E ← E \Q ;

5 while (|H| is not equal to k) do

6 For each entity ei ∈ E\D compute PS(ei|E′) and CFMHV (ei);

7 if There exists multiple entities having same value of highest cardinality of

the set PS(ei|E′) then

8 Let ep be an entity having highest CFMHV (ep) among all ep’s in the set

of entities having highest cardinality of the set PS(ei|A′ ∪B′);

9 If there is a tie choose arbitrarily;

10 Update H ← H∪ {ep}, D ← D ∪ PS(ep|E′);

11 Update F(E) by removing entities in PS(ep|E′) both in the left and

right side of the IDRs ;

12 else

13 Let ei be an entity having highest cardinality of the set PS(ei|E′);

14 Update H ← H∪ {ei}, D ← D ∪ PS(ei|E′);

15 Update F(E) by removing entities in PS(ei|E′) both in the left and right

side of the IDRs ;

16 return H ;
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network were generated for these regions using the rules described in Section 3.1.2.

The number of entities in each of the 12 data sets are enumerated in Table 4.4. To

determine the initially failing entities we used the ILP solution of K most vulnerable

entities in [18]. The K most vulnerable entities problem finds a set of K entities in

a system I(E,F(E)) which when failed at t = 0 causes the maximum number of

entities to fail. For a given data set representing a system I(E,F(E)), the initially

failing entities was taken as a set E ′ (|E ′| = K) such that — (a) The set E ′ constitutes

the K most vulnerable entities in the system, (b) Failing the entities in set E ′ would

cause failure of at least |E|/2 entities in total. The cardinality of the set E ′ along

with the total number of entities failed are enumerated in Table 4.4.

DataSet Num. Of Entities K Num. of Entities Killed

24 bus 58 8 29

30 bus 71 13 36

39 bus 84 17 42

57 bus 135 26 68

89 bus 295 78 147

118 bus 297 89 149

145 bus 567 191 284

300 bus 709 145 355

Region 1 48 6 26

Region 2 46 8 23

Region 3 48 6 24

Region 4 53 8 27

Table 4.4: Number of Entities, K Value Chosen and Number of Entities Failed

when the K Vulnerable Entities are Failed Initially for Different Data Sets
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In comparing the ILP and heuristic solution of the ENH problem we considered

5 distinct hardening budgets for each data set. With K being the number of initially

failing entities in a data set the hardening budgets were chosen between [1, K − 1]

(with value of K obtained from Table 4.4). It is also ensured that the hardening

budgets chosen had a high variance. Figures 4.1 - 4.12 shows the total number of

entities protected from failure for each data set using the ILP and heuristic solution.

The run-time performance of the solutions are provided in Table 4.5 (in the table ’Heu’

refers to the heuristic solution and Hi refers to the hardening budget corresponding to

the ith budget from left used in the bar graph plots). From Figures 4.1 - 4.12 it can be

seen that the heuristic performs almost similar to that of the ILP solution in terms of

quality. The maximum percent difference of the total number of entities protected in

the ILP when compared to the heuristic solution occurs for a hardening budget of 39

in the 145 bus system (Figure 4.7) with the percent difference being 3.1%. In terms

of run-time, heuristic outperforms the ILP with the heuristic computing solutions

nearly 200 times faster in larger systems (as seen for the 300 bus system in Table

4.5). Hence it can be reasonably argued that the heuristic produces fast near optimal

solutions for the ENH problem.
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Figure 4.1: Comparison of ILP Solution with Heuristic for 24 Bus System (ENH

Problem)
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Figure 4.2: Comparison of ILP Solution with Heuristic for 30 Bus System (ENH

Problem)
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Figure 4.3: Comparison of ILP Solution with Heuristic for 39 Bus System (ENH

Problem)
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Figure 4.4: Comparison of ILP Solution with Heuristic for 57 Bus System (ENH

Problem)
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Figure 4.5: Comparison of ILP Solution with Heuristic for 89 Bus System (ENH

Problem)
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Figure 4.6: Comparison of ILP Solution with Heuristic for 118 Bus System (ENH

Problem)
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Figure 4.7: Comparison of ILP Solution with Heuristic for 145 Bus System (ENH

Problem)
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Figure 4.8: Comparison of ILP Solution with Heuristic for 300 Bus System (ENH

Problem)
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Figure 4.9: Comparison of ILP Solution with Heuristic for Region 1 (ENH Problem)
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Figure 4.10: Comparison of ILP Solution with Heuristic for Region 2 (ENH

Problem)
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Figure 4.11: Comparison of ILP Solution with Heuristic for Region 3 (ENH

Problem)
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Figure 4.12: Comparison of ILP Solution with Heuristic for Region 4 (ENH

Problem)
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Running time (in sec)

DataSet H1 H2 H3 H4 H5

ILP Heu ILP Heu ILP Heu ILP Heu ILP Heu

24 bus 0.45 0.01 0.25 0.01 0.72 0.01 0.23 0.01 0.21 0.01

30 bus 2.44 0.01 0.38 0.01 0.38 0.01 0.35 0.01 0.34 0.01

39 bus 0.80 0.01 0.50 0.01 0.49 0.01 0.48 0.01 0.47 0.01

57 bus 2.67 0.03 1.73 0.01 2.21 0.01 2.27 0.01 1.68 0.01

89 bus 23.2 0.05 14.6 0.03 14.6 0.03 14.5 0.03 14.7 0.75

118 bus 20.9 0.04 16.2 0.06 17.2 0.09 17.1 0.02 17.1 0.02

145 bus 85.2 0.05 71.0 0.10 71.3 0.18 68.4 0.06 78.3 0.07

300 bus 282 0.15 222 1.56 217 0.85 253 0.39 264 0.40

Region 1 0.53 0.01 0.36 0.01 0.34 0.01 0.36 0.01 0.36 0.01

Region 2 13.8 0.01 12.9 0.01 12.8 0.01 13.1 0.01 13.2 0.01

Region 3 1.92 0.01 1.36 0.01 1.29 0.01 1.31 0.01 1.44 0.01

Region 4 1.48 0.01 1.43 0.01 1.10 0.01 1.06 0.01 1.05 0.01

Table 4.5: Run Time Comparison of Integer Linear Program and Heuristic for

Different Data Sets (ENH Problem)
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Chapter 5

THE TARGETED ENTITY HARDENING PROBLEM

The Targeted Entity Hardening is a restricted version of the Entity Hardening Prob-

lem. For an intra-dependent power network or interdependent power and commu-

nication network, certain entities might have higher priority to be protected. There

might exist entities whose non-functionality poses higher economic or societal damage

as compared to other entities. For example, power and communication network enti-

ties corresponding to office buildings running global stock exchanges, the U.S. White

House, transportation sectors like airports etc. presumably are more important to

be protected. Let F denote the failed set of entities (including initial and induced

failure) when a set of K entities fail initially. We define a set P (with P ⊆ F ) of

entities which have a higher priority to be protected. The Targeted Entity Hardening

problem finds the minimum set of entities which when hardened would ensure that

none of the entities in set P fail.

5.1 Problem Formulation

Qualitatively, for a system I(E,F(E)) the objective of the Targeted Entity Hard-

ening problem is to choose a minimum cardinality set of entities to harden, with a

set of initially failing entities, such that all entities in a given set P are protected

from failure. We use the example with dependency equations outlined in Table 3.1 of

Chapter 3 to describe the Targeted Entity Hardening Problem with P = {b4}. With

{a2, a3} being the two entities failing initially, hardening entity a2 (with a3 failing)

would prevent failure of entities a1, a3, b1, b1, b3. Similarly, hardening the entity a3

(with a2 failing) would prevent the failure of entity b4. Even though hardening a2
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prevent failure of more entities than hardening a3, owing to the problem description

a3 has to be hardened which is a solution to the Targeted Entity Hardening problem

in this scenario. It is to be noted that other entities might also be protected from fail-

ure when a set of entities are hardened to protect a given set of entities. The Targeted

Entity Hardening problem is formally stated below accompanied with a descriptive

diagram provided in Figure 5.1 (in the figure direct failure means initial failure) —

The Targeted Entity Hardening (TEH) problem

INSTANCE: Given:

(i) A system I(E,F(E)), where the set E represent the set of entities, and F(E) is

the set of IDRs.

(ii) The set of K entities failing initially E ′, where E ′ ⊆ E.

(iii) The set F ⊆ E contains all the entities failed due to initial failure of E ′ entities

i.e. KillSet(E ′)

(iv) A positive integer k and k < K.

(v) A set P ⊆ F .

DECISION VERSION: Is there a set of entities H = E ′′ ⊆ E, |H| ≤ k, such that

hardening H entities would result in protecting all entities in the set P after entities

in E ′ fail at the initial time step.

OPTIMIZATION VERSION: Find the minimum set of entities in E to harden that

would result in protecting all entities in the set P after entities in E ′ fail at the initial

time step.

64



Hardened 
set of 

entities 𝑯
with 

|𝑯| = 𝐤

Direct 
Failure
of set 𝒀

with 
|𝒀| =K

Interdependency 
Relations
F(𝑨, 𝑩)

Failed entities

Set of 
entities 𝑨

and 𝑩

Entities in 
Target 
Set 𝑷

protected 
from 

failure

Other Entities Protected
from Failure

Figure 5.1: Pictographic Description of the Targeted Entity Hardening Problem

5.2 Computational Complexity Analysis

In this subsection we prove the computational complexity of the Targeted Entity

Hardening Problem to be NP-complete in Theorem 7.

Theorem 7. The TEH problem is NP-complete

Proof. We proof that the Targeted Entity Hardening is NP complete by a reduction

from Set Cover problem. An instance of the Set Cover problem consists of (i) a set of

elements U = {x1, x2, . . . , xn}, (ii) a set of subsets S = {S1, S2, . . . , Sm} with Si ⊆ U

∀Si ∈ S, and (iii) a positive integer M . The problem asks the question whether there

is a subset S ′ of S with |S ′| ≤ M such that
⋃
Sk∈S′ Sk = U . From an instance of the

Set Cover problem we create an instance of the Targeted Entity Hardening Problem

as follows. Consider a system I(E,F(E)) with E = A∪B, where A and B are entities

of two separate critical infrastructures dependent on each other. For each element xj

in U we add an entity aj in set A. Similarly for each subset Si in set S we add an

entity bi in set B. For each element xi ∈ U which appears in subsets Sm, Sn, Sp ∈ S
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(say) we add an IDR ai ← bm + bn + bp to F(E). There are no IDRs for entities in

set B which prevents any cascading failure. The value of K is set to |S| and E ′ = B

which fails all entities in A∪B. The set of P entities to be protected is set to A and

k is set to M .

Consider there exists a solution to the Set Cover problem. Then there exist a set

S ′ of cardinality M such that
⋃
Sk∈S′ Sk = U . For each subsets Sk ∈ S ′ we harden

the entity bk ∈ B. So in each IDR of the A type entities there exist a B type entity

that is hardened. Hence all A type entities will be protected from failure thus solving

the Targeted Entity Hardening problem.

On the other way round consider there is a solution to the Targeted Entity Hard-

ening problem. This ensures either that for each entity aj ∈ A (i) aj itself is hardened,

or (ii) at least one entity from set B in aj’s IDR is hardened. For scenario (i) arbi-

trarily select an entity bp in aj’s IDR and include it in set C. For scenario (ii) include

the hardened entities in the IDR of aj into set C. This is done for each entity aj ∈ A.

For each entity in set C select the corresponding subset in set S. The union of these

set of subsets would result in the set U . Thus solving the set cover problem. Hence

the theorem is proved.

5.2.1 Restricted Case I: Problem Instance with One Minterm of Size One

This restriction imposed on the IDRs is the same as that of restricted case I of

the ENH problem. Using the definition of Protection set (as in Section 4.2.2) and the

result in Theorem 8 we design an algorithm (Algorithm 3) that solves the problem

for this restricted case optimally in polynomial time (proved in Theorem 9).

Theorem 8. Given a system I(E,F(E)) with IDRs of form restricted case I and

E ′ ⊂ E entities failing initially, for any entity ei and ej with ei 6= ej either (a)

PS(ei|E ′) ⊆ PS(ej|E ′), (b) PS(ej|E ′) ⊆ PS(ei|E ′), or (c) PS(ei|E ′) ∩ PS(ej|E ′) =
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∅.

Proof. Consider a directed graph G = (V,ED). The vertex set V consists of a vertex

for each entity in E. For each IDR of form y ← x there is a directed edge (x, y) ∈

ED. In this proof the term vertex and entity is used interchangeably as an entity is

essentially a vertex in G. It can be shown that G is either (a) Directed Acyclic Graph

(DAG) with maximum in-degree of at most 1 or, (b) contain at most one cycle with no

incoming edge to any vertex in the cycle and maximum in-degree of at most 1, or (c)

collection of graphs (a) and/or (b). Consider a vertex xi ∈ V . Let G′ = (V ′, E ′D) be

a subgraph of G with V ′ consisting of xi and all the vertices that has a directed path

from xi. Moreover, the edge set E ′D consists of all edges (x, y) ∈ ED with x, y ∈ V ′

except for any edge (y, xi) with yi ∈ V ′. Such a subgraph G′ would be a directed

tree with (i) one or more entities in V ′\{xi} is in A′ ∪ B′. Let X denote the set of

such entities which satisfy this property, or (ii) no entities in V ′\{xi} is in E ′. If

the entity xi is hardened then for case (i) all the entities in V ′ would be protected

from failure except for entities in all subtrees with roots in X. The set of entities in

such subtrees are contained in a set Z (say). For this condition if ej ∈ V ′\Z then

PS(ej|E ′) ⊂ PS(ei|E ′). Else if ej ∈ Z then PS(xi|E ′) ∩ PS(ej|E ′) = ∅. For case

(ii) for any entity xj ∈ V ′ the condition PS(ej|E ′) ⊆ PS(Ei|E ′) always holds (the

equality holds for graphs of type (b) as stated above). This property holds for all

entities in the entity set E. Hence proved.

Theorem 9. Algorithm 3 solves the Targeted Entity Hardening problem with IDRs

having single minterms of size 1 optimally in polynomial time.

Proof. The Protection Sets of the entities can be found in a similar way as that

of computing Kill Sets defined in [18]. It can be shown that computing these

sets for all entities in E can be done in O(n3) where n = |E|. The while loop
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Algorithm 3: Algorithm for TEH problem with IDRs in form of Restricted

Case I
Data: A system I(E,F(E)), set E′ with |E′| = K entities failing initially and the

set P of entities to be protected from failure.

Result: A set of entities H to be hardened.

1 begin

2 For each entity ei ∈ (E) compute the Protection Sets PS(ei|E′) ;

3 Initialize H = ∅ ;

4 while P 6= ∅ do

5 Choose the Protection Set with highest |PS(ei|E′) ∩ P |;

6 Update H ← H ∪ {ei} ;

7 Update P ← P\PS(ei|E′);

8 for all dj ∈ E do

9 PS(ej |E′) = PS(ej |E′)\PS(ei|E′);

10 return H ;

in Algorithm 3 iterates for a maximum of n times. Step 5 can be computed in

O(n2) time. The for loop in step 8 iterates for n times. For any given ej and ei,

PS(ej|E ′) = PS(ej|E ′)\PS(ei|E ′) can be computed in O(n2) time with the worst

case being the condition when |PS(ei|E ′)| = |PS(ej|E ′)| = n. As step 9 is nested

in a for loop within the while loop this accounts for the most expensive step in the

algorithm. The time complexity of this step is O(n4). Thus Algorithm 3 runs poly-

nomially in n with time complexity being O(n4).

In Algorithm 3 the while loop iterates till all the entities in P are protected from

failure. In step 5 the entity ei with protection set PS(ei|E ′) having most number of

entities belonging to set P is chosen to be hardened. Correspondingly the entity ei
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is added to the hardening set H. The set P is updated by removing the entities in

PS(ei|E ′). Similarly all the protection sets are updated by removing the entities in

PS(ei|E ′).

We use the result from Theorem 8 to prove the optimality of Algorithm 3. An

entity ei is selected to be hardened at any iteration of the while loop has maximum

number of entities in PS(ei|E ′) ∩ P . All entities ej with PS(ej|E ′) ⊆ PS(ei|E ′)

would have PS(ej|E ′) ∩ P ⊆ PS(ei|E ′) ∩ P . Moreover there exist no entity ek for

which PS(ei|E ′) ⊂ PS(ek|E ′) otherwise ek would have been hardened instead. Hence

there exist no other entity that protect other entities in P including PS(ei|E ′) ∩ P .

So Algorithm 3 selects the minimum number of entities to harden that protects all

entities in P .

5.2.2 Restricted Case II: IDRs Having Arbitrary Number of Minterms of Size 1

For instance created in Theorem 7 the IDRs were logical disjunctions of minterms

with size 1. We consider this restriction to design an approximation algorithm for

the TEH problem and is shown in Theorem 10.

Theorem 10. The Targeted Entity Hardening Problem is O(log(|P |) approximate

when IDRs are logical disjunctions of minterms with size 1.

Proof. We first compute the protection set PS(ei|E ′) for all entities ei ∈ E. Each

protection set is pruned by removing entities that are not in set P . Now the Targeted

Entity Hardening Problem can be directly transformed into Minimum Set Cover prob-

lem by setting U = P and S = {PS(e1|E ′), PS(e2|E ′), ..., PS(x|E||E ′)}. Selecting

the corresponding entities of the protection sets that solve the Minimum Set Cover

problem would also solve the Targeted Entity Hardening problem. There exists an ap-

proximation ratio of order O(log(n)) (where n is the number of elements in set U) for
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the Set Cover problem. Therefore using the approximation algorithm that solves the

Set Cover problem, the same ratio holds for the Targeted Entity Hardening problem

with n = |P |. Hence proved.

5.3 Optimal and Heuristic Solution to the Problem

In this section an optimal ILP solution and a sub-optimal with polynomial time

complexity heuristic solution are described for the TEH problem.

5.3.1 Optimal solution using Integer Linear Program

The ILP formulation of the TEH problem is similar to that of ENH problem. The

only difference being there is no hardening budget in TEH problem and additionally

there is a set P ⊂ E of entities that should be protected from failure. We use the

same notations as of the ILP that solves the ENH problem. Using this the objective

of the TEH problem is formulated as follows:

min
( n∑
i=1

qxi

)
(5.1)

The constraint sets 2,3, and 4 of the ENH problem is employed in the TEH problem

as well along with an additional constraint set as described below:

Additional Constraint Set: For all entities ei,∈ P , xi(n−1) = 0. This ensures that all

the entities in set P are protected from failure at the final time step.

With these constraints, the objective in (5.1) minimizes the number of hardened

entities that results in protection of all entities in set P .

70



5.3.2 Heuristic Solution

In this subsection we provide a greedy heuristic solution to the TEH problem. For

a given system I(E,F(E)) with set of entities as E ′(|E ′| = K) failing initially and

set of entities to protet being P , a heuristic is developed based on the following two

metrics — (a) Protection Set as defined in Section 4.2.2, (b) Prioritized Cumulative

Fractional Minterm Hit Value (PCFMHV).

Definition: The Prioritized Fractional Minterm Hit Value of an entity ej ∈ E in a

system I(E,F(E)) is denoted as FMHV (ej, X). It is calculated as PFMHV (ej, P ) =∑m
i=1

1
|si| . In the formulation m are the minterms in which ej appears over IDRs in

non operational entities in set P . The parameter si denotes ith such minterm. If the

ej is hardened (or protected from failure) the value computed provides an estimate

future impact on protection of other non operational entities in set P .

Definition: The Prioritized Cumulative Fractional Minterm Hit Value of an en-

tity ej ∈ E is denoted as PCFMHV (ej). It is computed as PCFMHV (ej) =∑
∀xi∈PS(ej |E′) PFMHV (xi, PS(xi|E ′)). This gives a measure of future impact on

protecting non functional entities in P when the entity ej is hardened and entities

PS(ej|E ′) are protected from failure.

Using these definitions, the heuristic is formulated in Algorithm 4. For each

iteration of the while loop in the algorithm, the entity having highest cardinality of

the set PS(xi|A′ ∪ B′) ∩ P is hardened. This ensures that at each step the number

of entities protected in set P is maximized. In case of a tie, the entity having highest

Prioritized Cumulative Fractional Minterm Hit Value among the set of tied entities

is selected. This causes the selection of the entity that has the potential to protect

maximum number of entities in updated set P in subsequent iterations. Thus, the
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Algorithm 4: Heuristic solution to the TEH problem

Data: A system I(E,F(E)), set of K vulnerable entities and the set P of entities to

be protected from failure.

Result: A set of entities H to be hardened.

1 begin

2 Initialize D = ∅ and H = ∅ ;

3 Update F(E) as follows — (a) let Q be the set of entities that does not fail on

failing K entities, (b) remove IDRs corresponding to entities in set Q, (c)

update the minterm of remaining IDRs by removing entities in set Q;

4 while P 6= ∅ do

5 For each entity ei ∈ E\D compute PS(ei|E′) and PCFMHV (ei);

6 if There exists multiple entities having same value of highest cardinality of

the set PS(ei|E′) ∩ P then

7 Let ep be an entity having highest PCFMHV (ep) among all ep’s in the

set of entities having highest cardinality of the set PS(ei|A′ ∪B′);

8 If there is a tie choose arbitrarily;

9 Update H ← H ∪ {ep}, D ← D ∪ PS(ep|E′), P ← P\PS(ep|E′);

10 Update F(E) by removing entities in PS(ep|E′) both in the left and

right side of the IDRs ;

11 else

12 Let ei be an entity having highest cardinality of the set PS(ei|E′) ∩ P ;

13 Update H ← H ∪ {ep}, D ← D ∪ PS(ei|E′), P ← P\PS(ei|E′);

14 Update F(E) by removing entities in PS(ei|E′) both in the left and right

side of the IDRs ;

15 return H ;
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heuristic greedily minimizes the set of entities hardened which would cause protection

of all entities in P . The heuristic overestimates the cardinality of H from the optimal

solution. Algorithm 4 runs in polynomial time, more specifically the time complexity

is O(|P |n(n+m)2) (where n = |E| and m = Number of minterms in F(E)).

5.4 Experimental Result

To perform a comparative study of the heuristic with the ILP, we use the same data

sets as outlined in Chapter 4. Additionally, the initial failure set is computed using

K most vulnerable entities problem and the same value of K as in ENH problem are

chosen for each data set (as in Table 4.4). 5 distinct protection sets P were considered

for each data set. Let F denote the set entities failed in total when K entities fail

initially. The cardinality of the set F and the value of K was taken from Table 4.4 for

each data set. The cardinality of the protection set for a given data set was chosen

between [1, |F | − 1] ensuring that the chosen values have high variance. For a given

cardinality C the protection set P was constructed by choosing C entities from the set

F corresponding to a particular data set. Figures 5.2 - 5.13 shows the comparison of

the Heuristic solution with the ILP in terms of total number of entities hardened for

a given cardinality of protection budget. The run-time comparison of the solutions

are provided in Table 5.1. A maximum percent difference of 25% (ILP compared with

Heuristic) in the number of entities hardened can be seen in Region 2 for a |P | value of

13 (Figure 5.11). However, for most of the cases the heuristic produces near optimal

or optimal solution. The heuristic also compute the solutions nearly 200 times faster

than the ILP for larger systems as seen in Table 5.1. Hence it can be claimed that

the heuristic solution to the TEH problem produces near optimal solution at a much

faster time compared to the ILP solution.
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Figure 5.2: Comparison of ILP Solution with Heuristic for 24 Bus System (TEH

Problem)
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Figure 5.3: Comparison of ILP Solution with Heuristic for 30 Bus System (TEH
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Figure 5.4: Comparison of ILP Solution with Heuristic for 39 Bus System (TEH

Problem)
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Figure 5.5: Comparison of ILP Solution with Heuristic for 57 Bus System (TEH

Problem)
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Figure 5.6: Comparison of ILP Solution with Heuristic for 89 Bus System (TEH

Problem)
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Figure 5.7: Comparison of ILP Solution with Heuristic for 118 Bus System (TEH

Problem)
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Figure 5.8: Comparison of ILP Solution with Heuristic for 145 Bus System (TEH

Problem)
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Figure 5.9: Comparison of ILP Solution with Heuristic for 300 Bus System (TEH

Problem)
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Figure 5.10: Comparison of ILP Solution with Heuristic for Region 1 (TEH

Problem)
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Figure 5.11: Comparison of ILP Solution with Heuristic for Region 2 (TEH

Problem)
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Figure 5.12: Comparison of ILP Solution with Heuristic for Region 3 (TEH

Problem)
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Figure 5.13: Comparison of ILP Solution with Heuristic for Region 4 (TEH

Problem)
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Running time (in sec)

DataSet P1 P2 P3 P4 P5

ILP Heu ILP Heu ILP Heu ILP Heu ILP Heu

24 bus 0.42 0.01 0.22 0.01 0.20 0.01 0.19 0.01 0.19 0.01

30 bus 0.57 0.01 0.37 0.01 0.34 0.01 0.34 0.01 0.31 0.01

39 bus 0.82 0.01 0.49 0.01 0.49 0.01 0.46 0.01 0.47 0.01

57 bus 2.23 0.02 1.69 0.02 2.00 0.02 2.07 0.02 1.91 0.01

89 bus 17.3 0.05 14.4 0.08 14.4 0.16 14.0 0.11 14.1 0.07

118 bus 17.6 0.13 17.3 0.15 16.9 0.10 16.3 0.08 17.0 0.07

145 bus 79.0 0.06 76.6 0.26 77.2 0.27 75.7 0.24 74.9 0.25

300 bus 302 0.18 241 1.01 234 1.41 229 1.03 230 1.20

Region 1 0.55 0.01 0.40 0.01 0.43 0.01 0.35 0.01 0.34 0.01

Region 2 14.5 0.01 13.5 0.01 13.4 0.01 13.4 0.01 13.3 0.01

Region 3 1.58 0.01 1.40 0.01 1.29 0.01 1.29 0.01 1.29 0.01

Region 4 1.36 0.01 1.12 0.01 1.21 0.01 1.09 0.01 1.03 0.01

Table 5.1: Run Time Comparison of Integer Linear Program and Heuristic for

Different Data Sets (TEH Problem)
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Chapter 6

THE AUXILIARY ENTITY ALLOCATION PROBLEM

For a given set of entities failing initially, the system reliability can be increased

(i.e. entities can be protected from failure) by Entity Hardening. On scenarios where

entity hardening is not possible it is imperative to take alternative strategies. The

number of entities failing due to induced failure can be reduced by modifying the

IDRs. One way of modifying an IDR is adding an entity as a new minterm. For

example, consider the system I(E,F(E)) with IDRs given by Table 6.1. The cascade

propagation is hown in Table 6.2 when entities b2 and b3 fail initially. Let the IDR

b1 ← a2 be modified as b1 ← a2 + a5. Hence the new system is represented as

I(E,F ′(E)) with the same set of IDRs as that in Table 6.1 except for IDR b1 ← a2+a5

as the sole modification. The entity a1 introduced is termed as an auxiliary entity.

It follows that after the modification, failure of entities b2 and b3 at time t = 0 would

trigger failure of entities a2, a3 and a4 only. Thus before modification the failure

set would have been {a1, a2, a3, a4, b1, b2, b3} and after the modification it would be

{a2, a3, a4, b2, b3}. Thus the modification would lead to a fewer number of failures.

We make the following assumptions while modifying an IDR —

• It is possible to add an auxiliary entity as conjunction to a minterm. However it

is intuitive that this would have no impact in decreasing the number of entities

failed due to induced failure. Hence we modify an IDR by adding only one

auxiliary entity as a disjunction to a minterm

• An auxiliary entity does not have the capacity to make an entity operational

which fails due to initial failure. So to prune the search set for obtaining a
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Power Network Comm. Network

a1 ← b1 + b2 b1 ← a2

a2 ← b1b2 b2 ← a2

a3 ← b2 + b1b3 b3 ← a4

a4 ← b3 −−

a5 −−

Table 6.1: IDRs for the Constructed Example

Entities Time Steps (t)

0 1 2 3 4 5 6 7

a1 0 0 0 1 1 1 1 1

a2 0 1 1 1 1 1 1 1

a3 0 1 1 1 1 1 1 1

a4 0 1 1 1 1 1 1 1

a5 0 0 0 0 0 0 0 0

b1 0 0 1 1 1 1 1 1

b2 1 1 1 1 1 1 1 1

b3 1 1 1 1 1 1 1 1

Table 6.2: Cascade Propagation when Entities {b2, b3} Fail Initially. 0 Denotes the

Entity is Operational and 1 Non-Operational
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solution we discard entities in the set of initially failing entities as possible

auxiliary entities.

• If an IDR D is modified then it is done by adding only one entity not in E ′∪ED

where E ′ is the set of initially failing entities and ED is a set consisting of all

entities (both on left and right side of the equation) in D. For any IDR D ∈ F(E

we denote AUX = E/(E ′∪ED) as the set of auxiliary entities that can be used

to modify D.

With these definitions the Auxiliary Entity Allocation Problem (AEAP) is de-

fined as follows. Let for a system I(E,F(E)), E ′ ⊂ E be the set of initially failing

entities. With a budget S in number of modifications, the task is to find which are

the S IDRs that are to be modified and which entity should be used to perform this

modification such that number of entities failing due to induced failure is minimized.

A more formal description given below.

The Auxiliary Entity Allocation Problem (AEAP)

Instance — A system I(E,F(E)), set of entities E ′ ⊂ E failing initially and two

positive integers S and Pf .

Decision Version — Does there exist S IDR auxiliary entity tuple (D, xi) such that

when each IDRs D ∈ F(E) is modified by adding auxiliary entity xi ∈ AUX as a

disjunction it would protect at least Pf entities from induced failure with entities in

set E ′ failing initially.

6.1 Computational Complexity Analysis

In this section we analyze the computational complexity AEAP. The computa-

tional complexity of the problem depends on nature of the IDRs. The problem is first
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solved by restricting the IDRs to have one minterm of size 1. For this special case

a polynomial time algorithm exists for the problem. With IDRs in general form the

problem is proved to be NP-complete.

6.1.1 Special Case: Problem Instance with One Minterm of Size One

The special case consist of IDRs which have a single minterm of size 1 and each

entity appearing exactly once on the right hand side of the IDR. AEAP can be solved

in polynomial time for this case. We first define Auxiliary Entity Protection Set and

use it to provide a polynomial time heuristic in Algorithm 5.

Definition: Auxiliary Entity Protection Set: With a given set of E ′ entities

failing initially the Auxiliary Entity Protection Set is defined as the number of entities

protected from induced failure when an auxiliary entity xi is added as a disjunction

to an IDR D ∈ F(E). It is denoted as AP (D, xi|E ′).

6.1.2 General Case: Problem Instance with an Arbitrary Number of Minterms of

Arbitrary Size

In Theorem 11 we prove that the decision version of AEAP for general case is NP

complete.

Theorem 11. The decision version of AEAP for Case IV is NP-complete.

Proof. The hardness is proved by a reduction from Set Cover problem. An instance

of a set cover problem consists of a universe U = {x1, x2, ..., xn} of elements and set

of subsets S = {S1, S2, ..., Sm} where each element Si ∈ S is a subset of U . Given an

integer X the set cover problem finds whether there are ≤ X elements in S whose

union is equal to U . From an instance of the set cover problem we create an instance
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Algorithm 5: Algorithm solving AEAP for IDRs with minterms of size 1

Data: A system I(E,F(E)) and set of E′ entities failing initially

Result: A set Dsol consisting of IDR auxiliary entity doubles (D,xi) (with

|Dsol| = S and Pf (denoting the entities protected from induced failure)

1 begin

2 For each IDR D ∈ F(E) and each entity xi ∈ AUX (where

AUX = E/(E′ ∪ ED)) compute the Auxiliary Entity Protection Set

AP (D,xi|E′) ;

3 Initialize Dsol = ∅ and Pf = ∅;

4 while S 6= 0 do

5 Choose the Auxiliary Entity Protection Set with highest AP (xi, D|E′). In

case of tie break arbitrarily. Let Dcur be the corresponding IDR and xcur

the auxiliary entity;

6 Update Dsol = Dsol ∪ (Dcur, xcur) and add auxiliary entity xcur as a

disjunction to the IDR Dcur ;

7 Update Pf = Pf ∪AP (Dcur, xcur|E′);

8 for ∀ IDR D′ ∈ F(E) and xi ∈ AUX of D′ do

9 Update AP (D′, xi|E′) = AP (D′, xi|E′)\AP (Dcur, xcur|E′);

10 S ← S − 1;

11 return Dsol and Pf ;
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of AEAP. Consider that the instance created refers to a system I(E,F(E)) where

E = A ∪ B (A and B containing entities of two separate infrastructures). For each

subset Si we create an entity bi and add it to set B. For each element xj in U

we add an entity aj to a set A1. We have a set A2 of entities where |A2| = |B|.

Let A2 = {a21, a22, ..., a2|B|} where there is an association between entity bj and a2j.

Additionally we have a set of entities A3 with |A3| = X which does not have any

dependency relation of its own. The set A is comprised of A1 ∪ A2 ∪ A3. The IDRs

are created as follows. For an element xi that appears in subsets Sx, Sy, Sz, an IDR

ai ← bx + by + bz is created. For each entity bj ∈ B an IDR bj ← a2j is added to

F(E). The cardinality of E ′ is set to |A2| and it directly follows that E ′ = A2. The

value of S (number of IDR modifications) is set to X and Pf is set to S + |A1|.

Let there exist a solution to the set cover problem. Then there exist at least X

subsets whose union covers the set U . For each subset Sk which is in the solution

of the set cover problem we choose the corresponding entity bk. Let B′ be all such

entities. We arbitrarily choose and add an entity from A3 to each IDR bk ← a2k with

bk ∈ B′ to form S = X distinct IDR auxiliary entity doubles. As A3 type entities

does not have any dependency relation thus all the entities in B that correspond to

the subsets in the solution will be protected from failure. Additionally protecting

these B type entities would ensure all entities in A1 does not fail as well (as there

exists at least one B type entity in the IDR of A1 type entities which is operational).

Hence a total of X + |A1| are protected from failure.

Similarly let there exist a solution to AEAP. It can be checked easily that no

entities in B ∪A1 ∪A2 has the ability to protect additional entities using IDR modi-

fication. Hence set A3 can only be used as auxiliary entities. An entity from A3 for

the created instance can be added to an IDR of A1 type entity or B type entity. In

the former strategy only one entity is protected from failure whereas two entities are
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operational when we add auxiliary entity to IDRs of B type entities. Hence all the

auxiliary entities are added to the B type IDRs with a final protection of X + |A1|

entities. For each IDR of the B type entity to which the auxiliary entity is added,

the corresponding subset in S is chosen. The union of these subsets would result in

U as the solution of AEAP that protects the failure of all A1 type entities. Hence

solving the set cover problem and proving the hardness stated in theorem. 11.

6.2 Solutions to AEAP

We consider the following restricted case where there exists at least S entities in

the system I(E,F(E)) which does not belong to any of the failing entities. This

comprise the set of auxiliary entities that can be used. It is also imperative to use

such set as auxiliary entities because they never fail from induced or initial failure

when the entities in set E ′ fail initially. The problem still remains to be NP compete

for this case as in Theorem 11 the set of entities A3 belong to such class of auxiliary

entities. With these definition of the special case let A denote a set of such auxiliary

entities which can be used for IDR modifications with A ⊂ E/(E ′′) (where E ′′ are

the entities that fails due to failing entities E ′ initially). Hence we loose the notion of

IDR auxiliary entity doubles in the solution as any auxiliary entity from set A would

produce the same protection effect. Let A denote all such entities that can be used as

auxiliary entities as defined above. We additionally assume that |A| ≥ S, i.e., there

are enough auxiliary entities to suffice the AEAP budget S. So in both the solutions

we only consider the IDRs that needs to be modified and disregard which auxiliary

entity is used for this modification. We first propose an Integer Linear Program

(ILP) to obtain the optimal solution in this setting. We later provide a polynomial

heuristic solution to the problem. The performance of heuristic with respect to the

ILP is compared in the section to follow.
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6.2.1 Optimal Solution to AEAP

We first define the variables used in formulating the ILP. A set of variables G =

{g1, g2, ..., gc} (with c = |E|) is used to maintain the solution of E ′ most vulnerable

entities. Any variable gi ∈ G is equal to 1 if ei ∈ E belongs to E ′ and is 0 otherwise.

For each entity ej a set of variables xjd are introduced with 0 ≤ d ≤ |E| − 1. xid is

set to 1 if the entity ei is non operational at time step d and is 0 otherwise. Let P

denote the total number of IDRs in the system and assume each IDR has a unique

label between numbers from 1 to P . A set of variables M = {m1,m2, ...,mP} are

introduced. The value of mi is set to 1 if an auxiliary node is added as a disjunction

to the IDR labeled i and 0 otherwise. With these definitions we define the objective

function and the set of constraints in the ILP.

min
( |E|∑
i=1

xi(|E|−1)

)
(6.1)

The objective function defined in 6.1 tries to minimize the number of entities having

value 1 at the end of the cascade i.e. time step |E| − 1. Explicitly this objective

minimizes the number of entities failed due to induced failure. The constraints that

are imposed on these objective to capture the definition of AEAP are listed below —

Constraint Set 1: xi0 ≥ gi. This imposes the criteria that if entity ei belongs to E ′

then the corresponding variable xi0 is set to 1 capturing the initial failure.

Constraint Set 2: xid ≥ xi(d−1),∀d, 1 ≤ d ≤ |E| − 1. This ensures that the vari-

able corresponding to an entity which fails at time step t would have value 1 for all

d ≥ t.

Constraint Set 3: We use the theory developed in [18] to generate constraints to

represent the cascade through the set of IDRs. To describe this consider an IDR
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ai ← bjbpbl + bmbn + bq in the system. Assuming the IDR is labeled v it is reformu-

lated as ai ← bjbpbl + bmbn + bq + mv with mv ∈ M . This is done for all IDRs. The

constraint formulation is described in the following steps.

Step 1: All minterms of size greater than 1 are replaced with a single virtual entity. In

this example we introduce two virtual entities C1 and C2 (C1, C2 /∈ A∪B) capturing

the IDRs C1 ← bjbpbl and C2 ← bmbn. The IDR in the example can be then trans-

formed as ai ← C1 + C2 + bq + mv. For any such virtual entity Ck a set of variables

ckd are added with ckd = 1 if Ck is alive at time step d and 0 otherwise. Hence all the

IDRs are represented as disjunction(s) of single entities. Similarly all virtual entities

have IDRs which are conjunction of single entities.

Step 2: For a given virtual entity Ck and all entities having a single midterm of

arbitrary size, we add constraints to capture the cascade propagation. Let N denote

the number of entities in the IDR of Ck. The constraints added is described through

the example stated above. The variable c1 with IDR C1 ← bjbpbl, constraints c1d ≥
yj(d−1)+yp(d−1)+yl(d−1)

N
and c1d ≤ yj(d−1) + yp(d−1) + yl(d−1)∀d, 1 ≤ d ≤ |E| − 1 are added

(with N = 3 in this case). This ensures that if any entity in the conjunction fails the

corresponding virtual entity fails as well.

Step 3: In the transformed IDRs described in step 1 let n denote the number of entities

in disjunction for any given IDR (without modification). In the given example with

IDR ai ← C1 +C2 +bq+mv, constraints of form xid ≥ c1(d−1) +c2(d−1) +yq(d−1) +mv−

(n− 1) and xid ≤
c1(d−1)+c2(d−1)+yq(d−1)+mv

n
∀d, 1 ≤ d ≤ |E| − 1 are added. This ensures

that the entity ai will fail only if all the entities in disjunction become non operational.

Constraint Set 4: To ensure that only S auxiliary entities are added as disjunction

to the IDRs constraint
∑P

v=1mv ≤ S is introduced.

89



6.2.2 Heuristic solution to AEAP

In this section we provide a polynomial heuristic solution to AEAP. We first

redenote Auxiliary Entity Protection Set as AP (D|E ′) as it is immaterial which entity

is added as an auxiliary entity since no auxiliary entity can fail due to any kind

of failure. Along with the definition of Auxiliary Entity Protection Set, we define

Auxiliary Cumulative Fractional Minterm Hit Value (ACFMHV) for designing the

the heuristic. We first define Auxiliary Fractional Minterm Hit Value (AFMHV)

which is used in defining ACFMHV.

Definition: The Auxiliary Fractional Minterm Hit Value of an IDR Dj ∈ F(E)

is denoted by AFMHV (Dj|E ′). It is calculated as AFMHV (Dj|E ′) =
∑m

i=1
1
|si| .

Let xj denote the entity in the right hand side of the IDR Dj. m denotes all the

minterms in which the entity xj appears over all IDRs. The parameter si denotes ith

such minterm with |si| being its size. If an auxiliary entity is placed at D then the

value computed above provides an estimate implicit impact on protection of other

non operational entities.

Definition: The Auxiliary Cumulative Fractional Minterm Hit Value of an IDR

Dj ∈ F(E) is denoted by ACFMHV (Dj). It is computed as ACFMHV (Dj) =∑
∀xi∈AP (D|E′)AFMHV (Dxi |E ′) where Dxi is the IDR for entity xi ∈ AP (D|E ′).

The impact produced by the protected entities when IDR D is allocated with an

auxiliary entity over set A ∪B is implicitly provided by this definition.

The heuristic is provided in Algorithm 6. At any given iteration the auxiliary

entity is placed at the IDR which protects the most number of entities from failure.

In case of a tie the entity having highest ACFMHV value is chosen. At any given iter-

ation the algorithm greedily maximize the number of entities protected from induced
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Algorithm 6: Heuristic solution to AEAP

Data: A system I(E,F(E)), set of E′ entities failing initially, set A of auxiliary

entities and budget S

1 . Result: Sets Dsol and Pf

2 begin

3 Initialize Dsol = ∅ and Pf = ∅;

4 while S 6= 0 do

5 For each IDR D ∈ F(E) compute the AP (D|E′) ;

6 if Multiple IDRs have same highest cardinality AP (D|E′) then

7 For each IDR D ∈ F(E) compute ACFMHV (D) ;

8 Let Dp be an IDR having highest ACFMHV (Dp) among all Di’s in the

set of IDRs having highest cardinality of the set AP (Di|E′);

9 Update Dsol = Dsol ∪Dp and add an auxiliary entity from A as a

disjunction to the IDR Dp;

10 Update Pf = Pf ∪AP (Dp), S ← S − 1 and A by removing the auxiliary

entity added ;

11 else

12 Let Dp be an IDR having highest cardinality of the set D ∈ F(E);

13 Update Dsol = Dsol ∪Dp and add an auxiliary entity from A as a

disjunction to the IDR Dp;

14 Update Pf = Pf ∪AP (Dp|E′), S ← S − 1 and A by removing the

auxilary entity added ;

15 Prune the system I(E,F(E)) by removing the IDRs for entities in

AP (Dp|E′) and removing the same set of entities from E ;

16 return Dsol and Pf ;
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failure. Algorithm 6 runs in polynomial time, more specifically the time complexity

is O(Sn(n+m)2) (where n = |E| and m = Number of minterms in F(E)).

6.3 Experimental Results

To perform a comparative study of the heuristic with the ILP, we use the same data

sets as outlined in Chapter 4. Additionally, the initial failure set is computed using

K most vulnerable entities problem and the same value of K as in ENH problem

are chosen for each data set (as in Table 4.4). 5 distinct allocation budgets were

considered for each data set. The allocation budget for a given data set was chosen

between [1, 17]. The set A containing auxiliary entities are chosen from the set of

operational entities for a given data set. Figures 6.1 - 6.12 shows the comparison of

the Heuristic solution with the ILP in terms of total number of entities protected for

a given allocation budget. The run-time comparison of the solutions are provided in

Table 6.3. A maximum percent difference of 13% (ILP compared with Heuristic) in

the number of entities protected can be seen for 89 bus system when allocation budget

is 1 (Figure 6.5). However, for most of the cases the heuristic produces near optimal

or optimal solution. The heuristic also compute the solutions nearly 200 times faster

than the ILP for larger systems as seen in Table 5.1. Hence it can be claimed that

the heuristic solution to AEAP produces near optimal solution at a much faster time

compared to the ILP solution.
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Figure 6.1: Comparison of ILP Solution with Heuristic for 24 Bus System (AEAP

Problem)
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Figure 6.2: Comparison of ILP Solution with Heuristic for 30 Bus System

(Auxiliary Entity Allocation Problem Problem)
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Figure 6.3: Comparison of ILP Solution with Heuristic for 39 Bus System

(Auxiliary Entity Allocation Problem)
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Figure 6.4: Comparison of ILP Solution with Heuristic for 57 Bus System

(Auxiliary Entity Allocation Problem)
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Figure 6.5: Comparison of ILP Solution with Heuristic for 89 Bus System

(Auxiliary Entity Allocation Problem)
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Figure 6.6: Comparison of ILP Solution with Heuristic for 118 Bus System

(Auxiliary Entity Allocation Problem)
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Figure 6.7: Comparison of ILP Solution with Heuristic for 145 Bus System

(Auxiliary Entity Allocation Problem)
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Figure 6.8: Comparison of ILP Solution with Heuristic for 300 Bus System

(Auxiliary Entity Allocation Problem)
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Figure 6.9: Comparison of ILP Solution with Heuristic for Region 1 (Auxiliary

Entity Allocation Problem)

3    3

5    5

7    7

8    8

9    9

1 2 3 4 5
0

2

4

6

8

10

12

14
ILP solution

Heuristic

Figure 6.10: Comparison of ILP Solution with Heuristic for Region 2 (Auxiliary

Entity Allocation Problem)
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Figure 6.11: Comparison of ILP Solution with Heuristic for Region 3 (Auxiliary

Entity Allocation Problem)
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Figure 6.12: Comparison of ILP Solution with Heuristic for Region 4 (Auxiliary

Entity Allocation Problem)
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Running time (in sec)

DataSet P1 P2 P3 P4 P5

ILP Heu ILP Heu ILP Heu ILP Heu ILP Heu

24 bus 0.49 0.01 0.20 0.01 0.20 0.01 0.21 0.01 0.18 0.01

30 bus 0.69 0.01 0.35 0.01 0.37 0.01 0.35 0.01 0.36 0.01

39 bus 0.9 0.01 0.49 0.01 0.46 0.01 0.45 0.01 0.46 0.01

57 bus 2.07 0.01 1.62 0.12 1.58 0.01 2.85 0.01 2.02 0.01

89 bus 16.5 0.06 14.6 0.03 14.8 0.03 14.1 0.02 14.9 0.02

118 bus 17.2 0.02 16.2 0.04 17.0 0.05 16.3 0.03 16.6 0.02

145 bus 79.1 0.03 76.7 0.06 76.9 0.05 76.3 0.03 76.2 0.04

300 bus 240 0.11 233 0.40 232 0.46 233 0.27 231 0.30

Region 1 0.57 0.01 0.35 0.01 0.34 0.01 0.34 0.01 0.35 0.01

Region 2 13.6 0.01 12.8 0.01 12.9 0.01 12.8 0.01 12.8 0.01

Region 3 1.50 0.01 1.29 0.01 1.24 0.01 1.37 0.01 1.27 0.01

Region 4 1.28 0.01 1.09 0.01 1.03 0.01 1.05 0.01 1.07 0.01

Table 6.3: Run Time Comparison of Integer Linear Program and Heuristic for

Different Data Sets (Auxiliary Entity Allocation Problem)
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Chapter 7

THE ROBUSTNESS PROBLEM

This chapter addresses a new metric for Robustness. We utilize IIM to model the de-

pendencies and consider two type of dependencies while performing our experimental

analysis — (a) interdependent power-communication network, (b) intra-dependent

power network. It is critical to understand which set of entities which when failed

initially would pose damage beyond a certain threshold. This understanding would

provide the operator to employ proper protocols to prevent wide-scale failures. Using

this motivation the chapter defines and provide solutions to compute Robustness. In

IIM both the case (a) and (b) types of dependencies / inter-dependencies is gener-

ically represented as I(E,F(E)), where E are the set of entities and F(E) are the

set of dependency relations portraying the dependencies in the infrastructure(s). The

metric computing the Robustness is defined by using two parameters K ∈ I+ ∪ {0}

and ρ ∈ R with 0 < ρ ≤ 1. If a minimum of K + 1 entities need to fail for a failure

of at least ρ(|E|) entities then the system is (K, ρ)-robust. Utilization of this metric

has the following advantages (a) For a new deployment of entities in an infrastruc-

ture, this metric provides the equipment installation personnel with information to

make the system less vulnerable to initial failure triggers caused by human or nature,

(b) For existing infrastructures the operator can use the metric to identify critical

sections of the system based upon the extent of failure that section would cause.

7.1 Problem Formulation

We define a new metric for computing Robustness of a system I(E,F(E)). For

a given system the metric is denoted by (K, ρ) where K ∈ I+ ∪ {0} is an integer and
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ρ ∈ R is a real valued paramter with 0 < ρ ≤ 1. A system I(E,F(E)) is (K, ρ)

robust if a minimum of K+1 entities need to fail initially for a final failure of at least

ρ|E| entities.

Power Network Comm. Network

a1 ← b2 b1 ← a1a2

a2 ← b1 + b2 b2 ← a1 + a3a4

a3 ← b2b3 b3 ← a2a3

a4 ← b1b3 + b4 b4 ← a1

Table 7.1: IDRs for the Constructed Example

Entities Time Steps (t)

0 1 2 3 4 5 6

a1 1 1 1 1 1 1 1

a2 0 0 0 0 1 1 1

a3 0 0 0 0 1 1 1

a4 0 0 1 1 1 1 1

b1 0 1 1 1 1 1 1

b2 0 0 0 1 1 1 1

b3 0 0 0 0 0 1 1

b4 0 1 1 1 1 1 1

Table 7.2: Failure Cascade Propagation when Entity {a1} Fail at Time Step t = 0.

A Value of 1 Denotes Entity Failure, and 0 Otherwise

Consider the system described in Table 7.1. It can be seen in Table 7.2 that the

initial failure of the entity a1 causes all the entities to fail in the steady state. Hence,
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a minimum of 1 entity needs to fail for failure of any number of entities ranging

from 1 to 8 in the system. So for any ρ value the system is (0,ρ) robust. With this

definition the primary challenge is to compute this robustness metric of a system.

In our approach we take as input a system I(E,F(E)) and ρ with 0 < ρ ≤ 1 and

compute the minimum number of entities (say K ′) require to fail at t = 0 that would

cause a failure of at least ρ|E| entities in total. With K ′ = K − 1 we then term the

system as (K, ρ) robust. We term this as the Robustness Computation (RC) problem.

A formal description of the decision and optimization version of the RC problem is

stated below —

The Robustness Computation (RC) problem

Instance— A system I(E,F(E)), an integer K ∈ I+ and a real valued parameter

ρ ∈ R with 0 < ρ ≤ 1.

Decision Version— Does there exist a set of entities SI ⊆ E and |SI | ≤ K which

when failed initially causes a final failure of at least ρ|E|) entities.

Optimization Version— Find the minimum set of entities (say K ′) which when

fail initially would cause a total final failure of at least ρ|E| entities. The system

would then be (K ′ − 1, ρ) robust.

It is to be noted that the decision version is developed as a negation to the RC

problem i.e. a solution would ensure that the underlying system is not (K, ρ) robust.

To find the solution to the RC problem the negation to the RC problem has to iterated

from K = |E|−1 to 0. Consider K = K ′ as the first integer in the iteration for which

there is a no answer to the negation of the RC problem. Then the robustness of

the system is (K ′, ρ). So using a polynomial number of computation on the method

computing the negation of the RC problem, the RC problem can be solved. Hence,
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the negation of the RC problem can be used to analyze the computational complexity

of the RC problem.

7.2 Computational Complexity Analysis

The computational complexity analysis of the RC problem is described in this

section. As noted earlier that analyzing computational complexity to the negation

of the RC problem is same that of the RC problem. We denote the negation to RC

problem as RC. We prove that the decision version of the RC problem is NP-complete

in Theorem 12. Additionally we analyze two sub-cases by imposing restrictions on

the IDRs. In the first restricted case we provide a polynomial time solution to the RC

problem. For the second restricted case we prove the RC problem to be NP-complete

under the restriction and use the result to derive an in-approximability bound on the

problem.

Theorem 12. The decision version of the RC problem is NP-complete.

Proof. We prove the NP-completeness by giving a transformation from the Hitting

Set Problem. An instance of the hitting set problem consists of a set of elements S

and a set S = {S1, S2, S3, .., Sn} where Si ⊆ S, ∀Si ∈ S. The question asked in the

problem is given an integer M does there exist a set S ′ ⊆ S with |S ′| ≤ M such

that each subset in S contains at least one element from S ′. From an instance of the

hitting set problem we create an instance of the RC problem as follows. Consider a

system I(E,F(E)) with E = A ∪B. For each element xi ∈ S we add an entity bi to

set B. Similarly for each subset Si ∈ S we add an entity ai to set A. For each subset

Si = {xm, xn, xp} (say) we create an IDR ai ← bmbnbp. The value of K is set to M

and ρ is set to M+|S|
|S|+|S| . It is to be noted that there wont be any cascading failure due

to absence of dependency relations of B type entities.
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Let there exists a solution to the hitting set problem. So each subset Si ∈ S has

at least one element from set S ′ (with |S ′| = M). Hence killing the corresponding B

type entities from the constructed instance would kill all A type entities. Thus the

fraction of entities killed is M+|S|
|S|+|S| = ρ solving the RC problem.

On the other way round let there exist a solution to the RC problem. It can be

shown that the initial failure set would always be chosen from set B to fail ρ = M+|S|
|S|+|S|

fraction of entities. This is because failure of any A type entity cannot trigger failure

of any other entity. Moreover the total number of entities in final failure set is M+ |S|

(as |S| = |A|). Thus the failure set must contain all A type entities except for M other

entities which has to be chosen from set B. So a solution to RC problem consisting

of entities B′ ⊆ B would ensure that for each entity ai ∈ A at least one entity in its

IDR is killed initially. So the set of elements in S ′ corresponding to the entities in B′

would solve the hitting set problem. Hence proved

7.2.1 Restricted Case I: Problem Instance with One Minterm of Size One

The IDRs in the set F(E) have minterms of size 1. With two entities ei and ej

the IDR ei ← ej represents this case. Additionally any entity can appear at most

once on the left side of the IDR. We provide a polynomial time algorithm (Algorithm

7) and prove its optimality ( Theorem 13) that solves the RC problem for Case I.

To develop the algorithm we use the definition of Kill Set of an entity ei ∈ E (as

defined in Section 4.1). Using the concept of Kill Set Algorithm 7 is developed. For

a given value of ρ the algorithm returns a set of entity R which when killed initially

would cause failure of at least ρ|E| entities. Theorem 13 proves that the set R re-

turned has the minimum possible cardinality for a given value of ρ. Thus the system

is (|R| − 1, ρ) robust.
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Algorithm 7: Algorithm solving RC problem optimaly for IDRs with Restricted

Case I type dependencies

Data: A system I(E,F(E)) and a real valued parameter ρ ∈ (0, 1].

Result: A set of entities R in I(E,F(E)).

1 begin

2 For each entity ei ∈ (E) compute the set of kill sets C = {Ce1 , Ce2 , ..., Ce|E|},

where Cei = KillSet(ei) ;

3 Initialize D ← ∅ and E ← ∅ ;

4 while |D| < ρ(|E|) do

5 Let ej be the entity having highest |Cej |, in case of a tie choose arbitrarily ;

6 Update R← R ∪ {ej};

7 Update D ← D ∪ Cej ;

8 for (i = 1; i ≤ |E|; i+ +) do

9 Cei ← Cei\Cej ;

10 return E ;

Theorem 13. Algorithm 7 solves the RC problem for Restricted Case I optimally in

polynomial time.

Proof. Computation of Kill Sets for all E entities can be done in O((|E|)3) [18]. The

while loop runs for maximum of |E| times when ρ = 1 and Kill Set of each entity

is only composed of the entity itself. The highest cardinality Kill Set among all Kill

Sets can be found in O(|E|). The for loop iterates for |E| times with computation

inside it taking O(|E|) time per iteration. Hence, the time complexity of the while

loop in total is O((|E|)3). So the overall time complexity of Algorithm 7 is O((|E|)3).

We claim that Algorithm 7 returns the optimal value of robustness parameter

K = |R| − 1 of an IDN I(E,F(E)) with set R containing the minimum number
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of entities that causes failure of at least ρ(|E|) entities. The claim is proved by

contradiction. Let ROPT be the optimal set that causes failure of at least ρ(|E|)

entities and en be an entity in ROPT\R. It is proved in [18] that in this restricted

case for any two entities ei and ej, Cei ∩Cej = ∅ or Cei ∩Cej = Cei or Cei ∩Cej = Cej

where ei 6= ej. At any iteration of the while loop the entity ej with highest cardinality

Kill Set is selected. Inside the for loop all entities having Cei ∩ Cej = Cei and the

entity itself would have its Kill Set updated to ∅. Hence the Kill Set of the entity

xn would either be set to ∅ at some iteration of the while loop or didn’t have the

highest cardinality at any iteration. Hence adding en to optimal solution would have

made no difference or reduce the number of failed entities. Hence a contradiction. So,

Algorithm 7 returns the minimum number of entities that causes failure of at least

ρ(|E|) entities.

7.2.2 Restricted Case II: Problem Instance with an Arbitrary Number of Minterms

of Size One

This restricted case is composed of IDRs having arbitrary number of minterms of

size 1. The IDRs of this case can be represented as ei ←
∑p

q=1 eq. The given example

has p minterms each of size 1. Thus to kill ei, all entities in its IDR must be non-

operational. In Theorem 14 we prove that the decision version of the RC problem

for this restricted case is NP complete. Using the instance creation as described in

Theorem 14 and the NP-completeness proff we provide an in-approximability bound

on the RC problem in Theorem 15.

Theorem 14. The decision version of the RC problem for Case III is NP-complete.

Proof. We prove that the problem is NP-complete by giving a reduction from the

Densest p-Subhypergraph problem [32], a known NP- complete problem. An instance
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of the Densest p-Subhypergraph problem includes a hypergraph G = (V,EV ), a pa-

rameter p and a parameter M . The problem asks the question whether there exists

a set of vertices |V ′| ⊆ V and |V ′| ≤ p such that the subgraph induced with this

set of vertices has at least M completely covered hyperedges. From an instance of

the Densest p-Subhypergraph problem we create an instance of the RC problem as

follows. Consider a system I(E,F(E)) with E = A ∪ B. For each vertex vi ∈ V

we add an entity bi to set B. Similarly, for each hyperedge ej ∈ E we add an en-

tity aj to set A. For each hyperedge ej with ej = {vm, vn, vq} (say) an IDR of form

aj ← bm + bn + bq is created and added to F(E). The value of K is set to p and ρ

is set to p+M
|V |+|EV |

. It is to be noted that there wont be any cascading failure due to

absence of dependency relations of B type entities.

Let there exist a solution to the Densest p-Subhypergraph problem. Then there

exist a set V ′ ⊆ V and |V ′| = p that covers completely at least M hypedges in EV .

Thus killing the B type entities corresponding to the vertices in V ′ would cause at

least M A type entities to fail. Hence the fraction of entities killed is ≥ p+M
|V |+|EV |

= ρ.

So the solution of the Densest p-Subhypergraph problem solves the RC problem.

For the created instance of the RC problem all entities in set B can only fail

initially. The A type entities can either fail initially or through induced failure of

failing B type entities. Hence initial failure of entities from set B would have the

most impact on final number of entities failed. Let us assume that there exists one

or many solutions to the RC problem. Then at least one solution would have entities

only from set B. For this solution the number of entities killed on initial failure of p B

type entities is at least p+M . The additional M entities killed belongs to set A. So

the vertices in V corresponding to the entities in B would completely cover at least M

hyperedges. Thus the solution of RC problem solves the Densest p-Subhypergraph

problem. Hence proved.
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Theorem 15. The RC problem is hard to approximate within a factor 1

2log(n)
λ (where

n = |E|) for some λ > 0.

Proof. In [32] it is proved the Densest p-Subhypergraph problem is hard to approxi-

mate within a factor of 1

2log(n)
λ with λ > 0. For IDRs of form in this restricted case

it is shown in Theorem 14 that Densest p-Subhypergraph problem is a special case

of the RC problem. So this in-approximability bound holds for the RC problem as

well. Hence proved.

7.3 Solutions to the RC Problem

Owing to the problem being NP-complete we first propose an Integer Linear pro-

gram (ILP) that solves the problem optimally. Since, the run time of the ILP becomes

exponential with input size so a sub-optimal heuristic that runs in polynomial time

is also proposed in this section.

7.3.1 Optimal Solution for the RC problem

For a given parameter ρ ∈ (0, 1] and a system I(E,F(E)), we formulate an ILP

that computes the minimum number of entities which need to fail at t = 0 for a final

failure of ρ(|E|) entities. Let K ′ denote the solution to the ILP. The system is then

(K, ρ) robust with K = K ′ − 1. For each entity where ei ∈ E a set of variables xid

(0 ≤ d ≤ |E| − 1) are created in the ILP. d is the parameter which denotes the time

step. If xid =1 then the entity ei is non-operational at time setp d and operational if

xid = 0. state. Using these variable creations the objective of the ILP is provided in

Equation 7.1

min

|E|∑
i=1

xi0 (7.1)
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The constraints of the ILP are formally described as follows:

Constraint Set 1: xid ≥ xi(d−1),∀d, 1 ≤ d ≤ |E| − 1 The constraint ensures that if an

entity ei fails at time step d, it should remain in a state of failure for all subsequent

time steps.

Constraint Set 2: Consider an IDR of form ei ← ej+ekel+emeneq. A set of constraints

is developed for each such IDR that captures the cascading failure process. The set

of constraints are described below —

Step 1: We bring in new variables to denote minterms of size greater than one. In

this example, two new variables c1 and c2 are introduced to represent the minterms

ekel and emeneq respectively. This is equivalent of adding two new IDRs c1 ← ekel

and c2 ← emeneq with the transformed IDR being ei ← ej + c1 + c2.

Step 2: For each IDR corresponding to the c type variables, we establish a linear

constraint to capture the failure propagation. For an IDR c2 ← emeneq the constraint

is represented as c2d ≤ xm(d−1) + xn(d−1) + xq(d−1), ∀d, 1 ≤ d ≤ |E| − 1.

Step 3: Similarly, for each transformed IDR, we introduce a linear constraint to cap-

ture the failure propagation. For an IDR ei ← ej+c1+c2 the constraint is represented

as N × xid ≤ xj(d−1) + c1(d−1) + c2(d−1),∀d, 1 ≤ d ≤ |E| − 1. Here N is the number of

minterms in the IDR (in this example N = 3).

Constraint Set 3: It must also be satisfied that at time step |E| − 1, at least ρ(|E|)

entities fail in total. This can be captured by introducing the constraint
m∑
i=1

ei(tf ) ≥

ρ(|A|+ |B|).
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With the objective in (7.1) and set of constraints, the ILP finds the minimum

number of entities K ′ which when failed initially, causes at least ρ(|E|) entities to fail

in total at t = |E| − 1. Thus using this solution the system is (K ′ − 1, ρ) robust.

7.3.2 Heuristic Solution for the RC problem

A sub-optimal heuristic solution to the RC problem is proposed in this section.

The heuristic utilizes the definition of Kill Set (as defined in Section 4.1) and Cu-

mulative Fractional Minterm Hit Value of an entity (defined below). Using these

definitions the heuristic is provided in Algorithm 8.

Definition: Fractional Minterm Hit Value: For an entity ej ∈ E in a dependent

system I(E,F(E)) the Fractional Minterm Hit Value is denoted as FMHV (ej, X).

It is calculated as FMHV (ej, X) =
∑m

i=1
1
|si| . In the formulation m are the minterms

in which ej appears over all IDRs except for entities in set X. The parameter si

denotes ith such minterm. If the entity ej is killed then the computed value provides

an estimate of the future impact on killing of other operational entities.

Definition: Cumulative Fractional Minterm Hit Value: The Cumulative Fractional

Minterm Hit Value of an entity ej ∈ E is denoted as CFMHV (ej). It is computed as

CFMHV (ej) =
∑
∀ei∈KS(ej) FMHV (ej, KS(ej)). This gives a measure of the future

impact on killing functional entities when the entity ej is killed.

In Algorithm 8, for each iteration of the while loop the operational entity having

highest cardinality Kill Set is selected. This ensures that at each step the number

of entities failed is maximized. In case of a tie, the entity having highest cardinality

Cumulative Fractional Minterm Hit Value among the set of tied entities is selected.

This causes the selection of the entity that has the potential to kill maximum number

of entities in the subsequent steps. Thus, the heuristic greedily minimizes the set of
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Algorithm 8: Heuristic Solution to RC problem

Data: A system I(E,F(E)) and a real valued parameter ρ ∈ (0, 1].

Result: An integer |KH | − 1 where KH is a set of entities that when killed initially

fails at least ρ(|E|) entities

1 begin

2 Initialize D ← ∅ and KH ← ∅ ;

3 while |D| < ρ(|E|) do

4 For each entity ei ∈ E\D compute the kill set Cei ;

5 For each entity ei ∈ E\D compute CFMHV (ei);

6 Let ej be the entity having highest |Cej | ;

7 if There exists multiple entities having highest cardinality Kill Set then

8 Let ep be an entity having highest CFMHV (ep) with ep in the set of

entities having highest cardinality Kill Set;

9 If there is a tie choose arbitrarily;

10 Update KH ← KH ∪ {ep} ;

11 Update D ← D ∪ Cep ;

12 Update all dependencies in F(E) by removing entities in the left and

right side of the IDRs that belong to Cep ;

13 else

14 Update KH ← KH ∪ {ej} ;

15 Update D ← D ∪ Cxj ;

16 Update all dependencies in F(E) by removing entities in the left and

right side of the IDRs that belong to Cep ;

17 return |KH | − 1 ;

entities which when killed initially fails at least ρ fraction of total entities in the IDN.

The heuristic overestimates the parameter K while determining the robustness (K, ρ)
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of an IDN. The value of the parameter K is equal to |KH | − 1 which is the output of

Algorithm 8. Algorithm 8 runs in polynomial time, more specifically the run time is

ρn(n+m)2 (where n = |E| and m = Number of minterms in F(E)).

7.3.3 Comparative Study of the ILP and Heuristic for the Problems

We perform a comparative study of the ILP with the heuristic for the RC prob-

lem using the same data sets as used in ENH problem (Chapter 4). We com-

pared the heuristic solution with the ILP by considering 5 different values of ρ =

{0.1, 0.3, 0.5, 0.7, 0.9}. Table 7.3 compares the quality of the solution for different

values of ρ and data sets. The quality of the solution is measured as the K value of

the robustness metric returned for the corresponding value of ρ. The run time perfor-

mance of the solutions are enumerated in Table 7.4. For a ρ value of 0.7 in Region 2

it can be seen that the K value in heuristic is 50% of the optimal. This is maximum

percent difference in the quality of the solution across all the experiments. However, it

can be seen that for most of the cases the heuristic performs very close to the optimal

solution produced by the ILP. Moreover, from Table 7.4 it can be inferred that the

heuristic solves the RC problem much faster than the ILP with heuristic performing

nearly 100 times faster for systems having large number of entities. Hence, using this

results in can be reasonably argued that the heuristic solution provides near optimal

solution in much lesser computation and hence can be used to solve the RC problem.
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ρ and Robustness Values

DataSet 0.1 0.3 0.5 0.7 0.9

ILP Heu ILP Heu ILP Heu ILP Heu ILP Heu

24 bus 2 2 6 6 15 15 27 27 39 39

30 bus 1 1 4 4 12 12 26 26 40 40

39 bus 1 1 4 4 17 18 34 35 51 52

57 bus 1 1 9 10 26 27 53 54 80 81

89 bus 4 5 19 23 78 82 137 141 196 200

118 bus 7 8 35 35 89 89 148 148 208 208

145 bus 1 1 78 81 191 194 304 307 418 421

300 bus 5 5 30 33 145 148 287 290 429 432

Region 1 1 1 2 2 4 7 13 16 23 26

Region 2 1 1 4 4 7 9 12 18 21 27

Region 3 1 1 3 3 5 8 13 17 23 27

Region 4 1 1 3 3 7 9 16 20 25 30

Table 7.3: Quality of Solution Comparison of Integer Linear Program and Heuristic

for Different Data Sets and Varying ρ (Robustness Problem)
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ρ values and running time (in sec)

DataSet 0.1 0.3 0.5 0.7 0.9

ILP Heu ILP Heu ILP Heu ILP Heu ILP Heu

24 bus 0.25 0.01 0.20 0.01 0.19 0.01 0.22 0.01 0.31 0.01

30 bus 0.27 0.01 0.53 0.01 0.47 0.01 0.44 0.01 0.44 0.01

39 bus 0.45 0.01 0.63 0.01 0.90 0.01 0.76 0.01 0.75 0.01

57 bus 2.23 0.02 2.96 0.01 2.40 0.03 2.52 0.02 1.83 0.01

89 bus 12.5 0.12 20.1 0.10 16.0 0.20 13.7 0.13 9.87 0.09

118 bus 19.1 0.19 20.5 0.24 18.6 0.32 19.7 0.37 17.6 0.22

145 bus 81.3 0.17 90.3 0.88 87.8 0.81 86.1 0.65 81.9 0.71

300 bus 272 0.86 271 2.12 264 3.33 234 3.00 235 2.90

Region 1 0.48 0.01 0.65 0.01 0.53 0.01 0.32 0.01 0.36 0.01

Region 2 0.49 0.01 5.04 0.01 8.73 0.01 .38 0.01 0.24 0.01

Region 3 0.46 0.01 2.23 0.01 1.37 0.01 0.29 0.01 0.275 0.01

Region 4 0.50 0.01 4.97 0.01 2.31 0.01 0.47 0.01 0.31 0.01

Region 5 0.61 0.01 2.26 0.01 7.51 0.01 0.31 0.01 0.20 0.01

Table 7.4: Run Time Comparison of Integer Linear Program and Heuristic for

Different Data Sets and Varying ρ (Robustness Problem)
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Chapter 8

THE MIIR MODEL AND K CONTINGENCY LIST PROBLEM

The biggest challenge with the IIM formulation is the identification of the depen-

dency relations between the different entities. This is done based on information

obtained from subject matter experts. However, it has now become clear that this is

not a very reliable procedure. The second problem is that IIM operates on Boolean

logic, implying that the different entities can only have two values — 0 or 1, repre-

senting the state of the entity being operational or non-operational. However, this

does not provide information about entities which are operating at near-failure state.

For example, consider a line that is carrying 95% of its rated capacity. IIM only

provides the state of the line (operational or non-operational). Hence the operator

won’t be alerted even though the line is reaching its peak carrying capacity (which

might eventually cause it to fail). Thus, such scenarios limit the applicability of IIM.

In order to overcome the limitations of IIM and to extend the application domain of

IDRs for long-term planning and short-term operational management, the Multi-scale

Implicative Interdependency Relation (MIIR) model is proposed. The MIIR model

uses the notion of IDRs with added features to capture the power flow in transmis-

sion lines/transformers and demand/generation of buses. Phasor Measurement Unit

(PMU) data can be used to generate the dependency equations as well as obtain-

ing power flow and demand/generation values for actual systems. Using the MIIR

model we study the K contingency list problem in this chapter. At a given time t the

problem solves for a set of K components in the power network which when made

non-operational at time t would cause the maximum number of healthy entities to fail.

Additionally, the solution would provide insights into components which are operat-
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ing at their near capacity limits. Such a solution would have an immediate benefit to

a system operator making decisions in real-time to prevent large-scale power failures.

In this chapter, the MIIR model is developed based on the power network. It is

aimed to have a near accurate abstraction of the power flow dynamics and capture

cascading failure propagation in the same. It is to be noted with proper modifica-

tion the model has the potential to be extended for performing a similar analysis in

different inter/intra-dependent critical infrastructure system(s).

8.1 Model Variables

We consider load buses, generator buses, neutral buses and transmission lines /

transformers as different types of entities. Let E = {e1, e2, . . . , en} denote the set of

entities in the power network. Each entity ei ∈ E has three values associated with it

— (i) a lower bound ei,l, (ii) an upper bound ei,u, and (iii) the instantaneous power

value ei,c,t at time t of the entity. For a transmission line/transformer type entity

ek, the value of ek,c,t provides the power flow in that line at time t. Corresponding,

for a load bus em and generator bus en the values em,c,t and en,c,t provides the load

demand and generating value at time t. For the power transmission system, PMU

data can be used to obtain the instantaneous power value ei,c,t of the entity ei. The

values of ei,l and ei,u can be easily obtained from the entity rating data. For a given

time t the state of the entity is still Boolean (operational or not operational) and is

guided by the following two factors — (a) ei,c,t satisfies the property ei,l < ei,c,t < ei,u,

(b) the corresponding dependency equation of ei at time t is satisfied. Hence, if ei

has an IDR ei ← ej · ek + el then for ei to be operational both the properties —

(a) (ei and ek) or el is operational at t − δ, and (b) ei,t ≤ ei,c,t ≤ ei,u has to be

satisfied. Here δ refers to the time within which the effect of failure of an entity is

propagated to its dependent entity. So using MIIR model the power network at time
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t is mathematically represented as P (E,B,Ct, F ) where E is the set of of entities, B

is a set of tuples {ei,l, ei,u} (∀ei ∈ E) denoting the power value bound on the entity,

Ct consist of instantaneous power value ei,c,t (∀ei ∈ E) at time t and F contains the

set of dependency equations for the entities in E. A similar notation has been used

in [33] but our notation brings out a completely different topological aspect of the

power network.

8.2 Generating and Obtaining the Model Variables for a Power Network

We illustrate our strategy to generate the dependency equations F and the set Ct

of a power network P (E,B,Ct, F ) at a given time t. The MATPOWER [31] software

is used to generate the simulated data. For a given time t and a standard bus system

(containing a set of buses and transmission lines/transformers E), the software uses

load demand of the bus, the impedance of the transmission lines/transformers, etc. to

solve the power flow. The software produces the voltage of each bus in the system as

the output. The software suite also includes a wide range of test systems along with

power ratings of the components for all such systems. We restrict ourselves to analyze

the real power flow. Firstly, for a given solution, we formally state the procedure to

obtain the tuple values of the set B and instantaneous power value contained in the set

C for generator buses, load buses, neutral buses and transmission lines/transformers

—

• Generator Bus: The real part of the power generated is taken as the value

of ea,c,t for a generator bus ea ∈ E. The upper bound ea,u is set to its real

generation capacity (supplied in the MATPOWER suite) and the lower bound

ea,l is set to 0. It is to be noted that some generator buses have load demand.

Consider ex be a generator bus with load demand d units and real instantaneous

power generated ex,c,t units. Without any loss of generality, such a bus is split
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into a generator bus ex1 with 0 load demand (instantaneous power generated

ex1,c,t) and a load bus ex2 with instantaneous load demand d units (instantaneous

power generated 0). A transmission line ex12 is constructed that connects ex1

to ex2 with an instantaneous power flow of d units flowing from ex1 to ex2.

• Load Bus: The real part of the load demand is taken as instantaneous demand

value eb,c,t of a load bus eb ∈ E. For a load bus eb, both its upper and lower

bound is set to the instantaneous demand value eb,c,t. Essentially, our assump-

tion is that a load bus does not change its demand value irrespective of any

failure.

• Neutral Bus: For a neutral bus ed ∈ E the values of ed,l, ed,u and ed,c,t are set

to 0.

• Transmission Lines/Transformers: For two buses e1 and e2 connected by a

transmission line/transformer e12 the power flowing through the transmission

line/transformer is calculated as P12 = Real(V1 ∗ (V1−V2
I12

)∗), where V1 is the

voltage at bus e1, V2 is the voltage at bus e2 (V1 and V2 returned by the MAT-

POWER solver) and I12 is the impedance of the transmission line/transformer

e12 (obtained from the supplied bus system file of MATPOWER). P12 is the real

component of the power flowing in the transmission line/transformer e12. The

lower bound is set to 0 and the upper bound is taken as the rated capacity of

the transmission line/transformer. The instantaneous power value e12,c,t is set

to |P12| (absolute value).

The description of this system indicates that power flows from bus e1 to e2 if P12

is positive and vice-versa otherwise. As a result, we can interpret the direction of

power flow in the line from the solution which we obtained from MATPOWER. We
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use this solution to generate the set F which is the set of dependency equations. As

an example, we consider the nine bus system which is shown in Figure 3.4 (refer to

Chapter 3). This figure describes a power network P (E,B,Ct, F ), at time instance t

with E being the set of entities containing generator buses from G1 to G3, load buses

L1 to L4, neutral buses {N1, N2} and transmission lines/transformers T1 through

T9. The figure also provides the instantaneous power values by solving the power

network flow based on demand/generation at some time instant t. The red blocks

denote the instantaneous real power generated by a generator, the green blocks denote

instantaneous real load demands and the blue nodes are neutral. The values in the

grey blocks denote the flow of power in the transmission lines/transformers with the

arrows denoting the direction of the power flow. There aren’t any IDRs for the

transmission lines. Consider a bus b1 connected to buses b2, b3 through transmission

lines/transformers b12 (between b1 and b2) and b13 between (b1 and b3). Also, let

power flow from buses b2, b3 to bus b1. The dependency equation for the bus b1

is constructed as disjunction of minterms of size 2 (this consists of the bus from

which the power is flowing and the respective transmission line/transformer) with

each disjunction corresponding to buses from which power is flowing to it. For this

example the dependency equation b1 ← b12b2 + b13b3 is created. Using this definition,

the dependency equations for the buses in Figure 3.4 are as follows — (a) L1 ← T1 ·G1

, (b) L2 ← T2 ·L1 + T7 ·N2, (c) L3 ← T3 ·L1 + T4 ·N1, (d) L4 ← T6 ·N1 + T8 ·N2, (e)

N1 ← T5 ·G3, (f) N2 ← T9 ·G2.

8.3 Dynamics of the MIIR model

To understand the dynamics of cascading failure in power network based on the

MIIR model we first create the abstract representation P (E,B,C0, F ) (which is con-

structed using the technique discussed in Section 8.2) for a power network at time
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t = 0. An event of initial failure is assumed to occur at time t = 0 with failure cascade

propagating in unit time steps. For an entity that is operational at time step t = τ

the following equations are required to be satisfied —∑
em∈Oeg

em,c,τ =
∑
en∈Ieg

en,c,τ + eg,c,τ ,∀eg ∈ G (8.1)

∑
em∈Oel

em,c,τ =
∑
en∈Iel

en,c,τ − el,c,τ ,∀el ∈ L (8.2)

∑
em∈Oek

em,c,τ =
∑
en∈Iek

en,c,τ + ek,c,τ ,∀ek ∈ N (8.3)

Equations (8.1)-(8.3) dictate the law of conservation of energy for each bus in the

system. That is, we assume that the power flowing out from a bus is equal to the

power flowing into it for a unit time step.

In (8.1), the lines through which power flows out and into the generator bus eg

(where G ⊂ E contains all generator buses) are represented by sets Ieg and Oeg

respectively. Equations (8.2) and (8.3) uses the same notations for load bus el (where

L ⊂ E contains all load buses) and neutral bus ek (where N ⊂ E contains all neutral

buses), respectively. In (8.3), the value of ek,c,t = 0 for all time steps and hence it can

be simplified as
∑

em∈Oek
em,c,t =

∑
en∈Iek

en,c,t. Additionally, for a generator bus there

is no power injected to it. Hence 8.1 can be re-written as
∑

em∈Ieg
em,c,t = eg,c,t,∀eg ∈

G. We use this abstract representation of the power network i.e. P (E,B,C0, F ) at

time t = 0. Using this the cascading failure process of the power network on an event

of initial failure of E ′ ⊂ E at time step t = 0 is detailed out in Algorithm 9.

In Algorithm 9, at every iteration the flow values are adjusted based on Equations

8.1-8.3 at line 8 and entities are made non-operational based on the two conditions

mentioned at lines 7 and 9. The cascading process continues if new entities fail in

the previous time step (condition size 6= |S|). As evident we assume that there is a
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Algorithm 9: Algorithm describing the failure cascading process in power net-

work using MIIR model

Data: A power network P (E,B,C0, F ) at time t = 0 and a set of initially failing

entities E′ ⊂ E

Result: A set of failed entities S

1 begin

2 Initialize S ← E′, size← 0 ;

3 Increment t← t+ 1 ;

4 while size 6= |S| do

5 Set size← |S|;

6 Remove all entities whose dependency equations are not satisfied and add

them to set S;

7 Adjust power flow values ek,c,t of transmission line/transformer entities ek

and generating values eg,c,t of generator buses eg such that Equations 8.1

-8.3 are satisfied.;

8 Remove all entities whose bounds are not satisfied and add them to set S ;

9 Increment t← t+ 1 ;

10 return S ;

unit time delay for an entity to become non operational if its dependency equations

are unsatisfied. All entities whose bound values are not satisfied are made non-

operational at that time step after power flow calculation. It is to be noted that the

dependency equations are generated from a graph which is directed acyclic. Owing to

this property the cascade reaches a steady state (no new entities are non-operational)

within O(|E|) time steps. This can be explained as follows. Consider a single initial

failure of an entity. If no entity fails the cascading algorithm would continue till at

most |E|− 1 time steps since the maximum distance between two nodes in a directed
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acyclic graph is |E| − 1 (considering each edge having a weight 1). If more than one

entity fails then the cascade is expected to stop before |E| − 1. Hence the number of

cascading time steps is strictly upper bounded by |E| − 1.

Algorithm 9 assumes that there exist a method to compute the flow value equa-

tions to get the instantaneous power values of the entities. This is equivalent to

computing the AC power flow equations again (using MATPOWER) which would

be time intensive and does not make use of the abstraction created by the MIIR

model for fast decision-making. Moreover, using general graph theoretical algorith-

mic techniques might result in multiple solutions of instantaneous power values when

solving a given set of power flow equations thus resulting in ambiguity. To counteract

this, in our abstraction, we use the notion of Worst-Case Cascade Propagation

(WCCP) in Algorithm 9. Qualitatively, the instantaneous value of power flows and

power generator at every time step t > 0 of the cascade is set to a value that would

cause the maximum number of entities to fail at the end of the cascade. Computation

of this power flow values using WCCP is proved to be NP-complete in Section 8.5.

We devise a mixed integer program to get the optimal solution and a greedy heuristic

to get a sub-optimal solution in polynomial time in Section 6.2.

8.4 Case Study: The 2011 Southwest Blackout

In this subsection the performance of MIIR with WCCP is tested on a real power

system event: the 2011 Southwest Blackout. All data used in this analysis are ob-

tained from [2]. An abstraction of the Southwest Power System is provided in Figure

8.1. The abbreviations used in Figure 8.1 are — Western Electricity Coordinating

Council (WECC), Serrano (SE), Devers (DE), San Onofre Nuclear Generating Sta-

tion (SONGS), San Diego Gas & Electric (SDG&E), Miguel (MI), Imperial Valley

(IV), Imperial Irrigation District (IID), Comision Federal de Electricidad’s (CFE, cor-
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responding to Baja California Control Area), North Gila (NG), Hassayampa (HA),

Palo Verde (PV), and Western Area Power Administration-Lower Colorado (WAPA).

The blue, orange and green blocks in Figure 8.1 represents neutral, load and generator

buses respectively. The transmission lines/transformers are labeled T1−T17 with the

arrows indicating the directions of the pre-disturbance power flows. On September 8,

2011, an initial trip of the HA-NG transmission line (T11) caused blackout in SDG

& E region. The objective here is to verify whether MIIR model with WCCP is able

to capture the power outage.

WECC

PVDESE

SONGS

SDG	&	E

IID

IVMI

HA

NG		

CFE

T10

T11

T3T4

T2

T5

T6

T7
T12 T13

T8

T9

Figure 8.1: An Abstraction of the Southwest Power System.

The dependency equations in Table 8.1 without the bounds and instantaneous

power values of the entities (buses and transmission lines) corresponds to the set F .

Consider tripping of the entity T11 at t = 0. Just considering the IDRs itself, the

component NG fails at t = 1, WALC and IV at t = 2, CFE and MI at t = 3. The

pre-disturbance load demands of SDG&E and IID were approximately 5000 MW and

900 MW, respectively, while the generation bounds on PV and WECC were [0, 4000

MW] and [0, 10000 MW], respectively. After failure of T11, SDG&E and IID would

try to meet their bulk load demands through the generator buses PV and WECC via
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Dependency Equations

SE ← T1 ·WECC + T4 ·DE

DE ← T3 · PV + T2 ·WECC

SONGS ← T5 · SE

SDG&E ← T6 · SONGS + T7 ·MI

IID ← T8 ·DE + T15 ·WALC + T9 · IV

MI ← T12 · IV

IV ← T13 ·NG

CFE ← T14 · IV + T13 ·MI

WALC ← T16 ·NG

NG← T11 ·HA

HA← T10 · PV

Table 8.1: IDRs of the Southwest Power System

T6 and T8. The bound on T6 is [0, 2200 MW] and T8 is [0, 1800 MW]. Both PV and

WECC have enough generation capacity to meet the load demand of SDG&E and

IID. At t = 3 owing to the load demand of SDG&E the transmission line T6 would

have try to have a power flow of 5000 MW instantly. Thus T6 would trip at t = 3

causing SDG&E to trip at t = 4. Owing to this the power flowing through T1, T4

and T5 would reduce down to 0 at t = 4. The power flow in T8 would increase to 900

MW at t = 3 for supplying power to IID. Thus the steady state is reached at t = 4

and MIIR model accurately predicts the blackout of SDG&E region.
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8.5 K Contingency List — Problem Formulation

It is important from a power system operator’s point of view to understand and

know the most critical entities in the network at a given time. This would enable

the operator to make more reliable decisions when unforeseen events/failures occur.

For larger systems, an automation that provides the operator with this information

would be highly beneficial. Owing to this we develop the K Contingency List (KCoL)

problem using MIIR model with WCCP. For a given time t and an integer K the prob-

lem provides the operator with a list of K entities which when failed initially causes

the maximum number of entities to fail at the steady state of cascade propagation.

Qualitatively, for a given integer K the problem finds a set E ′ (|E ′| = K) entities

which when failed initially maximizes the total number of entities failed at the end of

the cascading process. A formal description of the KCoL problem using WCCP with

MIIR model for the Power Network is provided —

Input: (a) A power network P (E,B,Ct, F ) where E = G ∪ L ∪ N ∪ T . Set of

entities G, L, N and T are disjoint and contains the generator buses, load buses, neu-

tral buses and transmission lines/transformers, respectively. (b) two positive integers

K and S.

Decision Version: Does there exist a set of K entities in E whose failure at time

t would result in a failure of at least S entities in total at the end of the cascading

process?

Optimization Version: Compute the a set of K entities in a power network

P (E,B,Ct, F ) whose failure at time t would maximize the number of entities failed

at the steady state of cascade propagation.
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We prove the problem is NP-complete to solve in Theorem 16

Theorem 16. The KCoL problem using MIIRA model is NP-complete.

Proof. The problem is proved to NP-complete by a reduction from the densest p−sub-

hypergraph problem [32]. An instance of the densest p−subhypergraph problem con-

sists of a hypergraph H = (V,E) and two parameters p and M . The decision version

of the problem finds the answer to whether there exists a set of vertices V ′ ⊂ V and

|V ′| ≤ p which completely covers at least M hyper-edges.

From an instance of the densest p−subhypergraph we create an instance of the

KCoL problem as follows. We start with an empty set of entities G, L and T and an

empty set F that would comprise of the dependency equations. A load type entity

Lj is added to set L for each hyper-edge Ej ∈ E with instantaneous load demand

Li,c,t set to the number of vertices that comprise this hyper-edge. For each vertex

Vi ∈ V we add a generator type entity Gi to set G. The upper bound on the capacity

of the generator Gi is set to the sum of all instantaneous load demands Li,c,t + 1 for

which the corresponding hyper-edge Ej contains the vertex Vi. For each hyper-edge

Ej consisting of vertices Vx, Vy, Vz (say) three transmission line type entities Tx, Ty

and Tz are added to set T and a dependency equation Lj ← Tx ·Gx +Ty ·Gy +Tz ·Gz

is created and added to set F . The upper bound of the transmission line is set to

the load demand +1 of the entity it connects to (e.g., in this case, the maximum

capacity of each transmission line Tx, Ty, Tz are set to the instantaneous load demand

Li,c,t + 1). The parameter S of KCoL problem is set to p+M and K is set to p (i.e.

p entities fail at time t). Thus the created instance satisfy the property of the graph

from which the dependency relations are computed being Directed Acyclic. In the

initial operating condition at time t, all transmission lines have a line flow value of

1 unit with each generator Gi producing Pi units of power, where Pi is the number
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of load entities it is connected to. Hence all load demands are satisfied. It can be

directly followed that an instance of KCoL problem can be created from an instance

of densest p−subhypergraph problem in polynomial time.

It is to be noted that for the created instance — (1) Each transmission line has the

capacity to satisfy the complete load demand of the load type entity it is connecting,

(ii) Each generator has the capacity to satisfy the load demand of all the load type

entities it is connected to. Hence an initial failure of one or more entities would

not cause any transmission line or generator to trip (fail) because of exceeding its

maximum capacity. Thus the generators and transmission lines are susceptible only

to initial failure whereas the load entities are vulnerable to both initial and induced

failures. However, failure of load entities can not cause any induced failure. Induced

failure of the load entity can be caused only when each minterm in its dependency

equation have at least one failed entity. Thus no entity fail due to change in power

flow values.

Now consider there exist a solution to the densest p−subhypergraph problem.

Hence there exist a set of p vertices V ′ that completely covers M hyper-edges. Failing

the generator type entities corresponding to the vertices in V ′ would thus fail at least

M load entities at t+1 according to the instance construction. Thus a total of at least

p + M entities would fail which solves the KCoL problem. On the other way round

consider there exist a solution to the KCoL problem. As reasoned earlier, a load

entity cannot cause any induced failure. Hence if a load entity is in the solution then

it can be substituted with any operational generator entity without loss of correctness.

Similarly, if a transmission line type entity is in the solution it can be replaced by

a generator type entity it is connected to. Using this substitution a solution thus

comprises of entities G′ ⊂ G. All M (or greater than M) entities that fail due to the

initial failure of p entities belongs to set L. Thus the substituted solution (or original
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solution if no substitution is required) would consist of generator type entities that

cause failure of these M (or greater than M) load entities. Hence selecting the vertices

corresponding to G′ would ensure that at least M hyper-edges are completely covered

solving the densest p−subhypergraph problem. Hence proved.

8.6 Solutions to the Problem

Owing to the KCoL problem being NP-complete, we obtain the optimal solution

using Mixed Integer Program (MIP). However, as we require to compute the contin-

gency list fast, we also devise a polynomial time heuristic that provides a sub-optimal

solution to the problem.

8.6.1 Optimal Solution using Mixed Integer Program (MIP)

As a reference frame, we consider that the initial failure occurs at time step t = 0.

It is shown in Section 8.3 that the number of time steps in the cascade is upper

bounded by |E| − 1. We devise an MIP that solves the KCoL problem optimally for

a power network P (E,B,C0, F ) (the abstraction constructed for t = 0). Irrespective

of whether the steady state is reached before or at time step |E| − 1, in our MIP we

try to maximize the number of entities failed at t = |E| − 1 when K entities fail at

t = 0. Moreover, it can not be predicted when the cascading failure stops. Hence, the

MIP is bound to check for solution to compute the maximum number of entities that

can fail till the maximum possible time step, i.e. |E| − 1. Firstly, the list of variables

used in the MIP formulation are discussed—

• Variable List 1: For each entity ei ∈ E a variable set xi,t,∀t, 0 ≤ t ≤ |E| − 1

are created. The value of xi,t is 0 if the entity is operational at time step t and

1 otherwise.
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• Variable List 2: For each entity ei ∈ E a variable set yi,t,∀t, 0 ≤ t ≤ |E| − 1 is

created. From the set C0 we can get the initial instantaneous power value ei,c,0

of an entity ei. The value of yi,0 is set to ei,c,0. All the instantaneous values are

real thus comprising the set of non integer variables in the program.

Using these definitions and the list of variables created, the objective of the MIP

is provided in (8.4) and the constraints of the MIP are formally described.

max

|E|∑
i=1

xi,|E|−1 (8.4)

Subjected to:

Constraint Set 1:
∑|E|

i=1 xi,0 = K. This constraint sets the number of entities failed

at time step t = 0 to K.

Constraint Set 2: xi,d ≥ xi,t−1,∀t, 1 ≤ t ≤ |E| − 1. This ensures that an entity that

is not operational at time step t = d would remain non-operational in all times step

t > d.

Constraint Set 3: Consider an IDR of form ei ← ea · eb + ec · ed. To capture the

cascading failure process, a set of constraints is developed and described below —

Step 1: New variables are introduced to represent the minterms. In this example,

two new variables cab and ccd are created to represent the terms ea · eb and ec · ed.

This is equivalent of adding two new IDRs cab ← ea · eb and ccd ← ec · ed with the

transformed IDR being ei ← cab + ccd.

Step 2: A linear constraint is developed for the c type variables to capture the failure

propagation. For an IDR cab ← ea · eb, the constraint is represented as cab,t ≤
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xa,t−1 + xb,t−1, ∀t, 1 ≤ t ≤ |E| − 1. This captures the condition that cab,t is equal to 1

only if at least one of the entities ea or eb is non operational.

Step 3: For each transformed IDR a linear constraint is introduced. For an IDR ei ←

cab+ ccd the constraint is represented as N ×xi,t ≤ cab,t−1 + ccd,t−1,∀t, 1 ≤ t ≤ |E|−1.

Here N is the number of minterms in the IDR (in this example N = 2).

Constraint Set 4: For a given load bus entity el, the constraint yl,t = 0,∀t, 0 ≤ t ≤

|E| − 1 is added denoting that the instantaneous power demand of all the load bus

remain constant at each time step. Similarly, for a given neutral bus entity en, the

constraint yn,t = 0,∀t, 0 ≤ t ≤ |E| − 1 is added.

Constraint Set 5: For a given generator bus entity ep and transmission line entity eq,

the constraints xp,t ≤ yp,t
ep,u

,∀t, 1 ≤ t ≤ |E| − 1 and xq,t ≤ yq,t
eq,u

, ∀t, 1 ≤ t ≤ |E| − 1 are

added. As this is a maximization problem, the x type variable of the corresponding

generator/transmission line entity would be set to 1 when it operates beyond its rated

upper bound. The constraints ya,t ≥ 0 and ya,t ≤ ea,u + 1 are added at all time steps

for each generator or transmission line type entity ea. This limits the maximum value

of these entities to its upper bound plus one and them failing only if their instanta-

neous power value is just above the upper bound.

Constraint Set 6: To capture the power flow equations given by (8.1)-(8.3) the follow-

ing constraints are developed. Consider the equation
∑

em∈Oel
em,c,t =

∑
en∈Iel

en,c,t−

el,c,t. Naively, this can be constructed as a non-linear constraint
∑

em∈Oel
(1− xm,t)×

ym,t =
∑

en∈Iel
(1−xn,t)×yn,t−(1−xl,t)yl,t+1. The constraint denotes that the instanta-

neous flow values of the different power network entities are taken into consideration if

the the load bus is operational at the next time step (as failure due to IDR is reflected
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after 1 unit of time). This constraint can be linearized as
∑

em∈Oel
(ym,t−xm,t×em,u) =∑

en∈Iel
(yn,t−xn,t×en,u)− (yl,t−xl,t+1el,u). If a transmission line/transformer en fails

at time instant t then its instantaneous power value is set to its upper bound (owing

to constraint set 5). This would equate the term (yn,t − xn,t × en,u) corresponding to

this transmission line/transformer to 0. If the transmission line/transformer en is op-

erational then xn,t = 0 and hence (yn,t−xn,t× en,u) would equate to yn,t−1 thus being

considered in the power flow equation. Similarly if the load bus is not operational the

value of (yl,t−xl,t+1el,u) is set to 0. These constraints are constructed for all time steps

0 ≤ t ≤ |E|−2 and similar constraints are generated for equations 8.1 and 8.3 as well.

Constraint Set 7: For each transmission line/transformer type entity ea ∈ E flowing

out power from a bus type entity eb the constraint xa,t ≤ xb,t is added for each time

step 1 ≤ t ≤ |E| − 1. This captures the condition that if a bus type entity fails then

all transmission lines/transformers to which it transmits power also fails.

It is to be noted that there won’t be any infeasibility in solution arising due to the

constraints. The load and neutral buses can only be made non-operational through

their dependency equations. Whereas, the transmission lines/transformers and gen-

erators can be only made non-operational through change in power flow/generation

values (as they don’t have any dependency equations). The objective in (8.4) along

with these set of constraints, finds the the set of K entities whose initial failure at

t = 0 maximizes the number of entities failed at the end of the cascading process. As

this is a maximization problem the power flow and generation at each time step is

set to values that maximize the total number of entities failing at the steady state.

Hence the MIP captures the notion of WCCP.
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8.6.2 Heuristic Solution

In this section we design a sub-optimal heuristic that finds a solution to the KCoL

problem in polynomial time. Primarily we use the definition of Kill Set defined in

section 4.1 and Fractional Minterm Hit Value defined below.

Definition: Fractional Minterm Hit Value: For an entity ej ∈ E in an power network

P (E,B,Ct, F ) the Fractional Minterm Hit Value is denoted as FMHV (ej). It is

calculated as FMHV (ej) =
∑m

i=1
ci
|si| where m are the minterms and for a given

minterm mi, ci are the number of entities that belong to KS(ej) and |si| is its size.

This metric provides an estimate of impact of other operational entities that can be

made non-operational at future time steps if the entity ej is made non-operational.

Algorithm 10 returns a sub-optimal value of E ′ which when failed initially would

greedily maximize (based on Kill Set and FMHV ) the number of entities failed at the

end of the cascade. The algorithm runs in O(Kn(n+m)2) where n = |E| and m are

the total number of minterms. It is to be noted that the greedy failure maximization

is done based on IDR. To get the actual number of entities failed when the set of

entities E ′ fail initially we use the MIP. Essentially, we modify the constraint 1 such

that only entities in E ′ fail at t = 0 and see the number of entities failed at the final

time step. This gives us a measure to compare the efficacy of the heuristic solution

with respect to the MIP.

8.7 Experimental Results

We analyzed the run time performance and quality of the heuristic solution with

respect to MIP for different test systems. The quality of the solution is defined by the

number of components reported to be non-operational for a given value of K. Specifi-

cally we used the 9, 14, 24, 30, 39, 57, 118, 145, 300 and 2383 Winter Polish bus systems
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Algorithm 10: Heuristic Solution to KoCL problem

Data: A power network P (E,B,C0, F ) at time t = 0 and an integer K.

Result: A set of initially failing entities E′ ⊂ E and |E′| ≤ K

1 begin

2 Initialize D ← ∅ E′ ← ∅ and KH ← 0;

3 while KH < K do

4 Update KH ← KH + 1;

5 For each entity ei ∈ E\D compute the kill set Cei ;

6 For each entity ei ∈ E\D compute FMHV (ei);

7 Let ej be the entity having highest |Cej | ;

8 if There exists multiple entities having highest cardinality Kill Set then

9 Let ep be an entity having highest FMHV (ep) with ep in the set of

entities having highest cardinality Kill Set;

10 If there is a tie choose arbitrarily;

11 Update E′ ← E′ ∪ {ep}, D ← D ∪ Cep ;

12 Update all dependencies in F by removing entities in the left and right

side of the IDRs that belong to Cep ;

13 else

14 Update E′ ← E′ ∪ {ej}, D ← D ∪ Cxj ;

15 Update all dependencies in F by removing entities in the left and right

side of the IDRs that belong to Cep ;

16 return E′ ;

available in MATPOWER. For a given test system, we used the MATPOWER AC

power solver. Using the data, the abstract power network P (E,B,C0, F ) was gen-

erated. On the constructed power network the MIP and heuristic solutions were

executed. The implementation was done in Java and a student licensed version of
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IBM CPLEX optimizer was used to solve the MIP. A UNIX system with 8 GB of

RAM and intel i5 processor was used for the execution.

In Table 8.2, a comparison between the MIP and the heuristic solution with respect

to the number of entities in non-operational state for different bus systems with K

varied from 1 to 5 in steps of 1 are provided. Additionally, the total number of

entities (buses and transmission lines) for each bus system is mentioned. It is to be

noted that the total number of entities and the number of entities in non-operational

state include the entities constructed for generator buses with non-zero load demand

(as mentioned in Section 8.2). Table 8.3 reports the IDR generation time for each

bus system along with the time taken to execute the MIP and heuristic for different

values of K. Some insightful observations from the results are as follows — (a) The

heuristic solution performs very nearly to that of MIP with respect to quality and have

an almost same performance for K = 1. (b) For almost all the cases, the maximum

percent difference in the number of non-operational entities in heuristic with respect

to MIP is under 1% with a maximum percent difference of 7% for 57 bus system

at K = 3. (c) It is observed that more than 50% of the total entities in a given

test system will be non-operational if K = 1. This implies that the power system is

extremely vulnerable even if a single entity is attacked, (d) For almost all the test

systems from 9 to 300 the heuristic finds a solution to the KCol problem nearly 100

times faster than the MIP, (e) for the 2383 Winter Polish bus system the heuristic is

10 to 20 times faster. However, it is be noted that the comparison is done based on a

serialized implementation of the heuristic and can be made faster by parallelization.

Hence, it can be reasonably argued that the Heuristic solves the KCol problem

achieving near optimal solution at a much faster time compared to MIP. Thus the

abstraction provided by the MIIR model along with the Heuristic solution can be

used by a Power Network operator to obtain the K Contingency List in real-time.
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Chapter 9

CONCLUSION AND FUTURE DIRECTIONS

In concluding remarks this dissertation attempts to perform an in depth study on un-

derstanding inter/intra dependent critical infrastructure systems and analyzing their

vulnerability along with approaches to protect them from such vulnerabilities. The

limitations of the existing models in capturing the dependencies in critical infras-

tructure system is brought upon through a survey. For addressing these limitations

the Implicative Interdependency Model is introduced. Different problems addressing

vulnerability and protection analysis are proposed and solved using the IIM model.

Owing to certain limitations of the IIM model, the MIIR model is proposed to coun-

teract them. Using the MIIR model the K contingency list problem is formulated and

solved that addresses vulnerabilities in power network. All the problems discussed in

this dissertation are NP-complete. The polynomial time solutions derived for these

problems are seen to be efficient in terms of quality and time performance when com-

pared to Integer Linear programs (Mixed Integer program for the K contingency list

problem) used to find the optimal solution.

This dissertation is a basis for a multitude of future research problems. Apart

from this being a documentation, all source code and test data sets are made open

source to support any future research. The online repository containing source codes

to the solutions of the problems can be found in https://github.com/jbanerje1989.

Some of the future research directions are discussed —

• Some other problems that can be solved: The IIM/MIIR model can be used to

address some other pertinent problems in critical infrastructure system. The
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following can be of interest as future research problems — (a) Analysis with in-

complete/incorrect information: Inaccurate/Incomplete dependency equations

or other model parameters directly impact solutions of different problems. Such

inaccuracies can arise due to many reasons such as incorrect data or approxi-

mations done due to unavailability of data. Thus studying the impact on the

solutions of different problems under such inaccuracies is a possible research

problem, (b) Islanding in Multi-Layer Networks: The concept of islanding is

well studied in power network. Using the IIM model or the MIIR model this

can be extended to multi-layer interdependent power communication network.

The main task to address such a problem is to have a concrete and realistic

definition of islanding in multi-layered network under the model setting.

• Extending solutions to the problems using MIIR model: The problems that are

solved using the IIM model (i.e. Entity Hardening Problem, Targeted Hard-

ening Problem, Auxiliary Entity Allocation Problem, Robustness Computation

problem) can be extended and solved using the MIIR model.

• Extending MIIR model to have an abstraction of interdependent systems: The

model is developed based on intra-dependencies in power network. It can be ex-

tended to have an accurate abstraction of interdependent power-communication

network. Such an extension might require some changes in the model parame-

ters and dynamics.

• Building a toolkit and a GUI: The ultimate research goal is to build a graphical

user interface which a system operator can use to analyze vulnerability and make

appropriate control actions to reduce failure in intra/inter dependent systems.

A suite can be developed for different real world test beds that displays fast

solutions to different problems using the MIIR model.
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