
Optimizing Heap Data Management

on Software Managed Manycore Architectures

by

Jinn-Pean Lin

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved June 2017 by the
Graduate Supervisory Committee:

Aviral Shrivastava, Chair
Fengbo Ren
Umit Ogras

ARIZONA STATE UNIVERSITY

August 2017

ABSTRACT

Caches pose a serious limitation in scaling many-core architectures since the demand

of area and power for maintaining cache coherence increases rapidly with the num-

ber of cores. Scratch-Pad Memories (SPMs) provide a cheaper and lower power

alternative that can be used to build a more scalable many-core architecture. The

trade-off of substituting SPMs for caches is however that the data must be explicitly

managed in software. Heap management on SPM poses a major challenge due to

the highly dynamic nature of of heap data access. Most existing heap management

techniques implement a software caching scheme on SPM, emulating the behavior of

hardware caches. The state-of-the-art heap management scheme implements a 4-way

set-associative software cache on SPM for a single program running with one thread on

one core. While the technique works correctly, it suffers from significant performance

overhead. This paper presents a series of compiler-based efficient heap management

approaches that reduces heap management overhead through several optimization

techniques. Experimental results on benchmarks from MiBenchGuthaus et al. (2001)

executed on an SMM processor modeled in gem5Binkert et al. (2011) demonstrate

that our approach (implemented in llvm v3.8Lattner and Adve (2004)) can improve

execution time by 80% on average compared to the previous state-of-the-art.

i

TABLE OF CONTENTS

Page

LIST OF TABLES . iii

LIST OF FIGURES . iv

CHAPTER

1 INTRODUCTION . 1

2 RELATED WORK . 6

3 LIMITATION OF THE STATE OF THE ART . 10

4 KEY IDEAS OF OUR APPROACH . 13

5 DETAILS OF OUR APPROACH . 15

5.1 Statically Detecting Heap Accesses . 15

5.2 Simplifying Management Framework . 18

5.3 Inlining and Combining Management Calls . 20

5.4 Adjusting Block Size for Embedded Applications 21

6 EXPERIMENTS . 27

6.1 Experimental Setup . 27

6.2 Significantly Reduces Execution Time . 28

6.3 Scales Well with SPM Size . 33

7 CONCLUSION AND FUTURE WORK . 36

REFERENCES . 37

ii

LIST OF TABLES

Table Page

6.1 Maximum Heap Usage of Benchmarks. 27

6.2 Number of g2l Calls Called Before and After Identifying Heap Access

Statically with the Previous Technique. 30

6.3 Instructions Executed Per g2l Under Different Cases With Optimiza-

tions Incrementally Added. 31

iii

LIST OF FIGURES

Figure Page

1.1 Diagram of a 2-core SMM Architecture, Showing That Each Core Has

a Local SPM. To Make a Program Run on a SPM-based Processor,

Explicit Direct Memory Access (DMA) Instructions to Move Data Be-

tween the SPM and the Main Memory Must Be Inserted. 1

1.2 The Heap Management Function g2l Takes a Memory Address as Input

and Maps It to a Location in SPM. If the Data in the Memory Location

Is Not Already Present in the SPM Location, g2l Function Will Also

Issue a DMA to Copy the Data. 3

2.1 Percentage of Heap Accesses among All Data Accesses. 6

2.2 The State-of-the-art Heap Management Implements a 4-way Set-associative

Software Cache on SPM. 8

3.1 Performance Overhead Caused by the State-of-the-art Heap Manage-

ment Approach. 10

4.1 The Previous Approach Inserts g2l Before Every Memory Access, While

Our Approach Tries to Identify the Heap Accesses Statically and Skip

Unnecessary g2ls. 14

5.1 When a Memory Access May Be to Heap but Is Not for Certain, We

Check at Runtime Before Managing the Access. 17

5.2 (A) the Steps of a Management in the Previous Work (B) the Steps of

a Management Function in Our Approach (C) the Steps of a Manage-

ment Function in the Previous Work and Our Approach. 19

5.3 Inlining Management Calls and Move Common Operations to the Be-

ginning of the Caller Function. 20

iv

Figure Page

5.4 Decreasing Block Size Can Lower the Chance of Cache Thrashing

When Multiple Heap Objects Are Being Accessed in a Loop. 22

5.5 Increasing Block Size Can Improve Spatial Locality When Only One

Heap Object Is Accessed in a Loop. 23

5.6 The Heuristic for Selecting a Block Size at Compile Time. 24

6.1 The Execution Time of Our Approach Normalized to the Previous

Work with Optimizations Incrementally Added. 28

6.2 The Management Instruction Overhead of Our Approach Normalized

to the Previous Work with Optimizations Incrementally Added. 29

6.3 Implementing a Direct-mapped Cache Other than a 4-way Set-associative

Cache Reduces More Execution Time Thanks to Simplified Manage-

ment Functions, Compared to the Extra Time Introduced Due to In-

creased Cache Misses. 32

6.4 Execution Time of Our Approach Without Adjusting Block Size Nor-

malized to the Previous Work, When the SPM Size Increases from 4KB

to 64KB. The Order of the Names on the Right Side Is the Same as

the Order of Endpoint of the Line for the Corresponding Benchmark. . . 33

6.5 Execution Time of Our Approach after Adjusting Block Size Normal-

ized to the Previous Work, When the SPM Size Increases from 4KB to

64KB. The Order of the Names on the Right Side Is the Same as the

Order of Endpoint of the Line for the Corresponding Benchmark. 34

v

Chapter 1

INTRODUCTION

Cache hierarchy is critical to the performance of modern processors, as it sig-

nificantly reduces memory access latency. However, caches suffer from a string of

disadvantages. They consume significant amount of silicon area and energyNiar et al.

(2004) and the cost of maintaining cache coherence increases rapidly with the num-

ber of coresBournoutian and Orailoglu (2011); Choi et al. (2011); Garcia-Guirado

et al. (2011); Xu et al. (2011). In addition, cache-based systems are hard to use in

real-time systems, since the execution time analysis for cache-based systems is quite

complexWilhelm et al. (2008). For these reasons, some processor vendors have opted

to remove caches and use only ScratchPad Memories (SPMs), or provide the abil-

ity for caches to be configured as SPMs. An SPM is raw memory that stores only

data, without the complex circuitry in a cache to implement automatic movement

Figure 1.1: Diagram of a 2-core SMM Architecture, Showing That Each Core Has
a Local SPM. To Make a Program Run on a SPM-based Processor, Explicit Direct
Memory Access (DMA) Instructions to Move Data Between the SPM and the Main
Memory Must Be Inserted.

1

of data between the lower-level and upper-level memories, replacement policies and

coherence. As a result, SPMs consume about 40% less area and energy per access Ba-

nakar et al. (2002). Processors with only SPMs have been used for high performance

computing Carter et al. (2013); REX Computing, Inc. (2014), gaming and multi-

media processing Gschwind et al. (2006), digital signal processing Texas Instrument

(2014), and networking Olofsson (2016). There are also academic researches to design

SPM-based processors for various purposes Lin et al. (2006).

The trade-off of using SPMs instead of caches is that the data movements in and

out of the SPM must now be managed explicitly by software. For this reason, we refer

to such an SPM-only manycore architecture as Software Managed Manycore (SMM)

architecture. Figure 1.1 shows a diagram of a 2-core SMM architecture, in which each

core is connected to an SPM. Programs that run on SMM architecture must have ex-

plicit instructions inserted in them to move data into and out of the SPM in order

to enable correct execution. While a programmer can be entrusted to insert these

data movement instructions, the task is not only difficult and time consuming, but it

can also be error-prone. Therefore, much research has gone into developing compiler

techniques that can automatically insert these data movement instructions into the

program, and ensure correct and efficient execution of the program. Although all

data (heap data, stack data and global data) of the application needs to be managed

(i.e., data movement instructions inserted in the program), when we want to execute

an application on an SMM architecture, efficient heap data management is particu-

larly important, since heap accesses may account for a significant fraction of all the

memory accesses that the application makes. Simply allocating and directly accessing

these heap data from the main memory without using SPM could cause extremely

high overhead.

2

Previous approaches to manage heap data on SPM can be classified into static

approaches, quasi-static approaches, and dynamic approaches. Static approaches like

Wilson et al. (1995); McIlroy et al. (2008) only map a fraction of the heap data (typi-

cally most accessed) to the SPM, and the application can directly access it from there.

However, since the SPM may be able to hold only a very small amount of heap data,

this approach may not be effective and scalable. Quasi-static approachesDominguez

et al. (2005) break the program execution into time intervals, and in each interval,

they apply static heap management. Dynamic approachesHallnor and Reinhardt

(2000); Moritz et al. (2001); Chakraborty and Panda (2012); Bai and Shrivastava

(2013) are the most versatile and scalable. Depending on the program requirements,

dynamic techniques not only keep changing the set of data objects that is mapped

onto the SPM, but also the location of each data object at runtime. This allows the

dynamic heap management techniques to make the most efficient use of SPM space.

Dynamic heap management requires modifications of user code. By default, all

heap data is accessed using the address of the heap data in the main memory in

programs (that run correctly on cache-based processors). However, when we bring

Figure 1.2: The Heap Management Function g2l Takes a Memory Address as Input
and Maps It to a Location in SPM. If the Data in the Memory Location Is Not
Already Present in the SPM Location, g2l Function Will Also Issue a DMA to Copy
the Data.

3

the heap data to the SPM, it must be accessed using the SPM address 1 , which

in general will be different from the main memory address. Figure 1.2 (a) shows

that in the original code, malloc function is called to allocate a heap object in the

main memory. The start address of the heap object is stored in the pointer a. The

store to a[3] directly access the main memory address. However, for an SPM-based

processor, we must fetch a[3] from the main memory, and then access the SPM

location. This is achieved by calling a heap management function, that we refer as

g2l in the rest of the paper 2 , on the memory address of a[3] before we access its

value. The function g2l first looks if the data is already present in its heap data

structure in the SPM. If not, it will fetch it from the main memory, and return the

SPM address of the data. Note that, since SPM has fixed capacity, it may need to

evict some other existing heap data from the SPM to the main memory. All dynamic

heap management techniques must implement g2l-like management functions.

The implementation of the g2l function in the state-of-the-art dynamic heap man-

agement technique on SMM architecturesBai and Shrivastava (2013) is correct, and

enables the execution of single threaded programs with heap data on a core of SPM-

based processors, but causes high overhead. There are two main reasons for the

overhead: Firstly, their implementation checks whether a memory access is to heap

at runtime in g2l, by comparing the target address to the address range of heap.

Therefore, g2l has to be called before all the memory accesses, even when they are

not to heap. Secondly, their implementation emulates a 4-way set-associative soft-

ware cache with round-robin replacement policy, whose complexity causes significant

instruction overhead.

1The SPM is physically addressed

2terminology borrowed from Bai and Shrivastava (2013)

4

To solve the problems, we propose three generic optimization techniques and one

additional optimization technique for embedded applications. We first i) statically

detect heap accesses at compile-time, so that g2l is avoided before definite non-heap

accesses. We also ii) implement a direct-mapped cache like data structure to manage

the heap data in SPM, which greatly simplifies the logic and thus multiplicatively

reduces the instruction overhead of g2l, which allows us to iii) inline the g2l calls

and remove redundant operations. Finally, we iv) adjust block size depending on the

types of cache misses for embedded applications.

We implement the proposed techniques on LLVM 3.8 Lattner and Adve (2004),

and evaluate them on Gem5 CPU simulator Binkert et al. (2011). The benchmarks

used for evaluation are from Mibench suite Guthaus et al. (2001). Experimental re-

sults show that compared to the state-of-the-art, our techniques can effectively reduce

the number of management calls, and the number of instructions executed within each

management call. Even though using a direct-mapped software cache increases cache

misses compared to a 4-way set-associative software cache, the experimental results

show the performance boost from reduced instruction overhead is significantly more

than the performance penalty caused by increased misses. As a result, our three

generic optimization techniques reduce execution time by 80% on average with the

first three optimizations. With all four optimizations, we can reduce execution time

by 83% on average.

5

Chapter 2

RELATED WORK

Heap management is very important to application performance, since heap ac-

cesses may account for a significant portion of overall memory accesses. Figure 2.1

shows the percentage of memory accesses to heap out of all the data accesses in

MiBench benchmarks. While heap accesses may not be present in all the programs,

it is dominant in some, with more than 90% in Susan Smoothing.

Heap management on SPM can be generally divided into static approaches, quasi-

static approaches and dynamic approaches. Static approaches treat an SPM as a heap,

and implement efficient memory allocator to manage heap data on the SPM Wilson

et al. (1995); McIlroy et al. (2008). Such methods avoid run-time overhead at every

memory access. However, such methods may be forced to allocate heap objects to

main memory when there are not enough space on SPM. Notice that static approaches

Figure 2.1: Percentage of Heap Accesses among All Data Accesses.

6

allocate/deallocate heap objects dynamically at runtime. The addresses of the heap

data, however, is never changed until it is deallocated, and is therefore considered as

static approaches.

Quasi-static approaches divide execution into time intervals, and bring the most

frequently used data of each interval into the SPM at its beginning Dominguez et al.

(2005). Within the interval, locations of heap data are fixed (thus the name quasi-

static), either in SPM or in the main memory. Such approaches usually rely on

profiling, and can be extremely efficient when representative input is known in ad-

vance, e.g., in embedded applications. However, profiling can be inaccurate in general,

when application behaviors vary significantly as the input changes. On the contrary,

most of our approach do not rely on profiling. The only optimization in our approach

(namely, adjusting block size to reduce cache misses) that relies on profiling is for

embedded applications, where profiling is acceptable.

Dynamic approaches change the set of data objects and the location of each object

in SPM as program executes, and are the most flexible. Dynamic approaches for heap

management, including ours, are mostly based on software caching, due to the high

dynamism of heap data. Our approach is however different from the previous ap-

proaches. For example, Hallnor et al. proposed a approach that runs the replacement

policy of level-two caches on software in a cache-based memory subsystems, while

leaving miss handling to the hardware Hallnor and Reinhardt (2000). In contrast,

our technique targets a system without any caches. Moritz et al. implemented a

compiler-based software cache on a raw SRAM Moritz et al. (2001). The compiler

statically groups memory accesses to data aggregates (arrays and data structures) into

so called hot page sets, so that all the accesses to the same hot page set may share the

same translation from a memory address to an SRAM address. The fast translation

however relies on additional registers for each hot page set, while our technique does

7

not require additional hardware. Chakraborty et al. proposed a compiler-based ar-

ray management technique on SPM Chakraborty and Panda (2012). The technique

statically analyzes a program and decides whether an array should be entirely copied

into the SPM or dynamically managed by a software cache. The decision relies on

the knowledge of array sizes, while our technique does not require such knowledge,

and can be used to manage any data aggregates, such as linked lists or trees.

The state of the art dynamic heap management for SMM architectures from Bai et

al. Bai and Shrivastava (2013) is the most relevant work to our technique. The state

of the art implemented a 4-way set-associative software cache with first-in-first-out

(FIFO) replacement policy on SPM. The details of the technique will be explained

Figure 2.2: The State-of-the-art Heap Management Implements a 4-way Set-
associative Software Cache on SPM.

8

shortly. However, it introduces very high management overhead. Our technique can

significantly reduce overhead and improve performance.

9

Chapter 3

LIMITATION OF THE STATE OF THE ART

The state-of-the-art heap management Bai and Shrivastava (2013) emulates a 4-

way set-associative cache on an SPM. The SPM is partitioned into a data region and

a heap management table (HMT), as shown in Figure 2.2. The data region stores the

actual heap data in fixed-sized blocks, while the management table stores a tag, a

modified bit, and a valid bit for each block in the data region, i.e. there is a one-to-one

mapping between each block in the data region and each entry in the management

table. Every 4 entries in the management table forms a set, with a victim index for

round-robin replacement policy.

The g2l function implemented in the state of the art takes a main memory address

as input, and checks if the given address is in heap. The input address is immediately

returned if it is not in heap region. Otherwise, the set index of the input main memory

Figure 3.1: Performance Overhead Caused by the State-of-the-art Heap Manage-
ment Approach.

10

address is calculated. A sequential search is done to compare the tag of the input

address with the tags saved in the entries of the corresponding set in the management

table. If a match happens and the status of the matching entry is valid, a hit happens.

Otherwise, if a miss happens, the enclosing data block of the input address will be

copied from the main memory into the SPM. If no available entry can be found in

the set, the data block pointed by the victim index will be replaced by the new data

block, and the corresponding entry in the management table is updated with the new

tag accordingly. The evicted data block must be written back to the main memory if

it has been modified. The victim index is increased by 1 and modulo 4 (the number of

entries in each set). Eventually, the SPM address is calculated based on the set index,

entry index and its offset within the data block, and used in the memory access.

Although the state of the art correctly manages the heap data of an application,

it incurs high performance overhead. Figure 3.1 shows its management overhead on

some typical embedded applications. It is important to note that the heap manage-

ment technique not only significantly increases the execution time of applications,

but also inflicts high overhead on the benchmarks without any heap accesses, Adpcm

Decode, Adpcm Encode, SHA, and String Search.

The high overhead is caused by two main reasons.

i) heap management function g2l called before each memory access. Since

the management functions check if an access is to heap at runtime, it has to be called

before each memory access (including those that are not to heap). The checking is

expensive, not only because it happens at every memory access, but also because it

involves branch operations, and potentially memory operations.

ii) set-associate heap management. The second major source of overhead comes

from the fact the previous technique manages heap data in a set-associative man-

ner. The software implementation of the set-associative structure has to sequentially

11

search all the entries in the set at every heap access. It also complicates the calculation

of the set index, and the translation of a main memory address to the corresponding

SPM address. The set index of the input main memory address is calculated with

the following hash function:

set index = ((mem addr >> log(block size)) ∧ (mem addr >> (log(block size) +

1)))&(set num− 1),

where mem addr is the input main memory address, block size is the size of a data

block, and set num is the number of sets. The SPM address is then calculated as:

spm addr = spm base+(set index∗set assoc+entry index)∗block size+mem addr%block size

where spm base is the start address of the data region, set assoc is the set associativ-

ity (4 in this case), and entry index is the index of the entry in the set specified by

set index. The complexity of the calculations translates to a significant instruction

overhead.

12

Chapter 4

KEY IDEAS OF OUR APPROACH

To solve the performance problems caused by the state-of-the-art approach, we

use a series of optimizations that can greatly reduce the overhead of heap manage-

ment on SMM architectures:

i) statically detecting heap accesses. This optimization identifies heap access at

compile-time and eliminates heap management function g2l when the memory access

is definitely not a heap accesses, and significantly reduces the number of (unneces-

sary) management calls at runtime. It also allows us to eliminate the runtime checking

within the management function, if we know for sure that the memory access is a

heap data access.

ii) simplifying management framework. We implemented a direct-mapped cache

on SPM. In a direct-mapped cache, it is no longer required to sequentially go through

different entries and search for the requested data block for each heap access. In

addition, it simplifies the calculation of set index and the SPM address in the man-

agement functions. Therefore, this optimization can effectively reduce the number of

instructions in each management function.

iii) inlining and combining management calls. Once g2l functions are inserted,

we inline the function calls. We also remove the (redundant) heap management func-

tions and execute them once before all the management calls. This optimization is

particularly beneficial, when management functions are called within loop nests, and

the common operations are hoisted to be outside of the loop nests.

iv) adjusting block size. All the aforementioned optimizations are generic, and do

not require any profile information and thus are useful for all applications. However,

13

for embedded systems, where profiling information can be useful, we further optimize

heap data management by statically adjusting block size to avoid the type of cache

misses an application primarily suffers from. Given the size and set associativity of a

software cache, adjusting block size will change the mapping between main memory

locations and SPM memory locations. If the cache misses an application encounters

are mostly conflict misses, we can reduce the block size to increase number of sets, so

to lower the chances of mapping frequently-accessed memory addresses to the same

SPM address. On other hand, if an application observes more cold misses, then we

can increase the block size to refrain from such misses.

Figure 4.1: The Previous Approach Inserts g2l Before Every Memory Access, While
Our Approach Tries to Identify the Heap Accesses Statically and Skip Unnecessary
g2ls.

14

Chapter 5

DETAILS OF OUR APPROACH

We present the first three generic optimizations in detail in this section. The

optimization for embedded systems that adjusts block size to reduce misses will be

presented in the next section.

5.1 Statically Detecting Heap Accesses

This optimization identifies heap accesses at compile-time, so that the manage-

ment function g2l can be avoided at memory accesses that are definitely not to heap.

Figure 4.1 illustrates the effect of this optimization.

The original program defines a structure, which consists of two integer pointers a

and b. It then creates a global variable s as an instance of the structure, and assigns

s->a with an heap object created by a call to the malloc function. The program then

points s->b to the fourth integer element starting from the address in s->a. Later

s->b is used to access the heap object. The program also defines a pointer p that

refers to a stack variable. Even though only s->a and s-¿b points to heap data in

this program, the previous heap management technique Bai and Shrivastava (2013)

will insert a g2l call at every memory access unnecessarily as shown in Figure 4.1(b),

including memory accesses via p and s (not s->a or s->b), which are to stack and

global data respectively. On the other hand, with static detection on heap accesses,

we only insert g2l before the memory instructions via these two pointers.

To find out heap accesses, we first identify all the the heap pointers. Algorithm 1

explains the method we use to identify heap pointers, which includes the pointers

that directly point to heap objects created by memory allocators (e.g. malloc or

15

calloc), and their aliases. The analysis starts at getHeapPtr. In this procedure, the

analysis first executes getAlloc procedure, taking as input the main function (line

2). The getAlloc procedure identifies all the invocation of memory allocators in

the input function F, and record the pointers that are used to store the created

heap objects (line 8 and 9). If F calls any other functions F’, getAlloc recursively

accesses and identifies the memory allocations in F’ (line 11 and 12). Once all the heap

pointers that stores the heap objects created by memory allocations are identified, the

analysis continues to identify all the possible alias of these heap pointers by executing

the getAlias procedure on the main function (line 4). The getAlias procedure

goes through each instruction in the input function F, and recognizes any instruction

that performs pointer arithmetic on a heap pointer and assigns the result to another

pointer. The destination pointer of such an instruction is identified as an alias of the

heap pointer. Similar to the getAlloc procedure, in case F calls any other function

F’, the getAlias procedure recursively calls itself on F’ to identify aliases created in

F’. Since each iteration of the getAlias procedure may recognize new aliases, this

procedure is repeated until no new aliases can be identified (line 3 to 5).

Once all the heap pointers are recognized, we can identify heap accesses and insert

g2l function as follow. All the memory accesses (i.e. loads and stores) via any of the

heap pointers identified in Algorithm 1 are considered as potential heap accesses. An

g2l function is inserted right before the memory instructions to first translate the

memory address to an SPM address. The SPM address is then used to substitute for

the original memory address in the instructions.

There are cases when the compiler cannot determine whether a pointer refers to

heap data. In Figure 5.1(a), the pointer c can either refer to heap data or stack

data, depending on the outcome of the call to rand function, which returns a random

number. We introduce a new management function, called g2l rc, that checks at

16

runtime and sees whether the memory address is in heap, similar to the previous work.

When we are sure an access is to heap, we call the g2l function, which does not have

any runtime checking. If an access may be to heap, we call g2l rc. Otherwise, if we are

sure an access is definitely not to heap, we do not call any heap management functions.

Figure 5.1(b) shows the transformed code with heap management functions. We call

g2l before accessing the data referred by the pointer b, because we are sure it is in

heap. We call g2l rc before accessing c, because it may refer to heap data, but are not

for sure. We do not insert any heap management function when accessing a, because

it is definitely in stack.

Figure 5.1: When a Memory Access May Be to Heap but Is Not for Certain, We
Check at Runtime Before Managing the Access.

17

5.2 Simplifying Management Framework

Whenever a memory access happens, a software-cache based approach has to

first calculate the set index of the memory address. The software cache will then

sequentially access the entries in the set and compare the tag of the target address

with the tags in the entries. Once the data block that contains the target address is

located, either already in the SPM in a hit, or first copied from the main memory in

a miss, the final SPM address is generated and used to replace the original memory

address in the memory access.

Since this process happens within each management function call, it is perfor-

mance critical to speed up this process. With a direct-mapped cache on software,

this process can be noticeably simplified to execute much less instructions at run-

time, compared to a set-associative cache. Figure 5.2(a) and Figure 5.2(b) shows

two examples using the previous approach and our approach respectively. The edges

in both figures specify dependencies between two steps. The previous approach as

shown in Figure 5.2(a) calculate set index with the following function:

set index = ((mem addr >> log(block size)) ∧ (mem addr >> (log(block size) +

1)))&(set num− 1),

where mem addr is the input main memory address, block size is the size of a data

block, and set num is the number of sets. The software cache then searches the

corresponding set for the requested data block. Only after the data block is found

(either after a hit or after a miss), can then the SPM address be generated as

spm addr = spm base+(set index∗set assoc+entry index)∗block size+mem addr%block size,

where spm base is the start address of the data region, set assoc is the set associa-

tivity (4 in this case), and entry index is the index of the entry in the set specified

by set index. Notice this equation requires both the index of the set and the index

18

of the entry in the set, which explains the dependence of the calculation of the SPM

address on the sequential searching in Figure 5.2(a). On the other hand, our approach

in Figure 5.2(b) simplifies the calculation of the set index of a memory address into

set index = mem addr >> log(block size)%set num,

Since each set has only one entry, sequential searching is not necessary. The soft-

ware can simply go ahead and calculate the final SPM address as spm addr =

spm base + mem addr%(set num ∗ block size).

Figure 5.2: (A) the Steps of a Management in the Previous Work (B) the Steps of
a Management Function in Our Approach (C) the Steps of a Management Function
in the Previous Work and Our Approach.

19

In addition, the calculation of SPM address does not depend on any previous steps.

Elimination of such dependence may allow the compiler to have more parallelism when

generating and scheduling the machine instructions for the management functions.

5.3 Inlining and Combining Management Calls

Once g2l function is inserted after identifying heap accesses statically, we can re-

duce the management overhead by inlining the management functions, which enables

further optimization. In Section 3 we explained the previous approach divided SPM

into two memory regions for heap management table and data region. Our approach

makes similar usage of SPM space. Every g2l thus has to load the start address of

the heap management table and data region at the beginning of its execution, before

executing any other call-specific instructions. Therefore, we can move these common

Figure 5.3: Inlining Management Calls and Move Common Operations to the Be-
ginning of the Caller Function.

20

instructions outside of the g2l function and execute it once before any g2l calls, so that

all the subsequent g2l calls can reuse the results, similar to common subexpression

elimination.

Figure 5.3 illustrates the idea. Figure 5.3(a) shows the original code. Figure 5.3(b)

is the transformed code before inlining. Each g2l call first executes the common

instructions redundantly, and then execute specific instructions for that call. We

represent the common instructions and specific instructions in a g2l with function

calls g2l common and g2lspecific respectively in the example, but they are plain

instructions in the actual implementation. In Figure 5.3(c), we inline the g2l calls,

move and execute the common instructions at the beginning of the caller function.

After the optimization, only call-specific instructions are executed at where a g2l

had been called. While this optimization should definitely improve performance, its

importance is maximized when g2l had been originally called within loop nests, as this

example shows —instead of repeatedly and excessively executing the common steps

in a loop nest, moving these common instructions outside the loop can significantly

reduce such overheads.

The algorithm of this optimization is shown in Algorithm 2. The compiler goes

through every function in the program and inlines g2l calls with call-specific instruc-

tions. The common instructions are moved to the beginning of the function.

5.4 Adjusting Block Size for Embedded Applications

When the capacity and associativity of a cache are given, the block size decides

the number of sets. Different choices of block size may end up causing drastically

different performances. We can therefore analyze the access pattern and find a block

size that can achieve good performance.

21

When a program is susceptible to cache thrashing, we can decrease block size to

lower the chance of such undesirable situation. Cache thrashing refers to excessive

conflict cache misses that happen when multiple main memory locations competing

for the same cache blocks. It may happen when more than two heap objects with

aggregate types (e.g. arrays) are accessed within the same loop. Figure 5.4 shows

an example. We assume direct-mapped cache in this example, therefore each set has

only one block. Two heap objects of array type, hp1 and hp2, are accessed in the

same loop. The elements of the two arrays accessed in each iteration map to the same

cache block and causes significant conflicts. In this case, if we decrease the block sizes

and increase number of blocks, then the two accesses may map to different blocks

thus different sets so that no conflicts will happen.

On the other hand, we can increase block size to improve spatial locality under

certain circumstances. For instance, in Figure 5.5, only one array, hp, is accessed

Figure 5.4: Decreasing Block Size Can Lower the Chance of Cache Thrashing When
Multiple Heap Objects Are Being Accessed in a Loop.

22

within a loop. Conflict misses will rarely happen in this case, so we can increase

block size to have more elements and less data movement.

The heuristic we use to adjust block size at compile-time is presented in Figure 5.6

to statically adjust block size. The heuristic goes through all the innermost loops in

a program. Whenever it identifies two or more heap objects accessed within the loop,

it reduces the block size to increase the number of sets for avoiding cache thrashing;

otherwise, it increases the block size to increase spatial locality. This analysis is

statically done. However, the choice of block size in both cases rely on profiling.

Therefore, this optimization is the most effective for embedded applications using

representative input.

Figure 5.5: Increasing Block Size Can Improve Spatial Locality When Only One
Heap Object Is Accessed in a Loop.

23

Figure 5.6: The Heuristic for Selecting a Block Size at Compile Time.

24

Algorithm 1 Identify heap pointers

1: function getHeapPtr

2: getAlloc(main)

3: repeat

4: getAlias(main)

5: until cannot find new aliases

6: function getAlloc(Function F)

7: for each instruction I in F do

8: if I is a call to any memory allocator then

9: Record destination pointer P as a heap pointer

10: else

11: if I is a call to any user function F’ then

12: getAlloc(F’)

13: function getAlias(Function F)

14: for each instruction I in F do

15: if I is an assignment statement and one of the operands P is a heap pointer

then

16: Record destination pointer P’ as an alias of P

17: else

18: if I is a call to any user function F’ then

19: getAlias(F’)

25

Algorithm 2 Inlining and combining g2l calls

1: function inlineManagementFunction(Function F)

2: for each function F do

3: if F has any call to g2l then

4: insert common operations of g2l at the beginning of F

5: for each g2l call I in F do

6: inline the call

7: remove the common operations

26

Chapter 6

EXPERIMENTS

6.1 Experimental Setup

We implemented both the state-of-the-art technique Bai and Shrivastava (2013)

and our technique as intermediate representation (IR) passes on LLVM 3.8 Lattner

and Adve (2004) respectively.

We then compiled the same benchmarks with different heap management tech-

niques, ran the executable code on Gem5 Binkert et al. (2011) and compared the

performance. The block size in the software cache is set to 64 bytes in both tech-

Benchmark Heap Size (KB)

Adpcm Decode 0

Adpcm Encode 0

Dijkstra 6.43

FFT 32

iFFT 32

Patricia 766

SHA 0

String Search 0

Susan Corner 92.16

Susan Edge 42.81

Susan Smoothing 17.35

Typeset 32

Table 6.1: Maximum Heap Usage of Benchmarks.

27

niques by default. We only vary the block size during the fourth optimization that

adjusts block size to reduce cache misses.

We emulated the SMM architecture on Gem5 by modifying the linker script and

reserving part of the memory address space as the SPM. Gem5 is configured to have a

single core with a single thread and run in system emulation mode. We implemented

an DMA instruction that copies data between the SPM and the main memory. DMA

cost is modeled as a constant startup time and the time for actual data movement.

The startup time is set to 291 cycles, and the rate for transferring data is set to 0.24

cycles/byte. The CPU frequency is set to 3.2 GHz. All these parameters are based

on the IBM cell processor Kistler et al. (2006).

We evaluated the proposed technique on benchmarks from Mibench benchmark

suite Guthaus et al. (2001). Table 6.1 lists the maximum usage of heap size in the

benchmarks, i.e. the maximum sum of sizes of heap objects at any moment. The

benchmarks that have zero heap usage do not have any heap accesses.

6.2 Significantly Reduces Execution Time

Figure 6.1 shows the execution time of our approach normalized to the previ-

ous work, when each of the optimization is incrementally introduced. Overall, our

Figure 6.1: The Execution Time of Our Approach Normalized to the Previous Work
with Optimizations Incrementally Added.

28

approach reduces execution time by 80% on average with the first three generic op-

timizations, i.e. without adjusting block size. When we apply all four optimizations,

the execution time is reduced by 83% on average.

Figure 6.2 shows the management instruction overhead of our approach normalized

to the previous work, when each of the optimization is incrementally introduced.

The first three generic optimizations, i.e. without adjusting block size reduces the

management instruction overhead by 93%. When we apply all four optimizations,

the execution time is reduced by 96% on average.

We can clearly see from the result in Figure 6.1 that statically detecting heap

accesses contributes the largest reduction of execution time, especially in benchmarks

that do not have any heap accesses, i.e. Adpcm Decode, Adpcm Encode, SHA, and

String Search. Overall, statically detecting heap access reduces the execution time

by 57% on average. This is because of two reasons: reduced management calls and

less executed instructions in each call. Table 6.2 shows the number of calls to the g2l

function before and after statically detecting heap accesses in the previous work. The

management calls is significantly reduced in all the benchmarks. For example, the

number of management calls is reduced from 2628207 to 579221 in Susan Edge. In

benchmarks that do not have any access, management calls are completely eliminated.

Figure 6.2: The Management Instruction Overhead of Our Approach Normalized
to the Previous Work with Optimizations Incrementally Added.

29

Statically detecting heap accesses also allows us to eliminate runtime checking at

g2ls, and thus reduces number of instructions executed in each g2l. Table 6.3 shows

the average number of instructions each g2l executes under different cases, after we

incrementally introduce the optimizations. There are 3 possible cases when a g2l

function is called: a cache hit; a cache miss and an clean/unmodified data block is

chosen to be evicted; a cache miss and a dirty/modified data block is chosen to be

evicted. The memory access may either be a read access or a write access, so there

are 6 different cases overall that may happen when calling a g2l function. The table

clearly shows there is a constant difference of 6 instructions between the Previous

Work column and the Statically Detecting Heap Accesses column in any case.

Benchmark Before After

Adpcm Decode 116702082 0

Adpcm Encode 10211280 0

Dijkstra 149209166 19077784

FFT 336608 90188

iFFT 336671 90204

Patricia 3114668 893184

SHA 8350153 0

String Search 2198090 0

Susan Corner 1238553 273717

Susan Edge 2628207 579221

Susan Smoothing 37252034 4891730

Typeset 274118 3826

Table 6.2: Number of g2l Calls Called Before and After Identifying Heap Access
Statically with the Previous Technique.

30

Case Previous

Work

Statically De-

tecting Heap

Accesses

Simplifying

Management

Framework

Inlining and

Combining

Management

Calls

read hit 52 46 19 8

write hit 59 53 23 10

read miss w/o

write-back

145 139 41 36

write miss w/o

write-back

145 139 44 37

read miss w.

write-back

172 166 58 45

write miss w.

write-back

172 166 58 45

Table 6.3: Instructions Executed Per g2l Under Different Cases With Optimizations
Incrementally Added.

Simplifying management framework, by implementing a direct-mapped software

cache instead of a 4-way set-associative cache, reduces execution time by 42% on av-

erage (on top of statically detecting heap accesses). This is because average dynamic

instruction count of g2l calls in all the cases of Table 6.3 is significant reduced. For

example, the average instructions executed in the sixth case is reduced from 166 to 58

after simplifying management framework. Since a direct-mapped cache causes more

cache misses compared to a 4-way set-associative cache, we also compare the benefit

(reduced cycles) due to less management instructions to the penalty (increased cy-

cles) due to increases cache misses. Figure 6.3 shows the reduced CPU cycles thanks

to less management instructions normalized to the increased CPU cycles because of

31

more cache misses. The simplification of management framework improves the per-

formance of a benchmark, as long as the quotient of that benchmark is greater than

1. For example, in Patricia, the reduced cycles are more than 10000000 times than

the increased cycles. The figure shows that the increased cycles almost are ignorable

compared to the reduced cycles, in all the benchmarks.

Inlining and combining management calls can further reduce execution time by

21% (on top of statically detecting heap accesses and simplifying management frame-

work), thanks to the removed function calls and redundant operations. For example,

as Table 6.3 shows, the average instructions executed in the sixth case is reduced from

166 to 58 after simplifying management framework, and is further reduced from 58

to 45 after inlining and combining management calls. Notice we apply this optimiza-

tion after statically detecting heap accesses. So if the heap management calls are all

eliminated after that step, inlining and combining management calls will not improve

performance. For example, the management calls of Adpcm Decode, Adpcm Encode,

SHA, and String Search are reduced to 0 after the compiler statically finds out there

Figure 6.3: Implementing a Direct-mapped Cache Other than a 4-way Set-
associative Cache Reduces More Execution Time Thanks to Simplified Management
Functions, Compared to the Extra Time Introduced Due to Increased Cache Misses.

32

are no heap accesses in these benchmarks. The performance is therefore not further

improved after the first optimization.

The block size is set to 64 bytes in the experiments of the previous three opti-

mizations. We analyze programs and adjust block size in the fourth optimization.

We set the block size to 16 bytes when the block size needs to be decreased, and 1024

bytes when the block size needs to be increased. The decision is based on profiling

information. Adjusting block size can further reduce execution time by 11% (on top

of the previous three optimizations).

6.3 Scales Well with SPM Size

In the above experiments, the SPM size is set to 4KB. Figure 6.4 shows the

execution time before and after applying the three generic optimizations (excluding

adjusting block size) to the previous technique, as the SPM size increases from 4KB

to 64KB.

Figure 6.4: Execution Time of Our Approach Without Adjusting Block Size Nor-
malized to the Previous Work, When the SPM Size Increases from 4KB to 64KB.
The Order of the Names on the Right Side Is the Same as the Order of Endpoint of
the Line for the Corresponding Benchmark.

33

Under any SPM size, our technique achieves significant improvement over the

previous work. In addition, as the SPM size increases, the normalized execution

time of most benchmarks decreases. The only exception is Dijkstra. The reason

is because in our experiments, we assume the source code of library functions is not

available. Therefore, we can not insert g2l function in the code of library functions.

Notice this is a common problem for most if not all the compiler based approaches.

As a result, all the modified data blocks in the software cache must be flushed to the

main memory whenever a library function may modify heap data, to conservatively

ensure the correctness of execution. In Dijkstra, malloc and free functions are

extensively called. These two functions modify heap data, therefore we have to flush

the software cache every time either of the functions is called. While both the previous

technique and our technique suffer from the overhead, it is worse for our technique.

The proof is briefly given as follows. When we flush a software cache, we have to

check all the blocks in the cache and write back dirty data. Since the capacity and

Figure 6.5: Execution Time of Our Approach after Adjusting Block Size Normalized
to the Previous Work, When the SPM Size Increases from 4KB to 64KB. The Order
of the Names on the Right Side Is the Same as the Order of Endpoint of the Line for
the Corresponding Benchmark.

34

block size of the cache are the same for both techniques, the number of blocks to

check are the same in both techniques. The overheads of flushing software cache are

therefore roughly the same in both techniques. Let the time for flushing the software

cache be Tflush in both techniques. Let the time for the rest of execution be T1 with

the previous technique, and T2 with our technique. The normalized execution time

can be calculated as (Tflush + T1)/(Tflush + T2). As the cache size increases (the data

block size remains), Tflush becomes higher, since the number of data blocks to check

increases. Therefore, the normalized execution time becomes larger. For the similar

reason, we can have the source code of library functions, we can eliminate the flushing

in both techniques and the normalized execution time will be further reduced.

Figure 6.5 shows the execution time before and after applying all four optimiza-

tions (including adjusting block size) to the previous technique. Normalized execution

time is further improved, as SPM size increases. Notice in this case the normalized

execution time of Dijkstra decreases as the SPM size increases. It is because our

technique increases the block size of the benchmark, and decreases the number of

blocks to check thus lowers the overhead every time a flush happens, while the block

size of the previous technique is not changed.

35

Chapter 7

CONCLUSION AND FUTURE WORK

Due to the expense of caches, some processor designers have opted to use SPM as

an alternative. Such SPM-based processors have been widely used in various areas.

However, the data management must be explicitly done on SPM. In this paper, we

propose an efficient heap management that consists of three generic optimizations

(statically detecting heap accesses, simplifying management framework, and inlining

and combining management calls), and an additional optimization (adjusting block

size) for embedded applications specifically. The experimental results show that with

the three general optimizations, we can reduce the execution time by 80% on average

compared to the state-of-the-art. If we apply all four optimizations, then we can

reduce execution time by 83% on average. Additional experiments show that as SPM

size increases, the execution time our approach normalized to the execution time of

the state-of-the-art keeps reducing on average, with or without adjusting block size.

36

REFERENCES

Bai, K. and A. Shrivastava, “Automatic and efficient heap data management for
limited local memory multicore architectures”, in “Design, Automation Test in
Europe Conference Exhibition (DATE), 2013”, (2013).

Banakar, R., S. Steinke, B.-S. Lee, M. Balakrishnan and P. Marwedel, “Scratchpad
memory: Design alternative for cache on-chip memory in embedded systems”, in
“Proceedings of the Tenth International Symposium on Hardware/Software Code-
sign”, CODES ’02 (2002).

Binkert, N., B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,
M. D. Hill and D. A. Wood, “The gem5 simulator”, SIGARCH Comput. Archit.
News (2011).

Bournoutian, G. and A. Orailoglu, “Dynamic, Multi-core Cache Coherence Architec-
ture for Power-sensitive Mobile Processors”, in “Proc. of CODES+ISSS”, (2011).

Carter, N. P., A. Agrawal, S. Borkar, R. Cledat, H. David, D. Dunning, J. Fryman,
I. Ganev, R. A. Golliver, R. Knauerhase, R. Lethin, B. Meister, A. K. Mishra, W. R.
Pinfold, J. Teller, J. Torrellas, N. Vasilache, G. Venkatesh and J. Xu, “Runnemede:
An Architecture for Ubiquitous High-Performance Computing”, in “Proceedings of
the 2013 IEEE 19th International Symposium on High Performance Computer
Architecture (HPCA)”, HPCA ’13 (2013).

Chakraborty, P. and P. R. Panda, “Integrating software caches with scratch pad
memory”, in “Proceedings of the 2012 International Conference on Compilers, Ar-
chitectures and Synthesis for Embedded Systems”, CASES ’12 (2012).

Choi, B., R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V. Adve, V. S.
Adve, N. P. Carter and C.-T. Chou, “DeNovo: Rethinking the Memory Hierarchy
for Disciplined Parallelism”, in “Proc. of PACT”, (2011).

Dominguez, A., S. Udayakumaran and R. Barua, “Heap data allocation to scratch-
pad memory in embedded systems”, J. Embedded Comput. (2005).

Garcia-Guirado, A., R. Fernandez-Pascual, A. Ros and J. Garcia, “Energy-Efficient
Cache Coherence Protocols in Chip-Multiprocessors for Server Consolidation”, in
“Proc. of ICPP”, pp. 51–62 (2011).

Gschwind, M., H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe and T. Yamazaki,
“Synergistic Processing in Cell’s Multicore Architecture”, IEEE Micro 26 (2006).

Guthaus, M. R., J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge and R. B. Brown,
“Mibench: A free, commercially representative embedded benchmark suite”, in
“Workload Characterization, 2001. WWC-4. 2001 IEEE International Workshop
on”, (2001).

37

Hallnor, E. G. and S. K. Reinhardt, “A fully associative software-managed cache de-
sign”, in “Proceedings of 27th International Symposium on Computer Architecture
(IEEE Cat. No.RS00201)”, (2000).

Kistler, M., M. Perrone and F. Petrini, “Cell multiprocessor communication network:
Built for speed”, IEEE Micro (2006).

Lattner, C. and V. Adve, “LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation”, in “Proc. of CGO”, (2004).

Lin, Y., H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge, C. Chakrabarti and
K. Flautner, “Soda: A low-power architecture for software radio”, SIGARCH Com-
put. Archit. News (2006).

McIlroy, R., P. Dickman and J. Sventek, “Efficient Dynamic Heap Allocation of
Scratch-pad Memory”, in “Proceedings of the 7th International Symposium on
Memory Management”, ISMM ’08 (2008).

Moritz, C. A., M. I. Frank and S. Amarasinghe, FlexCache: A Framework for Flexible
Compiler Generated Data Caching (2001).

Niar, S., S. Meftali and J. L. Dekeyser, “Power consumption awareness in cache
memory design with SystemC”, in “Proceedings. The 16th International Conference
on Microelectronics, 2004. ICM 2004.”, (2004).

Olofsson, A., “Epiphany-V: A 1024 processor 64-bit RISC System-On-Chip”, CoRR
(2016).

REX Computing, Inc., “THE NEO CHIP”, http://rexcomputing.com/ (2014).

Texas Instrument, “TMS320C6678 Multicore Fixed and Floating-Point Digital Signal
Processor (Rev. E)”, http://www.ti.com (2014).

Wilhelm, R., J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat and P. Stenström, “The Worst-case Execution-time
Problem&Mdash;Overview of Methods and Survey of Tools”, ACM Trans. Em-
bed. Comput. Syst. (2008).

Wilson, P. R., M. S. Johnstone, M. Neely and D. Boles, Dynamic storage allocation:
A survey and critical review (1995).

Xu, Y., Y. Du, Y. Zhang and J. Yang, “A Composite and Scalable Cache Coherence
Protocol for Large Scale CMPs”, in “Proc. of ICS”, (2011).

38

	LIST OF TABLES
	REFERENCES
	LIST OF FIGURES
	1
	2
	3
	4
	5
	5.1 Statically Detecting Heap Accesses
	5.2 Simplifying Management Framework
	5.3 Inlining and Combining Management Calls
	5.4 Adjusting Block Size for Embedded Applications

	6
	6.1 Experimental Setup
	6.2 Significantly Reduces Execution Time
	6.3 Scales Well with SPM Size

	7

