
The Timing and Targeting of Treatment in Influenza
Pandemics Influences the Emergence of Resistance in
Structured Populations
Benjamin M. Althouse1*, Oscar Patterson-Lomba2, Georg M. Goerg3, Laurent Hébert-Dufresne4
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Abstract

Antiviral resistance in influenza is rampant and has the possibility of causing major morbidity and mortality. Previous models
have identified treatment regimes to minimize total infections and keep resistance low. However, the bulk of these studies
have ignored stochasticity and heterogeneous contact structures. Here we develop a network model of influenza
transmission with treatment and resistance, and present both standard mean-field approximations as well as simulated
dynamics. We find differences in the final epidemic sizes for identical transmission parameters (bistability) leading to
different optimal treatment timing depending on the number initially infected. We also find, contrary to previous results,
that treatment targeted by number of contacts per individual (node degree) gives rise to more resistance at lower levels of
treatment than non-targeted treatment. Finally we highlight important differences between the two methods of analysis
(mean-field versus stochastic simulations), and show where traditional mean-field approximations fail. Our results have
important implications not only for the timing and distribution of influenza chemotherapy, but also for mathematical
epidemiological modeling in general. Antiviral resistance in influenza may carry large consequences for pandemic
mitigation efforts, and models ignoring contact heterogeneity and stochasticity may provide misleading policy
recommendations.
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Introduction

The use of chemotherapy in the treatment of pathogenic disease

places selective pressures on the pathogen to develop resistance to

the treatment [1]. Since failure of chemotherapeutic agents in the

treatment of influenza can cause large morbidity and mortality,

much work has been done to understand the biology of – and

assess the public policy regarding – resistance [2–5], this is

especially important in the light of recent studies on the evolution

of transmissibility of highly pathogenic avian influenza (H5N1)

[6–9]. The most widely used antiviral agents, neuraminidase

inhibitors (NIs) oseltamivir and zanamivir have demonstrated

beneficial effects on pandemic and seasonal influenza strains, and

thus play key roles in the planning of mitigation of epidemics

[3,5,10–13]. Though fundamentally important to the transmission

dynamics of infectious disease, the bulk of current studies

examining the effects of treatment on resistance to therapies have

ignored contact structure [14] and timing of treatment [15,16].

Given the surprising and largely unpredictable evolutionary

trajectories exhibited by influenza [6], the role of structure in

populations may have significant effects on these trajectories. Here

we employ network models of influenza transmission extending

previous work [2] to incorporate the effects of contact structure

and timing of antiviral treatment.

Network models are a robust framework for studying the

transmission dynamics of infectious diseases in structured popu-

lations [17,18]. Read & Keeling (2003) [14] examined the

evolution of a pathogen on networks with varying contact

structures, without the effects of treatment. They find differential

levels of virulence depending on the clustering of the contact

network. Previous studies have examined the role of treatments on

networks of disease transmission. Pastor-Satorras (2002) [19]

suggested targeting vaccination by node degree. While extremely

effective in theory, identifying high degree individuals a priori is

practically impossible. Cohen et al. (2003) [20] extended this idea

to vaccinate an individual and one of the individual’s contacts at

random. Thus by design, the probability of identifying high degree

individuals is greatly increased. This method has been shown

empirically to be more effective at detecting influenza transmission

early than by using a randomly selected group [21].

In addition to the problem of identifying individuals for efficient

treatment, the timing of treatment plays directly into the evolution

of resistance. Wu et al. (2009) [15] found that in a pandemic

scenario with limited supplies of antivirals, it was beneficial to use a
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small amount of a secondary drug early in the epidemic to ‘hedge’

against the evolution of resistance. Hansen and Day (2011) [16]

use optimal control theory to explore the effects of changing

treatment over the course of an epidemic. They find that in a well-

mixed, homogenous population it is optimal to fully treat a

population as long as the timing is correct as they derive. While

much important work has been done, the bulk of studies to this

point have either ignored stochasticity [22,23] or contact structure

[14,24] or both [25], the effects of which have been previously

shown to be significant [26].

The goal of the present work is to combine network simulation

models of evolution of pathogen resistance under chemotherapy

and explore the effects of treatment timing and treatment regimes

(targeted versus non-targeted) on the development and persistence

of resistance. We focus on influenza and as we model resistance

explicitly, we wish to answer three questions: one, to minimize

resistance, should treatment be initiated at all in epidemics? two, if

treatment is initiated, how does its timing affect the emergence and

persistence of resistance in structured populations? and three,

which treatment regime, targeted by degree or not, leads to the

least amount of resistance? The approach taken here is novel in

that our model combines stochasticity and population structure in

assessing the role of treatment, and find results contrary to

previous studies.

Methods

SIR Model Formulation
We extend an ordinary differential equation (ODE) model of

treatment and resistance to influenza antivirals developed by

Lipsitch et al. (2007) [2]. Whereas they considered both

prophylactic and therapeutic treatment in well-mixed, homoge-

nous populations, we consider only reactive treatment in

structured populations. We limit our exploration to treatment

because current guidelines suggest limiting prophylactic use of

antivirals to individuals at high risk [5]. Our model features five

possible states for individuals: susceptible (S), infectious and

untreated (Iu), infectious and effectively treated (It), infectious with

a resistant strain (Ir), or recovered (R). The dynamics then obey

the following rules: susceptibles become infected at rates bu, bt,

and br from untreated, treated and resistant individuals, respec-

tively; wild-type infection (from Iu or It individuals) is treated with

probability r; those treated develop de novo resistance with

probability c; resistant infections (transmitted by Ir) transmit only

this strain (i.e., no reverse mutation); and infectious individuals

recover at rates cu~ct~cr, respectively. We assume treatment

reduces transmissibility but does not affect the rate of recovery.

Mean-Field Model
Disease propagation has been the subject of massive modeling

efforts in recent network theory spanning multiple approaches and

disease models [17,27–29]. While the standard ODE treatment of

epidemics is essentially a coarse-grained mean-field model of

disease propagation in a population with homogeneous mixing, it

has two main shortcomings in relation to realistic models of disease

transmission: It neglects individual heterogeneity (i.e., the variance

of the node degree distribution fpkg) [27] as well as state

correlations between neighboring nodes (i.e., an infectious node is

more likely to be connected to other infectious nodes) [30,31].

To include individual heterogeneity we employ a network

model of disease transmission. Here, in contrast to the standard 5-

states modeled in the ODE system, one typically needs to

introduce a higher-order compartmentalization where nodes are

distinguished not only by their state, but also by their degree.

Hence, instead of one equation for the fraction of susceptible

individuals S(t) at time t, an infinite number of equations

describes the fraction of susceptible nodes of degree k, Sk(t), at

time t. Correlations between nodes are then taken into account by

coupling this system of equations to another system describing the

evolution of the density of links stemming from susceptible nodes.

To accurately reproduce features of real networks, we consider

networks with heavy-tail degree distributions [32,33]. Specifically,

we use a binomial distribution leading into a power-law tail with

exponential cut-off to avoid unrealistically high degree and infinite

average excess degree (see Text S1). Such a heterogeneous

distribution is more realistic in modeling influenza pandemics

where there exists large variation in numbers of individual contacts

across a population [34]. This is opposed to modeling outbreaks

within small communities or schools, where there are natural

lower and upper bounds to the numbers of possible contacts, not

representing the variation seen across an entire population. Even

so, in modeling transmission within small communities, it is still

debated whether contact structure should feature heavy-tailed

degree distributions [35–37] or not [38]; and, while several studies

have indicated that networks with low coefficients of variation may

be better for modeling influenza [38], others have not [34,36].

Finally, heterogeneous distributions as employed here have been

shown to influence the outcome of epidemics [27] and the

efficiency of targeted treatment [19,20]. The full mean-field model

and ODE model equations and details of the degree distributions

are given in Text S1.

Including Stochasticity
Integrating the ODEs resulting from the mean-field analysis

yields the possible final states of the dynamics. But such an analysis

neglects the inherent stochastic nature of disease transmission.

Standard epidemic models often only consider stochastic extinc-

tions of a disease. When the contact structure of the population is

known, the probability of extinction can be calculated [17].

However, in addition to stochastic extinction, our model dynamics

also depend on the probability of treatment and mutation. Thus

even though the mean-field model predicts a final state dominated

by the resistant strain, a randomly picked trajectory will reach this

state only if a mutation occurs (with probability c), i.e., infections

must occur, then resistance is able to appear.

This becomes especially important if the resistant strain has a

higher force of infection than the treated wild-type strain (e.g.,

Author Summary

Resistance of influenza to common antiviral agents carries
the possibility of causing large morbidity and mortality
through failure of treatment and should be taken into
account when planning public health interventions focused
on stopping transmission. Here we present a mathematical
model of influenza transmission which incorporates het-
erogeneous contact structure and stochastic transmission
events. We find scenarios when treatment either induces
large levels of resistance or no resistance at identical values
of transmission rates depending on the number initially
infected. We also find, contrary to previous results, that
targeted treatment causes more resistance at lower
treatment levels than non-targeted treatment. Our results
have important implications for the timing and distribution
of antivirals in epidemics and highlight important differ-
ences in how transmission is modeled and where assump-
tions made in previous models cause them to lead to
erroneous conclusions.

Influenza Resistance in Structured Populations
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brwbeff ~(1{r)buzr(1{c)bt) [39,40]. In this case, even below

the epidemic threshold of the treated wild-type strain, the

development of resistance can occur and propagate. From the

expected number of secondary infections caused by a quantity I0

of initial infectious individuals and the total probability of

transmission, T~beff =(czbeff ) [17], one can calculate the

probability, P, that an individual infected with a wild-type strain

develops de novo resistance (details in Text S1):

P~1{ 1{rcð ÞTSkT= 1{TSk’Tð Þ
, ð1Þ

where SkT and Sk’T are the average degree and excess degree of

the network, respectively [41]. Hence, Eq. (1) equals the

probability of reaching a state where the resistant strain has

emerged (assuming such a state is possible according to our mean-

field analysis). Since the epidemic threshold is given by TcSk’T~1,

we set P:1 for T§Tc. Note that Eq. (1) assumes that beff is such

that R0,eff v1, but R0,rw1. Finally, we note the generality of our

model: parameter values chosen here are to illustrate and

exaggerate the phenomena observed.

Results

Bifurcations and Treatment Timing
We are interested in assessing the effects of the timing of

antiviral treatment. If the resistant strain is less transmissible than

the treated wild-type strain (brvbeff ), treatment will always be a

good option and one must then concentrate on optimizing

treatment efficiency (Figure 1). If the resistant strain is at least as

transmissible as the treated wild-type strain (br§beff ), timing of

treatment is crucial [15].

Figure 2 shows the final epidemic size (proportion recovered) as

a function of the untreated force of infection, bu, and corresponds

to a situation when the resistant strain is more transmissible than

the treated wild-type infections. For increasing values of bu we see

an expected increase in final epidemic size. However, the first

bifurcation creates a regime of bistability where two final states can

be reached for the same bu in stochastic simulations. Between the

two possible branches, there exists a critical manifold correspond-

ing to the curve of initial conditions (initial number infected, I0)

yielding equal expected epidemic sizes whether treatment is

implemented or not (details in Text S1). Thus, depending on the

number of infected individuals when treatment is initiated, we

encounter one of three scenarios: one, where treatment is effective,

de novo resistance is unlikely and there are few infections which

eventually die out (this is the green area – ‘‘Efficient Treatment’’ –

in Figure 2, panel b). In the second and third scenario (the red

area – ‘‘Dangerous Treatment’’ – in Figure 2), treatment will most

likely fail and result in either large incidence of resistant infections

or a small outbreak of resistance in a depleted susceptible

population (depending on the timing of this dangerous treatment).

The derivation of the critical manifold is detailed in Text S1.

Figure 3 demonstrates the behavior of the system in the regimes

defined by this critical manifold. We see similar behavior for

epidemics from both regimes when no treatment is applied (panels

b and e). As observed in previous work [16], late treatment can be

somewhat efficient if implemented after the peak of infections,

such that the wild-type strain has depleted the pool of susceptibles

to limit propagation of the resistant strain (panels d and g).

However, since this implies that the bulk of the original epidemic

has passed, this does not qualify as a truly efficient treatment

regime. On the other hand, simulations (Figure 3, points) for early

treatment of an epidemic with low initial number of infectious

individuals appear significantly more efficient than predicted by

the ODEs (Figure 3, solid lines, panels c and f).

This discrepancy is caused by the stochasticity of this system, or

more precisely, by the mutation probability, P. Such mathematical

models based on mean-field approximations consider infinite

populations in which a finite fraction of infectious individuals

cause an infinite number of infections, resulting in an infinite

number of treatments and an inevitable emergence of resistance.

In finite populations, early treatment with low initial infections will

cause only a small number of interventions resulting in a small

probability of resistance emergence, P. This is why the expected

value of the prevalence of resistance is below one individual for all

time in the simulations. Importantly, models without stochasticity

would have not indicated treatment and failed to identify this

efficient treatment regime (Figure 3). We note that presenting the

per-epidemic average number of cases would have allowed the

mean-field approximations to better align with simulations. This

however would have ignored the role of stochastic extinctions

including those due to successful treatment.

Resistance and Targeted Therapy
Assuming treatment is expected to be efficient, we can explore

two different forms of treatment: non-targeted, where r is a

percentage of the population selected at random for treatment,

and targeted, where r is a function of node degree (r:r(k)~

1{(1{r)k), similar to Cohen et al. where an individual’s

probability of being treated depends on its degree [20].

We focus on scenarios where treatment would be indicated a

priori; i.e., when there is a fitness cost to resistance (brvbu). In the

case when there is no cost of resistance (as explored above)

treatment may or may not be optimal, however the results are

qualitatively similar. Similar to previous studies [2,4], we see a

transition from wild type to resistant infections as treatment levels

increase, and find a minimum in disease prevalence at interme-

diate levels of treatment. Interestingly, we see higher levels of

resistance at lower treatment percentages in the targeted treatment

Figure 1. Final epidemic sizes depend on treatment levels and
relative transmissibility. Figure shows the final epidemic size for
various treatment levels when wild-type and resistant strains have
differing transmissibilities. Treatment is only preferable when the wild-
type strain is more transmissible than the resistant strain (i.e.: brvbeff ).
Model details given in [2]. Parameters: bu~2:5:10{4 , and
bt~0:75:10{4 , cu~ct~cr~10{3, and c~1=500.
doi:10.1371/journal.pcbi.1002912.g001

Influenza Resistance in Structured Populations
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Figure 2. Final epidemic size and demonstration of the critical manifold. Results of the mean-field approximations. Panel a shows the final
infected proportion as a function of bu=c for all infections (r~0:6,c~0:002) (red line), wild-type without treatment (r~0,c~0:002) (black line) and
wild-type without mutation (r~0:6,c~0) (blue line). Panel b demonstrates the critical manifold leading to dependence on initial conditions (dashed
grey line). Treatment in the red region (‘‘Dangerous Treatment’’) results in emergence of resistance, while treatment in the green region (‘‘Efficient
Treatment’’) can lead to eradication. Parameters: cu~ct~cr~c~10{3, br=bu~1:2, bt=bu~0:3.
doi:10.1371/journal.pcbi.1002912.g002

Figure 3. Treatment timing above and below critical manifold. Effects of treatment when initial conditions are above (panels b, c, d) and
below (panels e, f, g) the critical manifold. Panel a is replicated from Figure 2, with each dot corresponding to the panels at right. Solid lines
correspond to mean-field approximations, and points correspond to means of 100,000 simulations on networks of size 250,000. Horizontal black line
corresponds to a mean of 1 infected individual in a network of 250,000 over 100,000 simulations. With no treatment the disease reaches a maximum
and decays (panels b and e). Treatment is only effective early in the simulations when the initial conditions are under the critical manifold (panel f
compared to panel c) as opposed to when the initial conditions are over the critical manifold (panel g compared to panel d). Parameters:
bu~7:5:10{4 , bt~2:25:10{4, br~9:10{4 , beff ~3:74:10{4, cu~ct~cr~10{3 , r~0:6, and c~1=500.

doi:10.1371/journal.pcbi.1002912.g003

Influenza Resistance in Structured Populations
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regime. Figure 4 shows that under the non-targeted treatment

regime, the resistant strain dominates when r *> 85%, whereas

under the targeted treatment regime, resistance is dominant when

r *
> 52%. This happens because targeted treatment increases the

chances of resistance occurring in high-degree nodes. Once

resistant mutants arise in highly connected nodes, they will have

a high probability of being widely transmitted. In addition to the

take over of the resistant strain in the targeted treatment regime,

we see high levels of total infection with increasing percentage

treated due to treatment failure in the resistant cases.

Finally, we find the effects of treatment targeting to be robust to

the network structure. Under a more homogenous degree

distribution (binomially distributed) we find the difference between

high- and low-degree individuals to be less than in the

heterogeneous network, and thus targeting treatment by degree

has a smaller effect. However, the results are qualitatively the

same, with targeted treatment leading to higher levels of resistance

at lower levels of treatment than non-targeted treatment (see Text

S1). This finding is reassuring given the uncertainty in actual

contact structures relevant to influenza transmission [34,36,38].

Discussion

In the current study we wanted to answer three questions: one,

to minimize resistance, should treatment be initiated at all in

epidemics? two, if treatment is initiated, how does its timing affect

the emergence and amount of resistance in structured popula-

tions? and three, which treatment regime, targeted by degree or

not, leads to the least amount of resistance? We find potential

bistability in the final epidemic size and deviations from mean-field

approximations which would have misidentified optimal treatment

timing. We find two scenarios: one, when the initial number

infected is low (early in an epidemic), early treatment is preferable

to late treatment, and two, when the initial number infected is

high, treatment after the peak of epidemic is optimal to keep

resistance low. Interestingly, this occurs at identical values of the

force of infection (values of bx), and indicates a strong dependence

on initial conditions (number of cases at the onset of treatment)

and thus on the timing of treatment. Given the uncertainty

inherent in estimating epidemic prevalence, especially in emerging

infections [42], caution must be taken when deciding to implement

mass treatment.

In addition to the presence of this bifurcation and strong

dependence on initial conditions we find large differences

depending on the method used to allocate treatment. In

accordance with previous results, we find a minimum in the total

number of infections at intermediate levels of antiviral use.

Surprisingly however, we find higher levels of resistance at lower

levels of treatment in the targeted treatment case. This is due to

the heterogeneity in contact structure wherein if those that are

preferentially targeted for treatment (due to their high number of

secondary contacts) develop de novo resistance, they have a large

opportunity to spread the resistant strain. This is counter to

previous results demonstrating that targeted treatment is optimal

to keep absolute numbers of infecteds low. Thus, in structured

populations, non-targeted treatment is preferable if resistance is to

be minimized. This implies that in populations where the

development of resistance is of concern, resources do not need

to be spent on targeting treatment. We note two things: first, in

cases where drugs are scarce, the amount of resistance expected to

appear is low (Figure 4) and treatment targeted by node degree

and factors not considered here (i.e., treating teachers, healthcare

workers, first-responders, etc.) is preferable to no treatment or

non-targeted treatment. Second, non-targeted, or random treat-

ment may be complicated by additional clinical factors also not

considered here (i.e., age, severity of illness, pregnancy, etc.);

however, our results indicate that in cases where antivirals can be

provided to a large fraction of the infected population, resource-

intensive targeting by degree need not be employed and treatment

should be initiated based on clinical factors alone.

The current work highlights the importance of including

stochasticity and contact structure in epidemic models. Due to

the bistability in final epidemic sizes, the mean-field approxima-

tion overestimated the number of resistant cases when treatment

was initiated early and missed the efficient treatment when the

initial numbers of infected are low. Additionally, we have shown

Figure 4. Comparison of random and targeted treatment. Panel a shows the final size for wild-type, resistant and both infections as a function
of percentage treated, r, for targeted (dashed lines) and non-targeted (solid lines) treatment regimes. We see a transition from wild-type to resistant
infections at a lower treatment percentage in the targeted treatment regime. Panel b shows the percent of total infection that is the resistant strain
for the targeted (dashed line) and non-targeted (solid line) treatment. Parameters: bu~6:10{4 , bt~1:8:10{4 , br~3:10{4, cu~ct~cr~10{3 , and
c~1=500.
doi:10.1371/journal.pcbi.1002912.g004

Influenza Resistance in Structured Populations
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that targeted treatment is not optimal due to the heterogeneous

contact structure of the population. This is contrary to earlier

studies demonstrating the efficiency of targeted treatment. While

our results are qualitatively valid, and hold over multiple network

types (see Text S1), more detailed models can and should be

developed to study the effects of contact structure heterogeneity on

the development of resistance. Parameters were chosen to be

general, and give qualitative results, more accurate statistical

estimation could be employed to improve the realism of the model.

The timing and targeting of antivirals for the treatment of

influenza has important policy implications. Recent studies have

demonstrated the facility with which highly pathogenic H5N1 can

mutate to spread efficiently from human-to-human [6–9]. The

development of resistance of H5N1 to common antiviral

treatments, could have devastating consequences. We have

demonstrated the danger of initiating treatment when the number

of infected cases have surpassed a certain threshold (above and

below the critical manifold), but have also demonstrated that

spending resources on targeting treatment may not be necessary.

Supporting Information

Text S1 Supporting information. Supporting Information

includes: Model equations, analytical derivation of critical

manifold, and additional parameter explorations.

(PDF)
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