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ABSTRACT

This dissertation will look at large scale collaboration through the lens of online

communities to answer questions about what makes a collaboration persist. Results

address how collaborations attract contributions, behaviors that could give rise to

patterns seen in the data, and the properties of collaborations that drive those be-

haviors.

It is understood that collaborations, online and otherwise, must retain users to

remain productive. However, before users can be retained they must be recruited. In

the first project, a few necessary properties of the “attraction” function are identified

by constraining the dynamics of an ODE (Ordinary Differential Equation) model.

Additionally, more than 100 communities of the Stack Exchange networks are pa-

rameterized and their distributions reported.

Collaborations do not exist in a vacuum, they compete with and share users

with other collaborations. To address this, the second project focuses on an agent-

based model (ABM) of a community of online collaborations using a mechanistic

approach. The ABM is compared to data obtained from the Stack Exchange network

and produces similar distributional patterns.

The third project is a thorough sensitivity analysis of the model created in the

second project. A variance based sensitivity analysis is performed to evaluate the

relative importance of 21 parameters of the model. Results indicate that population

parameters impact many outcome metrics, though even those parameters that tend

towards a low impact can be crucial for some outcomes.
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Chapter 1

INTRODUCTION

1.1 Background

Throughout history, large scale collaboration has allowed for the foundation of

cities, the establishment of trade networks, scientific progress, medical breakthroughs

and the advancement of human rights. As failed collaborations do not leave much in

the way of artifacts or historical records, the most visible of these collaborations are

those that succeeded. Thus, exploration of what determines success in collaboration is

largely limited to observing and mimicking success, rather than learning from failure.

Not all collaborations are beneficial to the public, those that are are called a

public good. A public good is a good that is both non-excludable and non-rivalrous

(Bade and Parkin, 2012) and this can be thought of as something that can be used by

anyone and that isn’t used-up by use. In practice, perfect examples of public goods

are difficult to come by so we call those goods that are close, public goods. Examples

of public goods include national defense, knowledge, and clean air. Public goods

are susceptible to what is called the “free-rider problem”. A free-rider is someone

who benefits from a good without contributing to it. In public goods the possibility

of free-riding reduces the perceived value of contribution as the benefit is shared

by contributors and free-riders alike. One solution to the “free-rider problem” is

government intervention: this can be seen for example in the maintainance of national

defence with tax payer dollars, a system which minimizes the possibility of free-riders.

1



1.1.1 Online Public Goods

Many online collaborations can be thought of as creating a public good. On-

line collaborations can specifically be categorized as sources of information goods.

Information goods are non-rivalrous because they are not used-up by use and many

online communities are non-exclusive even if exclusion is possible. Wikipedia (https:

//www.wikipedia.org/), a household name, is a textbook example of a non-rivalrous,

non-exclusive online collaboration. Although a good example of such a collabora-

tion, it is hardly the only one: Stack Exchange (https://stackexchange.com/),

Github (https://github.com/), and the Linux operating system (https://www.

linux.com/) are all additional examples very large scale online collaborations pro-

ducing a public good.

Studying collaboration through the lens of online communities carries a significant

advantage over observing other collaborations or experimentation for a variety of

reasons related to the specific properties of the internet. Online communities have

readily available data for both successful collaborations and for failed collaborations;

they also involve far more participants than could be reasonably be enrolled in a

typical social science experiment. From data sourced from online collaboration we

can learn what separates successful collaborations from unsuccessful collaborations

rather than what successful collaborations have in-common.

1.1.2 Experimental Public Goods

The evolutionary stability of cooperation is a constant subject of interest. There

are several possible explanations for how altruistic behavior might evolve, or at least

apparently altruistic behavior, these include: direct reciprocity, indirect reciprocity,

and kin-selection (Nowak and Highfield, 2011). The key similarity between all of these

2
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components is that they in some way share information. Direct reciprocity can drive

cooperation when players interact repeatedly, it is beneficial to foster cooperation

because, over the long term, it is mutually beneficial. Indirect reciprocity requires

information be shared in some other way, usually a reputation system, as this forces

players to carry a history of there choices with them providing similar information

to that which is obtained through direct reciprocity. Kin-selection only works among

kin and is based on the priniple that shared genetic information encourages altruistic

behavior among related individuals for the ultimate benefit of the group.

Another cooperation reinforcing mechanism is punishment. A direct comparison

between punishment and communication suggests that communication serves better

than punishment to improve outcomes Janssen et al. (2010). However, the effects

of punishment on strengthening cooperation have been observed in human subject

research (Ostrom et al., 1992) as well as in evolutionary simulations (Boyd et al.,

2003). The greatest drawback of this system is the cost of maintaining the punishment

system, and the best cost is not clear. If punishment is too expensive to dole out

it cannot sufficiently restrain defectors, however if it is too inexpensive it can be

easily overused. Since punishment systems must be maintained, significantly more

cooperation is needed to achieve the same outcomes when punishment is funded.

Cooperation often comes down to trust, and it occurs when the cooperators believe

it is going to occur. In small groups cooperation is relatively easy maintain, and

in reputation systems the trust is placed in the reputation rather than uniformed

expectation, in punishment systems players trust that others won’t risk punishment.

In large groups cooperation is more difficult to maintain (Boyd et al., 2003; Janssen

et al., 2014). Different constraints produce different results but the general trend is

that cooperation decreases with group size. However, large scale cooperation does

occur, sometimes driven through punishment or reputation systems, often both.

3



1.2 Prior Research

For the purpose of reviewing prior literature we look at three categories of related

work: First, we will discuss patterns found in online communities; Second, we will

summarize some of the previous models used for analyzing online communities. These

patterns are summarized in Table 1.1.

1.2.1 Patterns in Online Communities

In the context of online communities, “success” is not well defined. Rather than

try to categorize communities into those that are successful and those that are not,

most look at the distributions of various outcomes. The patterns observed depend in

part on how the data is obtained.

Reference Subject Users per

Commu-

nity

Tasks per

User

Findings

Wilkinson

(2008)

Peer-

Production

2− 4 10− 30 scale free distribution

of contributions per

user

slope of distribution

task dependent

scale free distribution

of contributions per

community

Fu et al. (2008) Blogging 1 NA power law in-degree

power law out-degree

4



Wu et al. (2009) Digg/

YouTube

NA NA attention motivates

production

power law user contri-

bution in Digg

long tail user contri-

bution in YouTube

Huberman et al.

(1998)

Browsing NA NA power law browsing

behavior

Huberman and

Adamic (1999)

Website NA NA power law size of web-

site

Albert and

Barabási (2002)

Internet NA NA power law degree dis-

tribution

Barabási and Al-

bert (1999)

WWW NA NA power law degree

Broder et al.

(2000)

WWW NA NA power law weakly con-

nected components

power law strongly

connected compo-

nents

Radtke (2011) FLOSS 2 20− 30 power law project de-

velopers

Ozmen et al.

(2012)

Participatory

Science

2 1 power law user contri-

bution

Kittur and

Kraut (2010)

Wiki 10 0.2 Zipf law wiki users

Zipf law wiki edits

5



Yasseri and

Kertész (2013)

Wikipedia 0.25− 1.25 100 power law article edi-

tors

log normal inter edit

time

power law session ed-

its

Table 1.1: Characteristics of Online Communities

Web crawlers can provide information on the structure of the web, and provide

the first look data for understanding the environment in which online communities

live. If web pages are considered as nodes and hyperlinks as edges, both the in-degree

and out-degree of blogs obey a power-law distribution (Fu et al., 2008). Further, both

the web (Barabási and Albert, 1999) and the internet (Albert and Barabási, 2002)

have a degree distribution that is power-law. Lastly, the size of both strongly and

weakly, connected components, are also power-law distributed (Broder et al., 2000).

A key source of information for modeling collaborative communities is data col-

lected from some exemplar communities. For example, Wikis are a popular platform

for online collaboration and excellent source of data. The number of editors a wiki has

appears to be distributed according to a Zipf law, as does the number of edits until

falling below a critical mass Kittur and Kraut (2010). Furthermore, the distribution

of Wikipedia editors per article appears to follow a power-law distribution for most

of the range Yasseri and Kertész (2013).

The next pattern of interest is the behavior of users. First, the number of clicks

made while browsing the internet is distributed according to a power law Huberman

et al. (1998). More relevantly, user contribution seems to be driven by attention (Wu

6



et al., 2009). While this does not always result in a power-law, the distribution seems

to consistently have a high probability of few contributions, and a power law on a

portion of the domain (Wilkinson, 2008; Wu et al., 2009; Ozmen et al., 2012). The

slope of this power law is dependent on the community (Wilkinson, 2008), as is the

domain (Wu et al., 2009).

1.2.2 Models of Online Communities

A survey of earlier papers on modeling online communities reveals mechanisms of

user action thought to be present. In order to narrow the scope of research surveyed,

the review is limited to works that take a mechanistic approach to modeling online

communities. To further limit the works examined, models of online social networks

are excluded from the survey. For the purpose of this work, communities are con-

sidered productive communities if they create or distribute knowledge, or practice

peer production. Examples include open source software, Wikipedia, and question

and answer forums such as Stack Exchange. With these restrictions, a few different

mechanisms are found that, in various forms, are used to model online communities.

These three mechanisms, known as preferential attachment, foraging, and infection,

apply to different aspects of online communities.

Power law distributions are a hallmark of online communities (Wilkinson, 2008; Fu

et al., 2008; Barabási and Albert, 1999; Broder et al., 2000; Huberman et al., 2009).

Preferential attachment is a mechanism for the formation of power law distributions,

which has been verified to occur in online communities (Pastor-Satorras et al., 2001).

The idea that “the rich get richer” is captured in the positive feedback of preferential

attachment. If one were to apply this idea to online communities, one could say

that a new user is more likely to join the larger communities than the smaller. This

concept could also be applied to tasks or connections between communities. That
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is, communities with a large number of tasks will draw more new tasks, or highly

connected communities are more likely to form new connections.

One way of explaining the time people spend contributing to online communi-

ties is to assume they derive some benefit from this activity. If contributing satisfies

some need for users, they can be considered to forage in communities for tasks. One

successful foraging heuristic is win-stay/lose-shift, which is seen when a forager cate-

gorizes their outcomes as either sufficient or not, and moves from their foraging site

only when their outcomes are insufficient (Nowak and Highfield, 2011; Ozmen et al.,

2012). In the language of online communities, one would predict that a user remains

in a community only as long as the user is able to contribute to that community.

Another modeling framework with some applicability to online communities is

that providided by epidemiology. It has been observed that popularity drives produc-

tion in online communities, and considering contributors as infectious is one way of

explaining or conceptualizing this phenomenon. Users could be seen to follow an SEIR

(Susceptible, Exposed, Infectious, Recovered) progression, where unattached suscep-

tible users (S) are exposed to a community or task by contributors (I), after which

they are considered exposed (E). After some time, exposed users progress in turn to

active contributors (I), eventually contributors (I) leave the community and begin a

refractory period (R) during which they will not re-join the community (Ozmen et al.,

2012). One of the common and basic properties of infectious disease models is that

the number of new infections is proportional to the number of infectious people. This

corresponds to the number of active contributors in a community, thus determining

its attractiveness. The above presented parallel concept highlights the importance of

popularity in online communities and their self-reinforcing behavior.

From the review a few key mechanisms used in the modeling of online communi-

ties can be identified: users must follow other users; positive feedback of popularity is
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included in both preferential attachment and epidemiological models; contributions

must be a commodity sought after by users and communities. This can be explained

by the observation that attention drives contribution (Huberman et al., 2009; Wu

et al., 2009). Since users follow tasks, and popularity predicts user movement, tasks

must occur with higher frequency in larger communities. The next section describes

the Stack Exchange network which will be the primary data source for this disserta-

tion.

1.3 Stack Exchange

The main source of data for this dissertation will be the Stack Exchange net-

work. Stack Exchange is a network of Question & Answer forums that boasts

five million registered users, 3.7 million questions, and 4.6 million answers (https:

//stackexchange.com/about for current numbers). With more than 100 million

unique visitors per month, Stack Exchange is a very well used information good.

As previously mentioned, the Stack Exchange network is a number of connected

Question & Answer forums. Because of the connected but distinct forums, Stack Ex-

change is able to provide expert answers on a wide range of topics. With more

than 150 (no clear consensus on if a few sites should be counted) member sites

ranging from ‘math.stackexchange.com’ and ‘serverfault.com’ (created before the ag-

gregated domain and one of the sites that may or may not be counted) to ‘mar-

tialarts.stackexchange.com’ and ‘italian.stackexchange.com’ the breadth of topics is

undeniable.

Not only does the Stack Exchange network include a great many sites, it is always

growing. The process for adding a site to the Stack Exchange network is handled at

‘area51.stackexchange.com’ here, ideas for new sites are formed, refined, and eventu-

ally tested. To create a new site a user must propose the topic to the community and
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provide a few example questions; the purpose of the site is refined through discus-

sion and users are asked to commit to using the site. If a proposal generates enough

interest at area51 it will go into a public beta and, if it maintains sufficient activity,

become a member of the Stack Exchange network.

Though each member site of the Stack Exchange network has a unique topic, each

is modeled after ‘stackoverflow.com’ the original Stack Exchange site. A contributor

to stackoverflow’s success was its gamification of the collaborative process. New users

can ask and answer questions and by doing so, increase their reputation through

accumulated points. As a user increases their reputation they unlock the ability to

comment, vote on answers, and eventually moderation tools. Reputation is largely

a measure of how familiar a user is with a given site and as such does not transfer

between Stack Exchange sites. Further details about how the stack exchange sites

work can be found at ‘meta.stackexchange.com’ the Stack Exchange site about Stack

Exchange.

The Stack Exchange data used in this dissertation can be found at https://

archive.org/details/stackexchange and was downloaded in December of 2016.

The recorded data includes details and time stamps on all posts as well as users, votes,

comments, et cetera. Because each site in the Stack Exchange network is distinct but

also a part of the network, we see the results of many natural experiments with their

results all recorded in the same way. The structure of the Stack Exchange network

and the quality of recorded data allows us to look at the distributional characteristics

of the outcomes of online collaborations. This data set includes data for 168 stack

exchange sites and their meta sites (a Q&A forum about the site itself). Example

code used to read the data is available via OpenABM at https://www.openabm.org/

model/5727/version/1/view.
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1.4 Questions

One of the questions in online collaboration is the conditions in which a community

will persist. We will model both an isolated community (Chapter 2) and and a

community of communities (Chapter 3 and Chapter 4) to explore these conditions.

In Chapter 2 we hypothesize that the number of questions entering a Q&A forum

can be predicted from the active questions. In Chapter 3 we consider the hypothesis

that users move through communities like like foragers through the environment.

In this dissertation I will use simulation and mathematical modeling in conjunc-

tion with Stack Exchange data to answer questions about online collaborations and

to inform on large scale collaborations in general. In the next chapter I will use differ-

ential equations and patterns in user behavior to identify plausible functional forms

for how communities attract new users. In the subsequent chapter I will take an

agent-based modeling approach and use known behavioral mechanisms to reproduce

the distributional patterns seen in the Stack Exchange data. Lastly, I will perform a

thorough sensitivity analysis on the agent-based model to identify how each mecha-

nism influences each outcome. The manuscript will end with a conclusion discussing

interpretation of results and how these projects inter-relate.
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Chapter 2

POSSIBLE MECHANISMS FOR ATTRACTING QUESTIONS TO ONLINE Q&A

2.1 Introduction

The importance of user retention is well known in collaborations both online and

otherwise. For a collaboration, or any group to last, you need more members to join

than to leave. Improving member retention reduces the number of members leaving

a collaboration, however perfect retention is not sufficient, a collaboration needs re-

cruitment. A population is stable when recruitment and loss are balanced, this is as

true for online collaborations as any other population. User retention can be mea-

sured for online communities, and because of its importance, often is. Recruitment is

much harder to measure, online communities cannot directly track potential members

and observe what brings them into the community. Since recruitment is as important

as retention but cannot be directly observed, we turn to modeling to explore what

might determine how attractive a collaboration is to new users. In this chapter we

will explore how the population dynamics of Question & Answer forums constrain

the possibilities for how new questions are attracted.

2.2 Model

In order to look at how online collaborations might attract contributions (and

contributors) we construct a population ecology model of the questions in a question

and answer forum. Question and answer forums are significant in that there are two

opposing forms of contribution; questions and answers. We consider three “life stages”

of questions, there are new unanswered questions, questions that have had answers
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attempted but have not been answered, and questions that have been answered. Not

every question will go through every stage, it is possible that the first attempt at an

answer results in an accepted answer. Previous work has demonstrated that there are

at least two strategies for answering questions in the Stack Exchange network (Wu

et al., 2016). If a user adopts Type A strategy, it will favor new questions, but the

answers might not have a high likelihood to be accepted. Users identified by a type B

strategy contribute to questions that already had at least one attempt at an answer

and are more likely to provide an answer that might be accepted. We can provide

the following caricature for the two strategies. Type A users are focused on getting

reputation points by responding quickly to new questions, while Type B users are

more knowledgeable and experienced and only bother with questions that have not

been successfully been answered before. The dynamics of this system can be seen in

Figure 2.1 and in the System of Equations (2.1). Rather than model the question

and user populations of a forum separately, we assume that the populations scale

together. A possible explanation for this assumption is that either open questions

attract users, or the same things that attract questions attract users.

Q̇1 = f(Q1, Q2)− βAQ1 (2.1)

Q̇2 = (1− αA)βAQ1 − ωBQ2 + (1− αB)ωBQ2 (2.2)

Q̇3 = αAβAQ1 + αBωBQ2 (2.3)

The model follows the possible “life histories” of questions. A new question (Q1)

enters the system according to some attraction function f(Q1, Q2), this attraction

depends on the current activity of the system. New questions are then answered at a

rate β proportional to the number of new questions and the proportion of answerers

employing a type A answering strategy (A). Questions answered by type A answer-
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Q1 Q2 Q3

f(Q1, Q2)

αAβA

αBωB(1− α)βA
Figure 2.1: Visualization of Model of Question “Life Stages”

ers have an acceptable answer with probability αA and are split between questions

without an acceptable answer (Q2) and questions with an acceptable answer (Q3).

Type B users answer questions that have already been attempted (Q2) at a rate ω

proportional to the number of attempted questions (Q2) and the proportion of users

employing strategy B (B). Questions answered by type B users have acceptable an-

swers with probability αB, however unlike with type A, if the answer is not acceptable

the question does not change compartments. It is important to note that:

Q̇1 + Q̇2 + Q̇3 = f(Q1, Q2)

. This tells us that the only way the total number of questions increases is through

the function f(Q1, Q2), because of this the properties of f(Q1, Q2) are important to

both the model and to the real system.

By combining parameters and removing Q3 we can re-write the system of Equa-

tions (2.1) as the system of Equations (2.4). The re-written system is equivalent to

the original system as well as using fewer state variables and parameters, making

it more amendable to analysis. In the system of Equations (2.4) we have three pa-

rameters: δ is the rate at which unanswered questions receive an answer, αA is the

probability that an answer provided by a type A user is acceptable, and γ is the rate

at which previously answered questions receive an acceptable answer.
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Q̇1 = f(Q1, Q2)− δQ1 (2.4)

Q̇2 = (1− αA)δQ1 − γQ2 (2.5)

2.3 Analysis

Having formulated a model for the population ecology of questions on a Q&A fo-

rums we now turn to analysis to impose constraints on the system. Information about

the real behavior of Q&A forums provides constraints on the dynamical properties

the system should have. By constraining the dynamics of the model we can identify

properties of the function f(Q1, Q2), this is significant because f(Q1, Q2) represents

the flow of new questions into a Q&A forum.

Among the most obvious and consistent properties of online collaborations is their

non-negativity. No collaboration can have a negative number of members or new

questions and so the System of Equations (2.4) should be positively invariant for

Q1 ≥ 0 and Q2 ≥ 0. To constrain the model to the positive quadrant we need

Q̇1(Q1 = 0) ≥ 0 and Q̇2(Q2 = 0) ≥ 0. The resulting condition is that f(0, Q2) ≥ 0,

considering the meaning of f(Q1, Q2) this is an unsurprising condition that should

always hold as there exist no negative questions to attract. Given the meaning of

f(Q1, Q2) the above result is generalized to f(Q1, Q2) ≥ 0.

To further constrain f(Q1, Q2) the System of Equations (2.4) is set equal to 0

and equilibria are identified. This gives a relation between Q1 and Q2 as well as one

between Q1 and f(Q1, Q2), these can be found in Equation (2.8). Further, these can

be combined into a condition between Q?
1 and f(Q?

1, Q
?
2) as seen in Equation (2.10)
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0 = f(Q?
1, Q

?
2)− δQ?

1 (2.6)

0 = (1− αA)δQ?
1 − γQ?

2 (2.7)

Q?
2 =

(1− αA)δ

γ
Q?

1 (2.8)

δQ?
1 = f(Q?

1, Q
?
2) (2.9)

δQ?
1 = f

(
Q?

1,
(1− αA)δ

γ
Q?

1

)
(2.10)

An online collaboration with no activity is unlikely to gain activity. In terms of

the model “no activity” is represented as (Q1, Q2) = (0, 0) so we expect (0, 0) to be an

equilibrium of the model. Using Equation (2.10) and the assumption that (0, 0) is an

equilibrium we have that f(0, 0) = 0, that is a community with no activity attracts no

new questions. Additionally, given that collaborations do not grow without bound, we

suspect there is a second point that satisfies the Equation (2.10), that is f(Q?
1, Q

?
2) =

δQ?
1. Thus we have f(Q1, Q2) ≥ 0, f(0, 0) = 0, and at least one pair Q?

1, and Q?
2 such

that f(Q?
1, Q

?
2) = δQ?

1.

In addition to having at least two equilibria we can constrain the system with

the condition that there not be infinite equilibria. For this to hold, the nullclines

Equations (2.8) must intersect a finite number of times. Since the nullcline equation

Q?
2 = (1−αA)δ

γ
Q?

1 is a line, the other nullcline cannot be a line because the two required

intersections would result in the two lines being equivalent. Thus , ∀c1, c2 ∈ IR,

f(Q1, Q2) 6= c1Q1 + c2Q2.

Continuing with analysis of stability we can further constrain the attraction func-

tion. For a two dimensional system, stability can be determined from the trace and
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fQ1 f? stability

fQ1 f? >
δ
γ

saddle

fQ1 > δ + γ f? <
δ
γ

unstable

fQ1 < δ + γ f? <
δ
γ

stable

Table 2.1: Summary of the Constraints on f at an Equilibrium

determinant of the Jacobian matrix. From the trace and determinant we identify

thresholds on the partial derivatives of the attraction function (fQ1 , fQ2) for the sta-

bility of the system. It is at this point useful to define f?, the partial derivative of f

along the linear nullcline defined in Equations (2.8) or equivalently df
dQ1

evaluated at

the interior equilibrium. The results of the stability analysis are summarized in table

2.1.

J =

 fQ1 − δ fQ2

(1− αA)δ −γ



Trace(J) = fQ1 − δ − γ (2.11)

Det(J) = δγ − γfQ1 − (1− αA)δfQ2 (2.12)

f? = fQ1 +
(1− αA)δ

γ
fQ2 (2.13)

Considering the behavior of real online collaborations we can infer constraints on

fQ1 and fQ2 . If a collaboration has very little activity, it is expected to fail, this

suggests that the no activity equilibrium is at least locally stable. Thus we have that

fQ1(0, 0) < δ + γ and that f?(0, 0) < δ
γ
. Similarly there are long lived collaborations

that do not grow without bound, this is indicative of a second stable equilibrium.
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That is, ∃(Q?
1, Q

?
2) such that:

Q̇1(Q
?
1, Q

?
2) = 0 (2.14)

Q̇2(Q
?
1, Q

?
2) = 0 (2.15)

fQ1(Q
?
1, Q

?
2) < δ + γ (2.16)

f?(Q
?
1, Q

?
2) <

δ

γ
(2.17)

2.4 Parameter Estimation

As discussed in Chapter 1, Stack Exchange is a network of Question & Answer

forums and we use the collected data to estimate model parameters. Because Stack

Exchange is a single network with the same underlying structure and rules for all sites,

we can think of the sites as natural experiments. All data was collected in the same

way because it was collected by the same tool, this makes the distribution of parameter

estimates we find more meaningful as it reduces the confounding variables. We use

data for 168 Stack Exchange sites, the data was downloaded from the repository

located at https://archive.org/details/stackexchange.

The parameters of the model can be estimated directly from Stack Exchange data.

The process for parameter estimation begins with separating the answering population

into type A and type B users. In the model, types A and B are archetypes that are

completely disjoint, in reality people employ both strategies to varying degrees. To

estimate identify type A users we first calculate the mean number of prior attempts an

attempted question has for each user. Taking the mean of the average number of prior

attempts allows us to divide the population into those that answer newer questions

(type A, lower number of prior attempts), and those that answer older questions

(type B, higher number of prior attempts). After each user has been categorized,

calculating the fractions of users that are type A and B is trivial.
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Table 2.2: Summary of the Distribution of Four Parameters Measured From Data.
A and B are Dimensionless, δ and γ Have Units of Days−1

Parameter Min 1st quartile median 3rd quartile Max Variance

A 0.481 0.585 0.606 0.631 0.861 1.76 · 10−3

B 0.139 0.369 0.394 0.415 0.519 1.76 · 10−3

δ 5.85 · 10−4 1.62 · 10−3 3.53 · 10−3 1.16 · 10−2 0.109 3.56 · 10−4

γ 3.06 · 10−4 1.15 · 10−3 2.98 · 10−3 +.77 · 10−3 1.36 1.37 · 10−2

Having separated the user population into types A and B users, αA is simply the

probability that a type A user has their answer accepted, this can be done similarly

for type B but γ can be more directly estimated. The answer rate of type A users

(β)can be estimated from the average age(εA) at which a question answered by a

type A user is completed. We now have δ = βA and we can find δ using the average

age of questions answered by type B users (εB). The relations used for estimating δ

and γ can be found in Equations (2.18), this can be performed for each of over 100

Stack Exchange sites, the distributions of these estimates are summarized in table

2.2 and figure 2.2. We are also able to calculate the expected ratio between new and

attempted questions, the distribution is shown in Figure 2.3.

β = (αAAεA)−1 (2.18)

δ = βA (2.19)

γ =

(
εB −

1

(1− αA)δ

)−1
(2.20)

In addition to allowing for more meaningful simulation of the model, these pa-

rameter estimates are sufficient to tell us the relative abundances of Q1 and Q2 at

equillibria. From the nullclines we know the ratio of new questions to attempted

questions at the equillibria, this ratio is calculated for each community and shown in

19



Figure 2.2: Distribution of Parameter Estimates for 136 Stack Exchange Sites

figure 2.3.

2.5 Case Results

One class of function that satisfies some of the conditions on attraction is Holling

functional response. The generalized case of Holling type functional response is given

in Equation (2.21). Typically, functional response is used for predation rate (f(x)) as

a function of prey density (x). In the common interpretation, a represents the rate

at which a predators encounter each prey, 1
h

is the maximum predation rate, and n

is used to capture the phenomenon of prey switching in which predators prey on rare
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Figure 2.3: Distribution Ratio of Questions.

prey disproportionately less.

f (x (Q1, Q2))) =
axn

1 + ahxn
(2.21)

This response can be reinterpreted as the attractiveness (f (x (Q1, Q2)))) of some

attractive property (x (Q1, Q2)). In this interpretation, a captures how quickly the

attractiveness saturates, 1
h

represents the maximal attractiveness, and n captures the

capacity of users to go elsewhere to ask their questions. Equation (2.21) shows a

Holling type III functional response, we use this format as it is the general case.

Holling type I is the special case f(x) = ax where n = 1 and h = 0. Holling type II is

the case where n = 1 giving us f(x) = axn

1+ahxn
. For numerical analysis we use Holling

type III as it is the most general case.

One of the properties of Holling type III functions is that for a domain of [0,∞)

the range is
[
0, 1

h

)
, this satisfies the nonnegative property of the attraction function.

Another property of the attraction function is that there exists a zero equilibrium,
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x(Q1, Q2) meaning

Q1 number of unanswered questions

Q2 number of active answered questions

Q1 +Q2 number of active questions

αδQ1 + γQ2 answer acceptance rate

Table 2.3: Possible “Attractive” Traits of Online Communities.

this gives us the condition:

0 = f(x)

∣∣∣∣
Q1=0,Q2=0

(2.22)

thus requiring 0 = x
∣∣
Q1=0,Q2=0

when a 6= 0. The stability of this equilibrium is given

by Table 2.1, to evaluate the stability we must differentiate, we obtain:

∂f(x)

∂x
=

anxn−1

(1 + ahxn)2
(2.23)

fQ1 =
anxn−1

(1 + ahxn)2
∂x

∂Q1

(2.24)

f? =
anxn−1

(1 + ahxn)2

(
∂x

∂Q1

+
(1− αA)δ

γ

∂x

∂Q2

)
(2.25)

Evaluating at x = 0 gives us fQ1 = 0 and f? = 0 which indicates a stable equilibrium

according to Table 2.1.We are unable to identify interior equilibria analytically and

so cannot determine their stability.

At this point is becomes necessary to explore numerical results. As far as the

author is aware, the points of intersection between a line and a Holling type III

remains an open problem. We consider several possible “attractive traits” as input for

the functional response, these are given in Table 2.5. For each trait, we parameterize

the model to the Stack Exchange data, since we estimated δ and γ directly, we need fit

for only three parameters: a, h, and n. This is accomplished through a least-squared

gradient descent method fitted to answer acceptance data from Stack Exchange.
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Figure 2.4: Parameterization of 136 Stack Exchange Communities Where the At-
tractiveness Function (2.21) is Evaluated With x = Q1.

For the parameterization of the model we take α, δ, and γ from direct estimates

as covered earlier. We now need only parameterize the attraction function f(x). To

identify the best fit there are some cases we need to go through, rather than fit n

directly we consider four cases (n = 0, 1, 2, 3) allowing for a wide range of behaviors

but constraining n to those values more commonly seen. Another set of cases is those

on the input to the attraction function, these must be defined for the state space of

the model thus precluding dividing by Q1 or Q2, the forms of x considered are listed in

Table 2.5. For each case the model is fit to daily answering data for 136 communities.

The results of these parameterizations can be seen in Figures 2.4 2.5 2.6 2.7.

Figure 2.4 provides distributions that come from fitting the model to the data

when x = Q1 that is the attractiveness of the community depends on the number

on un-attempted questions. The figure should be read in rows, each row corresponds

to a particular value of n which is a parameter of the general Holling type function

(Equation (2.21)). The first four columns show distributions of the fitted parameters

(see Figure 2.2 for distributions of estimated parameters). The first two columns are
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Figure 2.5: Parameterization of 136 Stack Exchange Communities Where the At-
tractiveness Function (2.21) is Evaluated With x = Q2.

the distributions of the fitted initial conditions and the third and fourth columns are

the distributions of the Holling type function parameters. The final column shows

the distribution of least-square residuals.

Figures 2.5 2.6 2.7 can be read in the same way as Figure 2.4. The difference

between figures is in the trait taken to be attractive. The traits considered are

un-attempted questions (Figure 2.4), attempted questions (Figure 2.5), total active

questions (Figure 2.6), and the question answer rate (Figure 2.7). Each figure includes

the attractiveness trait in its caption.

The parameterization results seem to suggest that n = 1 this can be observed from

the distribution of residuals, regardless of what x is taken as the smallest maximal

error is associated with n = 1. Looking at the mean and median of residuals, x =

αδQ1 + γQ2 seems to perform best, though the choice of x does not seem crucial.

Taking these choices of n and x we can complete analysis. There is not more than

one interior equilibrium, this is derived starting with Equation (2.26). In Table 2.4

we have the parameter constraints on stability.
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Figure 2.6: Parameterization of 136 Stack Exchange Communities Where the At-
tractiveness Function (2.21) is Evaluated With x = Q1 +Q2.

Figure 2.7: Parameterization of 136 Stack Exchange Communities Where the At-
tractiveness Function (2.21) is Evaluated With x = αδQ1 + γQ2.
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Equilibrium Existence Stability

(0, 0) Always a < min
(
δ+γ
αδ
, 1
γ

)
(Q?

1, Q
?
2) a > 1 a > γ

Table 2.4: Stability Conditions for Model Resulting from Holling Type III Attraction
Function With n = 1.

0 =
a (αδQ?

1 + γQ?
2)

1 + ah (αδQ?
1 + γQ?

2)
− δQ?

1 (2.26)

0 = (1− α)δQ?
1 − γQ?

2 (2.27)

Q?
2 =

(1− α) δ

γ
Q?

1 (2.28)

a (αδQ?
1 + γQ?

2) = δQ?
1 (1 + ah (αδQ?

1 + γQ?
2)) (2.29)

a (αδQ?
1 + (1− α) δQ?

1) = δQ?
1 (1 + ah (αδQ?

1 + (1− α) δQ?
1)) (2.30)

a = 1 + ahδQ?
1 (2.31)

Q?
1 =

a− 1

ahδ
(2.32)

Q?
2 =

(a− 1) (1− α)

ahγ
(2.33)

From our analysis stability of the interior equilibrium comes from a, the rate

at which users with questions encounter the forum. We now perform a sensitivity

analysis to ascertain how communities might induce growth by shifting the stable

equilibrium. For the purpose of this analysis we use parameters that are measurable

in the data which requires decomposing δ and γ, we get δ = βA and γ = αBωB where

A + B = 1 and parameter meanings are as described in the model derivation. The

results of the sensitivity analysis are given in Table 2.5. In general there is a balance

between Q?
1 and Q?

2 that is determined by the components of δ and γ, increasing

the accuracy of either user type (αA and αB) reduces the number of incorrectly

answered questions (Q?
2). The number of questions on the site increases uniformly
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∂Q?
1

∂A
= − 1

A2β
a−1
ah

< 0
∂Q?

2

∂A
= 1

A2β
a−1
ah

> 0

∂Q?
1

∂B
= 1−αA

B2ωαB

a−1
ah

> 0
∂Q?

2

∂B
= − 1−αA

B2ωαB

a−1
ah

< 0

∂Q?
1

∂β
= − 1

Aβ2
a−1
ah

< 0
∂Q?

2

∂β
= 0

∂Q?
1

∂ω
= 0

∂Q?
2

∂ω
= − 1−αA

Bω2αB

a−1
ah

< 0

∂Q?
1

∂αA
= 0

∂Q?
2

∂αA
= 1

BωαB

a−1
ah

> 0

∂Q?
1

∂αB
= 0

∂Q?
2

∂αB
= − 1−αA

Bωα2
B

a−1
ah

< 0

∂Q?
1

∂a
= 1

Aβ
1
ah2

> 0
∂Q?

2

∂a
= 1−αA

BωαB

1
ah2

> 0

∂Q?
1

∂h
= − 1

Aβ
a−1
ah2

< 0
∂Q?

2

∂h
= − 1−αA

BωαB

a−1
ah2

< 0

Table 2.5: Partial Derivatives of Interior Equilibrium with Respect to Each Param-
eter. Inequalities Hold Whenever the Equilibrium Exists.

when visibility increases (a) or when the subject interest increases ( 1
h
).

Lastly, will we use numerical simulation to explore how the functional response

parameter n and the inclusion of a residence time for questions will impact results.

The parameter n represents the ability of predators to switch between prey species in

the more common interpretation of Holling type functional response, the analog in our

interpretation is that n captures that questions are not restricted to any subgroup. We

will further include a parameter mu as a residence time of questions, this represents

that questions can exit the active question population even if they are not complete,

1
mu

is the average length of time before an unanswered question becomes inactive. For

the purpose of simulation we will use Equations (2.34)(2.35) with parameter values

given in Table 2.6 as a base case.

Q̇1 =
a(αδQ1 + γQ2)

n

1 + ah(αδQ1 + γQ2)n
− (δ + µ)Q1 (2.34)

Q̇2 = (1− α)δQ1 − (γ + µ)Q2 (2.35)

Figure 2.8 shows a series of phase-plane digarams for three values each of n and

µ. The numerical results suggest that the number of active questions at the interior
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Parameter a h δ γ α n µ

Value 1.25 2.75 · 10−4 0.96 0.0888 0.628 1 0.01

Table 2.6: Parameter Values for Phase Portraits Used to Examine Effect of mu and
n.
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Figure 2.8: Phase Planes Showing Various Combinations of µ and n Parameters.
Blue Arrows Show Parital Derivatives, Red Lines Show Nullclines, Green Lines Show
Simulated Results, Black Stars Show Stable Equilibrium.
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equiibrium increases with n and decreases with increases in µ. As is expected, de-

creasing residence time (increasing µ) results in the loss of the interior equilibrium, the

threshold µ for loss of the interior equilibrium is dependent on n but is non-monotone.

2.6 Conclusions

In this chapter, we propose a model for the questions in a question and answer

forum. From analysis of the model we identify some of the properties we expect from a

function detailing how Q&A forums attract new questions. The constraints discovered

allow us to identify a few plausible functional forms for modeling question attraction.

Additionally, we were able to fit a standard functional response to data from the Stack

Exchange network. The resultant model suggests that those parameters internal to

the community control the balance between unanswered and attempted questions

but that to change both simultaneously requires modification of the parameters of

the attraction function.

Constraints on the dynamics of a simple Q&A population ecology model allow us

to deduce some of the characteristics of the function representing inflow of new ques-

tions or the “attraction” of questions. One of the more limiting constraints identified

is that the “attraction” function cannot be a linear combination of the state space,

this precludes possibilities such as answer rate. However that does not mean that the

answer rate isn’t what determines a communities attractiveness. Though typically

used as a predation term, Holling type functional response satisfies the constraints

of the “attraction” function and can handle having answer rate as the attractiveness

term. Analysis of this special case provides existence and stability conditions for an

interior equilibrium i.e. a sustained community. Further, from a sensitivity analy-

sis of the interior equilibrium we learn that those parameters describing the internal

behavior of the model cannot simultaneously increase the equilibrium level of both
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compartments. This does not mean attractiveness cannot be optimized but it does

mean that the details of the attractiveness trait must be known to select parameters

to obtain an ideal balance.

In the more general context of online collaborations are results suggest that the

attractiveness of a collaboration or community can be reasonably well approximated

with knowledge of the communities activity. While different styles of collaboration are

likely to have different forms of attraction, results do suggest that contributions beget

contributions. Significantly, attractivness seems to depend on the current state of the

system (as evidenced by excluding Q3 from Equation (2.4) on). Thus, interventions

should be possible relatively straight forward. However, the two parameters external

to the community (a & h) can preclude a successful collaboration and it is not clear

how an intervention could effectively modify these parameters.

30



Chapter 3

ONLINE COLLABORATION, COMPETING FOR ATTENTION

3.1 Introduction

In order to use online communities as a data source for understanding large scale

collaboration, the nature of these communities must first be understood. Online

communities are considered here to be social networks of exchange that are founded

in and operate in online spaces. They can be seen as an environment shaped by users

within these spaces, and can take on many varied forms. The tasks users complete

further the goals of the community and are the resource of the environment. These

tasks are provided by communities and consumed by users. There is not enough

attention available to make all online communities vibrant and productive; this means

that in order to better understand these spaces, it is prudent to model the user

population rather than individual project. Communities harvest attention from the

user population and use it to create knowledge products. Successful collaborations

are those that are able to attract the attention of a population sufficient to allow that

community to remain productive.

In this chapter, we describe an agent-based model of online communities. After

constructing the model, we verify that the patterns that exist in real online commu-

nities exist in the simulated results. The types of patterns found in communities is

summarized in the Chapter 1 Table 1.1.
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3.2 Model Description

3.2.1 Introduction

In order to study the population dynamics of online communities, a simulation

model is developed. In this model, users can move between communities while com-

pleting tasks that they encounter. The model includes: task generation, task alloca-

tion, user contribution, task completion, and user movement.

Three types of agents are considered in this model: tasks, users, and communities.

Tasks are described by a task number, a list of past contributions, and a community to

which that task belongs. Users are described by a skill number, their attention level,

and the community they are participating in. Communities have a topic as well as

user and task populations. The model is run in discrete time and the state variables

are modified at each time step. Table 3.1 provides a complete list of variables and

parameters.

The model used is a foraging model, tailored to suit online communities. Users

are the foragers and they forage for tasks. However, users are heterogeneous, and a

task that one user can complete might be outside the skill set of another user. Thus,

tasks can be thought of as the resource users are foraging for, and users contributing

to a task is what consumes that resource. Communities serve to divide the simulation

environment into locations for foragers to move between.

3.2.2 Tasks

The task considered in this model is the identification of prime numbers. This task

was chosen because it allows for heterogeneity in task “topic, as well as heterogeneity

in agent skill. A user’s skill is thought of as an integer. This integer is the number

the user can divide by. A task is complete when a user successfully divides the task
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Table 3.1: Summary of the Variables and Parameters of the Model. Parameter
Values Are Chosen Ad Hoc and Are Provided Only for Completeness.

Variable Description Value

NumComm Number of communities 500

NumUser Number of users 500

NumTask Number of tasks 500

MinP Minimum task number 4

MaxP Maximum task number 100

i Community index i = 1, 2, ..., NumComm

j User index j = 1, 2, ..., NumUser

k Task index k = 1, 2, ..., NumTask

s User skill 2 ≤ s ≤
√
MaxP

Pi User population of community i 0 ≤ Pi ≤ NumUser

Ti Topic of community i MinP ≤ Ti ≤MaxP

Aj Attention level of user j Aj = 0, 1

S(j) Skill of user j 2 ≤ S(j) ≤
√
MaxP

UCj Community that user j belongs to UCj ∈ i

TCk Community that task k belongs to UTk ∈ i

TNk Task number of task k MinP ≤ TNk ≤MaxP

CHk,s Record of skill s being applied to task k CHk,s = 0, 1

rr Community replacement rate 0.05

λ Topic adjustment rate 0.1
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(nonprime) or when every applicable skill has been applied to the task (prime). Tasks

are the resource that users forage for. During each time step of the model tasks must

be generated, allocated to communities, receive user contributions, and checked for

completion.

In this model task generation occurs separately from task allocation. It is assumed

that tasks are generated independently of the communities modeled. This could be

justified by the observation that in online communities, those that ask questions, and

those that answer them, are largely disjointed. Newly generated tasks then occur

according to the parameters of the model rather than the dynamic variables. When a

new task is generated it is chosen randomly to be any of the possible tasks considered

(integers between MinP and MaxP ).

P
(
TN{k|TCk(t)=0}(t+ 1) = x

)
=


1

1+MaxP−MinP
x ∈ [MinP,MaxP ]

0 x /∈ [MinP,MaxP ]


Created tasks must be assigned to a community. Tasks are assigned based on two

key factors: the size of the community (Pi) and the topic of the community (Tj).

Community size is included to mimic the effect that popular communities receive

more tasks then less popular communities. This is a form of preferential attachment,

which is often included in models of online communities (Ozmen et al., 2012; Kumar

et al., 2010). Communities are assumed to focus on specific topics, and tasks are

allocated to communities with similar topics. The topic of a community is not static,

but reflects the tasks that a community has recently had success with.

P
(
TC{k|TCk(t)=0}(t+ 1) = x

)
=


1∑

i f(i,k)
f(x, k) = 1

0 f(x, k) 6= 1
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f(i, k) =

 1 TNk(t+ 1) ∈
[
Ti(t)− 100Pi

NumUser
, Ti(t) + 100Pi

NumUser

]
0 TNk(t+ 1) /∈

[
Ti(t)− 100Pi

NumUser
, Ti(t) + 100Pi

NumUser

]


Although the tasks that enter the simulation environment are independent of

the communities, which community receives the task does depend on both the size

and previous work of the community. Communities are considered to have a topic,

bounded in the same domain as tasks, that reflects the specialty of the community.

Additionally, larger communities are considered more able to meet a variety of chal-

lenges, expanding the range of tasks they can accept. The growth in range is assumed

to be linear and such that if all users are in a single community, that community can

accept all tasks. The new task generation and allocation occurs once per task com-

pleted in the previous round. This way, a population of NumTask tasks is maintained

in the simulation environment.

Once a task is assigned to a community, its users are able to contribute to it. In

a given community, the users that contribute, and the tasks that get contributions,

depend on the number of users with a particular skill and the number of tasks that

require that skill. For each community and skill the number of users with that skill,

and the number of tasks to which that skill is applicable, are counted. This can be

represented as in:

NU(i, s) =
∑

j|UCj(t)=i,S(j)=s

1

NT (i, s) =
∑

k|UTk(t)=i,TNk(t+1)≤s2,CHk,s(t)=0

1.

Only unique contributions are counted, and users that are able to make a unique

contribution are assumed to do so. These assumptions mean that for a given commu-

nity and skill, either every user will contribute or every task will receive a contribution.
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Of the larger population, a number of members equal to that of the smaller popu-

lation is chosen to provide or receive the contributions. These assumptions provide

probabilities for a contribution occurring for both tasks and users where the proba-

bility of a task receiving a contribution is determined by the relative abundance of

users and vice versa.

P
(
CH{k,s|CHk,s(t)=0,TN+k≤s2}(t+ 1) = 1

)
= min

(
1, NU(TCk(t+1),s)

NT (TCk(t+1),s)

)
NT (TCk(t+ 1), s) > 0

0 NT (TCk(t+ 1), s) ≤ 0


P (Aj(t+ 1) = 1) = min

(
1,
NT (TCk(t+ 1), s)

NU(TCk(t+ 1), s)

)
A trivial consequence of these equations is that for each time-step, in each community,

either every user with a particular skill will contribute or every task that requires that

skill will have it applied.

Completed tasks are removed from the simulation at the end of every time-step,

rather than as they are completed. This can be thought of as time used to verify

that the task is complete or to accept a solution. The list of skills applied to a task

is used to check if either a user has been able to identify the task as nonprime, or the

community has identified a number as prime:

Nonprime(k) =

 1 {s|TNk(t+ 1), CHk,s(t+ 1) = 1} 6= ∅

0 {s|TNk(t+ 1), CHk,s(t+ 1) = 1} = ∅


Prime(k) =

 1 1 +
∑

sCHk,s >
√
TNk(t+ 1)

0 1 +
∑

sCHk,s ≤
√
TNk(t+ 1)


Complete(k) = max(NonPrime(k), P rime(k))
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Nonprime numbers are detected by checking if any of the contributions to a task

divides the task number, if at least one does the number cannot be prime. The

identification of prime numbers requires that every skill that is applicable (less than

or equal to the square root of the task) has been applied. It is possible for the function

identifying primes to give false positives but, as no distinction is made, it does not

affect results. Tasks that are completed need to be removed for the model to allow

for new tasks. This is accomplished by the following equations:

CH{k,s|Complete(k)=1}(t+ 1) = 0

TC{k|Complete(k)=1}(t+ 1) = 0

The other effect of a completed task is the shift of topic in the communities, which

is accomplished with a simple learning algorithm of the form:

Ti = (1− λ)Ti + λTNk

where λ is a topic adjustment rate, Ti is the topic of community i, and Nk is the task

number of task k.

3.2.3 Users

The users of online communities are a heterogeneous population searching for

something to hold their attention. Users differ in the skill they have for completing

tasks, as well as in location. The skill of users is a fixed initial condition so users

must move between communities to find tasks to contribute to. Users can leave a

community either to join another community or to establish a new community.

Movement of users is driven by an algorithm based on win-stay, lose-shift, as well
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as preferential attachment (Nowak and Highfield, 2011; Ozmen et al., 2012). Users

are assumed to change communiteis every round in which they fail to contribute, and

where they move to is based on the population of the other communities:

P
(
UC{j|Aj=0}(t+ 1) = x

)
=


Px∑
i6=x Pi

x 6= UCj(t)

0 x = UCj(t)


The other condition for user movement is the foundation of a new community,

and it is assumed to increase linearly with the number of abandoned communities:

P (UCj(t+ 1) = x) =


rr

NumUser
Px = 0

0 Px 6= 0


3.2.4 Initialization

At initialization users are assigned a skill between two and the square root of

MaxP , which is the set of possible divisors of task numbers. Communities are as-

signed a topic from the same distribution as task numbers, and users are assigned to

communities. Each of these assignments are assumed to be random.

3.2.5 Implementation

The model was implemented in both MATLAB and NetLogo. Code available via

OpenABM at https://www.openabm.org/model/5727/version/1/view.

3.3 Results

The first characteristic verified is that the population of communities follows a

power-law, which can be seen in Figure 3.1(a). The population of each community is

taken as the number of users that contributed to it in the last time step. The method

of measurement is meant to capture the active population of communities, which is
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the only feasible way of measuring population in real data. The distribution is stable

in time (not pictured).

Figure 3.1: Key Distributions of Simulated Online Communities. Plot (a) Shows the
Final Distribution of Population in Communities, as Well as the Power-law Approxi-
mation. Plot (B) Shows the Distribution of Contributions Throughout the Course of
the Model, as Well as the Power-law of Best Fit. Plot (C) Shows the Distribution of
User Movement to and from Communities over the Course of the Simulation. Results
Are Averaged for 100 Runs with Parameters Equal to Those in Table 3.1.

Knowing that users are appropriately distributed throughout communities, next

checked is that the contributions they make are similarly distributed. Figure 3.1(b)

shows that contributions are distributed according to a power-law, or nearly a power-

law. To generate this data, each community tracked the number of contributions it

received. Significantly, communities with no users were considered abandoned and

had their contribution count reset. This represents the creation of a new community.

Finally, user movement is measured by tallying the total movement in and out of

each community. Movement is counted every time a user visits a community regardless

of whether or not the user interacts with the community. As can be seen in Figure

3.1(c), this is clearly not power-law behavior. A possible explanation for this deficit

is the difference in considered populations. Results that indicate browsing follows a

power-law consider standard browsing behavior. The model was deliberately tailored

to model the subset of users that contribute to productive communities. That this

sub-population would have abnormal browsing behavior seems plausible, though it
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has not been confirmed.

Turning now to Stack Exchange, the model will be sampled in the same way as the

data, in order to verify that it is capable of producing the same qualitative patterns.

Figure 3.3 shows the result of the model analysis and should be compared to Figure

3.2, which shows the Stack Exchange analysis. Details of these analyses follow.

Analysis of the Stack Exchange data yielded four patterns that the model will

similarly produce. These patterns include: community size, waiting time for a ques-

tion to be answered, user movement, and neighbor connectivity. Figure 3.2 shows

these patterns. How the data was sampled to generate those patterns, and what they

mean, will be covered in the following paragraphs.

Figure 3.2 gives a comprehensive description on the population dynamics of the

Stack Exchange system. Firstly, it can be observed that the distribution of commu-

nity size, measured as the population of active users during the period of observation,

is highly skewed. The largest community, stackoverflow.com (SO), has more than 2

million users whereas the smallest community has only hundreds of users. In fact,

the distribution approximates Zipf’s law in two orders of magnitude. Secondly, larger

communities are more efficient in solving problems. Figure 3.2 shows that the av-

erage waiting time for accepted answers decreases with community size, indicating

that larger communities are more efficient in solving problems. The mobility of users

between communities satisfy a “gravity law”, which predicts that the number of users

moving between two communities is proportional to the product of the “mass” (popu-

lation) of these two communities. The distribution of community size has a long-tail,

i.e., there are only a few very large communities. These communities dominate the

user mobility in the entire system. This was confirmed by data in the lower-right

panel of Figure 3.2, displaying the assortativity of the community interaction net-

work. To construct this network, communities are taken as nodes, and the movement
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of users between these community as edges. For each pair of nodes (communities),

the number of moving users, in both directions, is aggregated to obtain weighted,

undirected edges. After the network is constructed, edges are removed such that

each node maintains its three strongest links, leaving the skeleton from a fully con-

nected network. The constructed community interaction network is disassortative;

i.e., high-degree nodes (which are large communities) tend to connect to low-degree

nodes (which are small communities). This finding supports the assumption that the

mobility of users in the system is dominated by a few large communities.

In short, Stack Exchange is dominated by a few large communities that 1) attract

a majority of users in the system; 2) dominate the mobility of users between commu-

nities and 3) resolve most of the problems in a very short time. In other words, Stack

Exchange activity mostly occurs rapidly in a few large communities, and many small

communities rely on the giant communities to provide contributors, most of whom

are very likely to return back to the largest communities after they have completed

their task.

Since only active users are considered in the data, the model must be similarly

restricted. When collecting the data, user activity is determined by posting behavior,

that is, the population of a community is the number of users that have recently

posted. This is replicated in the model by setting the population of a community,

at a given time step, to the number of users that made a contribution to that com-

munity, during that time step. The population of communities appears to change

proportionally with rank for more successful communities, however less successful

communities seem to have proportionally larger variation. The model seems to pre-

dict more variation in less successful communities than the data would indicate. A

possible explanation is Stack Exchange’s policy on new communities. To add a com-

munity to Stack Exchange it must first prove its viability during a trial period, and
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no such mechanism exists in the model.

A question posted on Stack Exchange is considered answered only when the user

who asked the question has accepted an answer. This can only occur after a minimum

waiting period of 15 minutes. Both of these, as well as the discrete time of the model

are some of the possible reasons for differences between the model and the data for this

metric. The key pattern of waiting time decreasing with community size does hold,

which seems to indicate that in both our model and Stack Exchange, the capacity

of communities to complete tasks grows more rapidly than the number of tasks they

attract.

User movement is tallied over the entire course of the simulation. This is then

compared to the population of communities at the final time. This is taken, rather

than a continual population count, for simplicity and because community populations

stabilize quickly in the model. The result from this analysis is unsurprising and

suggests that most user traffic is between large communities with very little between

small communities.

Finally, the communities of both Stack Exchange and the model are dis-assortative;

that is that the average degree of a community’s neighbors is inversely proportional to

the community’s own degree. The construction of the network is crucial in obtaining

this result and identical for the Stack Exchange and model data. Using the data from

user movement, each community is linked to the three communities they have the

most user traffic with, duplicate links are not counted, and ties are broken randomly.

This results in a network with minimum degree 3, and a maximum degree of one less

than the number of communities. On this network, the largest communities are inter-

connected, as they have high traffic in both directions; however, small communities

are linked to large communities rather than being linked to each other. This results

in a dis-assortative network where those most highly connected communities have the
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least connected neighbors.

3.4 Conclusions

In this chapter, a selection of the initial results of a population ecology oriented

model of online communities are presented. In the following chapter we will perform

a systematic sensitivity analysis to understand how assumptions on which the the

underlying mechanisms are based affect the outcomes.
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Figure 3.2: The Properties of the Communities of Stack Exchange. Starting From
the Top Left Plot (a) Shows the Size of the Population of Communities Against Their
Rank, This Is Compared to a Zipf Law in Red Plot (B) Shows the Mean Length of
Time After a Question Is Asked Before the Community Provides an Answer Plot (C)
Shows the the Undirected Movement of Users Against the Product of the Community
Sizes. Plot (D) Shows the Mean Degree of Neighbors Against a Community’s Own
Degree, in the Network Skeleton That Preserves the Strongest Links.
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Figure 3.3: A Model of Online Communities. Starting from the Top Left Plot
(a) Shows the Population of Communities Against Their Rank. Plot (B) Shows the
Mean Length of Time after a Question Is Asked Before the Community Provides an
Answer. Plot (C) Shows the Undirected Movement of Users Against the Product
of the Community Sizes. Plot (D) Shows the Mean Degree of Neighbors Against a
Community’s Own Degree.
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Chapter 4

EFFECTS OF BEHAVIOR ON ONLINE COLLABORATION

4.1 Introduction

In Chapter 3 we proposed an agent-based model of a multi-community online

collaboration. This model was compared to data from the Stack Exchange Network

and showed similar behaviors to the data. The mechanistic construction of the model

in Chapter 3 as well as it’s production of output similar to real world data serve to

validate the model as a possible explanation for the behaviors of multi-community

online collaborations. In this chapter we evaluate the sensitivity of various outcome

metrics to the parameters in the model. This analysis provides hints at how we might

impact the outcomes of real world collaborations as well as how those outcomes might

be related.

4.2 Methods

4.2.1 Variance-Based Sensitivity Analysis

We perform a Variance-Based Sensitivity Analysis to assess the global sensitivity

of the model to each parameter. The parameter space considered is explained in

detail in Section 4.2.2 and the outcome metrics in Section 4.2.3.

Variance-Based Sensitivity Analysis serves to identify the impact of each combi-

nation of parameters on the outcome. Theoretically, this is accomplished by decom-

posing the system into a sum of functions of each combination of parameters as seen
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below.

Y = f(X) = f0 +
n∑
i=1

fi(Xi) +
n−1∑
i=1

n∑
j=i+1

fi,j(Xi,Xj) + · · ·+ f1,2,...,n(X1,X2, · · · ,Xn)

Where Y is the output metric, Xi is parameter i, n is the number of parameters, f0 is

a constant, and f··· denotes a function with input parameters denoted by subscripts.

The parameter space is assumed to be the unit hypercube with n dimensions, that

is 0 ≤ Xi ≤ 1, i = 1, 2, . . . , n. This parameter space can be achieved without loss

of generality by rescaling the global parameter space to the unit hypercube. The

decomposition is constrained to orthogonal functions so that the variance in output

can be attributable to each combination of parameters. The orthogonality condition

is written as: ∫ 1

0

fd(Xk)dXk = 0,∀k ∈ d, d ⊂ {1, 2, . . . , n}

From here it can be clearly seen that f0 is the mean value of Y over the parameter

space, this is demonstrated starting with Equation (4.1). Introducing the notation

X∼i = X \Xi, we can also calculate the expectation on Y conditioned on a single

parameter (Equation (4.2)) or on multiple parameters (Equation (4.3)).

E(Y ) =

∫ 1

0

Y dX (4.1)

= f0 +
n∑
i=1

0 +
n−1∑
i=1

n∑
j=i+1

0 + · · ·+ 0

= f0
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E(Y |Xi) =

∫ 1

0

Y dX∼i (4.2)

= f0 + fi(Xi) +
n∑
k 6=i

0 +
n−1∑
k=1

n∑
j=k+1

0 + · · ·+ 0

= f0 + fi(Xi)

E(Y |Xi,Xj) =

∫ 1

0

Y dX∼i,j (4.3)

= f0 + fi(Xi) + fj(Xj) + fi,j(Xi,Xj) +
n∑
k 6=i

0 +
n−1∑
k 6=i

n∑
6=j

0 + · · ·+ 0

= f0 + fi(Xi) + fj(Xj) + fi,j(Xi,Xj)

As the name would indicate, Variance-Based Sensitivity Analysis is a sensitivity

analysis based on variance. If we assume that Y = f(X) is square-integrable then

the variance of Y can be written as in Equation (4.4). Notice that the orthogonality

of function decomposition guarantees that the summation in Equation (4.4) is a sum-

mation of variances. We denote these variances as V... where the subscript matches

that of the orthogonal function it is derived from, taken with Equation (4.4) we get a

decomposition of the variance of Y into variances attributable to each combination

of parameters as seen in Equation (4.5)

Var(Y ) =

∫ 1

0

f(X)2 − f 2
0dX (4.4)

=
∑

k⊂{1,2,...,n}

∫ 1

0

fk(Xk)dXk

Var(Y ) =
n∑
i

Vi +
n∑
i<j

Vi,j + · · ·+ V1,2,...,n (4.5)
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Having decomposed the variance of Y we define the first order sensitivity index

Si = Vi
Var(Y )

. Notice that 1 ≥
∑n

i=1 Si, that is no more than 100% of the variance

is attributable to first order sensitivity. The total-effect index measures the total

variance attributable to a given parameter, we denote this S∼i = E(Var(Y |X∼i))
Var(Y )

= 1−
Var(E(Y|X∼i))

Var(Y )
. Unlike with Si, 1 ≤

∑n
i=1 S∼i this is due to the fact that all interactions

are counted multiple times in the total-effect indexes. It is convenient to also define

V∼i = E(Var(Y |X∼i)).

In practice we are not able to identify the orthogonal functions that contribute

to f(X), so we use a Monte Carlo approximation. We use the methods identified in

(Saltelli et al., 2010) to approximate Vi and V∼i. To perform this approximation we

generate two independent sets of input parameters A and B where both are N × n

matrices. We now define n matrices Ai
B as matrix A with the ith column replaced by

that of matrix B. There are now (n+ 2)N parameter combinations each of which is

evaluated for each output metric. The Monte Carlo approximation of Vi and V∼i for a

given outcome metric Y are given in Equations (4.6) (4.7). From here the sensitivity

indexes can be approximated as Si ≈ Vi
VY

and S∼i ≈ V∼i

VY
, where VY is the sample

variance from all parameter sets.

Vi ≈
1

N

N∑
j=1

f(Bj)
(
f
(
(Ai

B)j
)
− f(Aj)

)
(4.6)

V∼i ≈
1

2N

N∑
j=1

(
f
(
(Ai

B)j
)
− f(Aj)

)2
(4.7)

4.2.2 Parameter Space

As stated in Section 4.2.1 the parameter space sampled for the sensitivity analysis

must be transformed into a unit hypercube. To allow for a more thorough analysis

the model is generalized from that of Chapter 3 and additional parameters were
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introduced. In this chapter we will only describe the changes made to the model, for

a thorough description of the base model see Section 3.2. The parameters we consider

can be broken into four categories: Populations, User Activity, User Movement, and

Task Allocation. Each parameter is allowed to vary over a certain range given in

Table 4.1 this range is then transformed to [0, 1] for the application of variance based

sensitivity analysis. All parameters are assumed to vary uniformly over their specified

ranges.

There are three parameters governing the populations of the model. NumUser

is the number of users in the simulation, the user population is held constant over

the course of each simulation. NumComm is the number of communities considered

in a given simulation, this serves as both the initial and maximum number of active

communities for a given simulation. NumTask is the maximum number of in-progress

tasks for the simulation, at the beginning of each time-step new tasks are generated

to bring the total to NumTask, tasks are removed if there is no community that can

accept them or they are completed. Each of these three parameters vary from 100 to

2100 the lower bound was chosen to allow for meaningful outcome metrics and the

upper bound was chosen to limit computation time.

Unlike in the model from Chapter 3, for the purpose of this sensitivity analysis

users are no longer assumed to be always active. We introduce three parameters

governing user activity: UserAct, UserDeactC, and UserDeactN . UserAct is the

probability that an inactive user will become active at the beginning of each time-

step. UserDeactC is the probability that an active user will become inactive following

a successful contribution. UserDeactN is the probability that an active user will

become inactive following a failure to contribute. Users have the chance to become

active at the beginning of each time-step and the chance to become inactive at the

end of each time-step.
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User movement can be broken into two steps, leaving a community and joining

a community. There are two parameters governing when a user leaves there current

community and three parameters governing their choice of community to join. In

the base model all users employ a lose-shift strategy, losing in this case is failing to

contribute, in the generalized case we introduce a parameter Lose–shift as the prob-

ability that a user that fails to contribute will abandon their current community. We

also introduce Win–shift as the probability that a user that successfully contributed

will leave their current community. Where a moving user goes is determined by the

number of other users, available tasks, and productivity of each community. A com-

munities attractiveness to moving users increases by UAttract for each user in the

community, TAttract for each task in the community, and ProdAttract for each task

completed by the community. Each community’s attractiveness is normalized by the

total attractiveness and the result is the probability that a moving user will join that

community.

The most parameterized step of the model is task allocation, these parameters

can be further divided into three categories that govern the topic of communities,

the maximum difference between a task number and a community topic, and how

tasks are distributed to communities. The topic of a community is updated in two

ways, each time a task is completed Tnew = Told(1−TopicComp) +NcompTopicComp

where Told is the initial topic, Tnew is the updated topic, Ncomp is the task number

and TopicComp is a parameter. At the end of each time-step communities adjust

their topic towards the mean topic of tasks that remain in the community Tnew =

Told(1 − TopicIncomp) + NincompTopicIncomp where Nincomp is the mean of task

numbers in the community and TopicIncomp is a parameter.

In identifying which communities could accept a given task we use four parame-

ters. Each community has topic as well as a maximum difference between new tasks’
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number’s and the community topic. The baseline maximum acceptable difference

between a topic and a task number is TaskDiff . The acceptable difference increases

with the community’s productivity as well as user and task populations. The increase

in maximum acceptable difference is UTaskDiff per user, TTaskDiff per task, and

ProdTaskDiff per completed task.

Finally, there are four parameters governing how a task is assigned to one of the

communities that could accept it. Each task is assigned randomly to one of the

communities that can accept it, the probability that a community receives the task is

weighted according to parameters and the properties of the community. Communities

with a topic more similar to the task number are more likely to receive the task, the

weight on this is TopicSim. Having a larger user population makes a community more

attractive to new tasks, the corresponding weight is WeightUser. A community’s

existing task population can attract additional tasks, the relative importance of this

is WeightTask. Lastly, tasks might go to those communities that have completed

the most tasks in the past, the degree to which prior success is counted is captured

in WeightProd.

Parameter Description Range

NumUser Number of users 100 to 2100

NumComm Number of communities 100 to 2100

Num Task Number of tasks 100 to 2100

UserAct Probability that a user becomes active 0 to 1

UserDeactC
Probability that a user becomes inactive

following a contribution
0 to 1

UserDeactN
Probability that a user becomes inactive

following a non-contribution
0 to 1
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Win-shift
Probability that a user moves after a

contribution
0 to 1

Lose-shift
Probability that a user moves after a

non-contribution
0 to 1

UAttract
Relative weight of user population when a

user chooses a community to join
0 to 100

ProdAttract
Relative weight of productivity when a user

chooses a community to join
0 to 100

TAttract
Relative weight of available tasks when a

user chooses a community to join
0 to 100

TopicComp
Adjustment rate of community topic each

time a task is completed
0 to 0.5

TopicIncomp
Adjustment rate to topic to incomplete

tasks each timestep
0 to 1

TaskDiff
The baseline acceptable difference between

a task and topic for task allocation
0 to 50

UTaskDiff
The increase to acceptable difference

between task and topic per user
0 to 100

NumUser

TTaskDiff
The increase to acceptable difference

between task and topic per task
0 to 100

NumTask

ProdTaskDiff
The increase to acceptable difference

between task and topic per contribution
0 to 100

NumTask

TopicSim
The relative weight of similarity between

task and topic when allocating a task
0 to 1
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WeightUser
The relative weight of number of users when

allocating a task
0 to 1

WeightTask
The relative weight of number of tasks

when allocating a task
0 to 1

WeightProd
The relative weight of total number of

contributions when allocating a task
0 to 1

Table 4.1: Lists Parameters to Be Varied and the Range

over Which They Vary.

4.2.3 Outcome Metrics

When sweeping the parameter space two types of data were collected, the pro-

ductivity of each community, and the location of each user in each time-step. For

the sensitivity analysis we focus on three areas of outcome metrics, the distribution

of users across communities, the distribution of productivity across communities and

how it relates to users, and the movement of users and how it relates to user popula-

tion.

Since we track the location of each user over the course of the simulation we know

the user population of each community at each time-step. The distribution of users

stabilizes and we can measure a few outcomes from that distribution. We take the

mean, median, mode of the final population distribution for each simulation. Addi-

tionally, in Chapter 4 we found that the population distribution can be approximated

as a power-law so we find the power-function of best fit.

User population is not the only metric of interest for online collaborations. We

track the number of contributions each community receives over the course of the
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model from this we can extract a few more outcome metrics. Again we can take the

mean, median, and mode, now of community output. Further, it is expected that

community output is related to community population so we identify the line of best

fit relating population to output.

The biggest advantage to sampling from a model comes in the available movement

data. The same basic metrics as used in population and output are interesting for

user movement including the relation between movement and population, though this

time the relation is a power function. Movement data also allows us to look at user

retention in detail, to this end we find the line of best fit relating the number of

visits a community receives to the number of repeated visits, this gives a retention

rate for the system. We can also look at the distribution of retention rates across

communities, how it relates to user population, and even how long it takes a user

that leaves to return.

4.3 Results

The parameter space can be broken into four categories: populations, user activ-

ity, user movement, and task allocation. Each of these categories contains multiple

parameters, the details can be found in Table 4.3. In this section we include the

sensitivity analysis for some of the more interesting outcomes, the sensitivity analysis

of all outcome metrics can be found in Appendix A.

The total output of the system or community of communities is an obvious metric

of interest. Increases in total output mean that more knowledge is shared or produced.

We find that the parameters that have a direct effect on total output fall into the

categories of user activity and user movement, however less than half of the variation

in outcomes is explained by first order effects. When considering the total-effect of

all parameters, including interactions, all four categories have some effect. Both user
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Category Parameters

Population NumUser, NumComm, NumTask

User Activity UserAct, UserDeactC, UserDeactN

User Movement Win-shift, Lose-shift, UAttract, ProdAttract, TAttract

Task Allocation

TopicComp, TopicIncomp, TaskDiff, UTaskDiff, TTaskDiff,

ProdTaskDiff, TopicSim, WeightUser, WeightTask,

WeightProd

Table 4.2: Categorization of Parameters by Which Mechanism They Influence.

activity and user movement parameters have interaction effects. The populations

involved in the system have the largest total effect this is due to the fact that users

and tasks are needed for tasks to be completed, the lack of first order effects is because

increasing the number of available tasks does not result in more production unless

there are sufficient users. The sensitivity of the total output is visualized in Figure 4.3.

The total amount of movement in the system is another metric of interest. Differ-

ent tasks require different skills so moving users is required to prevent collaborations

from stalling. It is no surprise that the parameters governing user movement have

both the largest direct effect and total effect on the total user movement in the system.

As with output, the population parameters had no direct effect but a substantial effect

in their interactions. The sensitivity of the total movement is visualized in Figure 4.3.

For a collaboration to be productive there must by tasks that need doing and

users to complete those tasks. We measure the number of tasks complete as well as

tracking the movement of users. This allows us to look at the average number of tasks

completed per visit to a community. We find that the distribution on this proportion

is narrow as seen in Figure 4.3. Further we find through sensitivity analysis that first

order effects of population, user activity, and user movement explain roughly half the
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First-Order

22%

17% 61%

Populations
User Activity
User Movement
Task Allocation
Interactions

Total Effect

39%

32%

26%

2%

Populations
User Activity
User Movement
Task Allocation

Figure 4.1: Pie Chart Showing the Effect of Various Categories of Parameters on
the Total Output of All Communities in the System.

variation and that their total effects account for about a third of the variation each.

The sensitivity of the output per visit is visualized in Figure 4.3

In addition to the total outcomes of the system we look at the outcomes of indi-

vidual communities. This is sumarized in the median outcomes of the communities

but a more thorough analysis can be found in Appendix ??.

Variance in the median population of communities is largely explained by the

population parameters. User movement has a small direct effect on the median pop-

ulation that increases substantially when interactions are taken into consideration.

Task allocation has no direct effect on the distribution of users however the parame-

ters do explain a portion of the variance in their interactions. The sensitivity of the

median user population of communities is visualized in Figure 4.3

Variation in the median output of communities is dominated by variation in the

population parameters. Less than half of the distribution of output is accounted for by

57



First-Order
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56%
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61%
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User Movement
Task Allocation

Figure 4.2: Pie Chart Showing the Effect of Various Categories of Parameters on
the Total User Movement Through All Communities in the System.

first order effects. However more than three-quarters of the total-effect of parameters

results from population parameters. The category that accounts for the least variance

is that of user movement. The sensitivity of the median output of communities is

visualized in Figure 4.3.

As we might expect from the low variance of the distribution in Figure 4.3, the

sensitivity of the median movement through communities is similar to that of the

median output. The most substantial differences are that more of the variance of

movement is explained by first order effects, and that user movement parameters

have a more significant effect when interactions are considered. The sensitivity of

median movement through communities is visualized in Figure 4.3.

Since movement and output seem to vary together we look at an outcome that

measures user retention in a way more in line with moving users. We define a com-

munity’s return time by looking at the distribution of the time until a user that left
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Figure 4.3: Histogram of the Ratio of User Movement to Community Output for
40,000 Simulations.

returns, and taking the median. A community’s return time then is the time after

leaving a community that half of users will have returned. The median return time

tells how well communities are able to draw on previous users. The variance of return

time is almost entirely explained by first order effects of the parameters. The popu-

lation parameters have the largest first order effect, however both task allocation and

user movement explain more variation when the interactions between parameters are

considered. The sensitivity of median return time is visualized in Figure 4.3.
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Figure 4.4: Pie Chart Showing the Effect of Various Categories of Parameters on
the Ratio of Total Output to Total Movement.

4.4 Discussion

From our sensitivity analysis we are able to identify which categories of param-

eters are influential for various outcome metrics. Each category of parameter had a

significant effect on at least one of our outcome metrics. However, not every outcome

metric significantly depends on each category of parameter.

The most impactful category of the given parameters seems to be those describ-

ing populations. Parameters that descirbe the population of users, communities, and

tasks have a first order effect on the majority the outcomes considered in this analysis.

When including interactions, population parameters account for about one-third of

the variation in outcomes totaled across communities, and well over half of the varia-

tion in median outcomes of communities for all but one case. User retention is where

population parameters seem to be the least important. The is seen in observation of

the median return time of users, which is heavily influenced by the first order effect
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Figure 4.5: Pie Chart Showing the Effect of Various Categories of Parameters on
the Median User Population of All Communities.

of population parameters but only 22% of the total effect is accounted for. For all of

the metrics explored, population parameters have a significant effect and cannot be

reasonably excluded.

The parameters governing user activity often have a negligible effect and can be

safely excluded when interested in a selection of the outcomes considered. Though

we always detect some first order effect of user activity, it never accounts for more

than one-quarter of the total variance. Parameters governing user activity can be

excluded if interested in the movement of users but not if interested in community

output. User activity is largely irrelevant to the median population of communities,

but plays a significant role in user retention.

How and when users move between communities effects all of the outcomes we

considered. Unsurprisingly, the total movement in the system can be explained almost

entirely by the parameters governing user movement and those controlling population
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Figure 4.6: Pie Chart Showing the Effect of Various Categories of Parameters on
the Median Output of All Communities.

size. Less intuitively, user movement parameters have significant effects (both first

order and total) on both total output and the median output of communities. The

parameters governing user movement effect all of the outcomes we considered, however

that effect is least on the median output of communities.

The parameters governing task allocation are most numerous and least impactful.

These parameters can be safely excluded from all of the totaled outcomes we consid-

ered, though they do have some impact on the outcomes of the median community.

Despite being largely low impact, task allocation plays a significant role in explaining

variation in user retention.

For the sake of legibility, parameters have largely been discussed in terms of cate-

gories. However, within those categories there are parameters that are more influential

than others. The full results for each parameter can be found in Appendix A. Aside

from task allocation, each category has a parameter that is most often most impactful
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Figure 4.7: Pie Chart Showing the Effect of Various Categories of Parameters on
the Median User Movement Through All Communities.

for the outcomes we’ve considered.

Of the population parameters we included, the number of communities seems to

have the largest impact. Indeed this pattern holds for each outcome save the median

return time, which is most influenced by the number of users. The dependence of

distributional outcomes on the number of communities is unsurprising as it represents

the sample size for most of our outcomes. It is interesting that the median return

time of users to communities is more strongly influenced by the number of users than

the number of communities as users. If users were to move uniformly at random the

median return time could be calculated from the number of communities and the

number of users would be irrelevant.

In those parameters governing user activity, the probability of an inactive user

becoming active has the most significant effect on every outcome we tested. This could

be because it effects every inactive user every time-step, whereas there are multiple
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Figure 4.8: Pie Chart Showing the Effect of Various Categories of Parameters on
the Median Return Time of Users to Communities They Have Previously Visited.

parameters governing the probability that an active user becomes inactive. Another

possible cause is that user activation occurs immediately following user deactivation

in the model flow such that if users become active with probability 1 then the other

user activity parameters have no effect.

Perhaps the most interesting comparison between parameters is of two of those

governing user movement. Win-stay, lose-shift is a successful foraging strategy that

we adapted by assigning probabilities to win-stay and to lose-shift. Interestingly,

most outcomes were most sensitive to the lose-shift parameter of those parameters

governing user movement. Win-stay on the other hand rarely had any impact to

speak of. This seems to suggest that it is more important to control what users do

when they are bored than what they do when they are successful.
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Chapter 5

CONCLUSIONS

In Chapter 2 we explore how an individual Q&A forum can influence its own

success. Rather than define a model and use analysis to learn the dynamics of the

system, in this chapter the analysis constrained the model. The flow of questions

through a Q&A forum can be observed in the data, though how questions arrive at

the forum is not so easily observed. In our model we include an “attraction” function

that captures the arrival of new questions to the forum. From the dynamics of the

real system we are able to constrain a few properties of this function. For instance,

“attraction” must be zero when the forum is empty as the foundation of a community

is a perturbation rather than a part of regular dynamics. Holling type functional

response follows the criteria we identified for the “attraction” function and results in

a reasonable fit for many Stack Exchange Q&A forums. Finally, a sensitivity analysis

of the special case where new questions enter the forum according to a Holling type

II function suggests that parameters internal to the community (ratio of answering

strategies and their respective rates) control the balance between quick answers and

accurate answers. Changes to external parameters (those governing the “attraction”

function can uniformly increase or decrease the number of active questions on the

forum.

In Chapter 3 we look at a community of communities rather than a single com-

munity. Using established mechanisms where possible, we construct an agent-based

model of the users in a network of collaborations. Behaviors like preferential attach-

ment, and win-stay, lose-shift, give rise to the same distributions of outcomes as can

be observed in data from Stack Exchange. While this does not guarantee anything
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about the mechanisms truly at work, it is evidence that online collaborators may be-

have like foragers looking for something to occupy their attention and are susceptible

to the availability heuristic. This information can be used to increase user retention

and thereby grow collaborations.

Building on Chapter 3, Chapter 4 focuses on identifying which behavioral mecha-

nisms drive which outcomes. Rather than find any one mechanism that can be safely

excluded, we find that every mechanism plays an important role in at least one of the

outcomes considered. This is primarily informative for the sake of future work, as

results suggest that if you are interested in understanding how users move between

communities, you need not concern yourself with how tasks are allocated. However, if

you are interested in how long it takes departed users to return to a given community

task allocation is more important than how often users are active.

Public goods are an important part of human society and as the world becomes

more and more global, collaboration needs to scale up as well. Collaborating on-

line is much less expensive than collaborating in person and as such is where future

large scale collaborations are most likely to occur. The work in this dissertation

explores what drives the outcomes of online collaborations at a couple of levels. Mov-

ing forward, facilitating constructive online interaction will only become increasingly

valuable, and this is a first step towards understanding how to tailor online collabora-

tive environments to produce the desired outcomes. Online communities can produce

public goods, for example the Stack Exchange network produces answers to a variety

of questions and access to those answers is non-excludable and non-rivalrous. How-

ever, a public good is not necessarily produced by altruistic contributors, this is also

demonstrated in Stack Exchange. Within Stack Exchange is a point system setup to

reward contributors, this allows contributors to be rewarded and thus fosters further

contribution, but it does not tie a cost to accessing the good. The success of mod-
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eling contributors as foragers suggest that they are foraging for something. It is not

necessary that contributors be driven by altruism, as the Stack Exchange network

demonstrates it is possible to create public goods from the positive spillover of selfish

interactions. Thus, when fostering online collaborations, there must be a reward for

contribution to the public good that is not itself the public good.

These projects look at the how online collaborations can be encouraged on different

scales. In Chapter 2 we look at a single isolated community and use known dynamics

to infer possible mechanisms which in turn allow us to extrapolate the consequences

of changes at the community level in the form of defined parameters. In Chapters 3 &

4 we take a wider perspective to look at how online collaboration can be encouraged

more generally. Rather than look at the outcomes of a single community we look at

those of a community of communities. The results of these chapters are not as useful

for educing a given community towards are particular outcome, but they do tell us

something about how to foster a productive online environment.

This work builds on prior work on by looking at massive data sets in the form

of Stack Exchange sites. Unlike prior work modeling online communities we place

an emphasis on where the problems come from, this is represented as community

attractiveness in Chapter 2, and as task allocation in Chapters 3 and 4. Future

research includes further refinement on what determines the attractiveness of a col-

laboration. Another avenue of further research is to identify the differences between

those collaborations that fail to last and those communities that experience growing

contributions.

We have learned that the conditions that lead to a communities persistence are,

at least in part, external to the community. We also found that the conditions in-

ternal to the community served to balance activity between the categories that we

considered. This may indicate a possible “community energy” that is controlled by
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external parameters. Quantifying the energy in communities would contribute a pos-

sible measure of success, but it may also help determine the viability of collaborations

before establishment. This relates to the community of communities model explored

in Chapters 3 and 4 in that communities have malleable topics that allow them to

shift there focus to where they are more successful. We have also demonstrated that

treating users as foragers and communities as the foraging environment produces is

a viable perspective for modeling online communities.

There are several possible continuations of this research in large scale collabora-

tion. First, though there are large scale, online collaborations, we have not verified

that the results found also exist in offline collaborations. Second, a quantification of

the “community energy” or available attention for communities which could be used

to determine the viability of collaborations. Third, explore a dynamic model of user

strategies so that the ratio between type A and type B users changes over time. Other

possible extensions include making predictions with the model, testing interventions

with the models, and generalizing the models to collaborations rather than online

Q&A forums.
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APPENDIX A

SENSITIVITY ANALYSIS
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We will now go through our outcome metrics for a single simulation then look at
the results of a Variance-Based Sensitivity Analysis of those metrics.

We start by looking at the distribution of users through communities. This can
be roughly approximated as a power-law so we identify the power-law of best fit,
this results in two metrics. Additionally we measure the mean, median, and mode
population of communities. An example power-law fit of community population is
shown in FigureA.1. We now have 5 metrics describing the distribution of users in
communities.

Figure A.1: Community Population Distribution

The next distribution of interest is the distribution of contributions, the contri-
butions each community receives is totaled over the course of the simulation giving
a distribution of productivity. Again we take the mean, median, and mode of this
distribution giving us three metrics. Looking at the distribution of output in loglog
coordinates we get a concave distribution and so we identify the function of the form
f(x) = 2ax

2+bx+c that best fits the data, this gives us three more metrics bringing the
total to 11. An example of this fit can be seen in FigureA.2.

Looking now at how users move between communities we total the number of en-
tries and exits for each community. Like with the community output, the distribution
of movement is concave in loglog coordinates so we fit it in the same way and generate
three metrics, an example of this fit can be seen in FigureA.3. Again, we take the
mean, median, and mode of the distribution.

When a user leaves a community, their departure is not permanent. We construct
a distribution of the time until return for each community and identify the median.
This measure tells us how long a community has to wait for half of the users that left
to have returned. The distribution of these median return times is a metric of interest
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Figure A.2: Community Output Distribution

and so we take the mean, median, and mode. We also fit this distribution with a
function of the form f(x) = 2ax

2+bx+c which gives us an additional three outcome
metrics, an example is shown in FigureA.4.

Without looking at how the outcomes of communities are inter-related we identify
23 outcome metrics. Next, we look at how metrics relate to each-other. To do this
look at how community output, user movement, and median return time changes
with community population, community output, and user movement. This results in
six comparisons as reciprocal comparisons are not considered. For each comparison
we use logarithmic binning of the independent variable and the logarithmic mean of
the dependent variable inside that bin. From these binned data points we construct
a linear fit for each comparison, this results in an additional 12 outcome metrics.
Examples of each of these comparisons are shown in FiguresA.5A.6A.7A.8A.9A.10.

We now have 21 input parameters and 35 output metrics. We run VBSA for a
total of nearly half a million simulations. The results are summarized in parts: Fig-
ureA.11 shows the distributional characteristics of the user population, FigureA.12
shows the distributional characteristics of community output, FigureA.13 shows the
distributional characteristics of user movement, FigureA.14 shows the distributional
characteristics of median return time, FigureA.15 shows measures of community out-
put per visit by user, FigureA.16 shows how user population relates to other outcomes,
FigureA.17 shows how community output relates to other outcomes and, FigureA.18
shows how user movement relates to other outcomes.

73



Figure A.3: Community User Flow Distribution

Figure A.4: Median Return Time Distribution
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Figure A.5: Community Output vs Population

Figure A.6: Community User Movement vs Population
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Figure A.7: Median Return Time vs Population

Figure A.8: Community User Movement vs Output
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Figure A.9: Median Return Time vs Output

Figure A.10: Median Return Time vs User Movement
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Figure A.11: User Population Outcomes
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Figure A.12: Community Output Outcomes

79



Figure A.13: User Movement Outcomes
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Figure A.14: Return Time Outcomes
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Figure A.15: Likelihood of Contribution Outcomes
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Figure A.16: Relation Between Population and Other Outcomes

83



Figure A.17: Relation Between Output and Other Outcomes
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Figure A.18: Relation Between Movement and Other Outcomes
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