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ABSTRACT  
   

Breast cancer is the second leading cause of disease related death in women, contributing over 

40,000 fatalities annually. The severe impact of breast cancer can be attributed to a poor 

understanding of the mechanisms underlying cancer metastasis. A primary aspect of cancer 

metastasis includes the invasion and intravasation that results in cancer cells disseminating from 

the primary tumor and colonizing distant organs. However, the integrated study of invasion and 

intravasation has proven to be challenging due to the difficulties in establishing a combined tumor 

and vascular microenvironments. Compared to traditional in vitro assays, microfluidic models 

enable spatial organization of 3D cell-laden and/or acellular matrices to better mimic human 

physiology. Thus, microfluidics can be leveraged to model complex steps of metastasis. The 

fundamental aim of this thesis was to develop a three-dimensional microfluidic model to study the 

mechanism through which breast cancer cells invade the surrounding stroma and intravasate into 

outerlying blood vessels, with a primary focus on evaluating cancer cell motility and vascular 

function in response to biochemical cues. 

A novel concentric three-layer microfluidic device was developed, which allowed for 

simultaneous observation of tumor formation, vascular network maturation, and cancer cell 

invasion/intravasation. Initially, MDA-MB-231 disseminated from the primary tumor and invaded 

the acellular collagen present in the adjacent second layer. The presence of an endothelial network 

in the third layer of the device drastically increased cancer cell invasion. Furthermore, by day 6 of 

culture, cancer cells could be visually observed intravasating into the vascular network. 

Additionally, the effect of tumor cells on the formation of the surrounding microvascular network 

within the vascular layer was evaluated. Results indicated that the presence of the tumor 

significantly reduced vessel diameter and increased permeability, which correlates with prior in vivo 

data. The novel three-layer platform mimicked the in vivo spatial organization of the tumor and its 

surrounding vasculature, which enabled investigations of cell-cell interactions during cancer 

invasion and intravasation. This approach will provide insight into the cascade of events leading up 

to intravasation, which could provide a basis for developing more effective therapeutics. 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

 

1.1 GLOBAL BURDEN OF BREAST CANCER 

Breast cancer is the second major cause of mortality among women in the United States. 

Approximately 12% of women will develop breast cancer through their lifetimes (Siegel et al. 2014). 

Furthermore, 3,327,552 American women were estimated to be living with breast cancer in 2014, 

and older women, within 55-64 age, were found to have an increased incidence rate of the disease 

(American Cancer Society. Breast Cancer Facts & Figures 2015-2016). Although several risk 

factors for breast cancer have been identified for the majority of women, it is not possible to develop 

causal relationships that inform efficient clinical treatment options (Lacey, Devesa, and Brinton 

2002). In general, a family history of breast cancer and mutations in the genes BRCA1, BRCA2 

and P53 are well established risk factors (Kelsey and Bernstein 1996). Furthermore, important risk 

factors for breast cancer include reproductive factors such as exposure to endogenous such as 

estrogens due to early menstruation, late age at first childbirth and late menopause. Additionally  

exposure to exogenous hormones caused by use of oral contraceptives and hormone replacement 

therapy can exert higher risk of developing cancer (Lacey, Devesa, and Brinton 2002).  

Early cases of breast cancer were first reported by Egyptians; from then breast cancer cases 

have been reported for thousands of years and remain a menacing disease (Rayter 2003). One 

primary treatment developed to cure breast cancer is mastectomy, which is removal of the affected 

breast tissue using surgical procedures. However, despite effectiveness of this procedure, in the 

mid-1800s surgeons noted that the disease had a high recurrence rate post operations because 

the cancer spread to nearby regions (Rayter 2003). LeDran was one of the pioneers who suggested 

that breast cancer begins as a local disease and spreads to other organs, so local treatment options 

are not completely effective for treatment. It was later established that metastasis of cancer to 

secondary sites results in a high recurrence rate and poor prognosis (Rayter 2003). To better 

understand metastasis, there have been numerous in vivo animal and in vitro cell-based models 

developed to study cancer metastasis (Wang, Eddy, and Condeelis 2007). Further improvements 
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in the fields of microfabrication, tissue engineering, high resolution cell-imaging, and 

genetic/molecular pathways analysis have led to developing better diagnostic and therapeutic 

approaches (DeVita Jr and Rosenberg 2012). 

1.2 METASTASIS 

Metastasis is the primary cause of mortality in individuals with breast cancer (Nguyen, Bos, 

and Massagué 2009). It is a process by which tumor cells migrate from the primary tumor to one 

or multiple distant organs (Spano et al. 2012). Metastasis progresses through a complex multistep 

process termed as the “Metastatic Cascade”, which involves several stages as listed below 

(Valastyan and Weinberg 2011) (Figure 1.1):  

a) Invasion of cancer cells through surrounding extracellular matrix and stroma 

b) Intravasation into the lumen and blood vessels  

c) Surviving and transport through vasculature 

d) Lodging at distant sites 

e) Extravasation to form micro metastatic structure 

f) Surviving harsh foreign micro environment 

g) Re-initiation of proliferation at distant site 

It is well known that invasion and metastasis does not just depend on cancer cells but various 

biochemical and biophysical factors within the local tumor microenvironment (Hu et al. 2008). 

During metastasis, the surrounding environment becomes activated due to cancer cells secreting 

several growth factors such as Transforming growth factor beta (TGF-b), Platelet-derived growth 

factor (PDGF), Vascular Endothelial Growth Factor (VEGF), Epidermal Growth Factor (EGF), 

Hepatocyte growth factor (HGF), etc. This activated tumor microenvironment will in turn influence 

cancer cell polarity, migration and circulation (Wolf and Friedl 2003). Thus, before tumor cells 

undergoes metastasis, a suitable microenvironment conducive for tumor promotion is assembled, 

which leads to the formation of the secondary tumor (Kucia et al. 2005, Orimo et al. 2005). 

Cancer cell invasion involves the cells disseminating from the well-defined primary tumor, 

entering the surrounding stroma, and then moving into adjacent tissues (Wolf and Friedl 2003). 

The ability of cancer cells to undergo migration and invasion allows neoplastic cancer cells to enter 
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blood vessels and metastasize to distant organs (Chambers, Groom, and MacDonald 2002). To 

invade, carcinoma cells must first overcome the basement membrane (BM), a specialized 

membrane surrounding epithelial tissues. Active proteolysis of BM occurs by secretion of matrix 

metalloproteinases (MMPs) by cancer cells (Bissell and Hines 2011). Once the carcinoma cells 

breakdown the BM, they reach the stroma where they encounter the stromal cells. With the 

association of tumor cells, stromal cells transition to a phenotype where they are commonly known 

as “Tumor-Associated stromal cells” (Kessenbrock, Plaks, and Werb 2010). To overcome barriers 

they face during invasion, cancer cells opt to a cellular process crucial to invasion known as the 

Epithelial–Mesenchymal Transition (EMT) (Thiery et al. 2009). During the EMT, tight and adherent 

junctions between the cells are dissolved and cell polarity is lost. The individual cells dissociate 

from epithelial cell sheets and exhibit mesenchymal cell traits which are correlated with high cell 

migration and invasion (Wolf and Friedl 2003). Also, there will be downregulation of epithelial 

markers and upregulation of mesenchymal markers. To migrate, a cell modifies its shape and 

interacts with the surrounding microenvironment. Specifically, the cell becomes polarized and 

forms a pseudopod by extending its leading edge, and the entire cell body contracts, generating 

motility forces that will lead to gradual forward movement of the cell (Friedl and Bröcker 2000). In 

vitro and in vivo studies have shown that tumor cells have diverse movement patterns, such as, 

they can migrate as individual cells (individual cell migration), as cell sheets, strands, or clusters 

(collective cell migration) (Wolf and Friedl 2003). From previous studies, it was shown that motile 

tumor cells originate from multicellular components, but they lose their cell-cell contacts, detaching 

and migrating as individual cells (van Zijl, Krupitza, and Mikulits 2011). In collective migration, the 

cell aggregates move as one functional unit. In contrast to individual movement, cell-cell adhesions 

in cell groups leads to cell assembly, forming large sized multicellular bodies (Wolf and Friedl 2003). 

Many tumor cells lack stop signaling in migratory events, which causes a large imbalance and 

drives them to invade into the surrounding stroma and migrate towards distal organs (Wolf and 

Friedl 2003) (Figure 1.1 b). 

After invading into surrounding tissue, cancer cells migrate and enter blood or lymphatic 

vessels, a process known as ‘intravasation’ (Gupta and Massagué 2006). Once, the carcinoma 
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cells successfully enter blood vessels, they can translocate to different parts of the body through 

venous and arterial circulation. Cancer cells spreading through lymphatic vessels (i.e. 

lymphogenous spread) is observed in humans at significant levels, but the major mechanism of 

cancer cell dissemination is through blood circulation (i.e. hematogenous spread) (Gupta and 

Massagué 2006). Furthermore, cancer intravasation can be either active or passive. Active 

intravasation occurs when tumor cells migrate towards the blood or lymphatic vessels following 

gradients of secreted chemokines. On the other hand, passive intravasation happens when blood 

vessels are in close proximity to the tumor and cancer cells are able to enter nearby luminar 

structures (van Zijl, Krupitza, and Mikulits 2011). Another important distinction is whether tumor 

cells intravasate into the vessels through the endothelial cell body or between endothelial cell-cell 

junctions (Reymond, d'Água, and Ridley 2013). Recent studies have demonstrated a large 

involvement of endothelial junctional in both paracellular and transcellular migration, suggesting 

that intravasation is facilitated by the ability of cancer cells to modify and cross the endothelial cell 

junction and pericyte barrier. Matrix metalloproteases (MMP-1) secreted by cancer cells modify 

Protease-activated receptors (PAR1) on the endothelial cells and remodel the endothelial junctions 

(Bergers et al. 2000). Also, Disintegrin and Metalloproteinase domain-containing protein 12 

(ADAM12) induce cleavage of VE-cadherin and ang-1 receptor TIE2 which can disrupt endothelial 

junctions (Reymond, d'Água, and Ridley 2013). Macrophages that are present in the stroma 

promote intravasation by secreting EGF and Tumor Necrosis Factor alpha (TNF-a), which also 

induce retraction of endothelial junctions. In addition, cancer cells utilize NOTCH receptors to 

transmigrate through endothelial junctions (Gupta and Massagué 2006).  

The mechanism of intravasation is strongly influenced by tumor-associated angiogenesis, 

where cancer cells stimulate the formation of new blood vessels. The alterations to the tumor 

microenvironment (e.g. inadequate oxygen supply (hypoxia), insufficient nutrients) result in tumor 

cells secreting growth factors, which lead to the formation of vascular networks (Partridge, 

Deryugina, and Quigley 2008). There are many mechanisms through which tumor cells induce 

angiogenesis (Vaupel 2004). However, VEGF is known to be one of the major factor secreted; 

VEGF stimulates the formation of new blood vessels, a process termed as ‘Neoangiogenesis’. In 
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contrast to normal vascular networks, the newly formed vasculatures are leakier and permeable 

due to weak inter cellular junctions and absence of pericyte lining. Permeability of endothelial cells 

also facilitates intravasation (Gupta and Massagué 2006). Approximately 0.01% of circulating 

tumor cells (CTC) will reach and form metastases at secondary sites, but it is still important to 

investigate the progression of intravasation to understand the mechanism in-depth and decipher 

the efficiency of metastasis. There are several in vivo and in vitro models created to study 

intravasation, and they have clarified the role of different cells, signaling pathways, and molecules 

that contribute to intravasation (Woodfin et al. 2011, Stoletov et al. 2010). Despite progress in 

identifying tumor-cell autonomous intravasation mechanisms, recent studies suggest that the tumor 

microenvironment also plays a major role in regulating tumor cell dissemination (Joyce and Pollard 

2009). Hence, a comprehensive understanding of the underlying biological mechanisms of cancer 

cell intravasation, both at the intracellular and tumor microenvironment levels, is critical for 

identifying and developing novel targeted therapies (Figure 1.1 b).  

Once the cancer cells successfully intravasate, they become circulating tumor cells within the 

blood stream. These cells are in between the primary tumor and metastatic sites, so they are called 

‘Metastatic Intermediates’ (Meng et al. 2004). After surviving circulation and reaching the foreign 

site, carcinoma cells must cross the endothelial cell lumina to reach the tissue parenchyma of the 

host tissue, this process is known as ‘extravasation’ (Valastyan and Weinberg 2011). To overcome 

barriers during extravasation, the carcinoma cells make the vessels more permeable and perturb 

the microenvironment. They achieve this by secreting different factors such as Angiopoietin-like 4 

(ANGPT14), Epiregulin (EREG), Cyclooxygenase (COX-2), MMP-1, MMP-2 and VEGF, which 

renders the nearby vessels more permeable and assist the tumor cells during extravasation (Gupta 

et al. 2007, Padua et al. 2008). 
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Figure 1.1: Metastatic cascade (a) Schematic of the metastatic cascade. Tumor growth and 
development (b) Angiogenesis, cancer cell invasion, and intravasation. (c) Finally, surviving cancer 
cells and cancer circulate through the body, attach to blood vessels, and extravasate to form 
secondary metastases. Adapted from Peela, Truong and Saini et al. with permission from Elsevier 
[Biomaterials], copyright (2017) (Peela et al. 2017) 
  

The extravasated cancer cells must survive the foreign environment to further proliferate and 

form secondary cancer. Until the foreign environment is hospitable, the cancer cells are dormant 

and will be in the hibernating phase. Some models suggest that cancer cells adapt to the foreign 

environment by releasing signals that upregulate fibronectin, which leads to mobilizing ‘VEGF 

receptor-positive hematopoietic progenitor cells’ towards metastatic sites. These cells change the 

distant microenvironment to more hospitable sites, which are called pre-metastatic niches (Psaila 

and Lyden 2009). Cancer cells secrete different chemokines such as stromal-derived factor 1 (SDF-
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1) which leads to formation and progression of pre-metastatic niche. Apart from the chemokines 

secreted by cancer cells, different stromal cells such as fibroblasts, endothelial cells and adipocytes 

release several growth factors which influence the tumor cell characteristics such as morphology 

and migration (Psaila and Lyden 2009).  The ability of disseminated tumor cells to adapt to the host 

site and proliferate depends on their proficiency to change the foreign microenvironment to a 

hospitable environment (Chambers, Groom, and MacDonald 2002) (Figure 1.1 c). 

The cancer cells must undergo all the stages to successfully metastasize and develop a 

secondary tumor at distant organs. Although great advances have been made in early diagnostics 

and curing cancer, metastasis remains as one of the major fatal challenges. Numerous processes, 

signaling pathways and growth factors are involved in metastasis. However, very few molecules 

have been translated effectively for metastasis prevention and treatment. 

1.3 TUMOR MICROENVIRONMENT 

Cancer cells develop a complex surrounding microenvironment and depend on it for their 

survival, growth, invasion, and metastasis called ‘Tumor Micro Environment’ (TME) (Quail and 

Joyce 2013). The microenvironment is composed of both stromal cells and Extra Cellular Matrix 

(ECM) proteins. The basement membrane in the ECM interacts with the epithelium and is 

composed of collagen, laminin, glycoproteins and proteoglycans (Oskarsson 2013). The ECM 

maintains architecture, structure and tissue homeostasis. The surrounding stroma includes 

different cells like fibroblasts, endothelial cells, immune cells as well as adipocytes (Place, Huh, 

and Polyak 2011), and there is a bi-directional communication between the tumor cells and their 

surrounding stroma. It is shown that the interactions between the tumor and tumor 

microenvironment are critical for the disease initiation, progression, and metastasis (Quail and 

Joyce 2013). Several studies and observations suggest that instability of the stromal cell genome 

can lead to unstable epithelial cells thereby inducing carcinoma (Weber et al. 2006).  

Rudolf Virchow in 1863 first proposed that there is a link between tumorigenesis and chronic 

inflammation. Furthermore, the infiltration of leukocytes was identified to be a key hallmark of 

tumors (Balkwill and Mantovani 2001). Tumor-associated macrophages (TAM) play an important 
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role in cancer progression; although macrophages are known as effector cells in the immune 

system, studies have shown that the TAM play a supporting role during cancer progression where 

they promote invasive characteristics in cancer cells (Biswas and Mantovani 2010).  

Fibroblasts are one of the predominant cells in the connective tissues. In the TME, Cancer 

Associated Fibroblasts (CAFs) have increased numbers and they support the tumor by depositing 

ECM and maintaining homeostasis (Olumi et al. 1999). It is still not clear where CAFs arise during 

cancer progression, but studies suggest that they may transition EndMT (Endothelial-Mesenchymal 

Transition) of cells. CAFs in the TME are activated by cytokines and growth factors like Fibroblast 

Growth Factor (FGF), PDGF, TGF-b, monocyte chemotactic protein 1 (MCP1) and many secreted 

proteases. (Kalluri and Zeisberg 2006).  

Tumor angiogenesis is now one of the accepted hallmarks of cancer, which is essential for 

nutrient and oxygen supply without which the tumor would become dormant (Hanahan and 

Weinberg 2011). Judah Folkman proposed that all tumors are angiogenesis dependent (Folkman 

1971). Tumor angiogenesis requires multiple cells in TME like endothelial cells, pericytes, precursor 

cells, etc. These stromal cells are hypoxia driven (LaGory and Giaccia 2016).Cancer cells secrete 

different factors such as EGF, VEGF-A and FGF which activates angiogenesis. In addition to this, 

many other stromal cells and Mesenchymal Stem cells (MSCs) contribute to activation of 

endothelial cells (Weis and Cheresh 2011). In vivo and in vitro assays developed so far have been 

enormously helpful in elucidating the diverse mechanisms involved in the interactions of tumor cells 

with the surrounding microenvironment. Better relevant models that can capture the complexities 

of the microenvironment will give an improved understanding and may be key to combatting cancer. 
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1.4 MODELS TO STUDY CANCER INVASION AND INTRAVASATION 

To date, there have been numerous in vivo animal models and in vitro assays to study tumor 

cell invasion and intravasation. Here, we present a brief overview of different experimental models, 

which have been utilized to investigate invasion and tumor endothelial interactions, while providing 

a comparison of published in vivo and in vitro experimental findings. 

1.4.1. In vivo models: 

Tumor initiation is an unscheduled hyper proliferation of cells, which occurs due to activation 

of either cell growth machinery or signaling pathways (Hanahan and Weinberg 2000). Throughout 

the process of cancer progression, there is a bi-directional relationship between tumor and its host 

TME (Hanahan and Weinberg 2011). In vivo studies have been very valuable to provide a 

comprehensive overview on the molecular and cellular basis of disease progression (Mak, 

Evaniew, and Ghert 2014). However, it is complicated to use in vivo models to dissect specific cell-

cell interactions, and determine the cause and effect relationships as it challenging capture dynamic 

interactions and adaptive responses of cancer cells (Mak, Evaniew, and Ghert 2014). Additionally, 

visualizing the process in real-time may not be easily feasible, and it might perturb the 

pathophysiology of tumors as it requires specialized invasive steps. The other major challenge is 

using a genetically engineered mouse to incorporate human cancer cell lines, as there will be 

notable differences in histology (Brown et al. 2010). When using immune compromised mouse 

models, the major component in the TME like the immune or fibroblast cells and their role cannot 

be studied. In general, tumor cell intravasation within in vivo models is analyzed using various 

methods including: 

a. Real-time imaging of tumor cells 

b. Measuring the number of circulating tumor cells in the blood stream 

c. Examining the tumor injected at the primary site and the tumor at metastatic site. 

In a model developed by Xiao et al. (Xiao et al. 2015), a ChorioAllantoic Membrane (CAM) 

model was used to study the growth, invasion, neoangiogenesis, and metastasis by transplanting 

NasoPharyngeal Carcinoma (NPC) in to chick embryo. This model closely simulated the growth of 

carcinoma and elucidated the mechanism of invasion of NPC cells. This also helped analyzing 
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tumor angiogenesis, intravasation and metastasis. Tumor invasion was assessed by detecting the 

extent penetration of basement membrane by cancer cells. Angiogenesis was studied by analyzing 

the area of formed neovascular networks, while metastasis was quantified by counting the number 

of tumor cells in distant organs. The results showed the formation of tumor after NPC cells were 

inoculated into the CAM. Xiao et al. demonstrated the feasibility of applying the CAM model to 

visualize and evaluate invasion, and tumor angiogenesis. The limitation of this model is that the 

CAM model is naturally immunodeficient, hence it cannot be used to study the role of immune cells 

during metastasis (Figure 1.2 a). 

Alternatively, Zebra fish models have been used for live imaging of injected human tumor cells. 

The vascular system of the zebra fish is fully functional, which allows better understanding of cancer 

cell invasion and metastatic profile (Stoletov et al. 2010). This study showed dynamic extravasation 

process of cancer cells into the surrounding vasculature of the zebrafish with intravital imaging. 

 

Figure 1.2: Examples of in vivo models to study intravasation (a) (i) Chorioallantoic membranes 
(CAMs) inoculated with NPC cells (ii) 3D images showing invasion of cancer cells through the 
basement membrane. Adapted from Xiao et al. Plos one copyright (2015) (Xiao et al. 2015). (b) (i) 
Fluorescence images of a zebrafish embryo at tumor cell injection site (ii) confocal images of tumor 
cells either inside or outside (extravasated) the vessel lumen. Scale bars: 200 μm. Adapted from 
Stoletov et al. with permission from Company of Biologists [Journal of Cell Science], copyright 
(2010) (Stoletov et al. 2010).  
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Using real-time intravital imaging, the authors demonstrated that process of extravasation of 

cancer cells involving modulation of endothelial layer by tumor cells. Additionally, the findings 

showed that tumor cells induce vessel remodeling rather than damaging or promoting vascular 

permeability at the site of extravasation. Migration of tumor cells was independent of the direction 

of blood flow but was dependent on β1-integrin mediated adhesion to the endothelial walls. 

Although this model is useful for understanding the biological process of extravasation, some of its 

major drawbacks include (1) The inability to visualize extravasation of tumor cells in real time, (2) 

The findings should be confirmed using mammalian models before using them in human clinical 

therapies (Figure 1.2 b). 

1.4.2. In vitro models: 

Along with in vivo models, in vitro models have been also proven to be more valuable for 

investigating the cellular interactions and visualizing real time the dynamic interactions between 

the tumor and its surrounding microenvironment. The major advantages using in vitro models over 

in vivo models could be summarized to: high throughput, the ability to perform mechanistic studies 

at cellular and molecular level, low experimental costs and faster results.   

1.4.2.1 Two dimensional (2D) models:  

The prior studies to investigate the dynamics of cancer cell behavior such as migration and 

invasion as well drug screening were typically performed on microfabricated 2D models.  

In this study by Kramer et al., the HT1O8O fibrosarcoma cells were seeded in a reconstituted 

basement membrane matrix containing Collagen, nidogen, laminin, heparan sulfate and entactin 

on a petri dish (Kramer, Bensch, and Wong 1986). The invasiveness of the cancer cells was 

examined and was compared against the normal skin fibroblasts. After 7-days incubation of cells 

seeded on the surface of the gel, the invasion into the matrix was examined by electron microscopy. 

The results demonstrated that the cancer cells proliferated and gradually migrated dissolving the 

matrix forming disorganized cell monolayer, electron microscopy images revealed the filipodia and 

lamellopodia projections from the cancer cells extending into the matrix while the normal skin 

fibrabalsts cells attached to matrix exhibited minimal invasion during the same period. 
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Boyden chamber assay is one of the well-known 2D models for intravasation. For instance, Li 

et al. (Li and Zhu 1999) have developed a model with modified Boyden chamber to study the 

migration and invasion of cancer cells. Bovine Aortic Endothelial Cell (BAEC) were used to form 

an endothelial monolayer and seven different cell lines both malignant and non-malignant were 

introduced to the chamber. Cells were radioactively labeled for visualization. The trans-migratory 

activity of cancer cells was correlated with the level of tumor cell induced endothelial monolayer 

disruption. Quantification was done by image analysis and direct visualization.   

Although, the use of 2D assays has enabled addressing important biological questions and 

useful and important knowledge has been gained on different characteristics of cancer cells like 

cell motility and migration from 2D models. However, the 2D models do not depict the in vivo tissue 

structure and organization accurately, which is necessary to study cell-cell and cell-ECM 

interactions. 

1.4.2.2 Three dimensional (3D) models:  

Conventional 3D in vitro assays have been mainly based on spheroid or macroscale cell-laden 

hydrogels that have been widely utilized to perform fundamental biological studies on cancer cell 

invasion (Szot et al. 2013, Xu et al. 2012). However, these models do not replicate tissue-specific 

human pathophysiology. Recently, there have been significant initiatives in the use of microscale 

technologies (i.e. microfluidics) to develop 3D tumor models, with precise control over cell-cell and 

cell-soluble factor interactions for well-controlled studies on cancer cells behavior within each 

specific step of metastasis (van Duinen et al. 2015). 

Significant progress has been demonstrated in the recent years in micro- and nanofabrication 

techniques (Mehrali et al. 2017, Kharaziha et al. 2016). These techniques can be applied to create 

3D microenvironments to control cell-cell, cell-substrate and cell-soluble factors interactions (Park 

and Shuler 2003). Notably, microfabrication techniques have proven to be instrumental to control 

both tumor and surrounding microenvironmental factors to conduct studies at single cell level 

(Nikkhah et al. 2012, Peela et al. 2016, Truong et al. 2016, Peela et al. 2017). 

For instance, in a set of studies by Nikkhah et al., 3D microstructures were etched on silicon 

surfaces and different cells like Human fibroblasts, malignant breast cells as well as normal breast 
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cells were cultured in these micro structures to form to identify the biomechanical signatures of 

cancer cells and normal cells on response to 3D topographical architecture (Nikkhah et al. 2010, 

Nikkhah, Strobl, Schmelz, and Agah 2011, Nikkhah et al. 2009, Nikkhah, Strobl, Schmelz, Roberts, 

et al. 2011). Their findings demonstrated that cancer cells adopted to the curved microengineered 

surfaces, while fibroblast cells stretched and normal mammary epithelial cells formed cellular 

sheets with tight intracellular junctions. Addition of Histone deacetylase (HDAC) inhibitor drugs 

interestingly imparted marked alteration is cytoskeleton of the cancer cells when interacting with 

3D architecture and compared to their normal epithelial counterparts (Strobl, Nikkhah, and Agah 

2010). 

  Other studies have utilized 3D micropatterned hydrogels or microfluidic technologies to 

assess cancer cell behavior within each specific stage of metastatic cascade (Peela et al. 2016). 

In fact, hydrogels have been proven to be excellent biomaterials for tissue engineering and disease 

modeling applications (Navaei et al. 2017, Navaei, Saini, et al. 2016, Saini et al. 2015, Zorlutuna et 

al. 2012, Navaei, Truong, et al. 2016, Cha et al. 2014).  

The George group developed a 3D in vitro model called Pre-Vascularized Tumor (PVT) to study 

early events of tumor progression (Ehsan et al. 2014). In this model, spheroids of tumor cells and 

endothelial cells were embedded into fibrin matrix consisting of fibroblasts. This model was proven 

to be efficient in studying two mechanisms, vessel formation (i.e. angiogenesis) and intravasation. 

The study was carried out under hypoxic conditions. In the presence of tumor cells, the vessel 

sprouts were more irregular and shorter as compared to spheroids containing only endothelial cells 

and fibroblasts. Moreover, breast cancer cells intravasated into the lumens of the vessel. Notably, 

this effect was enhanced in hypoxia conditions. Further analysis confirmed that Slug, a marker for 

EMT, was highly upregulated within the hypoxic environment and played a critical role in 

intravasation (Figure 1.3 a). 
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Figure 1.3: in vitro models to study intravasation (a) (i) Schematic of model showing tumor and 
endothelial cell embedded in fibrin matrix (ii) immunofluorescence images showing intravasation 
of tumor cells (green) into the blood vessel (red). Scale bars: 100 μm. Adapted from Ehsan et al. 
with permission from Royal Society of Chemistry [Integrative Biology], copyright (2014) (Ehsan et 
al. 2014). (b) (i) Schematic illustrating the fabrication of microscale alginate scaffolds. (ii) 
Representative images of a co-culture invasion assay. Adapted from DelNero et al. with permission 
from Elsevier [Biomaterials], copyright (2015) (DelNero et al. 2015).  
 

In the following, we will provide a brief overview of the current existing technologies. The 

fischbach group developed a model to analyze the response of tumors to culture dimensionality 

and hypoxia (DelNero et al. 2015). They designed alginate-based model and cells were introduced 

as a layer to form 2D structure and 3D spheroids structures. Oxygen in culture was regulated to 

introduce hypoxic conditions. The extent of invasion was analyzed by counting the number of cells 

crossing the membrane. OSCC3 cells were cultured in 2D and 3D and under hypoxic and normoxic 

conditions to determine the interdependence of hypoxia and dimensionality on expression of genes. 

Gene transcript analysis results showed that dimensionality of culture affected a large number of 

genes in hypoxia than normoxia, suggesting that hypoxia response depends on whether culture 

conditions are performed on 2D or 3D models. Specifically, hypoxia might have triggered the cells 

to respond to dimensionality, or conversely, changes in dimensionality might have triggered 

response of cells to hypoxia. Altogether, the results suggest that there is interdependence between 

hypoxia and dimensionality of culture at gene expression level. As IL-8 is known to effect 
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inflammation and angiogenesis further investigation on the gene was performed. And results 

demonstrated that there was significantly higher levels of IL-8 gene expression in 3D compared to 

2D culture conditions which was not dependent of oxygen concentration. These results show that 

there is an interdependence on dimensionality and hypoxia (Figure 1.3 b). 

During Intravasation, cancer cells migrate in response to gradients of chemokines (Roussos, 

Condeelis, and Patsialou 2011). Limitations of the above models is that cytokine gradients are not 

established. Thus, advances in microfluidic systems have enabled us to develop novel models 

which can capture different mechanistic features like cytokine gradients, fluid flow different 

components of the tumor as well as interactions with different cell types. For instance, Han et al. 

developed a 3D microfluidic model to study the effect of oriented collagen fibers on tumor cell 

migration across the basement membrane surrounding the vessels during intravasation (Han et al. 

2016). The device was loaded with Matrigel® followed by collagen I leading to sandwich of two 

hydrogels. During polymerization Matrigel® volume was swollen while collagen volume shrunk 

developing strain into the system which led to collagen fibers to orient vertically at the interface of 

collagen-Matrigel®. MDA-MB-231 cells embedded within the sandwiched gel began intravasating 

to the gel interface (collagen- Matrigel® interface) as early as 48 h. By 144 h most of the cells 

invaded and crossed the Matrigel® region. On the other hand, when collagen fibers were not 

oriented homogenously, MDA-MB-231 cells could not invade into the Matrigel®. These results 

demonstrated that the fiber alignment enhanced cell–ECM interactions, where metastatic MDA-

MB-231 breast cancer cells followed the direction of fiber alignment during the intravasation (Figure 

1.4 a). 
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Figure 1.4: Microfluidics based models to study intravasation (a) (i) Schematic representation 
design and fabrication of microfluidic model (ii) Representative images depicting tumor cell 
intravasation into ECM due to collagen fiber orientation. Adapted from Han et al. with permission 
from National Academy of Sciences [PNAS], copyright (2016) (Han et al. 2016). (b) (i) Schematic 
of the microfluidic device (ii) Representative images showing tumor cell (red) intravasation into 
endothelial lining (green). Scale bars: 30 μm. Adapted from Zervantonakis et al. with permission 
from National Academy of Sciences [PNAS], copyright (2012) (Zervantonakis et al. 2012). (c) (i) 
Schematic of the microfluidic device (ii) Representative images showing tumor cell (green) 
intravasation into endothelial lining (red). Adapted from Lee et al. with permission from AIP 
Biomicrofluidics copyright (2014) (lee et al. 2014). 
 
 
Similarly, the Kamm group developed a 3D microfluidic model to study tumor cell intravasation and 

elucidate the role of TNF-α and macrophages in regulating endothelial barrier permeability and 

tumor cell intravasation (Zervantonakis et al. 2012). The device had one central stromal region 

filled with collagen surrounded by endothelial region to left and tumor region on right. Macrophages 

were embedded within collagen hydrogel to study their effect on vessel permeability and tumor 

intravasation. This model was useful in studying the process of intravasation as it allowed real time 

visualization of cancer cell behavior (i.e. migration, intravasation). In the presence of macrophages, 
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microvessels had higher permeability. The results also showed that the presence of TNF-a resulted 

in increased endothelial barrier impairment, which facilitated cancer cell intravasation. To further 

confirm their findings, they knocked down TNF-α in the presence of macrophages and observed 

that intravasation levels did not decrease, suggesting that macrophages may secrete other factors, 

which might indeed enhanced permeability of the vessels and resulted in increased intravasation 

(Figure 1.4 b). 

In another study, Noo Li Jeon group developed a microfluidic based metastasis chip to study 

cancer angiogenesis and intravasation (Lee et al. 2014a). Endothelial cells HUVECs (Human 

Umbilical Vein Endothelial Cells) and stromal cells normal human lung fibroblasts were introduced 

into the channels at close proximity. The vascular network formed had well formed boundaries with 

proper cell junctions. After 7 days in culture, cancer cells U87MG were introduced into the upper 

channel of the device (Figure 1.4 c i). The microvessel were regarded as pre-existing at the cancer 

site and the cancer cells in the perivascular region which would secrete angiogenic factors to 

produce angiogenic sprouts. The number and coverage area of angiogenic sprouts were quantified 

and the results demonstrated that microvessels with cancer cells showed more angiogenic sprouts 

compared to microvessels without cancer cells. Further, to model intravasation, MDA-MB-231 

cancer cells were introduced into the upper chamber of the device and trans-endothelial migration 

of cancer cells into preexisting vessels was observed. After three days in culture, several cancer 

intravsating into the lumens could be observed (Figure 1.4 c ii). 

1.5 OBJECTIVE OF THE THESIS  

This thesis is aimed to investigate the role of tumor microenvironment and different biochemical 

factors involved during cancer cell invasion and intravasation. In particular, we developed and 

utilized a novel microfluidic assay to test the hypothesis that there are bidirectional interactions 

between cancer cells and endothelial cells during the process of invasion and intravasation. 

Addressing this question is not only important for understanding the molecular mechanisms, but 

also will validate the device as a potential tool for identifying potential targets for cancer therapy.  

The first step was to create a first generation platform to optimize the process of vasculogenesis 

in our microfluidic model. This was achieved by incorporating HUVECs in fibrinogen hydrogel and 
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analyzing the vascular network formation, growth and maturation. Upon validation of the platform, 

VEGF level in the microenvironment was increased and endothelial network growth was 

characterized. Further analysis was performed to investigate the effect of increased levels of VEGF 

on endothelial cell permeability.  

We further developed a second generation three-layer microfluidic based tumor-vasculature 

model to characterize tumor-endothelial interactions. To explore the relationship between 

endothelial barrier and cancer cell intravasation, we simultaneously investigated tumor cell invasion 

and endothelial vascular formation and permeability as well as intravasation. Interestingly, our 

assay was designed in a way to enable direct observation of tumor cells during invasion through 

the stroma and intravasation through the endothelial barrier while accurately controlling the 

organization and transport of biomolecular components. We analyzed the number and morphology 

of cancer cells invading through stroma. We finally assessed the influence of cancer cells on 

endothelial cell capillary formation and permeability and compared to endothelial mono-culture 

condition. 
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CHAPTER 2 

THREE-DIMENSIONAL MICROFLUIDIC PLATFORM TO STUDY THE EFFECT OF 

INCREASED LEVELS OF VEGF ON VASCULOGENESIS 

 

2.1 INTRODUCTION  

Blood vessels are the most important part of the circulatory system in the human body. They 

enable organ functionality by initiating blood flow, transport of nutrients, oxygen supply and immune 

cell trafficking. Blood vessels have a layer of endothelial cells lined at their inner surface that play 

a major role in the functioning of the vessel, and they respond and adopt to biochemical and 

biophysical cues from the surrounding microenvironment (Dudley 2012). Endothelial cell phenotype 

can be influenced by different pathologies and disease conditions. In the case of cancer, there have 

been numerous in vivo and in vitro studies aimed at understanding the altered phenotype and gene 

expression of endothelial cells during cancer progression. For instance, Dovark group performed a 

mechanistic in vivo study to better understand the effect of cancer on vasculature (Nagy et al. 

2008). Their results demonstrated the effect of VEGF on newly formed blood vessels in mouse 

models by studying the difference in structure and function of networks in the presence of tumor. 

From these studies, they found that tumor vessels differ in diameter, area and hierarchical 

arrangement compared to healthy vessels. Although in vivo studies have helped us understand the 

basic physiology of tumor vasculature, the set-up is complex and consequently leads to difficulties 

in understanding the underlying mechanisms causing these critical differences in tumor 

vasculature. Additionally, understanding the underlying mechanisms and elucidating different 

signaling pathways is critical for developing effective anti-angiogenic cancer therapies (Nishida et 

al. 2006). Hence, a reliable in vitro model to understand the process of tumor angiogenesis is still 

in demand. In this regard, numerous in vitro models, with well defined architecture and 

environmental factors, have been developed to delineate the precise mechanisms of tumor 

vasculogenesis. For instance, The Chen group developed a model to pattern functionally organized 

vascular networks within a microengineered platform (Chaturvedi et al. 2015). 

Polydimethylsiloxane (PDMS) molds were used to embed the cells to better organize the 
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endothelial cells into specific cords, and these formed cords were transplanted into mice to 

demonstrate the formation of functional networks. Their results showed that the diameter of the 

cords before implantation impacted the location and density of the resultant capillary networks. 

They also established that relevant endothelial sources such as human microvascular endothelial 

cells (HMVEC) and Induced pluripotent stem cell (IPSC) -derived ECs and can drive vascularization 

within the same system. 

Microfluidic models have proven to be excellent platforms used to study tumor vasculogenesis. 

Significant progress has been made in the technology in past few years. Microfluidic based models 

have many advantages including (1) easy and excellent imaging with precise visualization of single 

cells, (2) easy fabrication of devices, (3) incorporation of multiple cell types with distinct spatial 

arrangements to study paracellular signaling and interactions (van Duinen et al. 2015). For 

instance, in a study by Kim et al., a microfluidic model was developed to study lymphangiogenesis 

(Kim et al. 2015). This study also incorporated the effect of interstitial flow (IF) on 

lymphangiogenesis and the results showed that the IF serves as the central regulatory cue which 

defines the process of sprouting. The lymphatic sprouts developed exhibited structural changes, 

molecular signatures, and cellular phenotypes that were similar to neovessels in vivo. This study 

specifically focused on critical role of mechanical cues that regulate lymphangiogenic sprouting. 

In this study, we have used microfluidic technologies to fabricate a novel platform to 

recapitulate vasculogenesis. The model proposed herein was comprised of a single culture region 

surrounded by the media region. As the media channel is in a different compartment from the cell 

culture region, it facilitated the development of a gradient of biomolecules, thereby better mimicking 

physiological conditions. Furthermore, the tumor microenvironment was mimicked (i.e. induced 

environment) by spiking cell media with VEGF and assessing its effect on vasculogenesis. VEGF 

is known as a major growth factor secreted during cancer progression which leads to formation of 

new blood vessels (Nishida et al. 2006). We primarily compared the diameter and branching of 

vascular networks and we also assessed the permeability of microvessels. The results obtained 

showed that endothelial networks formed under the influence of VEGF were impaired structurally 

and had higher permeability. 
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2.2 MATERIALS AND METHODS  

2.2.1 Device design and fabrication: 

 a) Photolithography to fabricate silicon mold: 

To fabricate microfluidic devices, first a mold was created. The required design was created 

using CAD software. The design was then fabricated onto a transparent mask. Next, SU8-2075 

(MicroChem) was spun of height 200 µm onto a silicon wafer and afterwards, the wafer with the 

transparent mask beneath was exposed to UV to form the mold for further fabrication of microfluidic 

device (Figure 2.1 a-c). 

b) Soft lithography for device fabrication: 

The silicon wafer is hydrophobic by nature. To make the surface hydrophilic, the surface of the 

silicon wafer was treated with Methyltrichlorosilane (MTCS, Sigma-Aldrich). Then the 

Polydimethylsiloxane (PDMS, Sylgard 184 Silicon Elastomer Kit, Dow Corning) was poured onto 

the wafer and baked for 1.5-2 hours at 80 °C. Afterward, the casted PDMS was peeled off the wafer 

to retrieve PDMS molds. (Figure 2.1 d). The mold was then cut using blades to separate individual 

devices then inlet and outlet holes were made using biopsy punch. 

c) Bonding: 

Next step was to bond the devices onto the glass slide to form channels. To do so, first the 

devices and glass slides were cleaned with ethanol and nitrogen gas stream. Then treated with 

oxygen plasma (PDC-32G, Harrick Plasma) to make the surface hydrophilic and then the devices 

were bonded onto glass slide with the channel side facing down. Afterward the bonded devices 

were placed in oven at 80 degree Celsius overnight to secure the bond. (Figure 2.1 f) 

d) Sterilization: 

To sterilize the devices, they were first put in the liquid autoclave followed by dry autoclave and 

again placed in the oven at 80 degrees Celsius to completely dry the devices. 
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Figure 2.1: Soft lithography and microfluidic device fabrication (a) SU-8wafer. (b) UV light was 
exposed on the SU-8 with the mask to create desired pattern. (c) SU-8 with pattern of the 
microfluidic platform. (d) PDMS was poured on the wafer. (e) Cured PDMS with patterns. (f) PDMS 
was bonded on glass slide to create the microfluidic platform 
 

e) Surface treatment: 

The channels in the devices must be hydrophobic, to be suitable for cell culture. Hence the 

devices should be surface treated. To surface treat, poly-d-lysine (1 mg/mL) (PDL, Sigma-Aldrich) 

was injected into the cell culture region and the devices were incubated at 37 °C for 1 hour. Then 

they were washed with DI (De-Ionized) water once. Glutaraldehyde (0.1% (v/v)) (GA, Sigma-

Aldrich) was then added and incubated for 1.5 – 2 hours at room temperature followed by washing 

4-5 times with DI water. Afterward, the devices were placed in the oven at 80 °C overnight to restore 

hydrophobicity. 

2.2.2 Cell culture: 

Human umbilical vein endothelial cells (HUVEC, Lonza) were used in this study. Endothelial 

cells were cultured in standard Endothelial Growth Medium (EGM-2, Lonza). Cells were kept at 

standard physiological conditions 37 °C, 5% CO2 humidified incubator. Media was changed every 

3 days. Cells were cultured up to 70% confluency prior to passaging or to be used for experiments. 
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2.2.3 Vascularization assay: 
 

Fibrinogen solution was prepared by dissolving 5mg/ml bovine fibrinogen (Sigma-Aldrich) in 

Dulbecco's phosphate buffered saline (DPBS, Gibco) and thrombin solution was prepared by 

dissolving bovine thrombin (Sigma-Aldrich) in DPBS to get 4U/ml thrombin solution. Both fibrinogen 

and thrombin solutions were filter sterilized (Denville scientific). 

HUVECs were dissociated from culture flasks using trypsin-EDTA (Invitrogen) and were 

centrifuged, then suspended in fibrinogen solution (5mg/ml) to get a final concentration of 20 million 

cells/ml. Thrombin (4U/ml) was then added to the cell solution. Fibrinogen and thrombin solutions 

were added at a ratio of 1:1 to get a final concentration of 2.5 mg/ml fibrinogen and 2 U/ml thrombin. 

The mixture was also supplemented with aprotinin (0.15U/ml, Sigma-Aldrich). The cell solution was 

mixed and immediately injected into cell culture region of the devices. The devices were incubated 

at room temperature for 10 minutes to polymerize. After fibrin polymerization, EGM-2 media was 

introduced into the media channel. The devices were kept in the 37 °C, 5% CO2 humidified 

incubator for 6 days in culture and supplemented with fresh media every day. To establish induced 

tumor microenvironment, EGM2 media supplemented with extra 50 ng/ml VEGF (Peprotech) and 

supplemented into the media channel every day. For control conditions, EBM-2 media without 

growth factors were added. 

2.2.4 Immunofluorescence staining: 

  The cells encapsulated in the fibrin were fixed in 4% paraformaldehyde (PFA). Media from the 

large wells within the platform were removed and 10 μl of 4% PFA were added to the wells and a 

gentle negative pressure was applied to the small well to even the flow. Devices were kept in the 

incubator 37°C, 5% CO2, humidified incubator for 30 minutes. After incubation, to permeabilize the 

cells, the samples were rinsed with PBS-glycine (100 mM glycine in PBS) 2 times with 10 minutes 

incubation at room temperature and washed with PBS-Tween (0.05% (v/v) Tween-20 in PBS) for 

10 minutes at room temperature. Following permeabilization, to block non-specific binding of 

antibodies, the cells were blocked with immunofluorescence buffer (IF buffer: (0.2% (v/v) Triton X-

100 + 0.1% (v/v) BSA (radioimmunoassay grade) + 0.05% Tween 20, 7.7 mM NaN3 in PBS). IF 

buffer plus goat serum (10% (v/v) goat serum) was added to the media channels and the devices 
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were incubated at room temperature for 2 hours. Afterwards, primary antibody CD-31 (10 μg/ml, 

DHSB) was diluted in IF buffer and centrifuged at 14K RPM for 10 minutes to ensure optimum 

mixing. The mixture was then added to the blocked samples and kept at 4o C overnight. Devices 

were kept in Petri dishes and parafilmed to avoid evaporation. The next day, devices were washed 

with IF buffer 3 times each with 20 minutes interval at room temperature. Then the secondary 

antibody (Alexa Fluor® 488, Thermo Fisher Scientific) diluted in IF buffer and centrifuged at 14K 

RPM for 10 minutes. The mixture was added and the devices were incubated at room temperature 

for 3 hours. The devices were then washed once with IF buffer for 20 minutes followed by 2 times 

washing with PBS-Tween-20 for 10 minutes. Further, to counterstain for actin cytoskeleton and 

nucleus, Alexa Fluor® 488 Phalloidin (Invitrogen) (1:40) and 4′, 6-diamidino-2-phenylindole (DAPI, 

Invitrogen) (1:1000) were added to the devices respectively. The devices were the kept at 4o C 

overnight. Following staining, the devices were finally washed with PBS-Tween-20 3 times each 

with 10 minutes intervals. Stained samples were imaged using fluorescence microscopy (Zeiss 

Axio Observer Z1 with the Zen Pro software suite) equipped with Apotome.2 (Zeiss) at 20X and 

40X magnification. Z-stack images at 10X, 20X and 40X magnification were obtained and using 

the Zen software 3D images were constructed. 

2.2.5 Permeability Assay: 

On day 6, upon formation and maturation of endothelial networks, fluorescent dye FITC-

dextran (70KDa, 2.5 μg/ml diluted in EGM2 media, Invitrogen) was used to measure the diffusive 

permeability of the endothelial networks. Before introducing fluorescent dextran, the integrity of 

the vascular networks was confirmed using phase contrast microscopy. Media from the 

channels were removed and 40 μl of dextran solution was added to the media channels. A slight 

negative pressure was applied on the other side of the channel to even the flow. Devices were 

placed under the microscope and the flow of dextran solution was visualized. Next, sequential 

images were captured using the fluorescent microscope every 15 seconds for 30 minutes. 

Movement of dextran into and out of the vascular networks was subsequently observed. Images 

were later processed and analyzed using NIH ImageJ Software. Images and t=0 and t=30 

minutes were used to measure the fluorescence intensities of the vascular network in the 
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regions of interest. Later, permeability of the vascular networks was measured using the 

following equation:  

𝑃" =
1
∆𝐼'

∆𝐼(
∆𝑡

𝑑
4

 

𝑃"  = Permeability 

∆𝐼, = 𝐼, − 𝐼. 

∆𝐼( = 𝐼( − 𝐼, 

where Ib, Ii, and If are the background, initial, and final average intensities, respectively, Δt is the 

time interval between images, and d is the diameter of the imaged microvessel. 

2.2.6 Imaging, Data collection and statistical analysis: 

Vascular network morphology was analyzed over the course of 3 independent experiments 

(n=3). Each experiment had 2-3 technical replicates. Data for vascular network diameter was 

collected by taking phase contrast images of the samples at days 1, 3, and 5. Images were 

processed using NIH ImageJ software and the diameter of the vascular networks was measured 

by drawing a line through one point to another of the microvessels. Measure plugin of the ImageJ 

was used to measure the length of the line hence yielding the diameter values. The data was 

statistically compared with unpaired Student’s t-tests using GraphPad Prism software 

(GraphPad Prism 6 Software). 

2.3 RESULTS  

2.3.1 Optimizing and characterization of vasculogenesis: 

The design and dimensions of the microfluidic platform were optimized for vasculogenesis 

analysis. In specifics, the chip design had diameter and height of 3 mm and 200 μm respectively 

with micro-posts spaced evenly at 100 μm at the interface of cell culture and media channel which 

allowed media flow and the diffusion of growth factors through the 3D cell culture region (Figure 

2.2 a). 
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Figure 2.2: (a) Schematic representation of the microfluidic platform. (b) Representative phase 
contrast images demonstrating the growth and maturation of vascular network. (c) Representative 
Fluorescence Images of vascular networks stained with actin and CD31 
 

HUVECs embedded in fibrin matrix were introduced into cell culture region and appropriate 

media was supplied for different experimental conditions. Growth and maturation of vascular 

networks were monitored over a culture period of 5 days.  In control experimental group (No VEGF) 

inter cellular connections were mainly absent across the culture period. However, in low and high 

VEGF conditions, endothelial cells showed elongated morphology with intercellular connections 

from day 1. Vascular networks were developed with tube-like structures on day 3. The formed 

networks further matured with interconnected cellular clusters covering the entire culture region by 

day 5 (Figure 2.2 b, c).  
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Figure 2.3: (a) Representative fluorescent images of vascular networks showing the mature 
networks. (b) Cross sectional view of the vasculature showing lumens (c) Diameter of the vascular 
network. 
 

It is established that during tumor angiogenesis, cancer cells secrete many growth factors, 

importantly VEGF, which will cause the formation of underdeveloped vascular networks lacking 

structural stability (Nishida et al. 2006). To study this critical effect in our platform, we set up a 

stimulated (i.e. induced) microenvironment by supplementing the media with additional VEGF (50 

ng/ml). Vascular network formation was observed in both stimulated and unstimulated conditions. 

The networks formed in the stimulated condition appeared to be more immature that the one in the 

unstimulated conditions. To confirm and quantify the extent of vascular formation, we measured 

the diameter of the vessels and compared stimulated against unstimulated conditions across days 

1, 3 and 5, of culture. The diameter of the vessels in the stimulated conditions (19.43 ± 10.66 μm) 

were significantly lesser than the unstimulated conditions (37.32 ± 18.60 μm) (Figure 2.3). Our 

findings confirm that when the endothelial cells are stimulated with VEGF, it leads to formation of 

immature networks consistent with previous in vivo studies (Nagy, Benjamin, Zeng et al. 2008). 
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2.3.2 Permeability assay: 

Permeability assays are usually used to assess the mechanistic functionality of the blood 

vessels (Nagy et al. 2008). It is also used for visualization and quantification of barrier function of 

blood vessels. Several studies both in vivo and in vitro have shown increased permeability of 

vascular networks in the presence of tumor cells. In other words, the vascular networks become 

more permeable due to the presence of VEGF secreted by tumor cells within the TME (Nagy et al. 

2008). Thus, we wanted to explore whether the permeability of the vascular networks would 

increase in the VEGF induced microenvironment within the microfluidic 3D platform. Fluorescent 

dextran (2.5 μg/ml) was added to the entrance of the vascular regions and the movement of the 

fluorescent dye was followed to measure the permeability. Fluorescent Images of diffusion of the 

dextran acquired were used for analysis. 

 

Figure 2.4: Permeability of the vascular networks (a) images representing the networks on 0th and 
30th minute when flowing FITC- dextran. (b) Qualitative values of permeability of the endothelial 
networks. 
 

In the stimulated conditions (increase levels of VEGF), the vascular networks were more 

permeable as there was enhanced leakage of dextran into the perivascular region, resulting in 

reduced fluorescent intensity in the vascular region. In the normal vasculature (lower amount of 

VEGF), due to lower permeability, fluorescent intensity was higher in the vascular region compared 

to the outer region (Figure 2.4 a). To analyze the data, images for initial and final intensities were 
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acquired and analyzed using the NIH ImageJ software. The obtained initial and final optical 

intensities were substituted in the permeability equation and permeability values were calculated. 

From the obtained results, we could see that the permeability values for stimulated conditions was 

(6.60 cm/s) which was significantly higher compared to permeability of normal vasculogenesis 

setup with less amount of VEGF (0.49 cm/s) (Figure 2.4 b). 

2.4 DISCUSSION  

Tumor vasculogenesis is a process where tumor cells secrete growth factors, importantly 

VEGF, which results in the formation of new blood vessels (Nishida et al. 2006). The tumor vessels 

display abnormal structure and function, they vary in shape, size having thin walls and small, 

compressed lumens. Endothelial cells are poorly connected and hence, the junctions are not well 

formed. This ill-formed arterio-venous structure results in impaired flow of nutrients and irregular 

delivery of oxygen. As the tumor grows, there is excessive secretion of pro-angiogenic factors 

which leads to the formation of disorganized vessels further aggravating tumor due to improper 

supply of oxygen and nutrients leading to a vicious cycle. Impaired delivery of drug owing to ill-

formed vessels limits the success rate of anti-cancer drug treatment (Potente, Gerhardt, and 

Carmeliet 2011). Despite significant progress, it is yet not possible to fully capture the characteristic 

response and function of tumor angiogenesis. Recent studies have shown success in forming 

perfusable blood vessels in in vitro assays. Still many studies rely on structural support and 

additional helper cells to guide the developing networks.  

In this study, we present a robust novel microfluidic platform where we could optimize the 3D 

hydrogel and cell concentration to form functioning vascular networks with no structural support or 

helper cells. We spatially organized the endothelial cells in a 3D hydrogel in a cell culture 

compartment of the device and demonstrated the process of growth and maturation of endothelial 

cells to form functional vascular networks. To further understand the effect of increased levels of 

VEGF within the 3D microenvironment, we supplemented the media with additional VEGF to study 

the effect on growing endothelial cells. From the results obtained, we observed the development of 

vascular networks with thinner lumens and more branching. The permeability assay also revealed 

that, perhaps due to ill-formed endothelial junctions, the vasculature was more permeable. Our 
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results obtained was in accordance with the results from the previous studies and in vivo data 

(Nagy et al. 2008). 

The proposed first generation platform enabled us to explore further the effect of growth factors 

secreted by cancer cells on vasculogenesis. Hence, in a second generation platform, we developed 

a three-layer microfluidic device to explore bidirectional crosstalk between the tumor and 

endothelial cells in a way to assess the effect of high density growing tumor on developing 

endothelial cell and in turn investigate the influence of the presence of blood vessels on the 

behavior of cancer cells in terms of invasion and intravasation. The findings of second generation 

device are further discussed in chapter 3. 
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CHAPTER 3 

THREE-DIMENSIONAL MICROFLUIDIC BASED TUMOR-VASCULAR MODEL TO STUDY 

CANCER CELL INVASION AND INTRAVASATION  

 

3.1 INTRODUCTION  

Metastasis is one of the most important hallmarks of cancer (Hanahan and Weinberg 2011). It 

is a complex multi-step cascade, and there are dynamic interactions between the tumor, its 

surrounding microenvironment, and the vascular network during different stages of disease 

progression (Nishida et al. 2006). If the tumor must grow beyond 2 mm, it must have its own 

vascular networks. Hence, during cancer progression there is induction of tumor angiogenesis 

during which there is an ‘angiogenic switch’, which contributes to the formation of tumor-supporting 

vascular networks (Hanahan and Folkman 1996). It is known that these developing angiogenic 

vessels are abnormal and immature both structurally and functionally. Specifically, the vessels are 

irregular in shape, are permeable, and have underdeveloped endothelial lining and lumen (Nagy et 

al. 2008). These vascular networks fulfill their purpose of supplying nutrition and oxygen to the 

tumor and their dilated lumen and permeability will aid the invading tumor cells to escape to 

secondary sites (Potente, Gerhardt, and Carmeliet 2011).  

Endothelial and tumor cell interactions involve bidirectional signaling. From prior studies, it has 

been well established that tumor cells have pro-angiogenic roles. It has been shown that MDA-

MB231 cells modify the mechanical characteristics of endothelial cells by reducing the stiffness of 

endothelial cell junctions (Mierke 2011). In another study, it was shown that melanoma cells induce 

junction disassembly of endothelial cells, suggesting that initial stages of transmigration of 

endothelial cells is characterized by redistribution of VE-Cadherin, PECAM-1 and other endothelial 

junctions (Peng and Dong 2009). 

More importantly, several studies also suggested that endothelial cells have an active role in 

regulating tumor cell invasiveness. A study by Kenig et al. suggested that invasion of glioblastoma 

cells often occurred due to presence of vasculature (Kenig et al. 2010). They demonstrated that 

co-culturing glioblastoma cells (U87) with endothelia cells (HMEC-1) increased invasiveness of 
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U87 cells. These studies suggest that endothelial cells attract cancer cells by secreting several 

factors such as SDF-1 and MMP’s, which in turn influence the growth, proliferation and 

invasiveness of the cancer cells. Despite the significance, the majority of these studies are limited, 

as they do not elucidate the dynamic interactions between two cell types and the role of tumor 

microenvironment during intravasation. 

With the advent of microfluidics, it is now possible to develop models with spatial organization 

of different cell types, compartmentalizing different tissues present in the native tumors and 

enabling precise control over the microenvironment (van Duinen et al. 2015). Microfluidics also 

allows for high-resolution imaging and real-time visualization of cell activity, movement, invasion, 

and intravasation. To date, several models have been developed utilizing microfluidic technology 

to study cancer metastasis. In a pioneering work, the Kamm group developed a microfluidic model 

containing breast cancer cells and endothelial cells separated into different channels to study cell-

cell interactions and the role of macrophages on cancer cell intravasation. However, the limitation 

of this model was that it did not have a well-formed capillarity network and instead, the endothelial 

cells were seeded within the inner walls of the side channels (Zervantonakis et al. 2012). To 

address this limitation, the Jeon group developed a microfluidic model with well-formed vascular 

networks and demonstrated intravasation of MDA-MB-231 cells into the vascular networks (Lee et 

al. 2014b). Although this model comprised of well-formed vascular networks, cancer cells were 

introduced by injecting them to form an adhering layer within the wall of the device. There was no 

mass tumor and no gradient of biomolecules established within this system. 

To addresses the limitations of the previous platforms and gain a mechanistic insight on the 

biological interactions of tumor and endothelial cells, we aimed to develop a model with a well-

formed tumor and vascular network as well as a gradient of biomolecules to closely mimics the in 

vivo tumor microenvironment. Specifically, we have developed a novel three-layer microfluidic 

platform to perform integrated studies on cancer cell invasion and intravasation on a single 

platform. The model consists of the tumor, stroma and an endothelial layer spatially organized and 

composed of a different matrix and cell types. The regions within the platform, comprised of cells 

embedded in 3D matrix and are initially compartmentalized, however are interconnected to allow 
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for dynamic interactions over time. Importantly, our model allows introducing high-density cancer 

cell populations (20 million/ml) embedded in the collagen matrix, which better represents the 3D 

tumor mass inside the body. The endothelial region has high-density endothelial cells (20 

million/ml) forming complex vascular networks, which are perfusable in vivo-like networks. Another 

critical feature of our model is the geometry and design of the device. Having the media channel 

surrounding endothelial region and having the tumor at the middle was helpful in mimicking in vivo 

environment where the blood vessels supply nutrients to the cancer cells and cancer cells migrate 

towards vascular networks. In addition, the presence of middle stromal layer allowed for visualizing 

and analyzing the cancer cells invading along with vascular development to assess cancer cells 

intravasation at a single cell level. We demonstrated that the number of cancer cells invading 

stroma was increased in the presence of endothelial network and invading cancer cells exhibited 

more elongated morphology suggesting that they acquire invading characteristics in the presence 

of endothelial network. The morphology of vascular network was also altered in the presence of 

tumor leading to formation of thinner and more permeable vessels. Overall, this study recapitulates 

interactions and signaling between cancer and endothelial cells during the process of invasion and 

intravasation. 

3.2 MATERIALS AND METHODS 

 3.2.1 Device design and fabrication: 

The process for device fabrication is the same as reported in section 2.2.1. The design for 

silicon wafer mold was as per the design for three-layer device required for intravasation assay. 

3.2.2 Cell Culture: 

Highly metastatic MDA-MB-231 breast cancer cells and Human umbilical vein endothelial cells 

(HUVEC, Lonza) were primarily used for this study. Culture of HUVECs is as explained in section 

2.2.2. MDA-MB-231 cells were cultured in advanced DMEM (1X Dulbecco’s Modified Eagle’s 

Medium (DMEM) + 10% fetal bovine serum (FBS) + 1% L-glutamine + 1% 50:50 penicillin: 

streptomycin). Media and media supplements were purchased from Life Technologies. Cells were 
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kept at a standard physiological condition (humidified, 37 °C, 5% CO2). Media was changed 3 days 

once. Cells were cultured up to 70% confluency prior to passage or use for the experiments. 

3.2.3 Invasion and Intravasation assay: 

A three-layer microfluidic device as depicted in Figure 3.1 a was used for this study. MDA-MB-

231 transfected with tomato red were acquired for this study, kindly provided as a gift by Dr. Robert 

Ros group at ASU. Firstly, MDA-MB-231 cells were dislodged from the culture flasks using trypsin-

EDTA and were centrifuged. MDA-MB-231 cells were then suspended in collagen I (1.5 mg/mL, 

Corning® Collagen I, Rat Tail,) for a final concentration of 20 million cells/ml. The cell-hydrogel 

solution was mixed and then injected into the tumor region of the device. The devices were then 

placed in the incubator (humidified, 37°C, 5% CO2) for 20 minutes. Subsequently, collagen 

(1.5mg/ml) was injected into the stroma region followed by 20 minutes of incubation allowing 

hydrogel polymerization. Subsequently, HUVECs were disassociated from culture flasks using 

trypsin-EDTA and centrifuged. Fibrinogen solution (5mg/ml fibrinogen + 4U/ml Thrombin), as 

described in section 2.2.3 was then added to get a hydrogel solution with the final cell density of 

20 million cells/ml. The mixture was then immediately injected into the vascular region of the device 

and the devices were kept at room temperature for 10 minutes for the fibrin to polymerize. After all 

hydrogel polymerization, 70:30 ratio of EGM2 bullet kit (endothelial cell media) and cancer cell 

media (DMEM+FBS+L-glutamine+ Penicillin+ streptomycin) was added to the media channels of 

each device and the platforms were kept in the incubator (humidified, 37°C, 5% CO2) for 

subsequent biological studies. Media was exchanged every 24 hours throughout the cell culture 

period (6 days). 

3.2.4 Immunofluorescence staining: 

Immunofluorescent staining of CD-31, actin cytoskeleton and nucleus as based on the 

procedures described in section 2.2.4. 

3.2.5 Permeability Assay: 

Permeability assay was performed on day 6 of culture consistent with the experimental 

procedure mentioned in section 2.2.5 using the following equation:  
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where Ib, Ii, and If are the background, initial, and final average intensities, respectively, Δt is the 

time interval between images, and d is the diameter of the imaged microvessel. 

3.2.6 Imaging, data collection and statistical analysis: 

Phase contrast and fluorescence images were acquired using Zeiss Axio Observer Z1 

equipped with Apotome2 (Zeiss) and Zen Pro software. Throughout the cell culture period, phase 

contrast images were taken every day at 10X objective using 4×3 tiles. Immunofluorescent images 

were obtained with 10X, 20X and 40x objectives and z-stacked images were acquired to get crisp 

3D images. 

To quantify the number of invading cancer cells, both phase contrast and fluorescent images 

were utilized. Specifically, on day 2 of culture phase contrast images with 10X objective were used, 

while for days 4 and 6 of culture, fluorescent images of samples stained for actin and nucleus were 

used. Images were processed using extended particle analyzer plugin of the NIH ImageJ software 

and images were thresholded and the number of cells was counted. To quantify cancer cell 

morphology, fluorescent images of the samples on day 4 and 6 were used. Images were processed 

using Image J software and extended particle analyzer software plugin was used to quantify the 

cell morphology, specifically cell circularity, aspect ratio and roundness. To visualize the 

intravasation of cancer cells in the outer blood vessel capillaries, fluorescent images of tomato-

expressing MDA-MB-231 cells with 20X and 40X magnification were captured. 

To analyze vascular network morphology, mainly branching and diameter of the vessels, 

fluorescent images of samples stained for endothelial junction markers CD31 captured on days 2, 

4 and 6 were used. Images were processed using the NIH ImageJ and the diameters of the vascular 

networks were measured drawing a line through one point to another of the vascular network. 
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Measure plugin of the ImageJ was used to measure the length of the line to yield the diameter 

values 

For the entire analysis, all the values were obtained over a course of 3 independent 

experiments (n=3). Each experiment had 2-3 technical replicates. The data were analyzed with the 

unpaired Student’s t-tests. Multiple comparisons tests were performed within the GraphPad Prism 

software (GraphPad Prism 6). 

3.3 RESULTS  

3.3.1 Experimental setup and specification of the fabricated platform: 

The three-layer microfluidic enabled us to spatially organize the three important components 

of intravasation the tumor, stroma and vasculature side-by-side in different channels. The platform 

consisted of the inner chamber (tumor region) surrounded by chamber two (stromal region), which 

is surrounded by a third chamber (vascular region). The diameter of the concentric circles were 1, 

2 and 3 mm and the height of these concentric regions were 200 μm, respectively. The distance 

between the edge of the inner region and outer region was 1 mm. All three regions were bound by 

trapezoidal micro-posts spaced evenly at 100 μm. The micro posts were configured to separate the 

regions, while also still maintaining the interactions between the regions by allowing exchange of 

media and movement of bio molecules throughout the platform (Figure 3.1 a). 

Tumor cells encapsulated in a hydrogel were loaded in to tumor region of the device. Then, 

hydrogel without any cells was injected into the stromal region. Next, for the vascular region, 

endothelial cells embedded in a hydrogel was loaded. This formed a well-defined, organized but 

interconnected intravasation platform. The platform had a media channel surrounding the three 

entities filled with the media. This allowed for diffusion of media and the creation of a gradient of 

biomolecules throughout the platform. 

The spatial organization of the tumor-stroma surrounded by vasculature was adapted as it 

represents the in vivo organization of these components in the native microenvironment. Having 

the tumor region away from the media region rendered the cancer cells depleted of nutrients, which 

allowed for activation of cancer cells thereby making the setup more physiologically relevant. 
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Figure 3.1: Experimental setup and modeling of intravasation. (a) Schematic representation of the 
three-layer microfluidic platform. (b) Experimental set up for three conditions: “+/+ 
tumor/vasculature”, “+/- tumor/vasculature” and “–/+ tumor/vasculature” to model intravasation.  
 
Table 1: Experimental setup for modeling intravasation 

 Layer 1 Layer 2 Layer 3 

1 MDA-MB-231 in Collagen Collagen HUVECs in Fibrinogen 

2 MDA-MB-231 in Collagen Collagen Fibrinogen 

3 Collagen Collagen HUVECs in Fibrinogen 

 

3.3.2   Analysis of number of cancer cells invading the stroma: 

To characterize dynamics of tumor-endothelial cell interactions, first tracking of tumor cells was 

performed. 3D z-stack images were acquired every 24 hours to monitor cancer cell invasion 

dynamics. By day 1, the cancer cells started to disseminate from the primary tumor and invaded 

into the stromal region. The number of tumor cells in the stroma increased exponentially over time, 

and by day 6, there was a significant number of cells invading the stroma while several tumor cells 

migrated beyond the endothelial barrier (Figure 3.2 a, b). 

We could observe that in the presence of vascular networks, the number of cells invading the 

stroma was comparatively higher than the number of cells invading the stroma in control conditions, 

with mono-culture of tumor cells without the presence of endothelial cells. By day 2, the number of 
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cells in the stromal region was relatively low, therefore could be counted through the phase contrast 

images acquired. By day 4, the number of invading cells increased drastically. Hence, we stained 

the cells on day 4 and 6 with DAPI for nuclei, and certain areas of the stromal region in the device 

were marked as the regions of interest to count the number of cells. Fluorescent images were 

processed using NIH ImageJ software. Specifically, images were thresholded and the extended 

particle analyzer plugin was used to count the number of nuclei. We found that the number of cells 

invading stromal region in the presence of vasculature (570 ± 148) was significantly higher than in 

the control conditions (259 ± 137) (Figure 3.2 c). These results suggest that the endothelial cells 

attract tumor cells, acting as an enhancer or promoter of cancer cell invasiveness.  

 

Figure 3.2: Characterization of the cancer cells invading the stroma. (a) Representative fluorescent 
image of the complete platform on day 6. (b) Representation of cancer cells invading the stroma 
on days 4 and 6 of culture. (c) Qualitative analysis of the number of cancer cells invading the 
stroma. (d) Qualitative analysis of the morphology of cancer cells invading the stroma. 
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3.3.3 Analyzing the morphology of cancer cells invading the stroma: 

To further characterize tumor-endothelial cell interactions, the morphology of cancer cells 

invading into the stroma was analyzed. From the preliminary phase-contrast images, we could 

observe that the cancer cells in the presence of vascular network exhibited elongated morphologies 

with more protrusions (Figure 3.2 a, b). Observation of the immunofluorescence z-stack images of 

the actin cytoskeleton also confirmed the elongated morphology of the tumor cells. 

To further validate our findings, we quantified cell morphology descriptors. As previously 

explained, the number of cancer invading the stromal region was dramatically high by day 4 and 6, 

which caused the cancer cells to overlap, making the characterization of cell morphology 

challenging. From previous studies, we learned that the nuclear shape corresponds to the 

morphology of the cells. In other words, when there is change in cell morphology it leads to change 

in shape of the nucleus (Versaevel, Grevesse, and Gabriele 2012). Hence, we used the 3D z-stack 

images of the nuclei, stained for DAPI, to analyze the morphology of the tumor cells. 

We quantified major morphology descriptors such as circularity, aspect ratio and roundness 

using the extended particle analyzer plugin of the NIH ImageJ software. We limited the analysis to 

a constant region of interest in the stromal portion of the device. The circularity measurements 

showed that the cancer cells invading stroma in the presence of vascular networks were less 

circular (0.73 ± 0.03) than the cells in the absence of vascular networks (0.80 ± 0.02). Furthermore, 

the roundness of cancer cells without the presence of vasculature (control conditions) was 

significantly higher (0.64 ± 0.02) than the roundness of the cells in presence of vasculature (0.58 ± 

0.02) at day 6 of culture. Aspect ratio, which indicates polarized length and extension of the cells, 

was significantly higher in the cells under the influence of developing vasculature (1881± 0.10) as 

compared to the control the conditions without vasculature on day 6 of culture (1.670 ± 0.066) 

(Figure 3.2 d). 

Our findings suggest that MDA-MB-231 cells invading the stroma have a more elongated 

morphology due to the influence of endothelial cells, suggesting that endothelial cells play a major 

role in driving invasive characteristics of tumor cells. 
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3.3.4   Cancer cell intravasation: 

Intravasation is the migration of tumor cells into the endothelial networks and vascular lumen 

by crossing the endothelial barriers. We investigated whether the presence of the endothelial 

network would cause highly invasive cancer cells to successfully intravasate into the surrounding 

vascular network. Imaging interactions of tumor and endothelial cells during intravasation is crucial 

for understanding the mechanism of intravasation, and our microfluidic-based intravasation 

platform enabled real-time high-resolution imaging of the intravasation process. To characterize 

the ability of cancer cells to invade the 3D endothelial network, a series of immunofluorescence z-

stack images were acquired for tomato-expressing MDA-MB-231 cells, while endothelial cells were 

stained in green for CD31 cell-cell junction proteins. From these images, we could visualize tumor 

cells elongating and forming protrusions. Furthermore, tumor cells crossed the endothelial barrier 

and entered the endothelial lumen (Figure 3.3 a, b). 

Furthermore, to quantify the number of intravasating tumor cells, we counted the number of 

cells entering the endothelial lumen. Five regions of interest (ROIs) were marked throughout the 

vascular region of the device, and the number of tumor cells entering the lumen was counted. The 

distribution of tumor cells in the regions of interest was consistent throughout the vascular region 

(Figure 3.3 c). Interestingly, we also found that in the control condition without the presence of 

vascular networks, MDA-MD-231 cells did not migrate into the fibrin matrix, migration was observed 

only when the vascular networks were present. A possible explanation for this behavior is perhaps 

that tumor cells do not secrete the proteases required to invade the fibrin matrix. However, further 

investigation is required in future studies to confirm these findings. 
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Figure 3.3: Intravasation of cancer cells into the vascular network. (a-b) Representative image of 
cancer cells intravasation into the vascular network. (c) Qualitative number of cancer cells in the 
different regions of interest within the platform intravasating into the vascular network.  
 

3.3.5 Characterization of vascular networks: 

To investigate the effects of the tumor entity and cancer cells on growth and maturation of 

endothelial cell networks, we studied the morphology of the formed vasculature. We observed the 

formation of vascular networks both in presence (+ tumor) and absence (- tumor, control) 

conditions. Functional microvascular networks formed were characterized by staining for CD31, 

cell-cell junction marker. The immunofluorescent images demonstrated the formation of well-

formed, well-connected vascular networks.  
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Figure 3.4: Characterizing the morphology of the vascular network (a, b) Representative 
fluorescent images of the vascular network on day 6 of culture during intravasation of cancer cells. 
(c) Quantification of the diameter of the vascular network in different conditions.  
 

From the immunofluorescence images, we could observe the changes in the morphology of 

the vascular networks in the presence of the tumor cells. Vascular networks formed were analyzed 

by measuring the diameter of the vessels. Vascular network exhibited significantly lower diameter 

(41.15 ± 13.8 μm) compared to diameter of vessels in the control conditions (77.35 ± 34.26 μm) 

(Figure 3.4 a-c). These results are in agreement with the endothelial cell mono-culture studies 

(chapter 2), where the diameter of the developing vascular networks was reduced due to increased 

levels of VEGF in the microenvironment.  

3.3.6 Permeability of the vascular networks: 

To address the question of whether tumor cells induce endothelial permeability, we conducted 

permeability measurements of endothelial networks under mono-culture and co-culture with tumor 

cells. In presence of tumor, the vascular networks were more permeable as there was enhanced 

leakage of dextran into the perivascular region, resulting in reduced fluorescent intensity in the 

vascular region. In the absence of tumor (control condition), due to less permeability, fluorescent 

intensity in the endothelial network was comparatively higher. Using the plot profile plugin in the 

NIH Image J software, initial and final optical intensities values were calculated and values obtained 
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were substituted in the permeability equation. From the obtained results, we could see that the 

permeability value for (+) tumor setup was 0.113048 cm/s which was significantly higher compared 

to permeability of (-) tumor control condition 0.002160 cm/s (Figure 3.5 a, b). These findings 

suggest that tumor cells perturb endothelial function and making vasculature to be more permeable, 

consistent to our results obtained in mono-culture studies of endothelial cells in chapter 2. 

Therefore, high permeability of vascular networks might be due to tumor cells secreting 

biomolecules such as VEGF. 

 

Figure 3.5: Permeability of the vascular networks (a) Images representing the networks on 0 and 
30 minute when flowing FITC-dextran. (b) Qualitative values of permeability of the endothelial 
networks. 
 
3.4 DISCUSSION  

Despite development of numerous assays to study the process of metastasis, the mechanistic 

interactions between tumor and endothelial cells needs to be further studied in detail. In this regard, 

there is a crucial need to develop a 3D physiologically relevant in vitro tumor model that focuses 

on cell interactions, paracrine signaling and biochemical factors involved during invasion and 

intravasation. The creation of such models would enable us to uncover fundamental biological 

process involved in early stages of metastasis, namely invasion and intravsaion. Currently, a 



  44 

plethora of 2 and 3 dimensional in vitro assays are developed to model various steps of metastasis. 

However, 2D platforms are unable to recapitulate the intricacies of the in vivo tumor 

microenvironment (Griffith and Swartz 2006). Moreover, most 3D models lack a distinct spatial 

organization of the tumor, stroma and vascular regions (Kimlin, Casagrande, and Virador 2013) to 

perform integrated studies on cancer cell invasion and intravasation studies a single platform. 

Specifically, the models that incorporated spatial compartmentalization of the tumor and stroma did 

not have a well-defined tumor or a well-formed vasculature. 

In this work, we present a unique microfluidic in vitro model comprising of three distinct, but 

interconnected layers. This enabled spatial organization and compartmentalization of tumor, 

stroma and endothelial entities. Geometry and design enabled side-by-side arrangement of the 

tumor and stromal components in the 3D matrix, and it also incorporated diffusive barriers for 

transport of nutrients and growth factors.  In our three-layer model, the tumor was injected into the 

innermost layer, surrounded by an acellular collagen based stromal region. This setup was 

surrounded by a third layer containing a well-formed vascular network. A media channel 

surrounded the endothelial region from which growth factors diffused through to the inner layers. 

This formed separated but interconnected platform, which allowed studies on the interactions of 

the cancer, endothelial and potentially stromal cells.  

In our study, we assessed the effect of endothelial cells on cancer cell invasion an 

intravasation, our findings showed that the cancer cells significantly invaded the stromal region in 

high numbers in the presence of endothelial networks. We further investigated cancer cell 

morphology, where our analysis revealed that cancer cells in the stroma showed elongated shape 

with more protrusions in the presence of the vascular network as compared to cancer cells in the 

absence of the vascular network. These results are in accordance with previous in vivo studies 

suggesting that number of invading and circulating tumor cells increases in the presence of 

vascular networks (Mathur et al. 2001). These results also suggest that endothelial cells exert 

prometastatic characteristics where cancer cells are attracted to vascular network with a more 

invasive phenotype (Rosanò, Spinella, and Bagnato 2013). By day 6 in culture, the cancer cells 

crossed endothelial barrier and entered the vascular region through passive intravasation. The 
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unique ability within our platform to image the dynamics of tumor endothelial interactions enabled 

us to visualize in real-time the process of intravasation. 

To further study the effect of tumor on structural and functional characteristics of endothelial 

cells, we analyzed the morphology and permeability of the formed vascular networks. Our results 

showed that vascular networks were thinner with reduced diameter with significantly higher 

permeability in presence of the tumor. The results are in accordance with endothelial mono-culture 

studies, completed in chapter 2, where the diameter of the vasculature decreased and permeability 

increased due to presence of increased levels of VEGF. Taken together the results suggest that 

the cancer cells secrete biomolecules such as VEGF, which modulate the morphology and the 

permeability of the surrounding tumor vasculature. These findings are also consistent with prior in 

vivo studies, which demonstrated increased VEGF signaling leads to more vascular leakage 

enabling transendothelial migration of cancer cells (Weis et al. 2004).  

Therefore, our overall findings demonstrate that our developed microfluidic platform can be 

employed to study tumor growth, cancer cell invasion, and intravasation on a single platform to 

obtain mechanistic biological insights within each separate stage of the metastatic cascade within 

a well controlled (i.e. cell-cell and cell-ECM interactions) microenvironment.   
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CHAPTER 4 

CONCLUSION AND FUTURE WORK 

4.1 CONCLUSION  

Breast cancer is one of the most common cancer in women and has high mortality rates in the 

U.S. Most of the breast cancer-related deaths are caused due to metastasis. Therefore, it is crucial 

to study the cancer cells behavior during invasion and intravasation. However, the study of 

intravasation is proven to be challenging due to the difficulties in establishing the invasion 

environment. In this study, we have microengineered a novel breast tumor microenvironment model 

designed to incorporate high-density tumor, stroma and well-formed vasculature. The entities were 

separated into different channels and these channels were composed of specific cell compositions 

embedded in suitable ECM-forming 3D structure. In our high throughput model, we could visualize 

and quantify the invasion of tumor cells into the stroma and observed increased numbers of 

invading cancer cells when in the presence of surrounding vasculature. Cancer cells with more 

protrusions and elongated morphology was observed under the influence of vasculature. Our 

microfluidic based model also allowed real time visualization and quantification of trans-endothelial 

migration of cancer cells into the vascular networks. Thereby, the developed platform enabled us 

to study the dynamic interactions of tumor and endothelial cells during intravasation. Furthermore, 

we evaluated the effect of tumor cells on growth and maturation of vascular networks. Our findings 

suggested that the cancer cells altered the morphology of endothelial cells by reducing the diameter 

and increasing the permeability of developed vasculature. As the tumor blood vessels are abnormal 

and hyper permeable, we hypothesize that these changes in morphology of the vascular networks 

and hyper permeability contribute to invasion and intravasation of cancer cells. Together, these 

results demonstrate the ability of our novel three-layer device to visualize and analyze the different 

cancer cell behaviors like migration, invasion, and intravasation. Thus, the proposed platform 

proves to be a valuable tool to study cancer behavior and recapitulate the interactions of tumor and 

endothelial cells. The platform can be further used for screening drug targets and to develop 

personalized medicine. 
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4.2 FUTURE WORK 

4.2.1 Enhancing the stromal region: 

In our study, we incorporated tumor and endothelial cells separated by an acellular stromal 

region. Owing to the complexities of breast tumor microenvironment and to recapitulate the in vivo 

characteristics, tumor associated stromal cells could be introduced into the stromal region. For 

example, TAMs can be introduced into the stromal region and their effect on the proliferation, 

migration, invasion, and intravasation of cancer cells can be analyzed. Additionally, CAFs can be 

introduced to study how they modulate the ECM, in terms of stiffness and architecture, to aide 

cancer cells in invasion and intravasation. In this regard, we could potentially increase the 

complexities of our platform by mixing different stromal cells and study the combined effect on 

morphology and behavioral changes in cancer cells.  

4.2.2 Testing therapeutic targets: 

As our three layer platform allows 3D spatial organization of tumor and its surrounding 

vasculature, the development and behavior of cancer cells mimic the in vivo microenvironment. An 

interesting study would be to test the anti-VEGF target drugs such as bevacizumab. The anti-VEGF 

drug can be added to the developed high density tumor and vasculature and subsequently the 

changes in morphology, proliferation of endothelial cells can be assessed. Furthermore, the impact 

of the drug on migration, invasion and intravasation of cancer cells can also be analyzed. Thus, 

this platform is a potential candidate for validation and screening of drugs and ultimately be used 

in personalized medicine.  
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Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function 
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